1// SPDX-License-Identifier: GPL-2.0 OR MIT
2/*
3 * Copyright 2014-2022 Advanced Micro Devices, Inc.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice shall be included in
13 * all copies or substantial portions of the Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21 * OTHER DEALINGS IN THE SOFTWARE.
22 */
23
24#include <linux/types.h>
25#include <linux/kernel.h>
26#include <linux/pci.h>
27#include <linux/errno.h>
28#include <linux/acpi.h>
29#include <linux/hash.h>
30#include <linux/cpufreq.h>
31#include <linux/log2.h>
32#include <linux/dmi.h>
33#include <linux/atomic.h>
34
35#include "kfd_priv.h"
36#include "kfd_crat.h"
37#include "kfd_topology.h"
38#include "kfd_device_queue_manager.h"
39#include "kfd_svm.h"
40#include "kfd_debug.h"
41#include "amdgpu_amdkfd.h"
42#include "amdgpu_ras.h"
43#include "amdgpu.h"
44
45/* topology_device_list - Master list of all topology devices */
46static struct list_head topology_device_list;
47static struct kfd_system_properties sys_props;
48
49static DECLARE_RWSEM(topology_lock);
50static uint32_t topology_crat_proximity_domain;
51
52struct kfd_topology_device *kfd_topology_device_by_proximity_domain_no_lock(
53						uint32_t proximity_domain)
54{
55	struct kfd_topology_device *top_dev;
56	struct kfd_topology_device *device = NULL;
57
58	list_for_each_entry(top_dev, &topology_device_list, list)
59		if (top_dev->proximity_domain == proximity_domain) {
60			device = top_dev;
61			break;
62		}
63
64	return device;
65}
66
67struct kfd_topology_device *kfd_topology_device_by_proximity_domain(
68						uint32_t proximity_domain)
69{
70	struct kfd_topology_device *device = NULL;
71
72	down_read(&topology_lock);
73
74	device = kfd_topology_device_by_proximity_domain_no_lock(
75							proximity_domain);
76	up_read(&topology_lock);
77
78	return device;
79}
80
81struct kfd_topology_device *kfd_topology_device_by_id(uint32_t gpu_id)
82{
83	struct kfd_topology_device *top_dev = NULL;
84	struct kfd_topology_device *ret = NULL;
85
86	down_read(&topology_lock);
87
88	list_for_each_entry(top_dev, &topology_device_list, list)
89		if (top_dev->gpu_id == gpu_id) {
90			ret = top_dev;
91			break;
92		}
93
94	up_read(&topology_lock);
95
96	return ret;
97}
98
99struct kfd_node *kfd_device_by_id(uint32_t gpu_id)
100{
101	struct kfd_topology_device *top_dev;
102
103	top_dev = kfd_topology_device_by_id(gpu_id);
104	if (!top_dev)
105		return NULL;
106
107	return top_dev->gpu;
108}
109
110struct kfd_node *kfd_device_by_pci_dev(const struct pci_dev *pdev)
111{
112	struct kfd_topology_device *top_dev;
113	struct kfd_node *device = NULL;
114
115	down_read(&topology_lock);
116
117	list_for_each_entry(top_dev, &topology_device_list, list)
118		if (top_dev->gpu && top_dev->gpu->adev->pdev == pdev) {
119			device = top_dev->gpu;
120			break;
121		}
122
123	up_read(&topology_lock);
124
125	return device;
126}
127
128/* Called with write topology_lock acquired */
129static void kfd_release_topology_device(struct kfd_topology_device *dev)
130{
131	struct kfd_mem_properties *mem;
132	struct kfd_cache_properties *cache;
133	struct kfd_iolink_properties *iolink;
134	struct kfd_iolink_properties *p2plink;
135	struct kfd_perf_properties *perf;
136
137	list_del(&dev->list);
138
139	while (dev->mem_props.next != &dev->mem_props) {
140		mem = container_of(dev->mem_props.next,
141				struct kfd_mem_properties, list);
142		list_del(&mem->list);
143		kfree(mem);
144	}
145
146	while (dev->cache_props.next != &dev->cache_props) {
147		cache = container_of(dev->cache_props.next,
148				struct kfd_cache_properties, list);
149		list_del(&cache->list);
150		kfree(cache);
151	}
152
153	while (dev->io_link_props.next != &dev->io_link_props) {
154		iolink = container_of(dev->io_link_props.next,
155				struct kfd_iolink_properties, list);
156		list_del(&iolink->list);
157		kfree(iolink);
158	}
159
160	while (dev->p2p_link_props.next != &dev->p2p_link_props) {
161		p2plink = container_of(dev->p2p_link_props.next,
162				struct kfd_iolink_properties, list);
163		list_del(&p2plink->list);
164		kfree(p2plink);
165	}
166
167	while (dev->perf_props.next != &dev->perf_props) {
168		perf = container_of(dev->perf_props.next,
169				struct kfd_perf_properties, list);
170		list_del(&perf->list);
171		kfree(perf);
172	}
173
174	kfree(dev);
175}
176
177void kfd_release_topology_device_list(struct list_head *device_list)
178{
179	struct kfd_topology_device *dev;
180
181	while (!list_empty(device_list)) {
182		dev = list_first_entry(device_list,
183				       struct kfd_topology_device, list);
184		kfd_release_topology_device(dev);
185	}
186}
187
188static void kfd_release_live_view(void)
189{
190	kfd_release_topology_device_list(&topology_device_list);
191	memset(&sys_props, 0, sizeof(sys_props));
192}
193
194struct kfd_topology_device *kfd_create_topology_device(
195				struct list_head *device_list)
196{
197	struct kfd_topology_device *dev;
198
199	dev = kfd_alloc_struct(dev);
200	if (!dev) {
201		pr_err("No memory to allocate a topology device");
202		return NULL;
203	}
204
205	INIT_LIST_HEAD(&dev->mem_props);
206	INIT_LIST_HEAD(&dev->cache_props);
207	INIT_LIST_HEAD(&dev->io_link_props);
208	INIT_LIST_HEAD(&dev->p2p_link_props);
209	INIT_LIST_HEAD(&dev->perf_props);
210
211	list_add_tail(&dev->list, device_list);
212
213	return dev;
214}
215
216
217#define sysfs_show_gen_prop(buffer, offs, fmt, ...)		\
218		(offs += snprintf(buffer+offs, PAGE_SIZE-offs,	\
219				  fmt, __VA_ARGS__))
220#define sysfs_show_32bit_prop(buffer, offs, name, value) \
221		sysfs_show_gen_prop(buffer, offs, "%s %u\n", name, value)
222#define sysfs_show_64bit_prop(buffer, offs, name, value) \
223		sysfs_show_gen_prop(buffer, offs, "%s %llu\n", name, value)
224#define sysfs_show_32bit_val(buffer, offs, value) \
225		sysfs_show_gen_prop(buffer, offs, "%u\n", value)
226#define sysfs_show_str_val(buffer, offs, value) \
227		sysfs_show_gen_prop(buffer, offs, "%s\n", value)
228
229static ssize_t sysprops_show(struct kobject *kobj, struct attribute *attr,
230		char *buffer)
231{
232	int offs = 0;
233
234	/* Making sure that the buffer is an empty string */
235	buffer[0] = 0;
236
237	if (attr == &sys_props.attr_genid) {
238		sysfs_show_32bit_val(buffer, offs,
239				     sys_props.generation_count);
240	} else if (attr == &sys_props.attr_props) {
241		sysfs_show_64bit_prop(buffer, offs, "platform_oem",
242				      sys_props.platform_oem);
243		sysfs_show_64bit_prop(buffer, offs, "platform_id",
244				      sys_props.platform_id);
245		sysfs_show_64bit_prop(buffer, offs, "platform_rev",
246				      sys_props.platform_rev);
247	} else {
248		offs = -EINVAL;
249	}
250
251	return offs;
252}
253
254static void kfd_topology_kobj_release(struct kobject *kobj)
255{
256	kfree(kobj);
257}
258
259static const struct sysfs_ops sysprops_ops = {
260	.show = sysprops_show,
261};
262
263static const struct kobj_type sysprops_type = {
264	.release = kfd_topology_kobj_release,
265	.sysfs_ops = &sysprops_ops,
266};
267
268static ssize_t iolink_show(struct kobject *kobj, struct attribute *attr,
269		char *buffer)
270{
271	int offs = 0;
272	struct kfd_iolink_properties *iolink;
273
274	/* Making sure that the buffer is an empty string */
275	buffer[0] = 0;
276
277	iolink = container_of(attr, struct kfd_iolink_properties, attr);
278	if (iolink->gpu && kfd_devcgroup_check_permission(iolink->gpu))
279		return -EPERM;
280	sysfs_show_32bit_prop(buffer, offs, "type", iolink->iolink_type);
281	sysfs_show_32bit_prop(buffer, offs, "version_major", iolink->ver_maj);
282	sysfs_show_32bit_prop(buffer, offs, "version_minor", iolink->ver_min);
283	sysfs_show_32bit_prop(buffer, offs, "node_from", iolink->node_from);
284	sysfs_show_32bit_prop(buffer, offs, "node_to", iolink->node_to);
285	sysfs_show_32bit_prop(buffer, offs, "weight", iolink->weight);
286	sysfs_show_32bit_prop(buffer, offs, "min_latency", iolink->min_latency);
287	sysfs_show_32bit_prop(buffer, offs, "max_latency", iolink->max_latency);
288	sysfs_show_32bit_prop(buffer, offs, "min_bandwidth",
289			      iolink->min_bandwidth);
290	sysfs_show_32bit_prop(buffer, offs, "max_bandwidth",
291			      iolink->max_bandwidth);
292	sysfs_show_32bit_prop(buffer, offs, "recommended_transfer_size",
293			      iolink->rec_transfer_size);
294	sysfs_show_32bit_prop(buffer, offs, "flags", iolink->flags);
295
296	return offs;
297}
298
299static const struct sysfs_ops iolink_ops = {
300	.show = iolink_show,
301};
302
303static const struct kobj_type iolink_type = {
304	.release = kfd_topology_kobj_release,
305	.sysfs_ops = &iolink_ops,
306};
307
308static ssize_t mem_show(struct kobject *kobj, struct attribute *attr,
309		char *buffer)
310{
311	int offs = 0;
312	struct kfd_mem_properties *mem;
313
314	/* Making sure that the buffer is an empty string */
315	buffer[0] = 0;
316
317	mem = container_of(attr, struct kfd_mem_properties, attr);
318	if (mem->gpu && kfd_devcgroup_check_permission(mem->gpu))
319		return -EPERM;
320	sysfs_show_32bit_prop(buffer, offs, "heap_type", mem->heap_type);
321	sysfs_show_64bit_prop(buffer, offs, "size_in_bytes",
322			      mem->size_in_bytes);
323	sysfs_show_32bit_prop(buffer, offs, "flags", mem->flags);
324	sysfs_show_32bit_prop(buffer, offs, "width", mem->width);
325	sysfs_show_32bit_prop(buffer, offs, "mem_clk_max",
326			      mem->mem_clk_max);
327
328	return offs;
329}
330
331static const struct sysfs_ops mem_ops = {
332	.show = mem_show,
333};
334
335static const struct kobj_type mem_type = {
336	.release = kfd_topology_kobj_release,
337	.sysfs_ops = &mem_ops,
338};
339
340static ssize_t kfd_cache_show(struct kobject *kobj, struct attribute *attr,
341		char *buffer)
342{
343	int offs = 0;
344	uint32_t i, j;
345	struct kfd_cache_properties *cache;
346
347	/* Making sure that the buffer is an empty string */
348	buffer[0] = 0;
349	cache = container_of(attr, struct kfd_cache_properties, attr);
350	if (cache->gpu && kfd_devcgroup_check_permission(cache->gpu))
351		return -EPERM;
352	sysfs_show_32bit_prop(buffer, offs, "processor_id_low",
353			cache->processor_id_low);
354	sysfs_show_32bit_prop(buffer, offs, "level", cache->cache_level);
355	sysfs_show_32bit_prop(buffer, offs, "size", cache->cache_size);
356	sysfs_show_32bit_prop(buffer, offs, "cache_line_size",
357			      cache->cacheline_size);
358	sysfs_show_32bit_prop(buffer, offs, "cache_lines_per_tag",
359			      cache->cachelines_per_tag);
360	sysfs_show_32bit_prop(buffer, offs, "association", cache->cache_assoc);
361	sysfs_show_32bit_prop(buffer, offs, "latency", cache->cache_latency);
362	sysfs_show_32bit_prop(buffer, offs, "type", cache->cache_type);
363
364	offs += snprintf(buffer+offs, PAGE_SIZE-offs, "sibling_map ");
365	for (i = 0; i < cache->sibling_map_size; i++)
366		for (j = 0; j < sizeof(cache->sibling_map[0])*8; j++)
367			/* Check each bit */
368			offs += snprintf(buffer+offs, PAGE_SIZE-offs, "%d,",
369						(cache->sibling_map[i] >> j) & 1);
370
371	/* Replace the last "," with end of line */
372	buffer[offs-1] = '\n';
373	return offs;
374}
375
376static const struct sysfs_ops cache_ops = {
377	.show = kfd_cache_show,
378};
379
380static const struct kobj_type cache_type = {
381	.release = kfd_topology_kobj_release,
382	.sysfs_ops = &cache_ops,
383};
384
385/****** Sysfs of Performance Counters ******/
386
387struct kfd_perf_attr {
388	struct kobj_attribute attr;
389	uint32_t data;
390};
391
392static ssize_t perf_show(struct kobject *kobj, struct kobj_attribute *attrs,
393			char *buf)
394{
395	int offs = 0;
396	struct kfd_perf_attr *attr;
397
398	buf[0] = 0;
399	attr = container_of(attrs, struct kfd_perf_attr, attr);
400	if (!attr->data) /* invalid data for PMC */
401		return 0;
402	else
403		return sysfs_show_32bit_val(buf, offs, attr->data);
404}
405
406#define KFD_PERF_DESC(_name, _data)			\
407{							\
408	.attr  = __ATTR(_name, 0444, perf_show, NULL),	\
409	.data = _data,					\
410}
411
412static struct kfd_perf_attr perf_attr_iommu[] = {
413	KFD_PERF_DESC(max_concurrent, 0),
414	KFD_PERF_DESC(num_counters, 0),
415	KFD_PERF_DESC(counter_ids, 0),
416};
417/****************************************/
418
419static ssize_t node_show(struct kobject *kobj, struct attribute *attr,
420		char *buffer)
421{
422	int offs = 0;
423	struct kfd_topology_device *dev;
424	uint32_t log_max_watch_addr;
425
426	/* Making sure that the buffer is an empty string */
427	buffer[0] = 0;
428
429	if (strcmp(attr->name, "gpu_id") == 0) {
430		dev = container_of(attr, struct kfd_topology_device,
431				attr_gpuid);
432		if (dev->gpu && kfd_devcgroup_check_permission(dev->gpu))
433			return -EPERM;
434		return sysfs_show_32bit_val(buffer, offs, dev->gpu_id);
435	}
436
437	if (strcmp(attr->name, "name") == 0) {
438		dev = container_of(attr, struct kfd_topology_device,
439				attr_name);
440
441		if (dev->gpu && kfd_devcgroup_check_permission(dev->gpu))
442			return -EPERM;
443		return sysfs_show_str_val(buffer, offs, dev->node_props.name);
444	}
445
446	dev = container_of(attr, struct kfd_topology_device,
447			attr_props);
448	if (dev->gpu && kfd_devcgroup_check_permission(dev->gpu))
449		return -EPERM;
450	sysfs_show_32bit_prop(buffer, offs, "cpu_cores_count",
451			      dev->node_props.cpu_cores_count);
452	sysfs_show_32bit_prop(buffer, offs, "simd_count",
453			      dev->gpu ? dev->node_props.simd_count : 0);
454	sysfs_show_32bit_prop(buffer, offs, "mem_banks_count",
455			      dev->node_props.mem_banks_count);
456	sysfs_show_32bit_prop(buffer, offs, "caches_count",
457			      dev->node_props.caches_count);
458	sysfs_show_32bit_prop(buffer, offs, "io_links_count",
459			      dev->node_props.io_links_count);
460	sysfs_show_32bit_prop(buffer, offs, "p2p_links_count",
461			      dev->node_props.p2p_links_count);
462	sysfs_show_32bit_prop(buffer, offs, "cpu_core_id_base",
463			      dev->node_props.cpu_core_id_base);
464	sysfs_show_32bit_prop(buffer, offs, "simd_id_base",
465			      dev->node_props.simd_id_base);
466	sysfs_show_32bit_prop(buffer, offs, "max_waves_per_simd",
467			      dev->node_props.max_waves_per_simd);
468	sysfs_show_32bit_prop(buffer, offs, "lds_size_in_kb",
469			      dev->node_props.lds_size_in_kb);
470	sysfs_show_32bit_prop(buffer, offs, "gds_size_in_kb",
471			      dev->node_props.gds_size_in_kb);
472	sysfs_show_32bit_prop(buffer, offs, "num_gws",
473			      dev->node_props.num_gws);
474	sysfs_show_32bit_prop(buffer, offs, "wave_front_size",
475			      dev->node_props.wave_front_size);
476	sysfs_show_32bit_prop(buffer, offs, "array_count",
477			      dev->gpu ? (dev->node_props.array_count *
478					  NUM_XCC(dev->gpu->xcc_mask)) : 0);
479	sysfs_show_32bit_prop(buffer, offs, "simd_arrays_per_engine",
480			      dev->node_props.simd_arrays_per_engine);
481	sysfs_show_32bit_prop(buffer, offs, "cu_per_simd_array",
482			      dev->node_props.cu_per_simd_array);
483	sysfs_show_32bit_prop(buffer, offs, "simd_per_cu",
484			      dev->node_props.simd_per_cu);
485	sysfs_show_32bit_prop(buffer, offs, "max_slots_scratch_cu",
486			      dev->node_props.max_slots_scratch_cu);
487	sysfs_show_32bit_prop(buffer, offs, "gfx_target_version",
488			      dev->node_props.gfx_target_version);
489	sysfs_show_32bit_prop(buffer, offs, "vendor_id",
490			      dev->node_props.vendor_id);
491	sysfs_show_32bit_prop(buffer, offs, "device_id",
492			      dev->node_props.device_id);
493	sysfs_show_32bit_prop(buffer, offs, "location_id",
494			      dev->node_props.location_id);
495	sysfs_show_32bit_prop(buffer, offs, "domain",
496			      dev->node_props.domain);
497	sysfs_show_32bit_prop(buffer, offs, "drm_render_minor",
498			      dev->node_props.drm_render_minor);
499	sysfs_show_64bit_prop(buffer, offs, "hive_id",
500			      dev->node_props.hive_id);
501	sysfs_show_32bit_prop(buffer, offs, "num_sdma_engines",
502			      dev->node_props.num_sdma_engines);
503	sysfs_show_32bit_prop(buffer, offs, "num_sdma_xgmi_engines",
504			      dev->node_props.num_sdma_xgmi_engines);
505	sysfs_show_32bit_prop(buffer, offs, "num_sdma_queues_per_engine",
506			      dev->node_props.num_sdma_queues_per_engine);
507	sysfs_show_32bit_prop(buffer, offs, "num_cp_queues",
508			      dev->node_props.num_cp_queues);
509
510	if (dev->gpu) {
511		log_max_watch_addr =
512			__ilog2_u32(dev->gpu->kfd->device_info.num_of_watch_points);
513
514		if (log_max_watch_addr) {
515			dev->node_props.capability |=
516					HSA_CAP_WATCH_POINTS_SUPPORTED;
517
518			dev->node_props.capability |=
519				((log_max_watch_addr <<
520					HSA_CAP_WATCH_POINTS_TOTALBITS_SHIFT) &
521				HSA_CAP_WATCH_POINTS_TOTALBITS_MASK);
522		}
523
524		if (dev->gpu->adev->asic_type == CHIP_TONGA)
525			dev->node_props.capability |=
526					HSA_CAP_AQL_QUEUE_DOUBLE_MAP;
527
528		sysfs_show_32bit_prop(buffer, offs, "max_engine_clk_fcompute",
529			dev->node_props.max_engine_clk_fcompute);
530
531		sysfs_show_64bit_prop(buffer, offs, "local_mem_size", 0ULL);
532
533		sysfs_show_32bit_prop(buffer, offs, "fw_version",
534				      dev->gpu->kfd->mec_fw_version);
535		sysfs_show_32bit_prop(buffer, offs, "capability",
536				      dev->node_props.capability);
537		sysfs_show_64bit_prop(buffer, offs, "debug_prop",
538				      dev->node_props.debug_prop);
539		sysfs_show_32bit_prop(buffer, offs, "sdma_fw_version",
540				      dev->gpu->kfd->sdma_fw_version);
541		sysfs_show_64bit_prop(buffer, offs, "unique_id",
542				      dev->gpu->adev->unique_id);
543		sysfs_show_32bit_prop(buffer, offs, "num_xcc",
544				      NUM_XCC(dev->gpu->xcc_mask));
545	}
546
547	return sysfs_show_32bit_prop(buffer, offs, "max_engine_clk_ccompute",
548				     cpufreq_quick_get_max(0)/1000);
549}
550
551static const struct sysfs_ops node_ops = {
552	.show = node_show,
553};
554
555static const struct kobj_type node_type = {
556	.release = kfd_topology_kobj_release,
557	.sysfs_ops = &node_ops,
558};
559
560static void kfd_remove_sysfs_file(struct kobject *kobj, struct attribute *attr)
561{
562	sysfs_remove_file(kobj, attr);
563	kobject_del(kobj);
564	kobject_put(kobj);
565}
566
567static void kfd_remove_sysfs_node_entry(struct kfd_topology_device *dev)
568{
569	struct kfd_iolink_properties *p2plink;
570	struct kfd_iolink_properties *iolink;
571	struct kfd_cache_properties *cache;
572	struct kfd_mem_properties *mem;
573	struct kfd_perf_properties *perf;
574
575	if (dev->kobj_iolink) {
576		list_for_each_entry(iolink, &dev->io_link_props, list)
577			if (iolink->kobj) {
578				kfd_remove_sysfs_file(iolink->kobj,
579							&iolink->attr);
580				iolink->kobj = NULL;
581			}
582		kobject_del(dev->kobj_iolink);
583		kobject_put(dev->kobj_iolink);
584		dev->kobj_iolink = NULL;
585	}
586
587	if (dev->kobj_p2plink) {
588		list_for_each_entry(p2plink, &dev->p2p_link_props, list)
589			if (p2plink->kobj) {
590				kfd_remove_sysfs_file(p2plink->kobj,
591							&p2plink->attr);
592				p2plink->kobj = NULL;
593			}
594		kobject_del(dev->kobj_p2plink);
595		kobject_put(dev->kobj_p2plink);
596		dev->kobj_p2plink = NULL;
597	}
598
599	if (dev->kobj_cache) {
600		list_for_each_entry(cache, &dev->cache_props, list)
601			if (cache->kobj) {
602				kfd_remove_sysfs_file(cache->kobj,
603							&cache->attr);
604				cache->kobj = NULL;
605			}
606		kobject_del(dev->kobj_cache);
607		kobject_put(dev->kobj_cache);
608		dev->kobj_cache = NULL;
609	}
610
611	if (dev->kobj_mem) {
612		list_for_each_entry(mem, &dev->mem_props, list)
613			if (mem->kobj) {
614				kfd_remove_sysfs_file(mem->kobj, &mem->attr);
615				mem->kobj = NULL;
616			}
617		kobject_del(dev->kobj_mem);
618		kobject_put(dev->kobj_mem);
619		dev->kobj_mem = NULL;
620	}
621
622	if (dev->kobj_perf) {
623		list_for_each_entry(perf, &dev->perf_props, list) {
624			kfree(perf->attr_group);
625			perf->attr_group = NULL;
626		}
627		kobject_del(dev->kobj_perf);
628		kobject_put(dev->kobj_perf);
629		dev->kobj_perf = NULL;
630	}
631
632	if (dev->kobj_node) {
633		sysfs_remove_file(dev->kobj_node, &dev->attr_gpuid);
634		sysfs_remove_file(dev->kobj_node, &dev->attr_name);
635		sysfs_remove_file(dev->kobj_node, &dev->attr_props);
636		kobject_del(dev->kobj_node);
637		kobject_put(dev->kobj_node);
638		dev->kobj_node = NULL;
639	}
640}
641
642static int kfd_build_sysfs_node_entry(struct kfd_topology_device *dev,
643		uint32_t id)
644{
645	struct kfd_iolink_properties *p2plink;
646	struct kfd_iolink_properties *iolink;
647	struct kfd_cache_properties *cache;
648	struct kfd_mem_properties *mem;
649	struct kfd_perf_properties *perf;
650	int ret;
651	uint32_t i, num_attrs;
652	struct attribute **attrs;
653
654	if (WARN_ON(dev->kobj_node))
655		return -EEXIST;
656
657	/*
658	 * Creating the sysfs folders
659	 */
660	dev->kobj_node = kfd_alloc_struct(dev->kobj_node);
661	if (!dev->kobj_node)
662		return -ENOMEM;
663
664	ret = kobject_init_and_add(dev->kobj_node, &node_type,
665			sys_props.kobj_nodes, "%d", id);
666	if (ret < 0) {
667		kobject_put(dev->kobj_node);
668		return ret;
669	}
670
671	dev->kobj_mem = kobject_create_and_add("mem_banks", dev->kobj_node);
672	if (!dev->kobj_mem)
673		return -ENOMEM;
674
675	dev->kobj_cache = kobject_create_and_add("caches", dev->kobj_node);
676	if (!dev->kobj_cache)
677		return -ENOMEM;
678
679	dev->kobj_iolink = kobject_create_and_add("io_links", dev->kobj_node);
680	if (!dev->kobj_iolink)
681		return -ENOMEM;
682
683	dev->kobj_p2plink = kobject_create_and_add("p2p_links", dev->kobj_node);
684	if (!dev->kobj_p2plink)
685		return -ENOMEM;
686
687	dev->kobj_perf = kobject_create_and_add("perf", dev->kobj_node);
688	if (!dev->kobj_perf)
689		return -ENOMEM;
690
691	/*
692	 * Creating sysfs files for node properties
693	 */
694	dev->attr_gpuid.name = "gpu_id";
695	dev->attr_gpuid.mode = KFD_SYSFS_FILE_MODE;
696	sysfs_attr_init(&dev->attr_gpuid);
697	dev->attr_name.name = "name";
698	dev->attr_name.mode = KFD_SYSFS_FILE_MODE;
699	sysfs_attr_init(&dev->attr_name);
700	dev->attr_props.name = "properties";
701	dev->attr_props.mode = KFD_SYSFS_FILE_MODE;
702	sysfs_attr_init(&dev->attr_props);
703	ret = sysfs_create_file(dev->kobj_node, &dev->attr_gpuid);
704	if (ret < 0)
705		return ret;
706	ret = sysfs_create_file(dev->kobj_node, &dev->attr_name);
707	if (ret < 0)
708		return ret;
709	ret = sysfs_create_file(dev->kobj_node, &dev->attr_props);
710	if (ret < 0)
711		return ret;
712
713	i = 0;
714	list_for_each_entry(mem, &dev->mem_props, list) {
715		mem->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
716		if (!mem->kobj)
717			return -ENOMEM;
718		ret = kobject_init_and_add(mem->kobj, &mem_type,
719				dev->kobj_mem, "%d", i);
720		if (ret < 0) {
721			kobject_put(mem->kobj);
722			return ret;
723		}
724
725		mem->attr.name = "properties";
726		mem->attr.mode = KFD_SYSFS_FILE_MODE;
727		sysfs_attr_init(&mem->attr);
728		ret = sysfs_create_file(mem->kobj, &mem->attr);
729		if (ret < 0)
730			return ret;
731		i++;
732	}
733
734	i = 0;
735	list_for_each_entry(cache, &dev->cache_props, list) {
736		cache->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
737		if (!cache->kobj)
738			return -ENOMEM;
739		ret = kobject_init_and_add(cache->kobj, &cache_type,
740				dev->kobj_cache, "%d", i);
741		if (ret < 0) {
742			kobject_put(cache->kobj);
743			return ret;
744		}
745
746		cache->attr.name = "properties";
747		cache->attr.mode = KFD_SYSFS_FILE_MODE;
748		sysfs_attr_init(&cache->attr);
749		ret = sysfs_create_file(cache->kobj, &cache->attr);
750		if (ret < 0)
751			return ret;
752		i++;
753	}
754
755	i = 0;
756	list_for_each_entry(iolink, &dev->io_link_props, list) {
757		iolink->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
758		if (!iolink->kobj)
759			return -ENOMEM;
760		ret = kobject_init_and_add(iolink->kobj, &iolink_type,
761				dev->kobj_iolink, "%d", i);
762		if (ret < 0) {
763			kobject_put(iolink->kobj);
764			return ret;
765		}
766
767		iolink->attr.name = "properties";
768		iolink->attr.mode = KFD_SYSFS_FILE_MODE;
769		sysfs_attr_init(&iolink->attr);
770		ret = sysfs_create_file(iolink->kobj, &iolink->attr);
771		if (ret < 0)
772			return ret;
773		i++;
774	}
775
776	i = 0;
777	list_for_each_entry(p2plink, &dev->p2p_link_props, list) {
778		p2plink->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
779		if (!p2plink->kobj)
780			return -ENOMEM;
781		ret = kobject_init_and_add(p2plink->kobj, &iolink_type,
782				dev->kobj_p2plink, "%d", i);
783		if (ret < 0) {
784			kobject_put(p2plink->kobj);
785			return ret;
786		}
787
788		p2plink->attr.name = "properties";
789		p2plink->attr.mode = KFD_SYSFS_FILE_MODE;
790		sysfs_attr_init(&p2plink->attr);
791		ret = sysfs_create_file(p2plink->kobj, &p2plink->attr);
792		if (ret < 0)
793			return ret;
794		i++;
795	}
796
797	/* All hardware blocks have the same number of attributes. */
798	num_attrs = ARRAY_SIZE(perf_attr_iommu);
799	list_for_each_entry(perf, &dev->perf_props, list) {
800		perf->attr_group = kzalloc(sizeof(struct kfd_perf_attr)
801			* num_attrs + sizeof(struct attribute_group),
802			GFP_KERNEL);
803		if (!perf->attr_group)
804			return -ENOMEM;
805
806		attrs = (struct attribute **)(perf->attr_group + 1);
807		if (!strcmp(perf->block_name, "iommu")) {
808		/* Information of IOMMU's num_counters and counter_ids is shown
809		 * under /sys/bus/event_source/devices/amd_iommu. We don't
810		 * duplicate here.
811		 */
812			perf_attr_iommu[0].data = perf->max_concurrent;
813			for (i = 0; i < num_attrs; i++)
814				attrs[i] = &perf_attr_iommu[i].attr.attr;
815		}
816		perf->attr_group->name = perf->block_name;
817		perf->attr_group->attrs = attrs;
818		ret = sysfs_create_group(dev->kobj_perf, perf->attr_group);
819		if (ret < 0)
820			return ret;
821	}
822
823	return 0;
824}
825
826/* Called with write topology lock acquired */
827static int kfd_build_sysfs_node_tree(void)
828{
829	struct kfd_topology_device *dev;
830	int ret;
831	uint32_t i = 0;
832
833	list_for_each_entry(dev, &topology_device_list, list) {
834		ret = kfd_build_sysfs_node_entry(dev, i);
835		if (ret < 0)
836			return ret;
837		i++;
838	}
839
840	return 0;
841}
842
843/* Called with write topology lock acquired */
844static void kfd_remove_sysfs_node_tree(void)
845{
846	struct kfd_topology_device *dev;
847
848	list_for_each_entry(dev, &topology_device_list, list)
849		kfd_remove_sysfs_node_entry(dev);
850}
851
852static int kfd_topology_update_sysfs(void)
853{
854	int ret;
855
856	if (!sys_props.kobj_topology) {
857		sys_props.kobj_topology =
858				kfd_alloc_struct(sys_props.kobj_topology);
859		if (!sys_props.kobj_topology)
860			return -ENOMEM;
861
862		ret = kobject_init_and_add(sys_props.kobj_topology,
863				&sysprops_type,  &kfd_device->kobj,
864				"topology");
865		if (ret < 0) {
866			kobject_put(sys_props.kobj_topology);
867			return ret;
868		}
869
870		sys_props.kobj_nodes = kobject_create_and_add("nodes",
871				sys_props.kobj_topology);
872		if (!sys_props.kobj_nodes)
873			return -ENOMEM;
874
875		sys_props.attr_genid.name = "generation_id";
876		sys_props.attr_genid.mode = KFD_SYSFS_FILE_MODE;
877		sysfs_attr_init(&sys_props.attr_genid);
878		ret = sysfs_create_file(sys_props.kobj_topology,
879				&sys_props.attr_genid);
880		if (ret < 0)
881			return ret;
882
883		sys_props.attr_props.name = "system_properties";
884		sys_props.attr_props.mode = KFD_SYSFS_FILE_MODE;
885		sysfs_attr_init(&sys_props.attr_props);
886		ret = sysfs_create_file(sys_props.kobj_topology,
887				&sys_props.attr_props);
888		if (ret < 0)
889			return ret;
890	}
891
892	kfd_remove_sysfs_node_tree();
893
894	return kfd_build_sysfs_node_tree();
895}
896
897static void kfd_topology_release_sysfs(void)
898{
899	kfd_remove_sysfs_node_tree();
900	if (sys_props.kobj_topology) {
901		sysfs_remove_file(sys_props.kobj_topology,
902				&sys_props.attr_genid);
903		sysfs_remove_file(sys_props.kobj_topology,
904				&sys_props.attr_props);
905		if (sys_props.kobj_nodes) {
906			kobject_del(sys_props.kobj_nodes);
907			kobject_put(sys_props.kobj_nodes);
908			sys_props.kobj_nodes = NULL;
909		}
910		kobject_del(sys_props.kobj_topology);
911		kobject_put(sys_props.kobj_topology);
912		sys_props.kobj_topology = NULL;
913	}
914}
915
916/* Called with write topology_lock acquired */
917static void kfd_topology_update_device_list(struct list_head *temp_list,
918					struct list_head *master_list)
919{
920	while (!list_empty(temp_list)) {
921		list_move_tail(temp_list->next, master_list);
922		sys_props.num_devices++;
923	}
924}
925
926static void kfd_debug_print_topology(void)
927{
928	struct kfd_topology_device *dev;
929
930	down_read(&topology_lock);
931
932	dev = list_last_entry(&topology_device_list,
933			struct kfd_topology_device, list);
934	if (dev) {
935		if (dev->node_props.cpu_cores_count &&
936				dev->node_props.simd_count) {
937			pr_info("Topology: Add APU node [0x%0x:0x%0x]\n",
938				dev->node_props.device_id,
939				dev->node_props.vendor_id);
940		} else if (dev->node_props.cpu_cores_count)
941			pr_info("Topology: Add CPU node\n");
942		else if (dev->node_props.simd_count)
943			pr_info("Topology: Add dGPU node [0x%0x:0x%0x]\n",
944				dev->node_props.device_id,
945				dev->node_props.vendor_id);
946	}
947	up_read(&topology_lock);
948}
949
950/* Helper function for intializing platform_xx members of
951 * kfd_system_properties. Uses OEM info from the last CPU/APU node.
952 */
953static void kfd_update_system_properties(void)
954{
955	struct kfd_topology_device *dev;
956
957	down_read(&topology_lock);
958	dev = list_last_entry(&topology_device_list,
959			struct kfd_topology_device, list);
960	if (dev) {
961		sys_props.platform_id =
962			(*((uint64_t *)dev->oem_id)) & CRAT_OEMID_64BIT_MASK;
963		sys_props.platform_oem = *((uint64_t *)dev->oem_table_id);
964		sys_props.platform_rev = dev->oem_revision;
965	}
966	up_read(&topology_lock);
967}
968
969static void find_system_memory(const struct dmi_header *dm,
970	void *private)
971{
972	struct kfd_mem_properties *mem;
973	u16 mem_width, mem_clock;
974	struct kfd_topology_device *kdev =
975		(struct kfd_topology_device *)private;
976	const u8 *dmi_data = (const u8 *)(dm + 1);
977
978	if (dm->type == DMI_ENTRY_MEM_DEVICE && dm->length >= 0x15) {
979		mem_width = (u16)(*(const u16 *)(dmi_data + 0x6));
980		mem_clock = (u16)(*(const u16 *)(dmi_data + 0x11));
981		list_for_each_entry(mem, &kdev->mem_props, list) {
982			if (mem_width != 0xFFFF && mem_width != 0)
983				mem->width = mem_width;
984			if (mem_clock != 0)
985				mem->mem_clk_max = mem_clock;
986		}
987	}
988}
989
990/* kfd_add_non_crat_information - Add information that is not currently
991 *	defined in CRAT but is necessary for KFD topology
992 * @dev - topology device to which addition info is added
993 */
994static void kfd_add_non_crat_information(struct kfd_topology_device *kdev)
995{
996	/* Check if CPU only node. */
997	if (!kdev->gpu) {
998		/* Add system memory information */
999		dmi_walk(find_system_memory, kdev);
1000	}
1001	/* TODO: For GPU node, rearrange code from kfd_topology_add_device */
1002}
1003
1004int kfd_topology_init(void)
1005{
1006	void *crat_image = NULL;
1007	size_t image_size = 0;
1008	int ret;
1009	struct list_head temp_topology_device_list;
1010	int cpu_only_node = 0;
1011	struct kfd_topology_device *kdev;
1012	int proximity_domain;
1013
1014	/* topology_device_list - Master list of all topology devices
1015	 * temp_topology_device_list - temporary list created while parsing CRAT
1016	 * or VCRAT. Once parsing is complete the contents of list is moved to
1017	 * topology_device_list
1018	 */
1019
1020	/* Initialize the head for the both the lists */
1021	INIT_LIST_HEAD(&topology_device_list);
1022	INIT_LIST_HEAD(&temp_topology_device_list);
1023	init_rwsem(&topology_lock);
1024
1025	memset(&sys_props, 0, sizeof(sys_props));
1026
1027	/* Proximity domains in ACPI CRAT tables start counting at
1028	 * 0. The same should be true for virtual CRAT tables created
1029	 * at this stage. GPUs added later in kfd_topology_add_device
1030	 * use a counter.
1031	 */
1032	proximity_domain = 0;
1033
1034	ret = kfd_create_crat_image_virtual(&crat_image, &image_size,
1035					    COMPUTE_UNIT_CPU, NULL,
1036					    proximity_domain);
1037	cpu_only_node = 1;
1038	if (ret) {
1039		pr_err("Error creating VCRAT table for CPU\n");
1040		return ret;
1041	}
1042
1043	ret = kfd_parse_crat_table(crat_image,
1044				   &temp_topology_device_list,
1045				   proximity_domain);
1046	if (ret) {
1047		pr_err("Error parsing VCRAT table for CPU\n");
1048		goto err;
1049	}
1050
1051	kdev = list_first_entry(&temp_topology_device_list,
1052				struct kfd_topology_device, list);
1053
1054	down_write(&topology_lock);
1055	kfd_topology_update_device_list(&temp_topology_device_list,
1056					&topology_device_list);
1057	topology_crat_proximity_domain = sys_props.num_devices-1;
1058	ret = kfd_topology_update_sysfs();
1059	up_write(&topology_lock);
1060
1061	if (!ret) {
1062		sys_props.generation_count++;
1063		kfd_update_system_properties();
1064		kfd_debug_print_topology();
1065	} else
1066		pr_err("Failed to update topology in sysfs ret=%d\n", ret);
1067
1068	/* For nodes with GPU, this information gets added
1069	 * when GPU is detected (kfd_topology_add_device).
1070	 */
1071	if (cpu_only_node) {
1072		/* Add additional information to CPU only node created above */
1073		down_write(&topology_lock);
1074		kdev = list_first_entry(&topology_device_list,
1075				struct kfd_topology_device, list);
1076		up_write(&topology_lock);
1077		kfd_add_non_crat_information(kdev);
1078	}
1079
1080err:
1081	kfd_destroy_crat_image(crat_image);
1082	return ret;
1083}
1084
1085void kfd_topology_shutdown(void)
1086{
1087	down_write(&topology_lock);
1088	kfd_topology_release_sysfs();
1089	kfd_release_live_view();
1090	up_write(&topology_lock);
1091}
1092
1093static uint32_t kfd_generate_gpu_id(struct kfd_node *gpu)
1094{
1095	uint32_t hashout;
1096	uint32_t buf[8];
1097	uint64_t local_mem_size;
1098	int i;
1099
1100	if (!gpu)
1101		return 0;
1102
1103	local_mem_size = gpu->local_mem_info.local_mem_size_private +
1104			gpu->local_mem_info.local_mem_size_public;
1105	buf[0] = gpu->adev->pdev->devfn;
1106	buf[1] = gpu->adev->pdev->subsystem_vendor |
1107		(gpu->adev->pdev->subsystem_device << 16);
1108	buf[2] = pci_domain_nr(gpu->adev->pdev->bus);
1109	buf[3] = gpu->adev->pdev->device;
1110	buf[4] = gpu->adev->pdev->bus->number;
1111	buf[5] = lower_32_bits(local_mem_size);
1112	buf[6] = upper_32_bits(local_mem_size);
1113	buf[7] = (ffs(gpu->xcc_mask) - 1) | (NUM_XCC(gpu->xcc_mask) << 16);
1114
1115	for (i = 0, hashout = 0; i < 8; i++)
1116		hashout ^= hash_32(buf[i], KFD_GPU_ID_HASH_WIDTH);
1117
1118	return hashout;
1119}
1120/* kfd_assign_gpu - Attach @gpu to the correct kfd topology device. If
1121 *		the GPU device is not already present in the topology device
1122 *		list then return NULL. This means a new topology device has to
1123 *		be created for this GPU.
1124 */
1125static struct kfd_topology_device *kfd_assign_gpu(struct kfd_node *gpu)
1126{
1127	struct kfd_topology_device *dev;
1128	struct kfd_topology_device *out_dev = NULL;
1129	struct kfd_mem_properties *mem;
1130	struct kfd_cache_properties *cache;
1131	struct kfd_iolink_properties *iolink;
1132	struct kfd_iolink_properties *p2plink;
1133
1134	list_for_each_entry(dev, &topology_device_list, list) {
1135		/* Discrete GPUs need their own topology device list
1136		 * entries. Don't assign them to CPU/APU nodes.
1137		 */
1138		if (dev->node_props.cpu_cores_count)
1139			continue;
1140
1141		if (!dev->gpu && (dev->node_props.simd_count > 0)) {
1142			dev->gpu = gpu;
1143			out_dev = dev;
1144
1145			list_for_each_entry(mem, &dev->mem_props, list)
1146				mem->gpu = dev->gpu;
1147			list_for_each_entry(cache, &dev->cache_props, list)
1148				cache->gpu = dev->gpu;
1149			list_for_each_entry(iolink, &dev->io_link_props, list)
1150				iolink->gpu = dev->gpu;
1151			list_for_each_entry(p2plink, &dev->p2p_link_props, list)
1152				p2plink->gpu = dev->gpu;
1153			break;
1154		}
1155	}
1156	return out_dev;
1157}
1158
1159static void kfd_notify_gpu_change(uint32_t gpu_id, int arrival)
1160{
1161	/*
1162	 * TODO: Generate an event for thunk about the arrival/removal
1163	 * of the GPU
1164	 */
1165}
1166
1167/* kfd_fill_mem_clk_max_info - Since CRAT doesn't have memory clock info,
1168 *		patch this after CRAT parsing.
1169 */
1170static void kfd_fill_mem_clk_max_info(struct kfd_topology_device *dev)
1171{
1172	struct kfd_mem_properties *mem;
1173	struct kfd_local_mem_info local_mem_info;
1174
1175	if (!dev)
1176		return;
1177
1178	/* Currently, amdgpu driver (amdgpu_mc) deals only with GPUs with
1179	 * single bank of VRAM local memory.
1180	 * for dGPUs - VCRAT reports only one bank of Local Memory
1181	 * for APUs - If CRAT from ACPI reports more than one bank, then
1182	 *	all the banks will report the same mem_clk_max information
1183	 */
1184	amdgpu_amdkfd_get_local_mem_info(dev->gpu->adev, &local_mem_info,
1185					 dev->gpu->xcp);
1186
1187	list_for_each_entry(mem, &dev->mem_props, list)
1188		mem->mem_clk_max = local_mem_info.mem_clk_max;
1189}
1190
1191static void kfd_set_iolink_no_atomics(struct kfd_topology_device *dev,
1192					struct kfd_topology_device *target_gpu_dev,
1193					struct kfd_iolink_properties *link)
1194{
1195	/* xgmi always supports atomics between links. */
1196	if (link->iolink_type == CRAT_IOLINK_TYPE_XGMI)
1197		return;
1198
1199	/* check pcie support to set cpu(dev) flags for target_gpu_dev link. */
1200	if (target_gpu_dev) {
1201		uint32_t cap;
1202
1203		pcie_capability_read_dword(target_gpu_dev->gpu->adev->pdev,
1204				PCI_EXP_DEVCAP2, &cap);
1205
1206		if (!(cap & (PCI_EXP_DEVCAP2_ATOMIC_COMP32 |
1207			     PCI_EXP_DEVCAP2_ATOMIC_COMP64)))
1208			link->flags |= CRAT_IOLINK_FLAGS_NO_ATOMICS_32_BIT |
1209				CRAT_IOLINK_FLAGS_NO_ATOMICS_64_BIT;
1210	/* set gpu (dev) flags. */
1211	} else {
1212		if (!dev->gpu->kfd->pci_atomic_requested ||
1213				dev->gpu->adev->asic_type == CHIP_HAWAII)
1214			link->flags |= CRAT_IOLINK_FLAGS_NO_ATOMICS_32_BIT |
1215				CRAT_IOLINK_FLAGS_NO_ATOMICS_64_BIT;
1216	}
1217}
1218
1219static void kfd_set_iolink_non_coherent(struct kfd_topology_device *to_dev,
1220		struct kfd_iolink_properties *outbound_link,
1221		struct kfd_iolink_properties *inbound_link)
1222{
1223	/* CPU -> GPU with PCIe */
1224	if (!to_dev->gpu &&
1225	    inbound_link->iolink_type == CRAT_IOLINK_TYPE_PCIEXPRESS)
1226		inbound_link->flags |= CRAT_IOLINK_FLAGS_NON_COHERENT;
1227
1228	if (to_dev->gpu) {
1229		/* GPU <-> GPU with PCIe and
1230		 * Vega20 with XGMI
1231		 */
1232		if (inbound_link->iolink_type == CRAT_IOLINK_TYPE_PCIEXPRESS ||
1233		    (inbound_link->iolink_type == CRAT_IOLINK_TYPE_XGMI &&
1234		    KFD_GC_VERSION(to_dev->gpu) == IP_VERSION(9, 4, 0))) {
1235			outbound_link->flags |= CRAT_IOLINK_FLAGS_NON_COHERENT;
1236			inbound_link->flags |= CRAT_IOLINK_FLAGS_NON_COHERENT;
1237		}
1238	}
1239}
1240
1241static void kfd_fill_iolink_non_crat_info(struct kfd_topology_device *dev)
1242{
1243	struct kfd_iolink_properties *link, *inbound_link;
1244	struct kfd_topology_device *peer_dev;
1245
1246	if (!dev || !dev->gpu)
1247		return;
1248
1249	/* GPU only creates direct links so apply flags setting to all */
1250	list_for_each_entry(link, &dev->io_link_props, list) {
1251		link->flags = CRAT_IOLINK_FLAGS_ENABLED;
1252		kfd_set_iolink_no_atomics(dev, NULL, link);
1253		peer_dev = kfd_topology_device_by_proximity_domain(
1254				link->node_to);
1255
1256		if (!peer_dev)
1257			continue;
1258
1259		/* Include the CPU peer in GPU hive if connected over xGMI. */
1260		if (!peer_dev->gpu &&
1261		    link->iolink_type == CRAT_IOLINK_TYPE_XGMI) {
1262			/*
1263			 * If the GPU is not part of a GPU hive, use its pci
1264			 * device location as the hive ID to bind with the CPU.
1265			 */
1266			if (!dev->node_props.hive_id)
1267				dev->node_props.hive_id = pci_dev_id(dev->gpu->adev->pdev);
1268			peer_dev->node_props.hive_id = dev->node_props.hive_id;
1269		}
1270
1271		list_for_each_entry(inbound_link, &peer_dev->io_link_props,
1272									list) {
1273			if (inbound_link->node_to != link->node_from)
1274				continue;
1275
1276			inbound_link->flags = CRAT_IOLINK_FLAGS_ENABLED;
1277			kfd_set_iolink_no_atomics(peer_dev, dev, inbound_link);
1278			kfd_set_iolink_non_coherent(peer_dev, link, inbound_link);
1279		}
1280	}
1281
1282	/* Create indirect links so apply flags setting to all */
1283	list_for_each_entry(link, &dev->p2p_link_props, list) {
1284		link->flags = CRAT_IOLINK_FLAGS_ENABLED;
1285		kfd_set_iolink_no_atomics(dev, NULL, link);
1286		peer_dev = kfd_topology_device_by_proximity_domain(
1287				link->node_to);
1288
1289		if (!peer_dev)
1290			continue;
1291
1292		list_for_each_entry(inbound_link, &peer_dev->p2p_link_props,
1293									list) {
1294			if (inbound_link->node_to != link->node_from)
1295				continue;
1296
1297			inbound_link->flags = CRAT_IOLINK_FLAGS_ENABLED;
1298			kfd_set_iolink_no_atomics(peer_dev, dev, inbound_link);
1299			kfd_set_iolink_non_coherent(peer_dev, link, inbound_link);
1300		}
1301	}
1302}
1303
1304static int kfd_build_p2p_node_entry(struct kfd_topology_device *dev,
1305				struct kfd_iolink_properties *p2plink)
1306{
1307	int ret;
1308
1309	p2plink->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
1310	if (!p2plink->kobj)
1311		return -ENOMEM;
1312
1313	ret = kobject_init_and_add(p2plink->kobj, &iolink_type,
1314			dev->kobj_p2plink, "%d", dev->node_props.p2p_links_count - 1);
1315	if (ret < 0) {
1316		kobject_put(p2plink->kobj);
1317		return ret;
1318	}
1319
1320	p2plink->attr.name = "properties";
1321	p2plink->attr.mode = KFD_SYSFS_FILE_MODE;
1322	sysfs_attr_init(&p2plink->attr);
1323	ret = sysfs_create_file(p2plink->kobj, &p2plink->attr);
1324	if (ret < 0)
1325		return ret;
1326
1327	return 0;
1328}
1329
1330static int kfd_create_indirect_link_prop(struct kfd_topology_device *kdev, int gpu_node)
1331{
1332	struct kfd_iolink_properties *gpu_link, *tmp_link, *cpu_link;
1333	struct kfd_iolink_properties *props = NULL, *props2 = NULL;
1334	struct kfd_topology_device *cpu_dev;
1335	int ret = 0;
1336	int i, num_cpu;
1337
1338	num_cpu = 0;
1339	list_for_each_entry(cpu_dev, &topology_device_list, list) {
1340		if (cpu_dev->gpu)
1341			break;
1342		num_cpu++;
1343	}
1344
1345	if (list_empty(&kdev->io_link_props))
1346		return -ENODATA;
1347
1348	gpu_link = list_first_entry(&kdev->io_link_props,
1349				    struct kfd_iolink_properties, list);
1350
1351	for (i = 0; i < num_cpu; i++) {
1352		/* CPU <--> GPU */
1353		if (gpu_link->node_to == i)
1354			continue;
1355
1356		/* find CPU <-->  CPU links */
1357		cpu_link = NULL;
1358		cpu_dev = kfd_topology_device_by_proximity_domain(i);
1359		if (cpu_dev) {
1360			list_for_each_entry(tmp_link,
1361					&cpu_dev->io_link_props, list) {
1362				if (tmp_link->node_to == gpu_link->node_to) {
1363					cpu_link = tmp_link;
1364					break;
1365				}
1366			}
1367		}
1368
1369		if (!cpu_link)
1370			return -ENOMEM;
1371
1372		/* CPU <--> CPU <--> GPU, GPU node*/
1373		props = kfd_alloc_struct(props);
1374		if (!props)
1375			return -ENOMEM;
1376
1377		memcpy(props, gpu_link, sizeof(struct kfd_iolink_properties));
1378		props->weight = gpu_link->weight + cpu_link->weight;
1379		props->min_latency = gpu_link->min_latency + cpu_link->min_latency;
1380		props->max_latency = gpu_link->max_latency + cpu_link->max_latency;
1381		props->min_bandwidth = min(gpu_link->min_bandwidth, cpu_link->min_bandwidth);
1382		props->max_bandwidth = min(gpu_link->max_bandwidth, cpu_link->max_bandwidth);
1383
1384		props->node_from = gpu_node;
1385		props->node_to = i;
1386		kdev->node_props.p2p_links_count++;
1387		list_add_tail(&props->list, &kdev->p2p_link_props);
1388		ret = kfd_build_p2p_node_entry(kdev, props);
1389		if (ret < 0)
1390			return ret;
1391
1392		/* for small Bar, no CPU --> GPU in-direct links */
1393		if (kfd_dev_is_large_bar(kdev->gpu)) {
1394			/* CPU <--> CPU <--> GPU, CPU node*/
1395			props2 = kfd_alloc_struct(props2);
1396			if (!props2)
1397				return -ENOMEM;
1398
1399			memcpy(props2, props, sizeof(struct kfd_iolink_properties));
1400			props2->node_from = i;
1401			props2->node_to = gpu_node;
1402			props2->kobj = NULL;
1403			cpu_dev->node_props.p2p_links_count++;
1404			list_add_tail(&props2->list, &cpu_dev->p2p_link_props);
1405			ret = kfd_build_p2p_node_entry(cpu_dev, props2);
1406			if (ret < 0)
1407				return ret;
1408		}
1409	}
1410	return ret;
1411}
1412
1413#if defined(CONFIG_HSA_AMD_P2P)
1414static int kfd_add_peer_prop(struct kfd_topology_device *kdev,
1415		struct kfd_topology_device *peer, int from, int to)
1416{
1417	struct kfd_iolink_properties *props = NULL;
1418	struct kfd_iolink_properties *iolink1, *iolink2, *iolink3;
1419	struct kfd_topology_device *cpu_dev;
1420	int ret = 0;
1421
1422	if (!amdgpu_device_is_peer_accessible(
1423				kdev->gpu->adev,
1424				peer->gpu->adev))
1425		return ret;
1426
1427	if (list_empty(&kdev->io_link_props))
1428		return -ENODATA;
1429
1430	iolink1 = list_first_entry(&kdev->io_link_props,
1431				   struct kfd_iolink_properties, list);
1432
1433	if (list_empty(&peer->io_link_props))
1434		return -ENODATA;
1435
1436	iolink2 = list_first_entry(&peer->io_link_props,
1437				   struct kfd_iolink_properties, list);
1438
1439	props = kfd_alloc_struct(props);
1440	if (!props)
1441		return -ENOMEM;
1442
1443	memcpy(props, iolink1, sizeof(struct kfd_iolink_properties));
1444
1445	props->weight = iolink1->weight + iolink2->weight;
1446	props->min_latency = iolink1->min_latency + iolink2->min_latency;
1447	props->max_latency = iolink1->max_latency + iolink2->max_latency;
1448	props->min_bandwidth = min(iolink1->min_bandwidth, iolink2->min_bandwidth);
1449	props->max_bandwidth = min(iolink2->max_bandwidth, iolink2->max_bandwidth);
1450
1451	if (iolink1->node_to != iolink2->node_to) {
1452		/* CPU->CPU  link*/
1453		cpu_dev = kfd_topology_device_by_proximity_domain(iolink1->node_to);
1454		if (cpu_dev) {
1455			list_for_each_entry(iolink3, &cpu_dev->io_link_props, list) {
1456				if (iolink3->node_to != iolink2->node_to)
1457					continue;
1458
1459				props->weight += iolink3->weight;
1460				props->min_latency += iolink3->min_latency;
1461				props->max_latency += iolink3->max_latency;
1462				props->min_bandwidth = min(props->min_bandwidth,
1463							   iolink3->min_bandwidth);
1464				props->max_bandwidth = min(props->max_bandwidth,
1465							   iolink3->max_bandwidth);
1466				break;
1467			}
1468		} else {
1469			WARN(1, "CPU node not found");
1470		}
1471	}
1472
1473	props->node_from = from;
1474	props->node_to = to;
1475	peer->node_props.p2p_links_count++;
1476	list_add_tail(&props->list, &peer->p2p_link_props);
1477	ret = kfd_build_p2p_node_entry(peer, props);
1478
1479	return ret;
1480}
1481#endif
1482
1483static int kfd_dev_create_p2p_links(void)
1484{
1485	struct kfd_topology_device *dev;
1486	struct kfd_topology_device *new_dev;
1487#if defined(CONFIG_HSA_AMD_P2P)
1488	uint32_t i;
1489#endif
1490	uint32_t k;
1491	int ret = 0;
1492
1493	k = 0;
1494	list_for_each_entry(dev, &topology_device_list, list)
1495		k++;
1496	if (k < 2)
1497		return 0;
1498
1499	new_dev = list_last_entry(&topology_device_list, struct kfd_topology_device, list);
1500	if (WARN_ON(!new_dev->gpu))
1501		return 0;
1502
1503	k--;
1504
1505	/* create in-direct links */
1506	ret = kfd_create_indirect_link_prop(new_dev, k);
1507	if (ret < 0)
1508		goto out;
1509
1510	/* create p2p links */
1511#if defined(CONFIG_HSA_AMD_P2P)
1512	i = 0;
1513	list_for_each_entry(dev, &topology_device_list, list) {
1514		if (dev == new_dev)
1515			break;
1516		if (!dev->gpu || !dev->gpu->adev ||
1517		    (dev->gpu->kfd->hive_id &&
1518		     dev->gpu->kfd->hive_id == new_dev->gpu->kfd->hive_id))
1519			goto next;
1520
1521		/* check if node(s) is/are peer accessible in one direction or bi-direction */
1522		ret = kfd_add_peer_prop(new_dev, dev, i, k);
1523		if (ret < 0)
1524			goto out;
1525
1526		ret = kfd_add_peer_prop(dev, new_dev, k, i);
1527		if (ret < 0)
1528			goto out;
1529next:
1530		i++;
1531	}
1532#endif
1533
1534out:
1535	return ret;
1536}
1537
1538/* Helper function. See kfd_fill_gpu_cache_info for parameter description */
1539static int fill_in_l1_pcache(struct kfd_cache_properties **props_ext,
1540				struct kfd_gpu_cache_info *pcache_info,
1541				int cu_bitmask,
1542				int cache_type, unsigned int cu_processor_id,
1543				int cu_block)
1544{
1545	unsigned int cu_sibling_map_mask;
1546	int first_active_cu;
1547	struct kfd_cache_properties *pcache = NULL;
1548
1549	cu_sibling_map_mask = cu_bitmask;
1550	cu_sibling_map_mask >>= cu_block;
1551	cu_sibling_map_mask &= ((1 << pcache_info[cache_type].num_cu_shared) - 1);
1552	first_active_cu = ffs(cu_sibling_map_mask);
1553
1554	/* CU could be inactive. In case of shared cache find the first active
1555	 * CU. and incase of non-shared cache check if the CU is inactive. If
1556	 * inactive active skip it
1557	 */
1558	if (first_active_cu) {
1559		pcache = kfd_alloc_struct(pcache);
1560		if (!pcache)
1561			return -ENOMEM;
1562
1563		memset(pcache, 0, sizeof(struct kfd_cache_properties));
1564		pcache->processor_id_low = cu_processor_id + (first_active_cu - 1);
1565		pcache->cache_level = pcache_info[cache_type].cache_level;
1566		pcache->cache_size = pcache_info[cache_type].cache_size;
1567		pcache->cacheline_size = pcache_info[cache_type].cache_line_size;
1568
1569		if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_DATA_CACHE)
1570			pcache->cache_type |= HSA_CACHE_TYPE_DATA;
1571		if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_INST_CACHE)
1572			pcache->cache_type |= HSA_CACHE_TYPE_INSTRUCTION;
1573		if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_CPU_CACHE)
1574			pcache->cache_type |= HSA_CACHE_TYPE_CPU;
1575		if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_SIMD_CACHE)
1576			pcache->cache_type |= HSA_CACHE_TYPE_HSACU;
1577
1578		/* Sibling map is w.r.t processor_id_low, so shift out
1579		 * inactive CU
1580		 */
1581		cu_sibling_map_mask =
1582			cu_sibling_map_mask >> (first_active_cu - 1);
1583
1584		pcache->sibling_map[0] = (uint8_t)(cu_sibling_map_mask & 0xFF);
1585		pcache->sibling_map[1] =
1586				(uint8_t)((cu_sibling_map_mask >> 8) & 0xFF);
1587		pcache->sibling_map[2] =
1588				(uint8_t)((cu_sibling_map_mask >> 16) & 0xFF);
1589		pcache->sibling_map[3] =
1590				(uint8_t)((cu_sibling_map_mask >> 24) & 0xFF);
1591
1592		pcache->sibling_map_size = 4;
1593		*props_ext = pcache;
1594
1595		return 0;
1596	}
1597	return 1;
1598}
1599
1600/* Helper function. See kfd_fill_gpu_cache_info for parameter description */
1601static int fill_in_l2_l3_pcache(struct kfd_cache_properties **props_ext,
1602				struct kfd_gpu_cache_info *pcache_info,
1603				struct amdgpu_cu_info *cu_info,
1604				struct amdgpu_gfx_config *gfx_info,
1605				int cache_type, unsigned int cu_processor_id,
1606				struct kfd_node *knode)
1607{
1608	unsigned int cu_sibling_map_mask;
1609	int first_active_cu;
1610	int i, j, k, xcc, start, end;
1611	int num_xcc = NUM_XCC(knode->xcc_mask);
1612	struct kfd_cache_properties *pcache = NULL;
1613	enum amdgpu_memory_partition mode;
1614	struct amdgpu_device *adev = knode->adev;
1615
1616	start = ffs(knode->xcc_mask) - 1;
1617	end = start + num_xcc;
1618	cu_sibling_map_mask = cu_info->bitmap[start][0][0];
1619	cu_sibling_map_mask &=
1620		((1 << pcache_info[cache_type].num_cu_shared) - 1);
1621	first_active_cu = ffs(cu_sibling_map_mask);
1622
1623	/* CU could be inactive. In case of shared cache find the first active
1624	 * CU. and incase of non-shared cache check if the CU is inactive. If
1625	 * inactive active skip it
1626	 */
1627	if (first_active_cu) {
1628		pcache = kfd_alloc_struct(pcache);
1629		if (!pcache)
1630			return -ENOMEM;
1631
1632		memset(pcache, 0, sizeof(struct kfd_cache_properties));
1633		pcache->processor_id_low = cu_processor_id
1634					+ (first_active_cu - 1);
1635		pcache->cache_level = pcache_info[cache_type].cache_level;
1636		pcache->cacheline_size = pcache_info[cache_type].cache_line_size;
1637
1638		if (KFD_GC_VERSION(knode) == IP_VERSION(9, 4, 3))
1639			mode = adev->gmc.gmc_funcs->query_mem_partition_mode(adev);
1640		else
1641			mode = UNKNOWN_MEMORY_PARTITION_MODE;
1642
1643		pcache->cache_size = pcache_info[cache_type].cache_size;
1644		/* Partition mode only affects L3 cache size */
1645		if (mode && pcache->cache_level == 3)
1646			pcache->cache_size /= mode;
1647
1648		if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_DATA_CACHE)
1649			pcache->cache_type |= HSA_CACHE_TYPE_DATA;
1650		if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_INST_CACHE)
1651			pcache->cache_type |= HSA_CACHE_TYPE_INSTRUCTION;
1652		if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_CPU_CACHE)
1653			pcache->cache_type |= HSA_CACHE_TYPE_CPU;
1654		if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_SIMD_CACHE)
1655			pcache->cache_type |= HSA_CACHE_TYPE_HSACU;
1656
1657		/* Sibling map is w.r.t processor_id_low, so shift out
1658		 * inactive CU
1659		 */
1660		cu_sibling_map_mask = cu_sibling_map_mask >> (first_active_cu - 1);
1661		k = 0;
1662
1663		for (xcc = start; xcc < end; xcc++) {
1664			for (i = 0; i < gfx_info->max_shader_engines; i++) {
1665				for (j = 0; j < gfx_info->max_sh_per_se; j++) {
1666					pcache->sibling_map[k] = (uint8_t)(cu_sibling_map_mask & 0xFF);
1667					pcache->sibling_map[k+1] = (uint8_t)((cu_sibling_map_mask >> 8) & 0xFF);
1668					pcache->sibling_map[k+2] = (uint8_t)((cu_sibling_map_mask >> 16) & 0xFF);
1669					pcache->sibling_map[k+3] = (uint8_t)((cu_sibling_map_mask >> 24) & 0xFF);
1670					k += 4;
1671
1672					cu_sibling_map_mask = cu_info->bitmap[xcc][i % 4][j + i / 4];
1673					cu_sibling_map_mask &= ((1 << pcache_info[cache_type].num_cu_shared) - 1);
1674				}
1675			}
1676		}
1677		pcache->sibling_map_size = k;
1678		*props_ext = pcache;
1679		return 0;
1680	}
1681	return 1;
1682}
1683
1684#define KFD_MAX_CACHE_TYPES 6
1685
1686/* kfd_fill_cache_non_crat_info - Fill GPU cache info using kfd_gpu_cache_info
1687 * tables
1688 */
1689static void kfd_fill_cache_non_crat_info(struct kfd_topology_device *dev, struct kfd_node *kdev)
1690{
1691	struct kfd_gpu_cache_info *pcache_info = NULL;
1692	int i, j, k, xcc, start, end;
1693	int ct = 0;
1694	unsigned int cu_processor_id;
1695	int ret;
1696	unsigned int num_cu_shared;
1697	struct amdgpu_cu_info *cu_info = &kdev->adev->gfx.cu_info;
1698	struct amdgpu_gfx_config *gfx_info = &kdev->adev->gfx.config;
1699	int gpu_processor_id;
1700	struct kfd_cache_properties *props_ext;
1701	int num_of_entries = 0;
1702	int num_of_cache_types = 0;
1703	struct kfd_gpu_cache_info cache_info[KFD_MAX_CACHE_TYPES];
1704
1705
1706	gpu_processor_id = dev->node_props.simd_id_base;
1707
1708	memset(cache_info, 0, sizeof(cache_info));
1709	pcache_info = cache_info;
1710	num_of_cache_types = kfd_get_gpu_cache_info(kdev, &pcache_info);
1711	if (!num_of_cache_types) {
1712		pr_warn("no cache info found\n");
1713		return;
1714	}
1715
1716	/* For each type of cache listed in the kfd_gpu_cache_info table,
1717	 * go through all available Compute Units.
1718	 * The [i,j,k] loop will
1719	 *		if kfd_gpu_cache_info.num_cu_shared = 1
1720	 *			will parse through all available CU
1721	 *		If (kfd_gpu_cache_info.num_cu_shared != 1)
1722	 *			then it will consider only one CU from
1723	 *			the shared unit
1724	 */
1725	start = ffs(kdev->xcc_mask) - 1;
1726	end = start + NUM_XCC(kdev->xcc_mask);
1727
1728	for (ct = 0; ct < num_of_cache_types; ct++) {
1729		cu_processor_id = gpu_processor_id;
1730		if (pcache_info[ct].cache_level == 1) {
1731			for (xcc = start; xcc < end; xcc++) {
1732				for (i = 0; i < gfx_info->max_shader_engines; i++) {
1733					for (j = 0; j < gfx_info->max_sh_per_se; j++) {
1734						for (k = 0; k < gfx_info->max_cu_per_sh; k += pcache_info[ct].num_cu_shared) {
1735
1736							ret = fill_in_l1_pcache(&props_ext, pcache_info,
1737										cu_info->bitmap[xcc][i % 4][j + i / 4], ct,
1738										cu_processor_id, k);
1739
1740							if (ret < 0)
1741								break;
1742
1743							if (!ret) {
1744								num_of_entries++;
1745								list_add_tail(&props_ext->list, &dev->cache_props);
1746							}
1747
1748							/* Move to next CU block */
1749							num_cu_shared = ((k + pcache_info[ct].num_cu_shared) <=
1750								gfx_info->max_cu_per_sh) ?
1751								pcache_info[ct].num_cu_shared :
1752								(gfx_info->max_cu_per_sh - k);
1753							cu_processor_id += num_cu_shared;
1754						}
1755					}
1756				}
1757			}
1758		} else {
1759			ret = fill_in_l2_l3_pcache(&props_ext, pcache_info,
1760						   cu_info, gfx_info, ct, cu_processor_id, kdev);
1761
1762			if (ret < 0)
1763				break;
1764
1765			if (!ret) {
1766				num_of_entries++;
1767				list_add_tail(&props_ext->list, &dev->cache_props);
1768			}
1769		}
1770	}
1771	dev->node_props.caches_count += num_of_entries;
1772	pr_debug("Added [%d] GPU cache entries\n", num_of_entries);
1773}
1774
1775static int kfd_topology_add_device_locked(struct kfd_node *gpu, uint32_t gpu_id,
1776					  struct kfd_topology_device **dev)
1777{
1778	int proximity_domain = ++topology_crat_proximity_domain;
1779	struct list_head temp_topology_device_list;
1780	void *crat_image = NULL;
1781	size_t image_size = 0;
1782	int res;
1783
1784	res = kfd_create_crat_image_virtual(&crat_image, &image_size,
1785					    COMPUTE_UNIT_GPU, gpu,
1786					    proximity_domain);
1787	if (res) {
1788		pr_err("Error creating VCRAT for GPU (ID: 0x%x)\n",
1789		       gpu_id);
1790		topology_crat_proximity_domain--;
1791		goto err;
1792	}
1793
1794	INIT_LIST_HEAD(&temp_topology_device_list);
1795
1796	res = kfd_parse_crat_table(crat_image,
1797				   &temp_topology_device_list,
1798				   proximity_domain);
1799	if (res) {
1800		pr_err("Error parsing VCRAT for GPU (ID: 0x%x)\n",
1801		       gpu_id);
1802		topology_crat_proximity_domain--;
1803		goto err;
1804	}
1805
1806	kfd_topology_update_device_list(&temp_topology_device_list,
1807					&topology_device_list);
1808
1809	*dev = kfd_assign_gpu(gpu);
1810	if (WARN_ON(!*dev)) {
1811		res = -ENODEV;
1812		goto err;
1813	}
1814
1815	/* Fill the cache affinity information here for the GPUs
1816	 * using VCRAT
1817	 */
1818	kfd_fill_cache_non_crat_info(*dev, gpu);
1819
1820	/* Update the SYSFS tree, since we added another topology
1821	 * device
1822	 */
1823	res = kfd_topology_update_sysfs();
1824	if (!res)
1825		sys_props.generation_count++;
1826	else
1827		pr_err("Failed to update GPU (ID: 0x%x) to sysfs topology. res=%d\n",
1828		       gpu_id, res);
1829
1830err:
1831	kfd_destroy_crat_image(crat_image);
1832	return res;
1833}
1834
1835static void kfd_topology_set_dbg_firmware_support(struct kfd_topology_device *dev)
1836{
1837	bool firmware_supported = true;
1838
1839	if (KFD_GC_VERSION(dev->gpu) >= IP_VERSION(11, 0, 0) &&
1840			KFD_GC_VERSION(dev->gpu) < IP_VERSION(12, 0, 0)) {
1841		uint32_t mes_api_rev = (dev->gpu->adev->mes.sched_version &
1842						AMDGPU_MES_API_VERSION_MASK) >>
1843						AMDGPU_MES_API_VERSION_SHIFT;
1844		uint32_t mes_rev = dev->gpu->adev->mes.sched_version &
1845						AMDGPU_MES_VERSION_MASK;
1846
1847		firmware_supported = (mes_api_rev >= 14) && (mes_rev >= 64);
1848		goto out;
1849	}
1850
1851	/*
1852	 * Note: Any unlisted devices here are assumed to support exception handling.
1853	 * Add additional checks here as needed.
1854	 */
1855	switch (KFD_GC_VERSION(dev->gpu)) {
1856	case IP_VERSION(9, 0, 1):
1857		firmware_supported = dev->gpu->kfd->mec_fw_version >= 459 + 32768;
1858		break;
1859	case IP_VERSION(9, 1, 0):
1860	case IP_VERSION(9, 2, 1):
1861	case IP_VERSION(9, 2, 2):
1862	case IP_VERSION(9, 3, 0):
1863	case IP_VERSION(9, 4, 0):
1864		firmware_supported = dev->gpu->kfd->mec_fw_version >= 459;
1865		break;
1866	case IP_VERSION(9, 4, 1):
1867		firmware_supported = dev->gpu->kfd->mec_fw_version >= 60;
1868		break;
1869	case IP_VERSION(9, 4, 2):
1870		firmware_supported = dev->gpu->kfd->mec_fw_version >= 51;
1871		break;
1872	case IP_VERSION(10, 1, 10):
1873	case IP_VERSION(10, 1, 2):
1874	case IP_VERSION(10, 1, 1):
1875		firmware_supported = dev->gpu->kfd->mec_fw_version >= 144;
1876		break;
1877	case IP_VERSION(10, 3, 0):
1878	case IP_VERSION(10, 3, 2):
1879	case IP_VERSION(10, 3, 1):
1880	case IP_VERSION(10, 3, 4):
1881	case IP_VERSION(10, 3, 5):
1882		firmware_supported = dev->gpu->kfd->mec_fw_version >= 89;
1883		break;
1884	case IP_VERSION(10, 1, 3):
1885	case IP_VERSION(10, 3, 3):
1886		firmware_supported = false;
1887		break;
1888	default:
1889		break;
1890	}
1891
1892out:
1893	if (firmware_supported)
1894		dev->node_props.capability |= HSA_CAP_TRAP_DEBUG_FIRMWARE_SUPPORTED;
1895}
1896
1897static void kfd_topology_set_capabilities(struct kfd_topology_device *dev)
1898{
1899	dev->node_props.capability |= ((HSA_CAP_DOORBELL_TYPE_2_0 <<
1900				HSA_CAP_DOORBELL_TYPE_TOTALBITS_SHIFT) &
1901				HSA_CAP_DOORBELL_TYPE_TOTALBITS_MASK);
1902
1903	dev->node_props.capability |= HSA_CAP_TRAP_DEBUG_SUPPORT |
1904			HSA_CAP_TRAP_DEBUG_WAVE_LAUNCH_TRAP_OVERRIDE_SUPPORTED |
1905			HSA_CAP_TRAP_DEBUG_WAVE_LAUNCH_MODE_SUPPORTED;
1906
1907	if (kfd_dbg_has_ttmps_always_setup(dev->gpu))
1908		dev->node_props.debug_prop |= HSA_DBG_DISPATCH_INFO_ALWAYS_VALID;
1909
1910	if (KFD_GC_VERSION(dev->gpu) < IP_VERSION(10, 0, 0)) {
1911		if (KFD_GC_VERSION(dev->gpu) == IP_VERSION(9, 4, 3))
1912			dev->node_props.debug_prop |=
1913				HSA_DBG_WATCH_ADDR_MASK_LO_BIT_GFX9_4_3 |
1914				HSA_DBG_WATCH_ADDR_MASK_HI_BIT_GFX9_4_3;
1915		else
1916			dev->node_props.debug_prop |=
1917				HSA_DBG_WATCH_ADDR_MASK_LO_BIT_GFX9 |
1918				HSA_DBG_WATCH_ADDR_MASK_HI_BIT;
1919
1920		if (KFD_GC_VERSION(dev->gpu) >= IP_VERSION(9, 4, 2))
1921			dev->node_props.capability |=
1922				HSA_CAP_TRAP_DEBUG_PRECISE_MEMORY_OPERATIONS_SUPPORTED;
1923	} else {
1924		dev->node_props.debug_prop |= HSA_DBG_WATCH_ADDR_MASK_LO_BIT_GFX10 |
1925					HSA_DBG_WATCH_ADDR_MASK_HI_BIT;
1926
1927		if (KFD_GC_VERSION(dev->gpu) >= IP_VERSION(11, 0, 0))
1928			dev->node_props.capability |=
1929				HSA_CAP_TRAP_DEBUG_PRECISE_MEMORY_OPERATIONS_SUPPORTED;
1930	}
1931
1932	kfd_topology_set_dbg_firmware_support(dev);
1933}
1934
1935int kfd_topology_add_device(struct kfd_node *gpu)
1936{
1937	uint32_t gpu_id;
1938	struct kfd_topology_device *dev;
1939	int res = 0;
1940	int i;
1941	const char *asic_name = amdgpu_asic_name[gpu->adev->asic_type];
1942	struct amdgpu_gfx_config *gfx_info = &gpu->adev->gfx.config;
1943	struct amdgpu_cu_info *cu_info = &gpu->adev->gfx.cu_info;
1944
1945	gpu_id = kfd_generate_gpu_id(gpu);
1946	if (gpu->xcp && !gpu->xcp->ddev) {
1947		dev_warn(gpu->adev->dev,
1948		"Won't add GPU (ID: 0x%x) to topology since it has no drm node assigned.",
1949		gpu_id);
1950		return 0;
1951	} else {
1952		pr_debug("Adding new GPU (ID: 0x%x) to topology\n", gpu_id);
1953	}
1954
1955	/* Check to see if this gpu device exists in the topology_device_list.
1956	 * If so, assign the gpu to that device,
1957	 * else create a Virtual CRAT for this gpu device and then parse that
1958	 * CRAT to create a new topology device. Once created assign the gpu to
1959	 * that topology device
1960	 */
1961	down_write(&topology_lock);
1962	dev = kfd_assign_gpu(gpu);
1963	if (!dev)
1964		res = kfd_topology_add_device_locked(gpu, gpu_id, &dev);
1965	up_write(&topology_lock);
1966	if (res)
1967		return res;
1968
1969	dev->gpu_id = gpu_id;
1970	gpu->id = gpu_id;
1971
1972	kfd_dev_create_p2p_links();
1973
1974	/* TODO: Move the following lines to function
1975	 *	kfd_add_non_crat_information
1976	 */
1977
1978	/* Fill-in additional information that is not available in CRAT but
1979	 * needed for the topology
1980	 */
1981	for (i = 0; i < KFD_TOPOLOGY_PUBLIC_NAME_SIZE-1; i++) {
1982		dev->node_props.name[i] = __tolower(asic_name[i]);
1983		if (asic_name[i] == '\0')
1984			break;
1985	}
1986	dev->node_props.name[i] = '\0';
1987
1988	dev->node_props.simd_arrays_per_engine =
1989		gfx_info->max_sh_per_se;
1990
1991	dev->node_props.gfx_target_version =
1992				gpu->kfd->device_info.gfx_target_version;
1993	dev->node_props.vendor_id = gpu->adev->pdev->vendor;
1994	dev->node_props.device_id = gpu->adev->pdev->device;
1995	dev->node_props.capability |=
1996		((dev->gpu->adev->rev_id << HSA_CAP_ASIC_REVISION_SHIFT) &
1997			HSA_CAP_ASIC_REVISION_MASK);
1998
1999	dev->node_props.location_id = pci_dev_id(gpu->adev->pdev);
2000	/* On multi-partition nodes, node id = location_id[31:28] */
2001	if (gpu->kfd->num_nodes > 1)
2002		dev->node_props.location_id |= (dev->gpu->node_id << 28);
2003
2004	dev->node_props.domain = pci_domain_nr(gpu->adev->pdev->bus);
2005	dev->node_props.max_engine_clk_fcompute =
2006		amdgpu_amdkfd_get_max_engine_clock_in_mhz(dev->gpu->adev);
2007	dev->node_props.max_engine_clk_ccompute =
2008		cpufreq_quick_get_max(0) / 1000;
2009
2010	if (gpu->xcp)
2011		dev->node_props.drm_render_minor = gpu->xcp->ddev->render->index;
2012	else
2013		dev->node_props.drm_render_minor =
2014				gpu->kfd->shared_resources.drm_render_minor;
2015
2016	dev->node_props.hive_id = gpu->kfd->hive_id;
2017	dev->node_props.num_sdma_engines = kfd_get_num_sdma_engines(gpu);
2018	dev->node_props.num_sdma_xgmi_engines =
2019					kfd_get_num_xgmi_sdma_engines(gpu);
2020	dev->node_props.num_sdma_queues_per_engine =
2021				gpu->kfd->device_info.num_sdma_queues_per_engine -
2022				gpu->kfd->device_info.num_reserved_sdma_queues_per_engine;
2023	dev->node_props.num_gws = (dev->gpu->gws &&
2024		dev->gpu->dqm->sched_policy != KFD_SCHED_POLICY_NO_HWS) ?
2025		dev->gpu->adev->gds.gws_size : 0;
2026	dev->node_props.num_cp_queues = get_cp_queues_num(dev->gpu->dqm);
2027
2028	kfd_fill_mem_clk_max_info(dev);
2029	kfd_fill_iolink_non_crat_info(dev);
2030
2031	switch (dev->gpu->adev->asic_type) {
2032	case CHIP_KAVERI:
2033	case CHIP_HAWAII:
2034	case CHIP_TONGA:
2035		dev->node_props.capability |= ((HSA_CAP_DOORBELL_TYPE_PRE_1_0 <<
2036			HSA_CAP_DOORBELL_TYPE_TOTALBITS_SHIFT) &
2037			HSA_CAP_DOORBELL_TYPE_TOTALBITS_MASK);
2038		break;
2039	case CHIP_CARRIZO:
2040	case CHIP_FIJI:
2041	case CHIP_POLARIS10:
2042	case CHIP_POLARIS11:
2043	case CHIP_POLARIS12:
2044	case CHIP_VEGAM:
2045		pr_debug("Adding doorbell packet type capability\n");
2046		dev->node_props.capability |= ((HSA_CAP_DOORBELL_TYPE_1_0 <<
2047			HSA_CAP_DOORBELL_TYPE_TOTALBITS_SHIFT) &
2048			HSA_CAP_DOORBELL_TYPE_TOTALBITS_MASK);
2049		break;
2050	default:
2051		if (KFD_GC_VERSION(dev->gpu) < IP_VERSION(9, 0, 1))
2052			WARN(1, "Unexpected ASIC family %u",
2053			     dev->gpu->adev->asic_type);
2054		else
2055			kfd_topology_set_capabilities(dev);
2056	}
2057
2058	/*
2059	 * Overwrite ATS capability according to needs_iommu_device to fix
2060	 * potential missing corresponding bit in CRAT of BIOS.
2061	 */
2062	dev->node_props.capability &= ~HSA_CAP_ATS_PRESENT;
2063
2064	/* Fix errors in CZ CRAT.
2065	 * simd_count: Carrizo CRAT reports wrong simd_count, probably
2066	 *		because it doesn't consider masked out CUs
2067	 * max_waves_per_simd: Carrizo reports wrong max_waves_per_simd
2068	 */
2069	if (dev->gpu->adev->asic_type == CHIP_CARRIZO) {
2070		dev->node_props.simd_count =
2071			cu_info->simd_per_cu * cu_info->number;
2072		dev->node_props.max_waves_per_simd = 10;
2073	}
2074
2075	/* kfd only concerns sram ecc on GFX and HBM ecc on UMC */
2076	dev->node_props.capability |=
2077		((dev->gpu->adev->ras_enabled & BIT(AMDGPU_RAS_BLOCK__GFX)) != 0) ?
2078		HSA_CAP_SRAM_EDCSUPPORTED : 0;
2079	dev->node_props.capability |=
2080		((dev->gpu->adev->ras_enabled & BIT(AMDGPU_RAS_BLOCK__UMC)) != 0) ?
2081		HSA_CAP_MEM_EDCSUPPORTED : 0;
2082
2083	if (KFD_GC_VERSION(dev->gpu) != IP_VERSION(9, 0, 1))
2084		dev->node_props.capability |= (dev->gpu->adev->ras_enabled != 0) ?
2085			HSA_CAP_RASEVENTNOTIFY : 0;
2086
2087	if (KFD_IS_SVM_API_SUPPORTED(dev->gpu->adev))
2088		dev->node_props.capability |= HSA_CAP_SVMAPI_SUPPORTED;
2089
2090	if (dev->gpu->adev->gmc.is_app_apu ||
2091		dev->gpu->adev->gmc.xgmi.connected_to_cpu)
2092		dev->node_props.capability |= HSA_CAP_FLAGS_COHERENTHOSTACCESS;
2093
2094	kfd_debug_print_topology();
2095
2096	kfd_notify_gpu_change(gpu_id, 1);
2097
2098	return 0;
2099}
2100
2101/**
2102 * kfd_topology_update_io_links() - Update IO links after device removal.
2103 * @proximity_domain: Proximity domain value of the dev being removed.
2104 *
2105 * The topology list currently is arranged in increasing order of
2106 * proximity domain.
2107 *
2108 * Two things need to be done when a device is removed:
2109 * 1. All the IO links to this device need to be removed.
2110 * 2. All nodes after the current device node need to move
2111 *    up once this device node is removed from the topology
2112 *    list. As a result, the proximity domain values for
2113 *    all nodes after the node being deleted reduce by 1.
2114 *    This would also cause the proximity domain values for
2115 *    io links to be updated based on new proximity domain
2116 *    values.
2117 *
2118 * Context: The caller must hold write topology_lock.
2119 */
2120static void kfd_topology_update_io_links(int proximity_domain)
2121{
2122	struct kfd_topology_device *dev;
2123	struct kfd_iolink_properties *iolink, *p2plink, *tmp;
2124
2125	list_for_each_entry(dev, &topology_device_list, list) {
2126		if (dev->proximity_domain > proximity_domain)
2127			dev->proximity_domain--;
2128
2129		list_for_each_entry_safe(iolink, tmp, &dev->io_link_props, list) {
2130			/*
2131			 * If there is an io link to the dev being deleted
2132			 * then remove that IO link also.
2133			 */
2134			if (iolink->node_to == proximity_domain) {
2135				list_del(&iolink->list);
2136				dev->node_props.io_links_count--;
2137			} else {
2138				if (iolink->node_from > proximity_domain)
2139					iolink->node_from--;
2140				if (iolink->node_to > proximity_domain)
2141					iolink->node_to--;
2142			}
2143		}
2144
2145		list_for_each_entry_safe(p2plink, tmp, &dev->p2p_link_props, list) {
2146			/*
2147			 * If there is a p2p link to the dev being deleted
2148			 * then remove that p2p link also.
2149			 */
2150			if (p2plink->node_to == proximity_domain) {
2151				list_del(&p2plink->list);
2152				dev->node_props.p2p_links_count--;
2153			} else {
2154				if (p2plink->node_from > proximity_domain)
2155					p2plink->node_from--;
2156				if (p2plink->node_to > proximity_domain)
2157					p2plink->node_to--;
2158			}
2159		}
2160	}
2161}
2162
2163int kfd_topology_remove_device(struct kfd_node *gpu)
2164{
2165	struct kfd_topology_device *dev, *tmp;
2166	uint32_t gpu_id;
2167	int res = -ENODEV;
2168	int i = 0;
2169
2170	down_write(&topology_lock);
2171
2172	list_for_each_entry_safe(dev, tmp, &topology_device_list, list) {
2173		if (dev->gpu == gpu) {
2174			gpu_id = dev->gpu_id;
2175			kfd_remove_sysfs_node_entry(dev);
2176			kfd_release_topology_device(dev);
2177			sys_props.num_devices--;
2178			kfd_topology_update_io_links(i);
2179			topology_crat_proximity_domain = sys_props.num_devices-1;
2180			sys_props.generation_count++;
2181			res = 0;
2182			if (kfd_topology_update_sysfs() < 0)
2183				kfd_topology_release_sysfs();
2184			break;
2185		}
2186		i++;
2187	}
2188
2189	up_write(&topology_lock);
2190
2191	if (!res)
2192		kfd_notify_gpu_change(gpu_id, 0);
2193
2194	return res;
2195}
2196
2197/* kfd_topology_enum_kfd_devices - Enumerate through all devices in KFD
2198 *	topology. If GPU device is found @idx, then valid kfd_dev pointer is
2199 *	returned through @kdev
2200 * Return -	0: On success (@kdev will be NULL for non GPU nodes)
2201 *		-1: If end of list
2202 */
2203int kfd_topology_enum_kfd_devices(uint8_t idx, struct kfd_node **kdev)
2204{
2205
2206	struct kfd_topology_device *top_dev;
2207	uint8_t device_idx = 0;
2208
2209	*kdev = NULL;
2210	down_read(&topology_lock);
2211
2212	list_for_each_entry(top_dev, &topology_device_list, list) {
2213		if (device_idx == idx) {
2214			*kdev = top_dev->gpu;
2215			up_read(&topology_lock);
2216			return 0;
2217		}
2218
2219		device_idx++;
2220	}
2221
2222	up_read(&topology_lock);
2223
2224	return -1;
2225
2226}
2227
2228static int kfd_cpumask_to_apic_id(const struct cpumask *cpumask)
2229{
2230	int first_cpu_of_numa_node;
2231
2232	if (!cpumask || cpumask == cpu_none_mask)
2233		return -1;
2234	first_cpu_of_numa_node = cpumask_first(cpumask);
2235	if (first_cpu_of_numa_node >= nr_cpu_ids)
2236		return -1;
2237#ifdef CONFIG_X86_64
2238	return cpu_data(first_cpu_of_numa_node).topo.apicid;
2239#else
2240	return first_cpu_of_numa_node;
2241#endif
2242}
2243
2244/* kfd_numa_node_to_apic_id - Returns the APIC ID of the first logical processor
2245 *	of the given NUMA node (numa_node_id)
2246 * Return -1 on failure
2247 */
2248int kfd_numa_node_to_apic_id(int numa_node_id)
2249{
2250	if (numa_node_id == -1) {
2251		pr_warn("Invalid NUMA Node. Use online CPU mask\n");
2252		return kfd_cpumask_to_apic_id(cpu_online_mask);
2253	}
2254	return kfd_cpumask_to_apic_id(cpumask_of_node(numa_node_id));
2255}
2256
2257#if defined(CONFIG_DEBUG_FS)
2258
2259int kfd_debugfs_hqds_by_device(struct seq_file *m, void *data)
2260{
2261	struct kfd_topology_device *dev;
2262	unsigned int i = 0;
2263	int r = 0;
2264
2265	down_read(&topology_lock);
2266
2267	list_for_each_entry(dev, &topology_device_list, list) {
2268		if (!dev->gpu) {
2269			i++;
2270			continue;
2271		}
2272
2273		seq_printf(m, "Node %u, gpu_id %x:\n", i++, dev->gpu->id);
2274		r = dqm_debugfs_hqds(m, dev->gpu->dqm);
2275		if (r)
2276			break;
2277	}
2278
2279	up_read(&topology_lock);
2280
2281	return r;
2282}
2283
2284int kfd_debugfs_rls_by_device(struct seq_file *m, void *data)
2285{
2286	struct kfd_topology_device *dev;
2287	unsigned int i = 0;
2288	int r = 0;
2289
2290	down_read(&topology_lock);
2291
2292	list_for_each_entry(dev, &topology_device_list, list) {
2293		if (!dev->gpu) {
2294			i++;
2295			continue;
2296		}
2297
2298		seq_printf(m, "Node %u, gpu_id %x:\n", i++, dev->gpu->id);
2299		r = pm_debugfs_runlist(m, &dev->gpu->dqm->packet_mgr);
2300		if (r)
2301			break;
2302	}
2303
2304	up_read(&topology_lock);
2305
2306	return r;
2307}
2308
2309#endif
2310