1// SPDX-License-Identifier: GPL-2.0 OR MIT
2/*
3 * Copyright 2014-2022 Advanced Micro Devices, Inc.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice shall be included in
13 * all copies or substantial portions of the Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21 * OTHER DEALINGS IN THE SOFTWARE.
22 */
23
24#include <linux/mutex.h>
25#include <linux/log2.h>
26#include <linux/sched.h>
27#include <linux/sched/mm.h>
28#include <linux/sched/task.h>
29#include <linux/mmu_context.h>
30#include <linux/slab.h>
31#include <linux/notifier.h>
32#include <linux/compat.h>
33#include <linux/mman.h>
34#include <linux/file.h>
35#include <linux/pm_runtime.h>
36#include "amdgpu_amdkfd.h"
37#include "amdgpu.h"
38
39struct mm_struct;
40
41#include "kfd_priv.h"
42#include "kfd_device_queue_manager.h"
43#include "kfd_svm.h"
44#include "kfd_smi_events.h"
45#include "kfd_debug.h"
46
47/*
48 * List of struct kfd_process (field kfd_process).
49 * Unique/indexed by mm_struct*
50 */
51DEFINE_HASHTABLE(kfd_processes_table, KFD_PROCESS_TABLE_SIZE);
52DEFINE_MUTEX(kfd_processes_mutex);
53
54DEFINE_SRCU(kfd_processes_srcu);
55
56/* For process termination handling */
57static struct workqueue_struct *kfd_process_wq;
58
59/* Ordered, single-threaded workqueue for restoring evicted
60 * processes. Restoring multiple processes concurrently under memory
61 * pressure can lead to processes blocking each other from validating
62 * their BOs and result in a live-lock situation where processes
63 * remain evicted indefinitely.
64 */
65static struct workqueue_struct *kfd_restore_wq;
66
67static struct kfd_process *find_process(const struct task_struct *thread,
68					bool ref);
69static void kfd_process_ref_release(struct kref *ref);
70static struct kfd_process *create_process(const struct task_struct *thread);
71
72static void evict_process_worker(struct work_struct *work);
73static void restore_process_worker(struct work_struct *work);
74
75static void kfd_process_device_destroy_cwsr_dgpu(struct kfd_process_device *pdd);
76
77struct kfd_procfs_tree {
78	struct kobject *kobj;
79};
80
81static struct kfd_procfs_tree procfs;
82
83/*
84 * Structure for SDMA activity tracking
85 */
86struct kfd_sdma_activity_handler_workarea {
87	struct work_struct sdma_activity_work;
88	struct kfd_process_device *pdd;
89	uint64_t sdma_activity_counter;
90};
91
92struct temp_sdma_queue_list {
93	uint64_t __user *rptr;
94	uint64_t sdma_val;
95	unsigned int queue_id;
96	struct list_head list;
97};
98
99static void kfd_sdma_activity_worker(struct work_struct *work)
100{
101	struct kfd_sdma_activity_handler_workarea *workarea;
102	struct kfd_process_device *pdd;
103	uint64_t val;
104	struct mm_struct *mm;
105	struct queue *q;
106	struct qcm_process_device *qpd;
107	struct device_queue_manager *dqm;
108	int ret = 0;
109	struct temp_sdma_queue_list sdma_q_list;
110	struct temp_sdma_queue_list *sdma_q, *next;
111
112	workarea = container_of(work, struct kfd_sdma_activity_handler_workarea,
113				sdma_activity_work);
114
115	pdd = workarea->pdd;
116	if (!pdd)
117		return;
118	dqm = pdd->dev->dqm;
119	qpd = &pdd->qpd;
120	if (!dqm || !qpd)
121		return;
122	/*
123	 * Total SDMA activity is current SDMA activity + past SDMA activity
124	 * Past SDMA count is stored in pdd.
125	 * To get the current activity counters for all active SDMA queues,
126	 * we loop over all SDMA queues and get their counts from user-space.
127	 *
128	 * We cannot call get_user() with dqm_lock held as it can cause
129	 * a circular lock dependency situation. To read the SDMA stats,
130	 * we need to do the following:
131	 *
132	 * 1. Create a temporary list of SDMA queue nodes from the qpd->queues_list,
133	 *    with dqm_lock/dqm_unlock().
134	 * 2. Call get_user() for each node in temporary list without dqm_lock.
135	 *    Save the SDMA count for each node and also add the count to the total
136	 *    SDMA count counter.
137	 *    Its possible, during this step, a few SDMA queue nodes got deleted
138	 *    from the qpd->queues_list.
139	 * 3. Do a second pass over qpd->queues_list to check if any nodes got deleted.
140	 *    If any node got deleted, its SDMA count would be captured in the sdma
141	 *    past activity counter. So subtract the SDMA counter stored in step 2
142	 *    for this node from the total SDMA count.
143	 */
144	INIT_LIST_HEAD(&sdma_q_list.list);
145
146	/*
147	 * Create the temp list of all SDMA queues
148	 */
149	dqm_lock(dqm);
150
151	list_for_each_entry(q, &qpd->queues_list, list) {
152		if ((q->properties.type != KFD_QUEUE_TYPE_SDMA) &&
153		    (q->properties.type != KFD_QUEUE_TYPE_SDMA_XGMI))
154			continue;
155
156		sdma_q = kzalloc(sizeof(struct temp_sdma_queue_list), GFP_KERNEL);
157		if (!sdma_q) {
158			dqm_unlock(dqm);
159			goto cleanup;
160		}
161
162		INIT_LIST_HEAD(&sdma_q->list);
163		sdma_q->rptr = (uint64_t __user *)q->properties.read_ptr;
164		sdma_q->queue_id = q->properties.queue_id;
165		list_add_tail(&sdma_q->list, &sdma_q_list.list);
166	}
167
168	/*
169	 * If the temp list is empty, then no SDMA queues nodes were found in
170	 * qpd->queues_list. Return the past activity count as the total sdma
171	 * count
172	 */
173	if (list_empty(&sdma_q_list.list)) {
174		workarea->sdma_activity_counter = pdd->sdma_past_activity_counter;
175		dqm_unlock(dqm);
176		return;
177	}
178
179	dqm_unlock(dqm);
180
181	/*
182	 * Get the usage count for each SDMA queue in temp_list.
183	 */
184	mm = get_task_mm(pdd->process->lead_thread);
185	if (!mm)
186		goto cleanup;
187
188	kthread_use_mm(mm);
189
190	list_for_each_entry(sdma_q, &sdma_q_list.list, list) {
191		val = 0;
192		ret = read_sdma_queue_counter(sdma_q->rptr, &val);
193		if (ret) {
194			pr_debug("Failed to read SDMA queue active counter for queue id: %d",
195				 sdma_q->queue_id);
196		} else {
197			sdma_q->sdma_val = val;
198			workarea->sdma_activity_counter += val;
199		}
200	}
201
202	kthread_unuse_mm(mm);
203	mmput(mm);
204
205	/*
206	 * Do a second iteration over qpd_queues_list to check if any SDMA
207	 * nodes got deleted while fetching SDMA counter.
208	 */
209	dqm_lock(dqm);
210
211	workarea->sdma_activity_counter += pdd->sdma_past_activity_counter;
212
213	list_for_each_entry(q, &qpd->queues_list, list) {
214		if (list_empty(&sdma_q_list.list))
215			break;
216
217		if ((q->properties.type != KFD_QUEUE_TYPE_SDMA) &&
218		    (q->properties.type != KFD_QUEUE_TYPE_SDMA_XGMI))
219			continue;
220
221		list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
222			if (((uint64_t __user *)q->properties.read_ptr == sdma_q->rptr) &&
223			     (sdma_q->queue_id == q->properties.queue_id)) {
224				list_del(&sdma_q->list);
225				kfree(sdma_q);
226				break;
227			}
228		}
229	}
230
231	dqm_unlock(dqm);
232
233	/*
234	 * If temp list is not empty, it implies some queues got deleted
235	 * from qpd->queues_list during SDMA usage read. Subtract the SDMA
236	 * count for each node from the total SDMA count.
237	 */
238	list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
239		workarea->sdma_activity_counter -= sdma_q->sdma_val;
240		list_del(&sdma_q->list);
241		kfree(sdma_q);
242	}
243
244	return;
245
246cleanup:
247	list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
248		list_del(&sdma_q->list);
249		kfree(sdma_q);
250	}
251}
252
253/**
254 * kfd_get_cu_occupancy - Collect number of waves in-flight on this device
255 * by current process. Translates acquired wave count into number of compute units
256 * that are occupied.
257 *
258 * @attr: Handle of attribute that allows reporting of wave count. The attribute
259 * handle encapsulates GPU device it is associated with, thereby allowing collection
260 * of waves in flight, etc
261 * @buffer: Handle of user provided buffer updated with wave count
262 *
263 * Return: Number of bytes written to user buffer or an error value
264 */
265static int kfd_get_cu_occupancy(struct attribute *attr, char *buffer)
266{
267	int cu_cnt;
268	int wave_cnt;
269	int max_waves_per_cu;
270	struct kfd_node *dev = NULL;
271	struct kfd_process *proc = NULL;
272	struct kfd_process_device *pdd = NULL;
273
274	pdd = container_of(attr, struct kfd_process_device, attr_cu_occupancy);
275	dev = pdd->dev;
276	if (dev->kfd2kgd->get_cu_occupancy == NULL)
277		return -EINVAL;
278
279	cu_cnt = 0;
280	proc = pdd->process;
281	if (pdd->qpd.queue_count == 0) {
282		pr_debug("Gpu-Id: %d has no active queues for process %d\n",
283			 dev->id, proc->pasid);
284		return snprintf(buffer, PAGE_SIZE, "%d\n", cu_cnt);
285	}
286
287	/* Collect wave count from device if it supports */
288	wave_cnt = 0;
289	max_waves_per_cu = 0;
290	dev->kfd2kgd->get_cu_occupancy(dev->adev, proc->pasid, &wave_cnt,
291			&max_waves_per_cu, 0);
292
293	/* Translate wave count to number of compute units */
294	cu_cnt = (wave_cnt + (max_waves_per_cu - 1)) / max_waves_per_cu;
295	return snprintf(buffer, PAGE_SIZE, "%d\n", cu_cnt);
296}
297
298static ssize_t kfd_procfs_show(struct kobject *kobj, struct attribute *attr,
299			       char *buffer)
300{
301	if (strcmp(attr->name, "pasid") == 0) {
302		struct kfd_process *p = container_of(attr, struct kfd_process,
303						     attr_pasid);
304
305		return snprintf(buffer, PAGE_SIZE, "%d\n", p->pasid);
306	} else if (strncmp(attr->name, "vram_", 5) == 0) {
307		struct kfd_process_device *pdd = container_of(attr, struct kfd_process_device,
308							      attr_vram);
309		return snprintf(buffer, PAGE_SIZE, "%llu\n", READ_ONCE(pdd->vram_usage));
310	} else if (strncmp(attr->name, "sdma_", 5) == 0) {
311		struct kfd_process_device *pdd = container_of(attr, struct kfd_process_device,
312							      attr_sdma);
313		struct kfd_sdma_activity_handler_workarea sdma_activity_work_handler;
314
315		INIT_WORK(&sdma_activity_work_handler.sdma_activity_work,
316					kfd_sdma_activity_worker);
317
318		sdma_activity_work_handler.pdd = pdd;
319		sdma_activity_work_handler.sdma_activity_counter = 0;
320
321		schedule_work(&sdma_activity_work_handler.sdma_activity_work);
322
323		flush_work(&sdma_activity_work_handler.sdma_activity_work);
324
325		return snprintf(buffer, PAGE_SIZE, "%llu\n",
326				(sdma_activity_work_handler.sdma_activity_counter)/
327				 SDMA_ACTIVITY_DIVISOR);
328	} else {
329		pr_err("Invalid attribute");
330		return -EINVAL;
331	}
332
333	return 0;
334}
335
336static void kfd_procfs_kobj_release(struct kobject *kobj)
337{
338	kfree(kobj);
339}
340
341static const struct sysfs_ops kfd_procfs_ops = {
342	.show = kfd_procfs_show,
343};
344
345static const struct kobj_type procfs_type = {
346	.release = kfd_procfs_kobj_release,
347	.sysfs_ops = &kfd_procfs_ops,
348};
349
350void kfd_procfs_init(void)
351{
352	int ret = 0;
353
354	procfs.kobj = kfd_alloc_struct(procfs.kobj);
355	if (!procfs.kobj)
356		return;
357
358	ret = kobject_init_and_add(procfs.kobj, &procfs_type,
359				   &kfd_device->kobj, "proc");
360	if (ret) {
361		pr_warn("Could not create procfs proc folder");
362		/* If we fail to create the procfs, clean up */
363		kfd_procfs_shutdown();
364	}
365}
366
367void kfd_procfs_shutdown(void)
368{
369	if (procfs.kobj) {
370		kobject_del(procfs.kobj);
371		kobject_put(procfs.kobj);
372		procfs.kobj = NULL;
373	}
374}
375
376static ssize_t kfd_procfs_queue_show(struct kobject *kobj,
377				     struct attribute *attr, char *buffer)
378{
379	struct queue *q = container_of(kobj, struct queue, kobj);
380
381	if (!strcmp(attr->name, "size"))
382		return snprintf(buffer, PAGE_SIZE, "%llu",
383				q->properties.queue_size);
384	else if (!strcmp(attr->name, "type"))
385		return snprintf(buffer, PAGE_SIZE, "%d", q->properties.type);
386	else if (!strcmp(attr->name, "gpuid"))
387		return snprintf(buffer, PAGE_SIZE, "%u", q->device->id);
388	else
389		pr_err("Invalid attribute");
390
391	return 0;
392}
393
394static ssize_t kfd_procfs_stats_show(struct kobject *kobj,
395				     struct attribute *attr, char *buffer)
396{
397	if (strcmp(attr->name, "evicted_ms") == 0) {
398		struct kfd_process_device *pdd = container_of(attr,
399				struct kfd_process_device,
400				attr_evict);
401		uint64_t evict_jiffies;
402
403		evict_jiffies = atomic64_read(&pdd->evict_duration_counter);
404
405		return snprintf(buffer,
406				PAGE_SIZE,
407				"%llu\n",
408				jiffies64_to_msecs(evict_jiffies));
409
410	/* Sysfs handle that gets CU occupancy is per device */
411	} else if (strcmp(attr->name, "cu_occupancy") == 0) {
412		return kfd_get_cu_occupancy(attr, buffer);
413	} else {
414		pr_err("Invalid attribute");
415	}
416
417	return 0;
418}
419
420static ssize_t kfd_sysfs_counters_show(struct kobject *kobj,
421				       struct attribute *attr, char *buf)
422{
423	struct kfd_process_device *pdd;
424
425	if (!strcmp(attr->name, "faults")) {
426		pdd = container_of(attr, struct kfd_process_device,
427				   attr_faults);
428		return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->faults));
429	}
430	if (!strcmp(attr->name, "page_in")) {
431		pdd = container_of(attr, struct kfd_process_device,
432				   attr_page_in);
433		return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->page_in));
434	}
435	if (!strcmp(attr->name, "page_out")) {
436		pdd = container_of(attr, struct kfd_process_device,
437				   attr_page_out);
438		return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->page_out));
439	}
440	return 0;
441}
442
443static struct attribute attr_queue_size = {
444	.name = "size",
445	.mode = KFD_SYSFS_FILE_MODE
446};
447
448static struct attribute attr_queue_type = {
449	.name = "type",
450	.mode = KFD_SYSFS_FILE_MODE
451};
452
453static struct attribute attr_queue_gpuid = {
454	.name = "gpuid",
455	.mode = KFD_SYSFS_FILE_MODE
456};
457
458static struct attribute *procfs_queue_attrs[] = {
459	&attr_queue_size,
460	&attr_queue_type,
461	&attr_queue_gpuid,
462	NULL
463};
464ATTRIBUTE_GROUPS(procfs_queue);
465
466static const struct sysfs_ops procfs_queue_ops = {
467	.show = kfd_procfs_queue_show,
468};
469
470static const struct kobj_type procfs_queue_type = {
471	.sysfs_ops = &procfs_queue_ops,
472	.default_groups = procfs_queue_groups,
473};
474
475static const struct sysfs_ops procfs_stats_ops = {
476	.show = kfd_procfs_stats_show,
477};
478
479static const struct kobj_type procfs_stats_type = {
480	.sysfs_ops = &procfs_stats_ops,
481	.release = kfd_procfs_kobj_release,
482};
483
484static const struct sysfs_ops sysfs_counters_ops = {
485	.show = kfd_sysfs_counters_show,
486};
487
488static const struct kobj_type sysfs_counters_type = {
489	.sysfs_ops = &sysfs_counters_ops,
490	.release = kfd_procfs_kobj_release,
491};
492
493int kfd_procfs_add_queue(struct queue *q)
494{
495	struct kfd_process *proc;
496	int ret;
497
498	if (!q || !q->process)
499		return -EINVAL;
500	proc = q->process;
501
502	/* Create proc/<pid>/queues/<queue id> folder */
503	if (!proc->kobj_queues)
504		return -EFAULT;
505	ret = kobject_init_and_add(&q->kobj, &procfs_queue_type,
506			proc->kobj_queues, "%u", q->properties.queue_id);
507	if (ret < 0) {
508		pr_warn("Creating proc/<pid>/queues/%u failed",
509			q->properties.queue_id);
510		kobject_put(&q->kobj);
511		return ret;
512	}
513
514	return 0;
515}
516
517static void kfd_sysfs_create_file(struct kobject *kobj, struct attribute *attr,
518				 char *name)
519{
520	int ret;
521
522	if (!kobj || !attr || !name)
523		return;
524
525	attr->name = name;
526	attr->mode = KFD_SYSFS_FILE_MODE;
527	sysfs_attr_init(attr);
528
529	ret = sysfs_create_file(kobj, attr);
530	if (ret)
531		pr_warn("Create sysfs %s/%s failed %d", kobj->name, name, ret);
532}
533
534static void kfd_procfs_add_sysfs_stats(struct kfd_process *p)
535{
536	int ret;
537	int i;
538	char stats_dir_filename[MAX_SYSFS_FILENAME_LEN];
539
540	if (!p || !p->kobj)
541		return;
542
543	/*
544	 * Create sysfs files for each GPU:
545	 * - proc/<pid>/stats_<gpuid>/
546	 * - proc/<pid>/stats_<gpuid>/evicted_ms
547	 * - proc/<pid>/stats_<gpuid>/cu_occupancy
548	 */
549	for (i = 0; i < p->n_pdds; i++) {
550		struct kfd_process_device *pdd = p->pdds[i];
551
552		snprintf(stats_dir_filename, MAX_SYSFS_FILENAME_LEN,
553				"stats_%u", pdd->dev->id);
554		pdd->kobj_stats = kfd_alloc_struct(pdd->kobj_stats);
555		if (!pdd->kobj_stats)
556			return;
557
558		ret = kobject_init_and_add(pdd->kobj_stats,
559					   &procfs_stats_type,
560					   p->kobj,
561					   stats_dir_filename);
562
563		if (ret) {
564			pr_warn("Creating KFD proc/stats_%s folder failed",
565				stats_dir_filename);
566			kobject_put(pdd->kobj_stats);
567			pdd->kobj_stats = NULL;
568			return;
569		}
570
571		kfd_sysfs_create_file(pdd->kobj_stats, &pdd->attr_evict,
572				      "evicted_ms");
573		/* Add sysfs file to report compute unit occupancy */
574		if (pdd->dev->kfd2kgd->get_cu_occupancy)
575			kfd_sysfs_create_file(pdd->kobj_stats,
576					      &pdd->attr_cu_occupancy,
577					      "cu_occupancy");
578	}
579}
580
581static void kfd_procfs_add_sysfs_counters(struct kfd_process *p)
582{
583	int ret = 0;
584	int i;
585	char counters_dir_filename[MAX_SYSFS_FILENAME_LEN];
586
587	if (!p || !p->kobj)
588		return;
589
590	/*
591	 * Create sysfs files for each GPU which supports SVM
592	 * - proc/<pid>/counters_<gpuid>/
593	 * - proc/<pid>/counters_<gpuid>/faults
594	 * - proc/<pid>/counters_<gpuid>/page_in
595	 * - proc/<pid>/counters_<gpuid>/page_out
596	 */
597	for_each_set_bit(i, p->svms.bitmap_supported, p->n_pdds) {
598		struct kfd_process_device *pdd = p->pdds[i];
599		struct kobject *kobj_counters;
600
601		snprintf(counters_dir_filename, MAX_SYSFS_FILENAME_LEN,
602			"counters_%u", pdd->dev->id);
603		kobj_counters = kfd_alloc_struct(kobj_counters);
604		if (!kobj_counters)
605			return;
606
607		ret = kobject_init_and_add(kobj_counters, &sysfs_counters_type,
608					   p->kobj, counters_dir_filename);
609		if (ret) {
610			pr_warn("Creating KFD proc/%s folder failed",
611				counters_dir_filename);
612			kobject_put(kobj_counters);
613			return;
614		}
615
616		pdd->kobj_counters = kobj_counters;
617		kfd_sysfs_create_file(kobj_counters, &pdd->attr_faults,
618				      "faults");
619		kfd_sysfs_create_file(kobj_counters, &pdd->attr_page_in,
620				      "page_in");
621		kfd_sysfs_create_file(kobj_counters, &pdd->attr_page_out,
622				      "page_out");
623	}
624}
625
626static void kfd_procfs_add_sysfs_files(struct kfd_process *p)
627{
628	int i;
629
630	if (!p || !p->kobj)
631		return;
632
633	/*
634	 * Create sysfs files for each GPU:
635	 * - proc/<pid>/vram_<gpuid>
636	 * - proc/<pid>/sdma_<gpuid>
637	 */
638	for (i = 0; i < p->n_pdds; i++) {
639		struct kfd_process_device *pdd = p->pdds[i];
640
641		snprintf(pdd->vram_filename, MAX_SYSFS_FILENAME_LEN, "vram_%u",
642			 pdd->dev->id);
643		kfd_sysfs_create_file(p->kobj, &pdd->attr_vram,
644				      pdd->vram_filename);
645
646		snprintf(pdd->sdma_filename, MAX_SYSFS_FILENAME_LEN, "sdma_%u",
647			 pdd->dev->id);
648		kfd_sysfs_create_file(p->kobj, &pdd->attr_sdma,
649					    pdd->sdma_filename);
650	}
651}
652
653void kfd_procfs_del_queue(struct queue *q)
654{
655	if (!q)
656		return;
657
658	kobject_del(&q->kobj);
659	kobject_put(&q->kobj);
660}
661
662int kfd_process_create_wq(void)
663{
664	if (!kfd_process_wq)
665		kfd_process_wq = alloc_workqueue("kfd_process_wq", 0, 0);
666	if (!kfd_restore_wq)
667		kfd_restore_wq = alloc_ordered_workqueue("kfd_restore_wq",
668							 WQ_FREEZABLE);
669
670	if (!kfd_process_wq || !kfd_restore_wq) {
671		kfd_process_destroy_wq();
672		return -ENOMEM;
673	}
674
675	return 0;
676}
677
678void kfd_process_destroy_wq(void)
679{
680	if (kfd_process_wq) {
681		destroy_workqueue(kfd_process_wq);
682		kfd_process_wq = NULL;
683	}
684	if (kfd_restore_wq) {
685		destroy_workqueue(kfd_restore_wq);
686		kfd_restore_wq = NULL;
687	}
688}
689
690static void kfd_process_free_gpuvm(struct kgd_mem *mem,
691			struct kfd_process_device *pdd, void **kptr)
692{
693	struct kfd_node *dev = pdd->dev;
694
695	if (kptr && *kptr) {
696		amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(mem);
697		*kptr = NULL;
698	}
699
700	amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(dev->adev, mem, pdd->drm_priv);
701	amdgpu_amdkfd_gpuvm_free_memory_of_gpu(dev->adev, mem, pdd->drm_priv,
702					       NULL);
703}
704
705/* kfd_process_alloc_gpuvm - Allocate GPU VM for the KFD process
706 *	This function should be only called right after the process
707 *	is created and when kfd_processes_mutex is still being held
708 *	to avoid concurrency. Because of that exclusiveness, we do
709 *	not need to take p->mutex.
710 */
711static int kfd_process_alloc_gpuvm(struct kfd_process_device *pdd,
712				   uint64_t gpu_va, uint32_t size,
713				   uint32_t flags, struct kgd_mem **mem, void **kptr)
714{
715	struct kfd_node *kdev = pdd->dev;
716	int err;
717
718	err = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(kdev->adev, gpu_va, size,
719						 pdd->drm_priv, mem, NULL,
720						 flags, false);
721	if (err)
722		goto err_alloc_mem;
723
724	err = amdgpu_amdkfd_gpuvm_map_memory_to_gpu(kdev->adev, *mem,
725			pdd->drm_priv);
726	if (err)
727		goto err_map_mem;
728
729	err = amdgpu_amdkfd_gpuvm_sync_memory(kdev->adev, *mem, true);
730	if (err) {
731		pr_debug("Sync memory failed, wait interrupted by user signal\n");
732		goto sync_memory_failed;
733	}
734
735	if (kptr) {
736		err = amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel(
737				(struct kgd_mem *)*mem, kptr, NULL);
738		if (err) {
739			pr_debug("Map GTT BO to kernel failed\n");
740			goto sync_memory_failed;
741		}
742	}
743
744	return err;
745
746sync_memory_failed:
747	amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(kdev->adev, *mem, pdd->drm_priv);
748
749err_map_mem:
750	amdgpu_amdkfd_gpuvm_free_memory_of_gpu(kdev->adev, *mem, pdd->drm_priv,
751					       NULL);
752err_alloc_mem:
753	*mem = NULL;
754	*kptr = NULL;
755	return err;
756}
757
758/* kfd_process_device_reserve_ib_mem - Reserve memory inside the
759 *	process for IB usage The memory reserved is for KFD to submit
760 *	IB to AMDGPU from kernel.  If the memory is reserved
761 *	successfully, ib_kaddr will have the CPU/kernel
762 *	address. Check ib_kaddr before accessing the memory.
763 */
764static int kfd_process_device_reserve_ib_mem(struct kfd_process_device *pdd)
765{
766	struct qcm_process_device *qpd = &pdd->qpd;
767	uint32_t flags = KFD_IOC_ALLOC_MEM_FLAGS_GTT |
768			KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE |
769			KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE |
770			KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE;
771	struct kgd_mem *mem;
772	void *kaddr;
773	int ret;
774
775	if (qpd->ib_kaddr || !qpd->ib_base)
776		return 0;
777
778	/* ib_base is only set for dGPU */
779	ret = kfd_process_alloc_gpuvm(pdd, qpd->ib_base, PAGE_SIZE, flags,
780				      &mem, &kaddr);
781	if (ret)
782		return ret;
783
784	qpd->ib_mem = mem;
785	qpd->ib_kaddr = kaddr;
786
787	return 0;
788}
789
790static void kfd_process_device_destroy_ib_mem(struct kfd_process_device *pdd)
791{
792	struct qcm_process_device *qpd = &pdd->qpd;
793
794	if (!qpd->ib_kaddr || !qpd->ib_base)
795		return;
796
797	kfd_process_free_gpuvm(qpd->ib_mem, pdd, &qpd->ib_kaddr);
798}
799
800struct kfd_process *kfd_create_process(struct task_struct *thread)
801{
802	struct kfd_process *process;
803	int ret;
804
805	if (!(thread->mm && mmget_not_zero(thread->mm)))
806		return ERR_PTR(-EINVAL);
807
808	/* Only the pthreads threading model is supported. */
809	if (thread->group_leader->mm != thread->mm) {
810		mmput(thread->mm);
811		return ERR_PTR(-EINVAL);
812	}
813
814	/*
815	 * take kfd processes mutex before starting of process creation
816	 * so there won't be a case where two threads of the same process
817	 * create two kfd_process structures
818	 */
819	mutex_lock(&kfd_processes_mutex);
820
821	if (kfd_is_locked()) {
822		pr_debug("KFD is locked! Cannot create process");
823		process = ERR_PTR(-EINVAL);
824		goto out;
825	}
826
827	/* A prior open of /dev/kfd could have already created the process. */
828	process = find_process(thread, false);
829	if (process) {
830		pr_debug("Process already found\n");
831	} else {
832		process = create_process(thread);
833		if (IS_ERR(process))
834			goto out;
835
836		if (!procfs.kobj)
837			goto out;
838
839		process->kobj = kfd_alloc_struct(process->kobj);
840		if (!process->kobj) {
841			pr_warn("Creating procfs kobject failed");
842			goto out;
843		}
844		ret = kobject_init_and_add(process->kobj, &procfs_type,
845					   procfs.kobj, "%d",
846					   (int)process->lead_thread->pid);
847		if (ret) {
848			pr_warn("Creating procfs pid directory failed");
849			kobject_put(process->kobj);
850			goto out;
851		}
852
853		kfd_sysfs_create_file(process->kobj, &process->attr_pasid,
854				      "pasid");
855
856		process->kobj_queues = kobject_create_and_add("queues",
857							process->kobj);
858		if (!process->kobj_queues)
859			pr_warn("Creating KFD proc/queues folder failed");
860
861		kfd_procfs_add_sysfs_stats(process);
862		kfd_procfs_add_sysfs_files(process);
863		kfd_procfs_add_sysfs_counters(process);
864
865		init_waitqueue_head(&process->wait_irq_drain);
866	}
867out:
868	if (!IS_ERR(process))
869		kref_get(&process->ref);
870	mutex_unlock(&kfd_processes_mutex);
871	mmput(thread->mm);
872
873	return process;
874}
875
876struct kfd_process *kfd_get_process(const struct task_struct *thread)
877{
878	struct kfd_process *process;
879
880	if (!thread->mm)
881		return ERR_PTR(-EINVAL);
882
883	/* Only the pthreads threading model is supported. */
884	if (thread->group_leader->mm != thread->mm)
885		return ERR_PTR(-EINVAL);
886
887	process = find_process(thread, false);
888	if (!process)
889		return ERR_PTR(-EINVAL);
890
891	return process;
892}
893
894static struct kfd_process *find_process_by_mm(const struct mm_struct *mm)
895{
896	struct kfd_process *process;
897
898	hash_for_each_possible_rcu(kfd_processes_table, process,
899					kfd_processes, (uintptr_t)mm)
900		if (process->mm == mm)
901			return process;
902
903	return NULL;
904}
905
906static struct kfd_process *find_process(const struct task_struct *thread,
907					bool ref)
908{
909	struct kfd_process *p;
910	int idx;
911
912	idx = srcu_read_lock(&kfd_processes_srcu);
913	p = find_process_by_mm(thread->mm);
914	if (p && ref)
915		kref_get(&p->ref);
916	srcu_read_unlock(&kfd_processes_srcu, idx);
917
918	return p;
919}
920
921void kfd_unref_process(struct kfd_process *p)
922{
923	kref_put(&p->ref, kfd_process_ref_release);
924}
925
926/* This increments the process->ref counter. */
927struct kfd_process *kfd_lookup_process_by_pid(struct pid *pid)
928{
929	struct task_struct *task = NULL;
930	struct kfd_process *p    = NULL;
931
932	if (!pid) {
933		task = current;
934		get_task_struct(task);
935	} else {
936		task = get_pid_task(pid, PIDTYPE_PID);
937	}
938
939	if (task) {
940		p = find_process(task, true);
941		put_task_struct(task);
942	}
943
944	return p;
945}
946
947static void kfd_process_device_free_bos(struct kfd_process_device *pdd)
948{
949	struct kfd_process *p = pdd->process;
950	void *mem;
951	int id;
952	int i;
953
954	/*
955	 * Remove all handles from idr and release appropriate
956	 * local memory object
957	 */
958	idr_for_each_entry(&pdd->alloc_idr, mem, id) {
959
960		for (i = 0; i < p->n_pdds; i++) {
961			struct kfd_process_device *peer_pdd = p->pdds[i];
962
963			if (!peer_pdd->drm_priv)
964				continue;
965			amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(
966				peer_pdd->dev->adev, mem, peer_pdd->drm_priv);
967		}
968
969		amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->adev, mem,
970						       pdd->drm_priv, NULL);
971		kfd_process_device_remove_obj_handle(pdd, id);
972	}
973}
974
975/*
976 * Just kunmap and unpin signal BO here. It will be freed in
977 * kfd_process_free_outstanding_kfd_bos()
978 */
979static void kfd_process_kunmap_signal_bo(struct kfd_process *p)
980{
981	struct kfd_process_device *pdd;
982	struct kfd_node *kdev;
983	void *mem;
984
985	kdev = kfd_device_by_id(GET_GPU_ID(p->signal_handle));
986	if (!kdev)
987		return;
988
989	mutex_lock(&p->mutex);
990
991	pdd = kfd_get_process_device_data(kdev, p);
992	if (!pdd)
993		goto out;
994
995	mem = kfd_process_device_translate_handle(
996		pdd, GET_IDR_HANDLE(p->signal_handle));
997	if (!mem)
998		goto out;
999
1000	amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(mem);
1001
1002out:
1003	mutex_unlock(&p->mutex);
1004}
1005
1006static void kfd_process_free_outstanding_kfd_bos(struct kfd_process *p)
1007{
1008	int i;
1009
1010	for (i = 0; i < p->n_pdds; i++)
1011		kfd_process_device_free_bos(p->pdds[i]);
1012}
1013
1014static void kfd_process_destroy_pdds(struct kfd_process *p)
1015{
1016	int i;
1017
1018	for (i = 0; i < p->n_pdds; i++) {
1019		struct kfd_process_device *pdd = p->pdds[i];
1020
1021		pr_debug("Releasing pdd (topology id %d) for process (pasid 0x%x)\n",
1022				pdd->dev->id, p->pasid);
1023
1024		kfd_process_device_destroy_cwsr_dgpu(pdd);
1025		kfd_process_device_destroy_ib_mem(pdd);
1026
1027		if (pdd->drm_file) {
1028			amdgpu_amdkfd_gpuvm_release_process_vm(
1029					pdd->dev->adev, pdd->drm_priv);
1030			fput(pdd->drm_file);
1031		}
1032
1033		if (pdd->qpd.cwsr_kaddr && !pdd->qpd.cwsr_base)
1034			free_pages((unsigned long)pdd->qpd.cwsr_kaddr,
1035				get_order(KFD_CWSR_TBA_TMA_SIZE));
1036
1037		idr_destroy(&pdd->alloc_idr);
1038
1039		kfd_free_process_doorbells(pdd->dev->kfd, pdd);
1040
1041		if (pdd->dev->kfd->shared_resources.enable_mes)
1042			amdgpu_amdkfd_free_gtt_mem(pdd->dev->adev,
1043						   pdd->proc_ctx_bo);
1044		/*
1045		 * before destroying pdd, make sure to report availability
1046		 * for auto suspend
1047		 */
1048		if (pdd->runtime_inuse) {
1049			pm_runtime_mark_last_busy(adev_to_drm(pdd->dev->adev)->dev);
1050			pm_runtime_put_autosuspend(adev_to_drm(pdd->dev->adev)->dev);
1051			pdd->runtime_inuse = false;
1052		}
1053
1054		kfree(pdd);
1055		p->pdds[i] = NULL;
1056	}
1057	p->n_pdds = 0;
1058}
1059
1060static void kfd_process_remove_sysfs(struct kfd_process *p)
1061{
1062	struct kfd_process_device *pdd;
1063	int i;
1064
1065	if (!p->kobj)
1066		return;
1067
1068	sysfs_remove_file(p->kobj, &p->attr_pasid);
1069	kobject_del(p->kobj_queues);
1070	kobject_put(p->kobj_queues);
1071	p->kobj_queues = NULL;
1072
1073	for (i = 0; i < p->n_pdds; i++) {
1074		pdd = p->pdds[i];
1075
1076		sysfs_remove_file(p->kobj, &pdd->attr_vram);
1077		sysfs_remove_file(p->kobj, &pdd->attr_sdma);
1078
1079		sysfs_remove_file(pdd->kobj_stats, &pdd->attr_evict);
1080		if (pdd->dev->kfd2kgd->get_cu_occupancy)
1081			sysfs_remove_file(pdd->kobj_stats,
1082					  &pdd->attr_cu_occupancy);
1083		kobject_del(pdd->kobj_stats);
1084		kobject_put(pdd->kobj_stats);
1085		pdd->kobj_stats = NULL;
1086	}
1087
1088	for_each_set_bit(i, p->svms.bitmap_supported, p->n_pdds) {
1089		pdd = p->pdds[i];
1090
1091		sysfs_remove_file(pdd->kobj_counters, &pdd->attr_faults);
1092		sysfs_remove_file(pdd->kobj_counters, &pdd->attr_page_in);
1093		sysfs_remove_file(pdd->kobj_counters, &pdd->attr_page_out);
1094		kobject_del(pdd->kobj_counters);
1095		kobject_put(pdd->kobj_counters);
1096		pdd->kobj_counters = NULL;
1097	}
1098
1099	kobject_del(p->kobj);
1100	kobject_put(p->kobj);
1101	p->kobj = NULL;
1102}
1103
1104/* No process locking is needed in this function, because the process
1105 * is not findable any more. We must assume that no other thread is
1106 * using it any more, otherwise we couldn't safely free the process
1107 * structure in the end.
1108 */
1109static void kfd_process_wq_release(struct work_struct *work)
1110{
1111	struct kfd_process *p = container_of(work, struct kfd_process,
1112					     release_work);
1113	struct dma_fence *ef;
1114
1115	kfd_process_dequeue_from_all_devices(p);
1116	pqm_uninit(&p->pqm);
1117
1118	/* Signal the eviction fence after user mode queues are
1119	 * destroyed. This allows any BOs to be freed without
1120	 * triggering pointless evictions or waiting for fences.
1121	 */
1122	synchronize_rcu();
1123	ef = rcu_access_pointer(p->ef);
1124	dma_fence_signal(ef);
1125
1126	kfd_process_remove_sysfs(p);
1127
1128	kfd_process_kunmap_signal_bo(p);
1129	kfd_process_free_outstanding_kfd_bos(p);
1130	svm_range_list_fini(p);
1131
1132	kfd_process_destroy_pdds(p);
1133	dma_fence_put(ef);
1134
1135	kfd_event_free_process(p);
1136
1137	kfd_pasid_free(p->pasid);
1138	mutex_destroy(&p->mutex);
1139
1140	put_task_struct(p->lead_thread);
1141
1142	kfree(p);
1143}
1144
1145static void kfd_process_ref_release(struct kref *ref)
1146{
1147	struct kfd_process *p = container_of(ref, struct kfd_process, ref);
1148
1149	INIT_WORK(&p->release_work, kfd_process_wq_release);
1150	queue_work(kfd_process_wq, &p->release_work);
1151}
1152
1153static struct mmu_notifier *kfd_process_alloc_notifier(struct mm_struct *mm)
1154{
1155	int idx = srcu_read_lock(&kfd_processes_srcu);
1156	struct kfd_process *p = find_process_by_mm(mm);
1157
1158	srcu_read_unlock(&kfd_processes_srcu, idx);
1159
1160	return p ? &p->mmu_notifier : ERR_PTR(-ESRCH);
1161}
1162
1163static void kfd_process_free_notifier(struct mmu_notifier *mn)
1164{
1165	kfd_unref_process(container_of(mn, struct kfd_process, mmu_notifier));
1166}
1167
1168static void kfd_process_notifier_release_internal(struct kfd_process *p)
1169{
1170	int i;
1171
1172	cancel_delayed_work_sync(&p->eviction_work);
1173	cancel_delayed_work_sync(&p->restore_work);
1174
1175	for (i = 0; i < p->n_pdds; i++) {
1176		struct kfd_process_device *pdd = p->pdds[i];
1177
1178		/* re-enable GFX OFF since runtime enable with ttmp setup disabled it. */
1179		if (!kfd_dbg_is_rlc_restore_supported(pdd->dev) && p->runtime_info.ttmp_setup)
1180			amdgpu_gfx_off_ctrl(pdd->dev->adev, true);
1181	}
1182
1183	/* Indicate to other users that MM is no longer valid */
1184	p->mm = NULL;
1185	kfd_dbg_trap_disable(p);
1186
1187	if (atomic_read(&p->debugged_process_count) > 0) {
1188		struct kfd_process *target;
1189		unsigned int temp;
1190		int idx = srcu_read_lock(&kfd_processes_srcu);
1191
1192		hash_for_each_rcu(kfd_processes_table, temp, target, kfd_processes) {
1193			if (target->debugger_process && target->debugger_process == p) {
1194				mutex_lock_nested(&target->mutex, 1);
1195				kfd_dbg_trap_disable(target);
1196				mutex_unlock(&target->mutex);
1197				if (atomic_read(&p->debugged_process_count) == 0)
1198					break;
1199			}
1200		}
1201
1202		srcu_read_unlock(&kfd_processes_srcu, idx);
1203	}
1204
1205	mmu_notifier_put(&p->mmu_notifier);
1206}
1207
1208static void kfd_process_notifier_release(struct mmu_notifier *mn,
1209					struct mm_struct *mm)
1210{
1211	struct kfd_process *p;
1212
1213	/*
1214	 * The kfd_process structure can not be free because the
1215	 * mmu_notifier srcu is read locked
1216	 */
1217	p = container_of(mn, struct kfd_process, mmu_notifier);
1218	if (WARN_ON(p->mm != mm))
1219		return;
1220
1221	mutex_lock(&kfd_processes_mutex);
1222	/*
1223	 * Do early return if table is empty.
1224	 *
1225	 * This could potentially happen if this function is called concurrently
1226	 * by mmu_notifier and by kfd_cleanup_pocesses.
1227	 *
1228	 */
1229	if (hash_empty(kfd_processes_table)) {
1230		mutex_unlock(&kfd_processes_mutex);
1231		return;
1232	}
1233	hash_del_rcu(&p->kfd_processes);
1234	mutex_unlock(&kfd_processes_mutex);
1235	synchronize_srcu(&kfd_processes_srcu);
1236
1237	kfd_process_notifier_release_internal(p);
1238}
1239
1240static const struct mmu_notifier_ops kfd_process_mmu_notifier_ops = {
1241	.release = kfd_process_notifier_release,
1242	.alloc_notifier = kfd_process_alloc_notifier,
1243	.free_notifier = kfd_process_free_notifier,
1244};
1245
1246/*
1247 * This code handles the case when driver is being unloaded before all
1248 * mm_struct are released.  We need to safely free the kfd_process and
1249 * avoid race conditions with mmu_notifier that might try to free them.
1250 *
1251 */
1252void kfd_cleanup_processes(void)
1253{
1254	struct kfd_process *p;
1255	struct hlist_node *p_temp;
1256	unsigned int temp;
1257	HLIST_HEAD(cleanup_list);
1258
1259	/*
1260	 * Move all remaining kfd_process from the process table to a
1261	 * temp list for processing.   Once done, callback from mmu_notifier
1262	 * release will not see the kfd_process in the table and do early return,
1263	 * avoiding double free issues.
1264	 */
1265	mutex_lock(&kfd_processes_mutex);
1266	hash_for_each_safe(kfd_processes_table, temp, p_temp, p, kfd_processes) {
1267		hash_del_rcu(&p->kfd_processes);
1268		synchronize_srcu(&kfd_processes_srcu);
1269		hlist_add_head(&p->kfd_processes, &cleanup_list);
1270	}
1271	mutex_unlock(&kfd_processes_mutex);
1272
1273	hlist_for_each_entry_safe(p, p_temp, &cleanup_list, kfd_processes)
1274		kfd_process_notifier_release_internal(p);
1275
1276	/*
1277	 * Ensures that all outstanding free_notifier get called, triggering
1278	 * the release of the kfd_process struct.
1279	 */
1280	mmu_notifier_synchronize();
1281}
1282
1283int kfd_process_init_cwsr_apu(struct kfd_process *p, struct file *filep)
1284{
1285	unsigned long  offset;
1286	int i;
1287
1288	if (p->has_cwsr)
1289		return 0;
1290
1291	for (i = 0; i < p->n_pdds; i++) {
1292		struct kfd_node *dev = p->pdds[i]->dev;
1293		struct qcm_process_device *qpd = &p->pdds[i]->qpd;
1294
1295		if (!dev->kfd->cwsr_enabled || qpd->cwsr_kaddr || qpd->cwsr_base)
1296			continue;
1297
1298		offset = KFD_MMAP_TYPE_RESERVED_MEM | KFD_MMAP_GPU_ID(dev->id);
1299		qpd->tba_addr = (int64_t)vm_mmap(filep, 0,
1300			KFD_CWSR_TBA_TMA_SIZE, PROT_READ | PROT_EXEC,
1301			MAP_SHARED, offset);
1302
1303		if (IS_ERR_VALUE(qpd->tba_addr)) {
1304			int err = qpd->tba_addr;
1305
1306			pr_err("Failure to set tba address. error %d.\n", err);
1307			qpd->tba_addr = 0;
1308			qpd->cwsr_kaddr = NULL;
1309			return err;
1310		}
1311
1312		memcpy(qpd->cwsr_kaddr, dev->kfd->cwsr_isa, dev->kfd->cwsr_isa_size);
1313
1314		kfd_process_set_trap_debug_flag(qpd, p->debug_trap_enabled);
1315
1316		qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET;
1317		pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n",
1318			qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr);
1319	}
1320
1321	p->has_cwsr = true;
1322
1323	return 0;
1324}
1325
1326static int kfd_process_device_init_cwsr_dgpu(struct kfd_process_device *pdd)
1327{
1328	struct kfd_node *dev = pdd->dev;
1329	struct qcm_process_device *qpd = &pdd->qpd;
1330	uint32_t flags = KFD_IOC_ALLOC_MEM_FLAGS_GTT
1331			| KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE
1332			| KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE;
1333	struct kgd_mem *mem;
1334	void *kaddr;
1335	int ret;
1336
1337	if (!dev->kfd->cwsr_enabled || qpd->cwsr_kaddr || !qpd->cwsr_base)
1338		return 0;
1339
1340	/* cwsr_base is only set for dGPU */
1341	ret = kfd_process_alloc_gpuvm(pdd, qpd->cwsr_base,
1342				      KFD_CWSR_TBA_TMA_SIZE, flags, &mem, &kaddr);
1343	if (ret)
1344		return ret;
1345
1346	qpd->cwsr_mem = mem;
1347	qpd->cwsr_kaddr = kaddr;
1348	qpd->tba_addr = qpd->cwsr_base;
1349
1350	memcpy(qpd->cwsr_kaddr, dev->kfd->cwsr_isa, dev->kfd->cwsr_isa_size);
1351
1352	kfd_process_set_trap_debug_flag(&pdd->qpd,
1353					pdd->process->debug_trap_enabled);
1354
1355	qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET;
1356	pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n",
1357		 qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr);
1358
1359	return 0;
1360}
1361
1362static void kfd_process_device_destroy_cwsr_dgpu(struct kfd_process_device *pdd)
1363{
1364	struct kfd_node *dev = pdd->dev;
1365	struct qcm_process_device *qpd = &pdd->qpd;
1366
1367	if (!dev->kfd->cwsr_enabled || !qpd->cwsr_kaddr || !qpd->cwsr_base)
1368		return;
1369
1370	kfd_process_free_gpuvm(qpd->cwsr_mem, pdd, &qpd->cwsr_kaddr);
1371}
1372
1373void kfd_process_set_trap_handler(struct qcm_process_device *qpd,
1374				  uint64_t tba_addr,
1375				  uint64_t tma_addr)
1376{
1377	if (qpd->cwsr_kaddr) {
1378		/* KFD trap handler is bound, record as second-level TBA/TMA
1379		 * in first-level TMA. First-level trap will jump to second.
1380		 */
1381		uint64_t *tma =
1382			(uint64_t *)(qpd->cwsr_kaddr + KFD_CWSR_TMA_OFFSET);
1383		tma[0] = tba_addr;
1384		tma[1] = tma_addr;
1385	} else {
1386		/* No trap handler bound, bind as first-level TBA/TMA. */
1387		qpd->tba_addr = tba_addr;
1388		qpd->tma_addr = tma_addr;
1389	}
1390}
1391
1392bool kfd_process_xnack_mode(struct kfd_process *p, bool supported)
1393{
1394	int i;
1395
1396	/* On most GFXv9 GPUs, the retry mode in the SQ must match the
1397	 * boot time retry setting. Mixing processes with different
1398	 * XNACK/retry settings can hang the GPU.
1399	 *
1400	 * Different GPUs can have different noretry settings depending
1401	 * on HW bugs or limitations. We need to find at least one
1402	 * XNACK mode for this process that's compatible with all GPUs.
1403	 * Fortunately GPUs with retry enabled (noretry=0) can run code
1404	 * built for XNACK-off. On GFXv9 it may perform slower.
1405	 *
1406	 * Therefore applications built for XNACK-off can always be
1407	 * supported and will be our fallback if any GPU does not
1408	 * support retry.
1409	 */
1410	for (i = 0; i < p->n_pdds; i++) {
1411		struct kfd_node *dev = p->pdds[i]->dev;
1412
1413		/* Only consider GFXv9 and higher GPUs. Older GPUs don't
1414		 * support the SVM APIs and don't need to be considered
1415		 * for the XNACK mode selection.
1416		 */
1417		if (!KFD_IS_SOC15(dev))
1418			continue;
1419		/* Aldebaran can always support XNACK because it can support
1420		 * per-process XNACK mode selection. But let the dev->noretry
1421		 * setting still influence the default XNACK mode.
1422		 */
1423		if (supported && KFD_SUPPORT_XNACK_PER_PROCESS(dev)) {
1424			if (!amdgpu_sriov_xnack_support(dev->kfd->adev)) {
1425				pr_debug("SRIOV platform xnack not supported\n");
1426				return false;
1427			}
1428			continue;
1429		}
1430
1431		/* GFXv10 and later GPUs do not support shader preemption
1432		 * during page faults. This can lead to poor QoS for queue
1433		 * management and memory-manager-related preemptions or
1434		 * even deadlocks.
1435		 */
1436		if (KFD_GC_VERSION(dev) >= IP_VERSION(10, 1, 1))
1437			return false;
1438
1439		if (dev->kfd->noretry)
1440			return false;
1441	}
1442
1443	return true;
1444}
1445
1446void kfd_process_set_trap_debug_flag(struct qcm_process_device *qpd,
1447				     bool enabled)
1448{
1449	if (qpd->cwsr_kaddr) {
1450		uint64_t *tma =
1451			(uint64_t *)(qpd->cwsr_kaddr + KFD_CWSR_TMA_OFFSET);
1452		tma[2] = enabled;
1453	}
1454}
1455
1456/*
1457 * On return the kfd_process is fully operational and will be freed when the
1458 * mm is released
1459 */
1460static struct kfd_process *create_process(const struct task_struct *thread)
1461{
1462	struct kfd_process *process;
1463	struct mmu_notifier *mn;
1464	int err = -ENOMEM;
1465
1466	process = kzalloc(sizeof(*process), GFP_KERNEL);
1467	if (!process)
1468		goto err_alloc_process;
1469
1470	kref_init(&process->ref);
1471	mutex_init(&process->mutex);
1472	process->mm = thread->mm;
1473	process->lead_thread = thread->group_leader;
1474	process->n_pdds = 0;
1475	process->queues_paused = false;
1476	INIT_DELAYED_WORK(&process->eviction_work, evict_process_worker);
1477	INIT_DELAYED_WORK(&process->restore_work, restore_process_worker);
1478	process->last_restore_timestamp = get_jiffies_64();
1479	err = kfd_event_init_process(process);
1480	if (err)
1481		goto err_event_init;
1482	process->is_32bit_user_mode = in_compat_syscall();
1483	process->debug_trap_enabled = false;
1484	process->debugger_process = NULL;
1485	process->exception_enable_mask = 0;
1486	atomic_set(&process->debugged_process_count, 0);
1487	sema_init(&process->runtime_enable_sema, 0);
1488
1489	process->pasid = kfd_pasid_alloc();
1490	if (process->pasid == 0) {
1491		err = -ENOSPC;
1492		goto err_alloc_pasid;
1493	}
1494
1495	err = pqm_init(&process->pqm, process);
1496	if (err != 0)
1497		goto err_process_pqm_init;
1498
1499	/* init process apertures*/
1500	err = kfd_init_apertures(process);
1501	if (err != 0)
1502		goto err_init_apertures;
1503
1504	/* Check XNACK support after PDDs are created in kfd_init_apertures */
1505	process->xnack_enabled = kfd_process_xnack_mode(process, false);
1506
1507	err = svm_range_list_init(process);
1508	if (err)
1509		goto err_init_svm_range_list;
1510
1511	/* alloc_notifier needs to find the process in the hash table */
1512	hash_add_rcu(kfd_processes_table, &process->kfd_processes,
1513			(uintptr_t)process->mm);
1514
1515	/* Avoid free_notifier to start kfd_process_wq_release if
1516	 * mmu_notifier_get failed because of pending signal.
1517	 */
1518	kref_get(&process->ref);
1519
1520	/* MMU notifier registration must be the last call that can fail
1521	 * because after this point we cannot unwind the process creation.
1522	 * After this point, mmu_notifier_put will trigger the cleanup by
1523	 * dropping the last process reference in the free_notifier.
1524	 */
1525	mn = mmu_notifier_get(&kfd_process_mmu_notifier_ops, process->mm);
1526	if (IS_ERR(mn)) {
1527		err = PTR_ERR(mn);
1528		goto err_register_notifier;
1529	}
1530	BUG_ON(mn != &process->mmu_notifier);
1531
1532	kfd_unref_process(process);
1533	get_task_struct(process->lead_thread);
1534
1535	INIT_WORK(&process->debug_event_workarea, debug_event_write_work_handler);
1536
1537	return process;
1538
1539err_register_notifier:
1540	hash_del_rcu(&process->kfd_processes);
1541	svm_range_list_fini(process);
1542err_init_svm_range_list:
1543	kfd_process_free_outstanding_kfd_bos(process);
1544	kfd_process_destroy_pdds(process);
1545err_init_apertures:
1546	pqm_uninit(&process->pqm);
1547err_process_pqm_init:
1548	kfd_pasid_free(process->pasid);
1549err_alloc_pasid:
1550	kfd_event_free_process(process);
1551err_event_init:
1552	mutex_destroy(&process->mutex);
1553	kfree(process);
1554err_alloc_process:
1555	return ERR_PTR(err);
1556}
1557
1558struct kfd_process_device *kfd_get_process_device_data(struct kfd_node *dev,
1559							struct kfd_process *p)
1560{
1561	int i;
1562
1563	for (i = 0; i < p->n_pdds; i++)
1564		if (p->pdds[i]->dev == dev)
1565			return p->pdds[i];
1566
1567	return NULL;
1568}
1569
1570struct kfd_process_device *kfd_create_process_device_data(struct kfd_node *dev,
1571							struct kfd_process *p)
1572{
1573	struct kfd_process_device *pdd = NULL;
1574	int retval = 0;
1575
1576	if (WARN_ON_ONCE(p->n_pdds >= MAX_GPU_INSTANCE))
1577		return NULL;
1578	pdd = kzalloc(sizeof(*pdd), GFP_KERNEL);
1579	if (!pdd)
1580		return NULL;
1581
1582	pdd->dev = dev;
1583	INIT_LIST_HEAD(&pdd->qpd.queues_list);
1584	INIT_LIST_HEAD(&pdd->qpd.priv_queue_list);
1585	pdd->qpd.dqm = dev->dqm;
1586	pdd->qpd.pqm = &p->pqm;
1587	pdd->qpd.evicted = 0;
1588	pdd->qpd.mapped_gws_queue = false;
1589	pdd->process = p;
1590	pdd->bound = PDD_UNBOUND;
1591	pdd->already_dequeued = false;
1592	pdd->runtime_inuse = false;
1593	pdd->vram_usage = 0;
1594	pdd->sdma_past_activity_counter = 0;
1595	pdd->user_gpu_id = dev->id;
1596	atomic64_set(&pdd->evict_duration_counter, 0);
1597
1598	if (dev->kfd->shared_resources.enable_mes) {
1599		retval = amdgpu_amdkfd_alloc_gtt_mem(dev->adev,
1600						AMDGPU_MES_PROC_CTX_SIZE,
1601						&pdd->proc_ctx_bo,
1602						&pdd->proc_ctx_gpu_addr,
1603						&pdd->proc_ctx_cpu_ptr,
1604						false);
1605		if (retval) {
1606			pr_err("failed to allocate process context bo\n");
1607			goto err_free_pdd;
1608		}
1609		memset(pdd->proc_ctx_cpu_ptr, 0, AMDGPU_MES_PROC_CTX_SIZE);
1610	}
1611
1612	p->pdds[p->n_pdds++] = pdd;
1613	if (kfd_dbg_is_per_vmid_supported(pdd->dev))
1614		pdd->spi_dbg_override = pdd->dev->kfd2kgd->disable_debug_trap(
1615							pdd->dev->adev,
1616							false,
1617							0);
1618
1619	/* Init idr used for memory handle translation */
1620	idr_init(&pdd->alloc_idr);
1621
1622	return pdd;
1623
1624err_free_pdd:
1625	kfree(pdd);
1626	return NULL;
1627}
1628
1629/**
1630 * kfd_process_device_init_vm - Initialize a VM for a process-device
1631 *
1632 * @pdd: The process-device
1633 * @drm_file: Optional pointer to a DRM file descriptor
1634 *
1635 * If @drm_file is specified, it will be used to acquire the VM from
1636 * that file descriptor. If successful, the @pdd takes ownership of
1637 * the file descriptor.
1638 *
1639 * If @drm_file is NULL, a new VM is created.
1640 *
1641 * Returns 0 on success, -errno on failure.
1642 */
1643int kfd_process_device_init_vm(struct kfd_process_device *pdd,
1644			       struct file *drm_file)
1645{
1646	struct amdgpu_fpriv *drv_priv;
1647	struct amdgpu_vm *avm;
1648	struct kfd_process *p;
1649	struct dma_fence *ef;
1650	struct kfd_node *dev;
1651	int ret;
1652
1653	if (!drm_file)
1654		return -EINVAL;
1655
1656	if (pdd->drm_priv)
1657		return -EBUSY;
1658
1659	ret = amdgpu_file_to_fpriv(drm_file, &drv_priv);
1660	if (ret)
1661		return ret;
1662	avm = &drv_priv->vm;
1663
1664	p = pdd->process;
1665	dev = pdd->dev;
1666
1667	ret = amdgpu_amdkfd_gpuvm_acquire_process_vm(dev->adev, avm,
1668						     &p->kgd_process_info,
1669						     &ef);
1670	if (ret) {
1671		pr_err("Failed to create process VM object\n");
1672		return ret;
1673	}
1674	RCU_INIT_POINTER(p->ef, ef);
1675	pdd->drm_priv = drm_file->private_data;
1676
1677	ret = kfd_process_device_reserve_ib_mem(pdd);
1678	if (ret)
1679		goto err_reserve_ib_mem;
1680	ret = kfd_process_device_init_cwsr_dgpu(pdd);
1681	if (ret)
1682		goto err_init_cwsr;
1683
1684	ret = amdgpu_amdkfd_gpuvm_set_vm_pasid(dev->adev, avm, p->pasid);
1685	if (ret)
1686		goto err_set_pasid;
1687
1688	pdd->drm_file = drm_file;
1689
1690	return 0;
1691
1692err_set_pasid:
1693	kfd_process_device_destroy_cwsr_dgpu(pdd);
1694err_init_cwsr:
1695	kfd_process_device_destroy_ib_mem(pdd);
1696err_reserve_ib_mem:
1697	pdd->drm_priv = NULL;
1698	amdgpu_amdkfd_gpuvm_destroy_cb(dev->adev, avm);
1699
1700	return ret;
1701}
1702
1703/*
1704 * Direct the IOMMU to bind the process (specifically the pasid->mm)
1705 * to the device.
1706 * Unbinding occurs when the process dies or the device is removed.
1707 *
1708 * Assumes that the process lock is held.
1709 */
1710struct kfd_process_device *kfd_bind_process_to_device(struct kfd_node *dev,
1711							struct kfd_process *p)
1712{
1713	struct kfd_process_device *pdd;
1714	int err;
1715
1716	pdd = kfd_get_process_device_data(dev, p);
1717	if (!pdd) {
1718		pr_err("Process device data doesn't exist\n");
1719		return ERR_PTR(-ENOMEM);
1720	}
1721
1722	if (!pdd->drm_priv)
1723		return ERR_PTR(-ENODEV);
1724
1725	/*
1726	 * signal runtime-pm system to auto resume and prevent
1727	 * further runtime suspend once device pdd is created until
1728	 * pdd is destroyed.
1729	 */
1730	if (!pdd->runtime_inuse) {
1731		err = pm_runtime_get_sync(adev_to_drm(dev->adev)->dev);
1732		if (err < 0) {
1733			pm_runtime_put_autosuspend(adev_to_drm(dev->adev)->dev);
1734			return ERR_PTR(err);
1735		}
1736	}
1737
1738	/*
1739	 * make sure that runtime_usage counter is incremented just once
1740	 * per pdd
1741	 */
1742	pdd->runtime_inuse = true;
1743
1744	return pdd;
1745}
1746
1747/* Create specific handle mapped to mem from process local memory idr
1748 * Assumes that the process lock is held.
1749 */
1750int kfd_process_device_create_obj_handle(struct kfd_process_device *pdd,
1751					void *mem)
1752{
1753	return idr_alloc(&pdd->alloc_idr, mem, 0, 0, GFP_KERNEL);
1754}
1755
1756/* Translate specific handle from process local memory idr
1757 * Assumes that the process lock is held.
1758 */
1759void *kfd_process_device_translate_handle(struct kfd_process_device *pdd,
1760					int handle)
1761{
1762	if (handle < 0)
1763		return NULL;
1764
1765	return idr_find(&pdd->alloc_idr, handle);
1766}
1767
1768/* Remove specific handle from process local memory idr
1769 * Assumes that the process lock is held.
1770 */
1771void kfd_process_device_remove_obj_handle(struct kfd_process_device *pdd,
1772					int handle)
1773{
1774	if (handle >= 0)
1775		idr_remove(&pdd->alloc_idr, handle);
1776}
1777
1778/* This increments the process->ref counter. */
1779struct kfd_process *kfd_lookup_process_by_pasid(u32 pasid)
1780{
1781	struct kfd_process *p, *ret_p = NULL;
1782	unsigned int temp;
1783
1784	int idx = srcu_read_lock(&kfd_processes_srcu);
1785
1786	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
1787		if (p->pasid == pasid) {
1788			kref_get(&p->ref);
1789			ret_p = p;
1790			break;
1791		}
1792	}
1793
1794	srcu_read_unlock(&kfd_processes_srcu, idx);
1795
1796	return ret_p;
1797}
1798
1799/* This increments the process->ref counter. */
1800struct kfd_process *kfd_lookup_process_by_mm(const struct mm_struct *mm)
1801{
1802	struct kfd_process *p;
1803
1804	int idx = srcu_read_lock(&kfd_processes_srcu);
1805
1806	p = find_process_by_mm(mm);
1807	if (p)
1808		kref_get(&p->ref);
1809
1810	srcu_read_unlock(&kfd_processes_srcu, idx);
1811
1812	return p;
1813}
1814
1815/* kfd_process_evict_queues - Evict all user queues of a process
1816 *
1817 * Eviction is reference-counted per process-device. This means multiple
1818 * evictions from different sources can be nested safely.
1819 */
1820int kfd_process_evict_queues(struct kfd_process *p, uint32_t trigger)
1821{
1822	int r = 0;
1823	int i;
1824	unsigned int n_evicted = 0;
1825
1826	for (i = 0; i < p->n_pdds; i++) {
1827		struct kfd_process_device *pdd = p->pdds[i];
1828
1829		kfd_smi_event_queue_eviction(pdd->dev, p->lead_thread->pid,
1830					     trigger);
1831
1832		r = pdd->dev->dqm->ops.evict_process_queues(pdd->dev->dqm,
1833							    &pdd->qpd);
1834		/* evict return -EIO if HWS is hang or asic is resetting, in this case
1835		 * we would like to set all the queues to be in evicted state to prevent
1836		 * them been add back since they actually not be saved right now.
1837		 */
1838		if (r && r != -EIO) {
1839			pr_err("Failed to evict process queues\n");
1840			goto fail;
1841		}
1842		n_evicted++;
1843	}
1844
1845	return r;
1846
1847fail:
1848	/* To keep state consistent, roll back partial eviction by
1849	 * restoring queues
1850	 */
1851	for (i = 0; i < p->n_pdds; i++) {
1852		struct kfd_process_device *pdd = p->pdds[i];
1853
1854		if (n_evicted == 0)
1855			break;
1856
1857		kfd_smi_event_queue_restore(pdd->dev, p->lead_thread->pid);
1858
1859		if (pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm,
1860							      &pdd->qpd))
1861			pr_err("Failed to restore queues\n");
1862
1863		n_evicted--;
1864	}
1865
1866	return r;
1867}
1868
1869/* kfd_process_restore_queues - Restore all user queues of a process */
1870int kfd_process_restore_queues(struct kfd_process *p)
1871{
1872	int r, ret = 0;
1873	int i;
1874
1875	for (i = 0; i < p->n_pdds; i++) {
1876		struct kfd_process_device *pdd = p->pdds[i];
1877
1878		kfd_smi_event_queue_restore(pdd->dev, p->lead_thread->pid);
1879
1880		r = pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm,
1881							      &pdd->qpd);
1882		if (r) {
1883			pr_err("Failed to restore process queues\n");
1884			if (!ret)
1885				ret = r;
1886		}
1887	}
1888
1889	return ret;
1890}
1891
1892int kfd_process_gpuidx_from_gpuid(struct kfd_process *p, uint32_t gpu_id)
1893{
1894	int i;
1895
1896	for (i = 0; i < p->n_pdds; i++)
1897		if (p->pdds[i] && gpu_id == p->pdds[i]->user_gpu_id)
1898			return i;
1899	return -EINVAL;
1900}
1901
1902int
1903kfd_process_gpuid_from_node(struct kfd_process *p, struct kfd_node *node,
1904			    uint32_t *gpuid, uint32_t *gpuidx)
1905{
1906	int i;
1907
1908	for (i = 0; i < p->n_pdds; i++)
1909		if (p->pdds[i] && p->pdds[i]->dev == node) {
1910			*gpuid = p->pdds[i]->user_gpu_id;
1911			*gpuidx = i;
1912			return 0;
1913		}
1914	return -EINVAL;
1915}
1916
1917static int signal_eviction_fence(struct kfd_process *p)
1918{
1919	struct dma_fence *ef;
1920	int ret;
1921
1922	rcu_read_lock();
1923	ef = dma_fence_get_rcu_safe(&p->ef);
1924	rcu_read_unlock();
1925
1926	ret = dma_fence_signal(ef);
1927	dma_fence_put(ef);
1928
1929	return ret;
1930}
1931
1932static void evict_process_worker(struct work_struct *work)
1933{
1934	int ret;
1935	struct kfd_process *p;
1936	struct delayed_work *dwork;
1937
1938	dwork = to_delayed_work(work);
1939
1940	/* Process termination destroys this worker thread. So during the
1941	 * lifetime of this thread, kfd_process p will be valid
1942	 */
1943	p = container_of(dwork, struct kfd_process, eviction_work);
1944
1945	pr_debug("Started evicting pasid 0x%x\n", p->pasid);
1946	ret = kfd_process_evict_queues(p, KFD_QUEUE_EVICTION_TRIGGER_TTM);
1947	if (!ret) {
1948		/* If another thread already signaled the eviction fence,
1949		 * they are responsible stopping the queues and scheduling
1950		 * the restore work.
1951		 */
1952		if (!signal_eviction_fence(p))
1953			queue_delayed_work(kfd_restore_wq, &p->restore_work,
1954				msecs_to_jiffies(PROCESS_RESTORE_TIME_MS));
1955		else
1956			kfd_process_restore_queues(p);
1957
1958		pr_debug("Finished evicting pasid 0x%x\n", p->pasid);
1959	} else
1960		pr_err("Failed to evict queues of pasid 0x%x\n", p->pasid);
1961}
1962
1963static int restore_process_helper(struct kfd_process *p)
1964{
1965	int ret = 0;
1966
1967	/* VMs may not have been acquired yet during debugging. */
1968	if (p->kgd_process_info) {
1969		ret = amdgpu_amdkfd_gpuvm_restore_process_bos(
1970			p->kgd_process_info, &p->ef);
1971		if (ret)
1972			return ret;
1973	}
1974
1975	ret = kfd_process_restore_queues(p);
1976	if (!ret)
1977		pr_debug("Finished restoring pasid 0x%x\n", p->pasid);
1978	else
1979		pr_err("Failed to restore queues of pasid 0x%x\n", p->pasid);
1980
1981	return ret;
1982}
1983
1984static void restore_process_worker(struct work_struct *work)
1985{
1986	struct delayed_work *dwork;
1987	struct kfd_process *p;
1988	int ret = 0;
1989
1990	dwork = to_delayed_work(work);
1991
1992	/* Process termination destroys this worker thread. So during the
1993	 * lifetime of this thread, kfd_process p will be valid
1994	 */
1995	p = container_of(dwork, struct kfd_process, restore_work);
1996	pr_debug("Started restoring pasid 0x%x\n", p->pasid);
1997
1998	/* Setting last_restore_timestamp before successful restoration.
1999	 * Otherwise this would have to be set by KGD (restore_process_bos)
2000	 * before KFD BOs are unreserved. If not, the process can be evicted
2001	 * again before the timestamp is set.
2002	 * If restore fails, the timestamp will be set again in the next
2003	 * attempt. This would mean that the minimum GPU quanta would be
2004	 * PROCESS_ACTIVE_TIME_MS - (time to execute the following two
2005	 * functions)
2006	 */
2007
2008	p->last_restore_timestamp = get_jiffies_64();
2009
2010	ret = restore_process_helper(p);
2011	if (ret) {
2012		pr_debug("Failed to restore BOs of pasid 0x%x, retry after %d ms\n",
2013			 p->pasid, PROCESS_BACK_OFF_TIME_MS);
2014		ret = queue_delayed_work(kfd_restore_wq, &p->restore_work,
2015				msecs_to_jiffies(PROCESS_BACK_OFF_TIME_MS));
2016		WARN(!ret, "reschedule restore work failed\n");
2017	}
2018}
2019
2020void kfd_suspend_all_processes(void)
2021{
2022	struct kfd_process *p;
2023	unsigned int temp;
2024	int idx = srcu_read_lock(&kfd_processes_srcu);
2025
2026	WARN(debug_evictions, "Evicting all processes");
2027	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
2028		if (kfd_process_evict_queues(p, KFD_QUEUE_EVICTION_TRIGGER_SUSPEND))
2029			pr_err("Failed to suspend process 0x%x\n", p->pasid);
2030		signal_eviction_fence(p);
2031	}
2032	srcu_read_unlock(&kfd_processes_srcu, idx);
2033}
2034
2035int kfd_resume_all_processes(void)
2036{
2037	struct kfd_process *p;
2038	unsigned int temp;
2039	int ret = 0, idx = srcu_read_lock(&kfd_processes_srcu);
2040
2041	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
2042		if (restore_process_helper(p)) {
2043			pr_err("Restore process %d failed during resume\n",
2044			       p->pasid);
2045			ret = -EFAULT;
2046		}
2047	}
2048	srcu_read_unlock(&kfd_processes_srcu, idx);
2049	return ret;
2050}
2051
2052int kfd_reserved_mem_mmap(struct kfd_node *dev, struct kfd_process *process,
2053			  struct vm_area_struct *vma)
2054{
2055	struct kfd_process_device *pdd;
2056	struct qcm_process_device *qpd;
2057
2058	if ((vma->vm_end - vma->vm_start) != KFD_CWSR_TBA_TMA_SIZE) {
2059		pr_err("Incorrect CWSR mapping size.\n");
2060		return -EINVAL;
2061	}
2062
2063	pdd = kfd_get_process_device_data(dev, process);
2064	if (!pdd)
2065		return -EINVAL;
2066	qpd = &pdd->qpd;
2067
2068	qpd->cwsr_kaddr = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
2069					get_order(KFD_CWSR_TBA_TMA_SIZE));
2070	if (!qpd->cwsr_kaddr) {
2071		pr_err("Error allocating per process CWSR buffer.\n");
2072		return -ENOMEM;
2073	}
2074
2075	vm_flags_set(vma, VM_IO | VM_DONTCOPY | VM_DONTEXPAND
2076		| VM_NORESERVE | VM_DONTDUMP | VM_PFNMAP);
2077	/* Mapping pages to user process */
2078	return remap_pfn_range(vma, vma->vm_start,
2079			       PFN_DOWN(__pa(qpd->cwsr_kaddr)),
2080			       KFD_CWSR_TBA_TMA_SIZE, vma->vm_page_prot);
2081}
2082
2083/* assumes caller holds process lock. */
2084int kfd_process_drain_interrupts(struct kfd_process_device *pdd)
2085{
2086	uint32_t irq_drain_fence[8];
2087	uint8_t node_id = 0;
2088	int r = 0;
2089
2090	if (!KFD_IS_SOC15(pdd->dev))
2091		return 0;
2092
2093	pdd->process->irq_drain_is_open = true;
2094
2095	memset(irq_drain_fence, 0, sizeof(irq_drain_fence));
2096	irq_drain_fence[0] = (KFD_IRQ_FENCE_SOURCEID << 8) |
2097							KFD_IRQ_FENCE_CLIENTID;
2098	irq_drain_fence[3] = pdd->process->pasid;
2099
2100	/*
2101	 * For GFX 9.4.3, send the NodeId also in IH cookie DW[3]
2102	 */
2103	if (KFD_GC_VERSION(pdd->dev->kfd) == IP_VERSION(9, 4, 3)) {
2104		node_id = ffs(pdd->dev->interrupt_bitmap) - 1;
2105		irq_drain_fence[3] |= node_id << 16;
2106	}
2107
2108	/* ensure stale irqs scheduled KFD interrupts and send drain fence. */
2109	if (amdgpu_amdkfd_send_close_event_drain_irq(pdd->dev->adev,
2110						     irq_drain_fence)) {
2111		pdd->process->irq_drain_is_open = false;
2112		return 0;
2113	}
2114
2115	r = wait_event_interruptible(pdd->process->wait_irq_drain,
2116				     !READ_ONCE(pdd->process->irq_drain_is_open));
2117	if (r)
2118		pdd->process->irq_drain_is_open = false;
2119
2120	return r;
2121}
2122
2123void kfd_process_close_interrupt_drain(unsigned int pasid)
2124{
2125	struct kfd_process *p;
2126
2127	p = kfd_lookup_process_by_pasid(pasid);
2128
2129	if (!p)
2130		return;
2131
2132	WRITE_ONCE(p->irq_drain_is_open, false);
2133	wake_up_all(&p->wait_irq_drain);
2134	kfd_unref_process(p);
2135}
2136
2137struct send_exception_work_handler_workarea {
2138	struct work_struct work;
2139	struct kfd_process *p;
2140	unsigned int queue_id;
2141	uint64_t error_reason;
2142};
2143
2144static void send_exception_work_handler(struct work_struct *work)
2145{
2146	struct send_exception_work_handler_workarea *workarea;
2147	struct kfd_process *p;
2148	struct queue *q;
2149	struct mm_struct *mm;
2150	struct kfd_context_save_area_header __user *csa_header;
2151	uint64_t __user *err_payload_ptr;
2152	uint64_t cur_err;
2153	uint32_t ev_id;
2154
2155	workarea = container_of(work,
2156				struct send_exception_work_handler_workarea,
2157				work);
2158	p = workarea->p;
2159
2160	mm = get_task_mm(p->lead_thread);
2161
2162	if (!mm)
2163		return;
2164
2165	kthread_use_mm(mm);
2166
2167	q = pqm_get_user_queue(&p->pqm, workarea->queue_id);
2168
2169	if (!q)
2170		goto out;
2171
2172	csa_header = (void __user *)q->properties.ctx_save_restore_area_address;
2173
2174	get_user(err_payload_ptr, (uint64_t __user **)&csa_header->err_payload_addr);
2175	get_user(cur_err, err_payload_ptr);
2176	cur_err |= workarea->error_reason;
2177	put_user(cur_err, err_payload_ptr);
2178	get_user(ev_id, &csa_header->err_event_id);
2179
2180	kfd_set_event(p, ev_id);
2181
2182out:
2183	kthread_unuse_mm(mm);
2184	mmput(mm);
2185}
2186
2187int kfd_send_exception_to_runtime(struct kfd_process *p,
2188			unsigned int queue_id,
2189			uint64_t error_reason)
2190{
2191	struct send_exception_work_handler_workarea worker;
2192
2193	INIT_WORK_ONSTACK(&worker.work, send_exception_work_handler);
2194
2195	worker.p = p;
2196	worker.queue_id = queue_id;
2197	worker.error_reason = error_reason;
2198
2199	schedule_work(&worker.work);
2200	flush_work(&worker.work);
2201	destroy_work_on_stack(&worker.work);
2202
2203	return 0;
2204}
2205
2206struct kfd_process_device *kfd_process_device_data_by_id(struct kfd_process *p, uint32_t gpu_id)
2207{
2208	int i;
2209
2210	if (gpu_id) {
2211		for (i = 0; i < p->n_pdds; i++) {
2212			struct kfd_process_device *pdd = p->pdds[i];
2213
2214			if (pdd->user_gpu_id == gpu_id)
2215				return pdd;
2216		}
2217	}
2218	return NULL;
2219}
2220
2221int kfd_process_get_user_gpu_id(struct kfd_process *p, uint32_t actual_gpu_id)
2222{
2223	int i;
2224
2225	if (!actual_gpu_id)
2226		return 0;
2227
2228	for (i = 0; i < p->n_pdds; i++) {
2229		struct kfd_process_device *pdd = p->pdds[i];
2230
2231		if (pdd->dev->id == actual_gpu_id)
2232			return pdd->user_gpu_id;
2233	}
2234	return -EINVAL;
2235}
2236
2237#if defined(CONFIG_DEBUG_FS)
2238
2239int kfd_debugfs_mqds_by_process(struct seq_file *m, void *data)
2240{
2241	struct kfd_process *p;
2242	unsigned int temp;
2243	int r = 0;
2244
2245	int idx = srcu_read_lock(&kfd_processes_srcu);
2246
2247	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
2248		seq_printf(m, "Process %d PASID 0x%x:\n",
2249			   p->lead_thread->tgid, p->pasid);
2250
2251		mutex_lock(&p->mutex);
2252		r = pqm_debugfs_mqds(m, &p->pqm);
2253		mutex_unlock(&p->mutex);
2254
2255		if (r)
2256			break;
2257	}
2258
2259	srcu_read_unlock(&kfd_processes_srcu, idx);
2260
2261	return r;
2262}
2263
2264#endif
2265