1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * FSI core driver
4 *
5 * Copyright (C) IBM Corporation 2016
6 *
7 * TODO:
8 *  - Rework topology
9 *  - s/chip_id/chip_loc
10 *  - s/cfam/chip (cfam_id -> chip_id etc...)
11 */
12
13#include <linux/crc4.h>
14#include <linux/device.h>
15#include <linux/fsi.h>
16#include <linux/idr.h>
17#include <linux/module.h>
18#include <linux/of.h>
19#include <linux/of_address.h>
20#include <linux/of_device.h>
21#include <linux/slab.h>
22#include <linux/bitops.h>
23#include <linux/cdev.h>
24#include <linux/fs.h>
25#include <linux/uaccess.h>
26
27#include "fsi-master.h"
28#include "fsi-slave.h"
29
30#define CREATE_TRACE_POINTS
31#include <trace/events/fsi.h>
32
33#define FSI_SLAVE_CONF_NEXT_MASK	GENMASK(31, 31)
34#define FSI_SLAVE_CONF_SLOTS_MASK	GENMASK(23, 16)
35#define FSI_SLAVE_CONF_SLOTS_SHIFT	16
36#define FSI_SLAVE_CONF_VERSION_MASK	GENMASK(15, 12)
37#define FSI_SLAVE_CONF_VERSION_SHIFT	12
38#define FSI_SLAVE_CONF_TYPE_MASK	GENMASK(11, 4)
39#define FSI_SLAVE_CONF_TYPE_SHIFT	4
40#define FSI_SLAVE_CONF_CRC_SHIFT	4
41#define FSI_SLAVE_CONF_CRC_MASK		GENMASK(3, 0)
42#define FSI_SLAVE_CONF_DATA_BITS	28
43
44#define FSI_PEEK_BASE			0x410
45
46static const int engine_page_size = 0x400;
47
48#define FSI_SLAVE_BASE			0x800
49
50/*
51 * FSI slave engine control register offsets
52 */
53#define FSI_SMODE		0x0	/* R/W: Mode register */
54#define FSI_SISC		0x8	/* R/W: Interrupt condition */
55#define FSI_SSTAT		0x14	/* R  : Slave status */
56#define FSI_SLBUS		0x30	/* W  : LBUS Ownership */
57#define FSI_LLMODE		0x100	/* R/W: Link layer mode register */
58
59/*
60 * SMODE fields
61 */
62#define FSI_SMODE_WSC		0x80000000	/* Warm start done */
63#define FSI_SMODE_ECRC		0x20000000	/* Hw CRC check */
64#define FSI_SMODE_SID_SHIFT	24		/* ID shift */
65#define FSI_SMODE_SID_MASK	3		/* ID Mask */
66#define FSI_SMODE_ED_SHIFT	20		/* Echo delay shift */
67#define FSI_SMODE_ED_MASK	0xf		/* Echo delay mask */
68#define FSI_SMODE_SD_SHIFT	16		/* Send delay shift */
69#define FSI_SMODE_SD_MASK	0xf		/* Send delay mask */
70#define FSI_SMODE_LBCRR_SHIFT	8		/* Clk ratio shift */
71#define FSI_SMODE_LBCRR_MASK	0xf		/* Clk ratio mask */
72
73/*
74 * SLBUS fields
75 */
76#define FSI_SLBUS_FORCE		0x80000000	/* Force LBUS ownership */
77
78/*
79 * LLMODE fields
80 */
81#define FSI_LLMODE_ASYNC	0x1
82
83#define FSI_SLAVE_SIZE_23b		0x800000
84
85static DEFINE_IDA(master_ida);
86
87static const int slave_retries = 2;
88static int discard_errors;
89
90static dev_t fsi_base_dev;
91static DEFINE_IDA(fsi_minor_ida);
92#define FSI_CHAR_MAX_DEVICES	0x1000
93
94/* Legacy /dev numbering: 4 devices per chip, 16 chips */
95#define FSI_CHAR_LEGACY_TOP	64
96
97static int fsi_master_read(struct fsi_master *master, int link,
98		uint8_t slave_id, uint32_t addr, void *val, size_t size);
99static int fsi_master_write(struct fsi_master *master, int link,
100		uint8_t slave_id, uint32_t addr, const void *val, size_t size);
101static int fsi_master_break(struct fsi_master *master, int link);
102
103/*
104 * fsi_device_read() / fsi_device_write() / fsi_device_peek()
105 *
106 * FSI endpoint-device support
107 *
108 * Read / write / peek accessors for a client
109 *
110 * Parameters:
111 * dev:  Structure passed to FSI client device drivers on probe().
112 * addr: FSI address of given device.  Client should pass in its base address
113 *       plus desired offset to access its register space.
114 * val:  For read/peek this is the value read at the specified address. For
115 *       write this is value to write to the specified address.
116 *       The data in val must be FSI bus endian (big endian).
117 * size: Size in bytes of the operation.  Sizes supported are 1, 2 and 4 bytes.
118 *       Addresses must be aligned on size boundaries or an error will result.
119 */
120int fsi_device_read(struct fsi_device *dev, uint32_t addr, void *val,
121		size_t size)
122{
123	if (addr > dev->size || size > dev->size || addr > dev->size - size)
124		return -EINVAL;
125
126	return fsi_slave_read(dev->slave, dev->addr + addr, val, size);
127}
128EXPORT_SYMBOL_GPL(fsi_device_read);
129
130int fsi_device_write(struct fsi_device *dev, uint32_t addr, const void *val,
131		size_t size)
132{
133	if (addr > dev->size || size > dev->size || addr > dev->size - size)
134		return -EINVAL;
135
136	return fsi_slave_write(dev->slave, dev->addr + addr, val, size);
137}
138EXPORT_SYMBOL_GPL(fsi_device_write);
139
140int fsi_device_peek(struct fsi_device *dev, void *val)
141{
142	uint32_t addr = FSI_PEEK_BASE + ((dev->unit - 2) * sizeof(uint32_t));
143
144	return fsi_slave_read(dev->slave, addr, val, sizeof(uint32_t));
145}
146
147static void fsi_device_release(struct device *_device)
148{
149	struct fsi_device *device = to_fsi_dev(_device);
150
151	of_node_put(device->dev.of_node);
152	kfree(device);
153}
154
155static struct fsi_device *fsi_create_device(struct fsi_slave *slave)
156{
157	struct fsi_device *dev;
158
159	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
160	if (!dev)
161		return NULL;
162
163	dev->dev.parent = &slave->dev;
164	dev->dev.bus = &fsi_bus_type;
165	dev->dev.release = fsi_device_release;
166
167	return dev;
168}
169
170/* FSI slave support */
171static int fsi_slave_calc_addr(struct fsi_slave *slave, uint32_t *addrp,
172		uint8_t *idp)
173{
174	uint32_t addr = *addrp;
175	uint8_t id = *idp;
176
177	if (addr > slave->size)
178		return -EINVAL;
179
180	/* For 23 bit addressing, we encode the extra two bits in the slave
181	 * id (and the slave's actual ID needs to be 0).
182	 */
183	if (addr > 0x1fffff) {
184		if (slave->id != 0)
185			return -EINVAL;
186		id = (addr >> 21) & 0x3;
187		addr &= 0x1fffff;
188	}
189
190	*addrp = addr;
191	*idp = id;
192	return 0;
193}
194
195static int fsi_slave_report_and_clear_errors(struct fsi_slave *slave)
196{
197	struct fsi_master *master = slave->master;
198	__be32 irq, stat;
199	int rc, link;
200	uint8_t id;
201
202	link = slave->link;
203	id = slave->id;
204
205	rc = fsi_master_read(master, link, id, FSI_SLAVE_BASE + FSI_SISC,
206			&irq, sizeof(irq));
207	if (rc)
208		return rc;
209
210	rc =  fsi_master_read(master, link, id, FSI_SLAVE_BASE + FSI_SSTAT,
211			&stat, sizeof(stat));
212	if (rc)
213		return rc;
214
215	dev_dbg(&slave->dev, "status: 0x%08x, sisc: 0x%08x\n",
216			be32_to_cpu(stat), be32_to_cpu(irq));
217
218	/* clear interrupts */
219	return fsi_master_write(master, link, id, FSI_SLAVE_BASE + FSI_SISC,
220			&irq, sizeof(irq));
221}
222
223/* Encode slave local bus echo delay */
224static inline uint32_t fsi_smode_echodly(int x)
225{
226	return (x & FSI_SMODE_ED_MASK) << FSI_SMODE_ED_SHIFT;
227}
228
229/* Encode slave local bus send delay */
230static inline uint32_t fsi_smode_senddly(int x)
231{
232	return (x & FSI_SMODE_SD_MASK) << FSI_SMODE_SD_SHIFT;
233}
234
235/* Encode slave local bus clock rate ratio */
236static inline uint32_t fsi_smode_lbcrr(int x)
237{
238	return (x & FSI_SMODE_LBCRR_MASK) << FSI_SMODE_LBCRR_SHIFT;
239}
240
241/* Encode slave ID */
242static inline uint32_t fsi_smode_sid(int x)
243{
244	return (x & FSI_SMODE_SID_MASK) << FSI_SMODE_SID_SHIFT;
245}
246
247static uint32_t fsi_slave_smode(int id, u8 t_senddly, u8 t_echodly)
248{
249	return FSI_SMODE_WSC | FSI_SMODE_ECRC
250		| fsi_smode_sid(id)
251		| fsi_smode_echodly(t_echodly - 1) | fsi_smode_senddly(t_senddly - 1)
252		| fsi_smode_lbcrr(0x8);
253}
254
255static int fsi_slave_set_smode(struct fsi_slave *slave)
256{
257	uint32_t smode;
258	__be32 data;
259
260	/* set our smode register with the slave ID field to 0; this enables
261	 * extended slave addressing
262	 */
263	smode = fsi_slave_smode(slave->id, slave->t_send_delay, slave->t_echo_delay);
264	data = cpu_to_be32(smode);
265
266	return fsi_master_write(slave->master, slave->link, slave->id,
267				FSI_SLAVE_BASE + FSI_SMODE,
268				&data, sizeof(data));
269}
270
271static int fsi_slave_handle_error(struct fsi_slave *slave, bool write,
272				  uint32_t addr, size_t size)
273{
274	struct fsi_master *master = slave->master;
275	int rc, link;
276	uint32_t reg;
277	uint8_t id, send_delay, echo_delay;
278
279	if (discard_errors)
280		return -1;
281
282	link = slave->link;
283	id = slave->id;
284
285	dev_dbg(&slave->dev, "handling error on %s to 0x%08x[%zd]",
286			write ? "write" : "read", addr, size);
287
288	/* try a simple clear of error conditions, which may fail if we've lost
289	 * communication with the slave
290	 */
291	rc = fsi_slave_report_and_clear_errors(slave);
292	if (!rc)
293		return 0;
294
295	/* send a TERM and retry */
296	if (master->term) {
297		rc = master->term(master, link, id);
298		if (!rc) {
299			rc = fsi_master_read(master, link, id, 0,
300					&reg, sizeof(reg));
301			if (!rc)
302				rc = fsi_slave_report_and_clear_errors(slave);
303			if (!rc)
304				return 0;
305		}
306	}
307
308	send_delay = slave->t_send_delay;
309	echo_delay = slave->t_echo_delay;
310
311	/* getting serious, reset the slave via BREAK */
312	rc = fsi_master_break(master, link);
313	if (rc)
314		return rc;
315
316	slave->t_send_delay = send_delay;
317	slave->t_echo_delay = echo_delay;
318
319	rc = fsi_slave_set_smode(slave);
320	if (rc)
321		return rc;
322
323	if (master->link_config)
324		master->link_config(master, link,
325				    slave->t_send_delay,
326				    slave->t_echo_delay);
327
328	return fsi_slave_report_and_clear_errors(slave);
329}
330
331int fsi_slave_read(struct fsi_slave *slave, uint32_t addr,
332			void *val, size_t size)
333{
334	uint8_t id = slave->id;
335	int rc, err_rc, i;
336
337	rc = fsi_slave_calc_addr(slave, &addr, &id);
338	if (rc)
339		return rc;
340
341	for (i = 0; i < slave_retries; i++) {
342		rc = fsi_master_read(slave->master, slave->link,
343				id, addr, val, size);
344		if (!rc)
345			break;
346
347		err_rc = fsi_slave_handle_error(slave, false, addr, size);
348		if (err_rc)
349			break;
350	}
351
352	return rc;
353}
354EXPORT_SYMBOL_GPL(fsi_slave_read);
355
356int fsi_slave_write(struct fsi_slave *slave, uint32_t addr,
357			const void *val, size_t size)
358{
359	uint8_t id = slave->id;
360	int rc, err_rc, i;
361
362	rc = fsi_slave_calc_addr(slave, &addr, &id);
363	if (rc)
364		return rc;
365
366	for (i = 0; i < slave_retries; i++) {
367		rc = fsi_master_write(slave->master, slave->link,
368				id, addr, val, size);
369		if (!rc)
370			break;
371
372		err_rc = fsi_slave_handle_error(slave, true, addr, size);
373		if (err_rc)
374			break;
375	}
376
377	return rc;
378}
379EXPORT_SYMBOL_GPL(fsi_slave_write);
380
381int fsi_slave_claim_range(struct fsi_slave *slave,
382			  uint32_t addr, uint32_t size)
383{
384	if (addr + size < addr)
385		return -EINVAL;
386
387	if (addr + size > slave->size)
388		return -EINVAL;
389
390	/* todo: check for overlapping claims */
391	return 0;
392}
393EXPORT_SYMBOL_GPL(fsi_slave_claim_range);
394
395void fsi_slave_release_range(struct fsi_slave *slave,
396			     uint32_t addr, uint32_t size)
397{
398}
399EXPORT_SYMBOL_GPL(fsi_slave_release_range);
400
401static bool fsi_device_node_matches(struct device *dev, struct device_node *np,
402		uint32_t addr, uint32_t size)
403{
404	u64 paddr, psize;
405
406	if (of_property_read_reg(np, 0, &paddr, &psize))
407		return false;
408
409	if (paddr != addr)
410		return false;
411
412	if (psize != size) {
413		dev_warn(dev,
414			"node %pOF matches probed address, but not size (got 0x%llx, expected 0x%x)",
415			np, psize, size);
416	}
417
418	return true;
419}
420
421/* Find a matching node for the slave engine at @address, using @size bytes
422 * of space. Returns NULL if not found, or a matching node with refcount
423 * already incremented.
424 */
425static struct device_node *fsi_device_find_of_node(struct fsi_device *dev)
426{
427	struct device_node *parent, *np;
428
429	parent = dev_of_node(&dev->slave->dev);
430	if (!parent)
431		return NULL;
432
433	for_each_child_of_node(parent, np) {
434		if (fsi_device_node_matches(&dev->dev, np,
435					dev->addr, dev->size))
436			return np;
437	}
438
439	return NULL;
440}
441
442static int fsi_slave_scan(struct fsi_slave *slave)
443{
444	uint32_t engine_addr;
445	int rc, i;
446
447	/*
448	 * scan engines
449	 *
450	 * We keep the peek mode and slave engines for the core; so start
451	 * at the third slot in the configuration table. We also need to
452	 * skip the chip ID entry at the start of the address space.
453	 */
454	engine_addr = engine_page_size * 3;
455	for (i = 2; i < engine_page_size / sizeof(uint32_t); i++) {
456		uint8_t slots, version, type, crc;
457		struct fsi_device *dev;
458		uint32_t conf;
459		__be32 data;
460
461		rc = fsi_slave_read(slave, (i + 1) * sizeof(data),
462				&data, sizeof(data));
463		if (rc) {
464			dev_warn(&slave->dev,
465				"error reading slave registers\n");
466			return -1;
467		}
468		conf = be32_to_cpu(data);
469
470		crc = crc4(0, conf, 32);
471		if (crc) {
472			dev_warn(&slave->dev,
473				"crc error in slave register at 0x%04x\n",
474				i);
475			return -1;
476		}
477
478		slots = (conf & FSI_SLAVE_CONF_SLOTS_MASK)
479			>> FSI_SLAVE_CONF_SLOTS_SHIFT;
480		version = (conf & FSI_SLAVE_CONF_VERSION_MASK)
481			>> FSI_SLAVE_CONF_VERSION_SHIFT;
482		type = (conf & FSI_SLAVE_CONF_TYPE_MASK)
483			>> FSI_SLAVE_CONF_TYPE_SHIFT;
484
485		/*
486		 * Unused address areas are marked by a zero type value; this
487		 * skips the defined address areas
488		 */
489		if (type != 0 && slots != 0) {
490
491			/* create device */
492			dev = fsi_create_device(slave);
493			if (!dev)
494				return -ENOMEM;
495
496			dev->slave = slave;
497			dev->engine_type = type;
498			dev->version = version;
499			dev->unit = i;
500			dev->addr = engine_addr;
501			dev->size = slots * engine_page_size;
502
503			trace_fsi_dev_init(dev);
504
505			dev_dbg(&slave->dev,
506			"engine[%i]: type %x, version %x, addr %x size %x\n",
507					dev->unit, dev->engine_type, version,
508					dev->addr, dev->size);
509
510			dev_set_name(&dev->dev, "%02x:%02x:%02x:%02x",
511					slave->master->idx, slave->link,
512					slave->id, i - 2);
513			dev->dev.of_node = fsi_device_find_of_node(dev);
514
515			rc = device_register(&dev->dev);
516			if (rc) {
517				dev_warn(&slave->dev, "add failed: %d\n", rc);
518				put_device(&dev->dev);
519			}
520		}
521
522		engine_addr += slots * engine_page_size;
523
524		if (!(conf & FSI_SLAVE_CONF_NEXT_MASK))
525			break;
526	}
527
528	return 0;
529}
530
531static unsigned long aligned_access_size(size_t offset, size_t count)
532{
533	unsigned long offset_unit, count_unit;
534
535	/* Criteria:
536	 *
537	 * 1. Access size must be less than or equal to the maximum access
538	 *    width or the highest power-of-two factor of offset
539	 * 2. Access size must be less than or equal to the amount specified by
540	 *    count
541	 *
542	 * The access width is optimal if we can calculate 1 to be strictly
543	 * equal while still satisfying 2.
544	 */
545
546	/* Find 1 by the bottom bit of offset (with a 4 byte access cap) */
547	offset_unit = BIT(__builtin_ctzl(offset | 4));
548
549	/* Find 2 by the top bit of count */
550	count_unit = BIT(8 * sizeof(unsigned long) - 1 - __builtin_clzl(count));
551
552	/* Constrain the maximum access width to the minimum of both criteria */
553	return BIT(__builtin_ctzl(offset_unit | count_unit));
554}
555
556static ssize_t fsi_slave_sysfs_raw_read(struct file *file,
557		struct kobject *kobj, struct bin_attribute *attr, char *buf,
558		loff_t off, size_t count)
559{
560	struct fsi_slave *slave = to_fsi_slave(kobj_to_dev(kobj));
561	size_t total_len, read_len;
562	int rc;
563
564	if (off < 0)
565		return -EINVAL;
566
567	if (off > 0xffffffff || count > 0xffffffff || off + count > 0xffffffff)
568		return -EINVAL;
569
570	for (total_len = 0; total_len < count; total_len += read_len) {
571		read_len = aligned_access_size(off, count - total_len);
572
573		rc = fsi_slave_read(slave, off, buf + total_len, read_len);
574		if (rc)
575			return rc;
576
577		off += read_len;
578	}
579
580	return count;
581}
582
583static ssize_t fsi_slave_sysfs_raw_write(struct file *file,
584		struct kobject *kobj, struct bin_attribute *attr,
585		char *buf, loff_t off, size_t count)
586{
587	struct fsi_slave *slave = to_fsi_slave(kobj_to_dev(kobj));
588	size_t total_len, write_len;
589	int rc;
590
591	if (off < 0)
592		return -EINVAL;
593
594	if (off > 0xffffffff || count > 0xffffffff || off + count > 0xffffffff)
595		return -EINVAL;
596
597	for (total_len = 0; total_len < count; total_len += write_len) {
598		write_len = aligned_access_size(off, count - total_len);
599
600		rc = fsi_slave_write(slave, off, buf + total_len, write_len);
601		if (rc)
602			return rc;
603
604		off += write_len;
605	}
606
607	return count;
608}
609
610static const struct bin_attribute fsi_slave_raw_attr = {
611	.attr = {
612		.name = "raw",
613		.mode = 0600,
614	},
615	.size = 0,
616	.read = fsi_slave_sysfs_raw_read,
617	.write = fsi_slave_sysfs_raw_write,
618};
619
620static void fsi_slave_release(struct device *dev)
621{
622	struct fsi_slave *slave = to_fsi_slave(dev);
623
624	fsi_free_minor(slave->dev.devt);
625	of_node_put(dev->of_node);
626	kfree(slave);
627}
628
629static bool fsi_slave_node_matches(struct device_node *np,
630		int link, uint8_t id)
631{
632	u64 addr;
633
634	if (of_property_read_reg(np, 0, &addr, NULL))
635		return false;
636
637	return addr == (((u64)link << 32) | id);
638}
639
640/* Find a matching node for the slave at (link, id). Returns NULL if none
641 * found, or a matching node with refcount already incremented.
642 */
643static struct device_node *fsi_slave_find_of_node(struct fsi_master *master,
644		int link, uint8_t id)
645{
646	struct device_node *parent, *np;
647
648	parent = dev_of_node(&master->dev);
649	if (!parent)
650		return NULL;
651
652	for_each_child_of_node(parent, np) {
653		if (fsi_slave_node_matches(np, link, id))
654			return np;
655	}
656
657	return NULL;
658}
659
660static ssize_t cfam_read(struct file *filep, char __user *buf, size_t count,
661			 loff_t *offset)
662{
663	struct fsi_slave *slave = filep->private_data;
664	size_t total_len, read_len;
665	loff_t off = *offset;
666	ssize_t rc;
667
668	if (off < 0)
669		return -EINVAL;
670
671	if (off > 0xffffffff || count > 0xffffffff || off + count > 0xffffffff)
672		return -EINVAL;
673
674	for (total_len = 0; total_len < count; total_len += read_len) {
675		__be32 data;
676
677		read_len = min_t(size_t, count, 4);
678		read_len -= off & 0x3;
679
680		rc = fsi_slave_read(slave, off, &data, read_len);
681		if (rc)
682			goto fail;
683		rc = copy_to_user(buf + total_len, &data, read_len);
684		if (rc) {
685			rc = -EFAULT;
686			goto fail;
687		}
688		off += read_len;
689	}
690	rc = count;
691 fail:
692	*offset = off;
693	return rc;
694}
695
696static ssize_t cfam_write(struct file *filep, const char __user *buf,
697			  size_t count, loff_t *offset)
698{
699	struct fsi_slave *slave = filep->private_data;
700	size_t total_len, write_len;
701	loff_t off = *offset;
702	ssize_t rc;
703
704
705	if (off < 0)
706		return -EINVAL;
707
708	if (off > 0xffffffff || count > 0xffffffff || off + count > 0xffffffff)
709		return -EINVAL;
710
711	for (total_len = 0; total_len < count; total_len += write_len) {
712		__be32 data;
713
714		write_len = min_t(size_t, count, 4);
715		write_len -= off & 0x3;
716
717		rc = copy_from_user(&data, buf + total_len, write_len);
718		if (rc) {
719			rc = -EFAULT;
720			goto fail;
721		}
722		rc = fsi_slave_write(slave, off, &data, write_len);
723		if (rc)
724			goto fail;
725		off += write_len;
726	}
727	rc = count;
728 fail:
729	*offset = off;
730	return rc;
731}
732
733static loff_t cfam_llseek(struct file *file, loff_t offset, int whence)
734{
735	switch (whence) {
736	case SEEK_CUR:
737		break;
738	case SEEK_SET:
739		file->f_pos = offset;
740		break;
741	default:
742		return -EINVAL;
743	}
744
745	return offset;
746}
747
748static int cfam_open(struct inode *inode, struct file *file)
749{
750	struct fsi_slave *slave = container_of(inode->i_cdev, struct fsi_slave, cdev);
751
752	file->private_data = slave;
753
754	return 0;
755}
756
757static const struct file_operations cfam_fops = {
758	.owner		= THIS_MODULE,
759	.open		= cfam_open,
760	.llseek		= cfam_llseek,
761	.read		= cfam_read,
762	.write		= cfam_write,
763};
764
765static ssize_t send_term_store(struct device *dev,
766			       struct device_attribute *attr,
767			       const char *buf, size_t count)
768{
769	struct fsi_slave *slave = to_fsi_slave(dev);
770	struct fsi_master *master = slave->master;
771
772	if (!master->term)
773		return -ENODEV;
774
775	master->term(master, slave->link, slave->id);
776	return count;
777}
778
779static DEVICE_ATTR_WO(send_term);
780
781static ssize_t slave_send_echo_show(struct device *dev,
782				    struct device_attribute *attr,
783				    char *buf)
784{
785	struct fsi_slave *slave = to_fsi_slave(dev);
786
787	return sprintf(buf, "%u\n", slave->t_send_delay);
788}
789
790static ssize_t slave_send_echo_store(struct device *dev,
791		struct device_attribute *attr, const char *buf, size_t count)
792{
793	struct fsi_slave *slave = to_fsi_slave(dev);
794	struct fsi_master *master = slave->master;
795	unsigned long val;
796	int rc;
797
798	if (kstrtoul(buf, 0, &val) < 0)
799		return -EINVAL;
800
801	if (val < 1 || val > 16)
802		return -EINVAL;
803
804	if (!master->link_config)
805		return -ENXIO;
806
807	/* Current HW mandates that send and echo delay are identical */
808	slave->t_send_delay = val;
809	slave->t_echo_delay = val;
810
811	rc = fsi_slave_set_smode(slave);
812	if (rc < 0)
813		return rc;
814	if (master->link_config)
815		master->link_config(master, slave->link,
816				    slave->t_send_delay,
817				    slave->t_echo_delay);
818
819	return count;
820}
821
822static DEVICE_ATTR(send_echo_delays, 0600,
823		   slave_send_echo_show, slave_send_echo_store);
824
825static ssize_t chip_id_show(struct device *dev,
826			    struct device_attribute *attr,
827			    char *buf)
828{
829	struct fsi_slave *slave = to_fsi_slave(dev);
830
831	return sprintf(buf, "%d\n", slave->chip_id);
832}
833
834static DEVICE_ATTR_RO(chip_id);
835
836static ssize_t cfam_id_show(struct device *dev,
837			    struct device_attribute *attr,
838			    char *buf)
839{
840	struct fsi_slave *slave = to_fsi_slave(dev);
841
842	return sprintf(buf, "0x%x\n", slave->cfam_id);
843}
844
845static DEVICE_ATTR_RO(cfam_id);
846
847static struct attribute *cfam_attr[] = {
848	&dev_attr_send_echo_delays.attr,
849	&dev_attr_chip_id.attr,
850	&dev_attr_cfam_id.attr,
851	&dev_attr_send_term.attr,
852	NULL,
853};
854
855static const struct attribute_group cfam_attr_group = {
856	.attrs = cfam_attr,
857};
858
859static const struct attribute_group *cfam_attr_groups[] = {
860	&cfam_attr_group,
861	NULL,
862};
863
864static char *cfam_devnode(const struct device *dev, umode_t *mode,
865			  kuid_t *uid, kgid_t *gid)
866{
867	const struct fsi_slave *slave = to_fsi_slave(dev);
868
869#ifdef CONFIG_FSI_NEW_DEV_NODE
870	return kasprintf(GFP_KERNEL, "fsi/cfam%d", slave->cdev_idx);
871#else
872	return kasprintf(GFP_KERNEL, "cfam%d", slave->cdev_idx);
873#endif
874}
875
876static const struct device_type cfam_type = {
877	.name = "cfam",
878	.devnode = cfam_devnode,
879	.groups = cfam_attr_groups
880};
881
882static char *fsi_cdev_devnode(const struct device *dev, umode_t *mode,
883			      kuid_t *uid, kgid_t *gid)
884{
885#ifdef CONFIG_FSI_NEW_DEV_NODE
886	return kasprintf(GFP_KERNEL, "fsi/%s", dev_name(dev));
887#else
888	return kasprintf(GFP_KERNEL, "%s", dev_name(dev));
889#endif
890}
891
892const struct device_type fsi_cdev_type = {
893	.name = "fsi-cdev",
894	.devnode = fsi_cdev_devnode,
895};
896EXPORT_SYMBOL_GPL(fsi_cdev_type);
897
898/* Backward compatible /dev/ numbering in "old style" mode */
899static int fsi_adjust_index(int index)
900{
901#ifdef CONFIG_FSI_NEW_DEV_NODE
902	return index;
903#else
904	return index + 1;
905#endif
906}
907
908static int __fsi_get_new_minor(struct fsi_slave *slave, enum fsi_dev_type type,
909			       dev_t *out_dev, int *out_index)
910{
911	int cid = slave->chip_id;
912	int id;
913
914	/* Check if we qualify for legacy numbering */
915	if (cid >= 0 && cid < 16 && type < 4) {
916		/*
917		 * Try reserving the legacy number, which has 0 - 0x3f reserved
918		 * in the ida range. cid goes up to 0xf and type contains two
919		 * bits, so construct the id with the below two bit shift.
920		 */
921		id = (cid << 2) | type;
922		id = ida_alloc_range(&fsi_minor_ida, id, id, GFP_KERNEL);
923		if (id >= 0) {
924			*out_index = fsi_adjust_index(cid);
925			*out_dev = fsi_base_dev + id;
926			return 0;
927		}
928		/* Other failure */
929		if (id != -ENOSPC)
930			return id;
931		/* Fallback to non-legacy allocation */
932	}
933	id = ida_alloc_range(&fsi_minor_ida, FSI_CHAR_LEGACY_TOP,
934			     FSI_CHAR_MAX_DEVICES - 1, GFP_KERNEL);
935	if (id < 0)
936		return id;
937	*out_index = fsi_adjust_index(id);
938	*out_dev = fsi_base_dev + id;
939	return 0;
940}
941
942static const char *const fsi_dev_type_names[] = {
943	"cfam",
944	"sbefifo",
945	"scom",
946	"occ",
947};
948
949int fsi_get_new_minor(struct fsi_device *fdev, enum fsi_dev_type type,
950		      dev_t *out_dev, int *out_index)
951{
952	if (fdev->dev.of_node) {
953		int aid = of_alias_get_id(fdev->dev.of_node, fsi_dev_type_names[type]);
954
955		if (aid >= 0) {
956			/* Use the same scheme as the legacy numbers. */
957			int id = (aid << 2) | type;
958
959			id = ida_alloc_range(&fsi_minor_ida, id, id, GFP_KERNEL);
960			if (id >= 0) {
961				*out_index = aid;
962				*out_dev = fsi_base_dev + id;
963				return 0;
964			}
965
966			if (id != -ENOSPC)
967				return id;
968		}
969	}
970
971	return __fsi_get_new_minor(fdev->slave, type, out_dev, out_index);
972}
973EXPORT_SYMBOL_GPL(fsi_get_new_minor);
974
975void fsi_free_minor(dev_t dev)
976{
977	ida_free(&fsi_minor_ida, MINOR(dev));
978}
979EXPORT_SYMBOL_GPL(fsi_free_minor);
980
981static int fsi_slave_init(struct fsi_master *master, int link, uint8_t id)
982{
983	uint32_t cfam_id;
984	struct fsi_slave *slave;
985	uint8_t crc;
986	__be32 data, llmode, slbus;
987	int rc;
988
989	/* Currently, we only support single slaves on a link, and use the
990	 * full 23-bit address range
991	 */
992	if (id != 0)
993		return -EINVAL;
994
995	rc = fsi_master_read(master, link, id, 0, &data, sizeof(data));
996	if (rc) {
997		dev_dbg(&master->dev, "can't read slave %02x:%02x %d\n",
998				link, id, rc);
999		return -ENODEV;
1000	}
1001	cfam_id = be32_to_cpu(data);
1002
1003	crc = crc4(0, cfam_id, 32);
1004	if (crc) {
1005		trace_fsi_slave_invalid_cfam(master, link, cfam_id);
1006		dev_warn(&master->dev, "slave %02x:%02x invalid cfam id CRC!\n",
1007				link, id);
1008		return -EIO;
1009	}
1010
1011	dev_dbg(&master->dev, "fsi: found chip %08x at %02x:%02x:%02x\n",
1012			cfam_id, master->idx, link, id);
1013
1014	/* If we're behind a master that doesn't provide a self-running bus
1015	 * clock, put the slave into async mode
1016	 */
1017	if (master->flags & FSI_MASTER_FLAG_SWCLOCK) {
1018		llmode = cpu_to_be32(FSI_LLMODE_ASYNC);
1019		rc = fsi_master_write(master, link, id,
1020				FSI_SLAVE_BASE + FSI_LLMODE,
1021				&llmode, sizeof(llmode));
1022		if (rc)
1023			dev_warn(&master->dev,
1024				"can't set llmode on slave:%02x:%02x %d\n",
1025				link, id, rc);
1026	}
1027
1028	/* We can communicate with a slave; create the slave device and
1029	 * register.
1030	 */
1031	slave = kzalloc(sizeof(*slave), GFP_KERNEL);
1032	if (!slave)
1033		return -ENOMEM;
1034
1035	dev_set_name(&slave->dev, "slave@%02x:%02x", link, id);
1036	slave->dev.type = &cfam_type;
1037	slave->dev.parent = &master->dev;
1038	slave->dev.of_node = fsi_slave_find_of_node(master, link, id);
1039	slave->dev.release = fsi_slave_release;
1040	device_initialize(&slave->dev);
1041	slave->cfam_id = cfam_id;
1042	slave->master = master;
1043	slave->link = link;
1044	slave->id = id;
1045	slave->size = FSI_SLAVE_SIZE_23b;
1046	slave->t_send_delay = 16;
1047	slave->t_echo_delay = 16;
1048
1049	/* Get chip ID if any */
1050	slave->chip_id = -1;
1051	if (slave->dev.of_node) {
1052		uint32_t prop;
1053		if (!of_property_read_u32(slave->dev.of_node, "chip-id", &prop))
1054			slave->chip_id = prop;
1055
1056	}
1057
1058	slbus = cpu_to_be32(FSI_SLBUS_FORCE);
1059	rc = fsi_master_write(master, link, id, FSI_SLAVE_BASE + FSI_SLBUS,
1060			      &slbus, sizeof(slbus));
1061	if (rc)
1062		dev_warn(&master->dev,
1063			 "can't set slbus on slave:%02x:%02x %d\n", link, id,
1064			 rc);
1065
1066	rc = fsi_slave_set_smode(slave);
1067	if (rc) {
1068		dev_warn(&master->dev,
1069				"can't set smode on slave:%02x:%02x %d\n",
1070				link, id, rc);
1071		goto err_free;
1072	}
1073
1074	/* Allocate a minor in the FSI space */
1075	rc = __fsi_get_new_minor(slave, fsi_dev_cfam, &slave->dev.devt,
1076				 &slave->cdev_idx);
1077	if (rc)
1078		goto err_free;
1079
1080	trace_fsi_slave_init(slave);
1081
1082	/* Create chardev for userspace access */
1083	cdev_init(&slave->cdev, &cfam_fops);
1084	rc = cdev_device_add(&slave->cdev, &slave->dev);
1085	if (rc) {
1086		dev_err(&slave->dev, "Error %d creating slave device\n", rc);
1087		goto err_free_ida;
1088	}
1089
1090	/* Now that we have the cdev registered with the core, any fatal
1091	 * failures beyond this point will need to clean up through
1092	 * cdev_device_del(). Fortunately though, nothing past here is fatal.
1093	 */
1094
1095	if (master->link_config)
1096		master->link_config(master, link,
1097				    slave->t_send_delay,
1098				    slave->t_echo_delay);
1099
1100	/* Legacy raw file -> to be removed */
1101	rc = device_create_bin_file(&slave->dev, &fsi_slave_raw_attr);
1102	if (rc)
1103		dev_warn(&slave->dev, "failed to create raw attr: %d\n", rc);
1104
1105
1106	rc = fsi_slave_scan(slave);
1107	if (rc)
1108		dev_dbg(&master->dev, "failed during slave scan with: %d\n",
1109				rc);
1110
1111	return 0;
1112
1113err_free_ida:
1114	fsi_free_minor(slave->dev.devt);
1115err_free:
1116	of_node_put(slave->dev.of_node);
1117	kfree(slave);
1118	return rc;
1119}
1120
1121/* FSI master support */
1122static int fsi_check_access(uint32_t addr, size_t size)
1123{
1124	if (size == 4) {
1125		if (addr & 0x3)
1126			return -EINVAL;
1127	} else if (size == 2) {
1128		if (addr & 0x1)
1129			return -EINVAL;
1130	} else if (size != 1)
1131		return -EINVAL;
1132
1133	return 0;
1134}
1135
1136static int fsi_master_read(struct fsi_master *master, int link,
1137		uint8_t slave_id, uint32_t addr, void *val, size_t size)
1138{
1139	int rc;
1140
1141	trace_fsi_master_read(master, link, slave_id, addr, size);
1142
1143	rc = fsi_check_access(addr, size);
1144	if (!rc)
1145		rc = master->read(master, link, slave_id, addr, val, size);
1146
1147	trace_fsi_master_rw_result(master, link, slave_id, addr, size,
1148			false, val, rc);
1149
1150	return rc;
1151}
1152
1153static int fsi_master_write(struct fsi_master *master, int link,
1154		uint8_t slave_id, uint32_t addr, const void *val, size_t size)
1155{
1156	int rc;
1157
1158	trace_fsi_master_write(master, link, slave_id, addr, size, val);
1159
1160	rc = fsi_check_access(addr, size);
1161	if (!rc)
1162		rc = master->write(master, link, slave_id, addr, val, size);
1163
1164	trace_fsi_master_rw_result(master, link, slave_id, addr, size,
1165			true, val, rc);
1166
1167	return rc;
1168}
1169
1170static int fsi_master_link_disable(struct fsi_master *master, int link)
1171{
1172	if (master->link_enable)
1173		return master->link_enable(master, link, false);
1174
1175	return 0;
1176}
1177
1178static int fsi_master_link_enable(struct fsi_master *master, int link)
1179{
1180	if (master->link_enable)
1181		return master->link_enable(master, link, true);
1182
1183	return 0;
1184}
1185
1186/*
1187 * Issue a break command on this link
1188 */
1189static int fsi_master_break(struct fsi_master *master, int link)
1190{
1191	int rc = 0;
1192
1193	trace_fsi_master_break(master, link);
1194
1195	if (master->send_break)
1196		rc = master->send_break(master, link);
1197	if (master->link_config)
1198		master->link_config(master, link, 16, 16);
1199
1200	return rc;
1201}
1202
1203static int fsi_master_scan(struct fsi_master *master)
1204{
1205	int link, rc;
1206
1207	trace_fsi_master_scan(master, true);
1208	for (link = 0; link < master->n_links; link++) {
1209		rc = fsi_master_link_enable(master, link);
1210		if (rc) {
1211			dev_dbg(&master->dev,
1212				"enable link %d failed: %d\n", link, rc);
1213			continue;
1214		}
1215		rc = fsi_master_break(master, link);
1216		if (rc) {
1217			fsi_master_link_disable(master, link);
1218			dev_dbg(&master->dev,
1219				"break to link %d failed: %d\n", link, rc);
1220			continue;
1221		}
1222
1223		rc = fsi_slave_init(master, link, 0);
1224		if (rc)
1225			fsi_master_link_disable(master, link);
1226	}
1227
1228	return 0;
1229}
1230
1231static int fsi_slave_remove_device(struct device *dev, void *arg)
1232{
1233	device_unregister(dev);
1234	return 0;
1235}
1236
1237static int fsi_master_remove_slave(struct device *dev, void *arg)
1238{
1239	struct fsi_slave *slave = to_fsi_slave(dev);
1240
1241	device_for_each_child(dev, NULL, fsi_slave_remove_device);
1242	cdev_device_del(&slave->cdev, &slave->dev);
1243	put_device(dev);
1244	return 0;
1245}
1246
1247static void fsi_master_unscan(struct fsi_master *master)
1248{
1249	trace_fsi_master_scan(master, false);
1250	device_for_each_child(&master->dev, NULL, fsi_master_remove_slave);
1251}
1252
1253int fsi_master_rescan(struct fsi_master *master)
1254{
1255	int rc;
1256
1257	mutex_lock(&master->scan_lock);
1258	fsi_master_unscan(master);
1259	rc = fsi_master_scan(master);
1260	mutex_unlock(&master->scan_lock);
1261
1262	return rc;
1263}
1264EXPORT_SYMBOL_GPL(fsi_master_rescan);
1265
1266static ssize_t master_rescan_store(struct device *dev,
1267		struct device_attribute *attr, const char *buf, size_t count)
1268{
1269	struct fsi_master *master = to_fsi_master(dev);
1270	int rc;
1271
1272	rc = fsi_master_rescan(master);
1273	if (rc < 0)
1274		return rc;
1275
1276	return count;
1277}
1278
1279static DEVICE_ATTR(rescan, 0200, NULL, master_rescan_store);
1280
1281static ssize_t master_break_store(struct device *dev,
1282		struct device_attribute *attr, const char *buf, size_t count)
1283{
1284	struct fsi_master *master = to_fsi_master(dev);
1285
1286	fsi_master_break(master, 0);
1287
1288	return count;
1289}
1290
1291static DEVICE_ATTR(break, 0200, NULL, master_break_store);
1292
1293static struct attribute *master_attrs[] = {
1294	&dev_attr_break.attr,
1295	&dev_attr_rescan.attr,
1296	NULL
1297};
1298
1299ATTRIBUTE_GROUPS(master);
1300
1301static struct class fsi_master_class = {
1302	.name = "fsi-master",
1303	.dev_groups = master_groups,
1304};
1305
1306int fsi_master_register(struct fsi_master *master)
1307{
1308	int rc;
1309	struct device_node *np;
1310
1311	mutex_init(&master->scan_lock);
1312
1313	/* Alloc the requested index if it's non-zero */
1314	if (master->idx) {
1315		master->idx = ida_alloc_range(&master_ida, master->idx,
1316					      master->idx, GFP_KERNEL);
1317	} else {
1318		master->idx = ida_alloc(&master_ida, GFP_KERNEL);
1319	}
1320
1321	if (master->idx < 0)
1322		return master->idx;
1323
1324	if (!dev_name(&master->dev))
1325		dev_set_name(&master->dev, "fsi%d", master->idx);
1326
1327	master->dev.class = &fsi_master_class;
1328
1329	mutex_lock(&master->scan_lock);
1330	rc = device_register(&master->dev);
1331	if (rc) {
1332		ida_free(&master_ida, master->idx);
1333		goto out;
1334	}
1335
1336	np = dev_of_node(&master->dev);
1337	if (!of_property_read_bool(np, "no-scan-on-init")) {
1338		fsi_master_scan(master);
1339	}
1340out:
1341	mutex_unlock(&master->scan_lock);
1342	return rc;
1343}
1344EXPORT_SYMBOL_GPL(fsi_master_register);
1345
1346void fsi_master_unregister(struct fsi_master *master)
1347{
1348	int idx = master->idx;
1349
1350	trace_fsi_master_unregister(master);
1351
1352	mutex_lock(&master->scan_lock);
1353	fsi_master_unscan(master);
1354	master->n_links = 0;
1355	mutex_unlock(&master->scan_lock);
1356
1357	device_unregister(&master->dev);
1358	ida_free(&master_ida, idx);
1359}
1360EXPORT_SYMBOL_GPL(fsi_master_unregister);
1361
1362/* FSI core & Linux bus type definitions */
1363
1364static int fsi_bus_match(struct device *dev, struct device_driver *drv)
1365{
1366	struct fsi_device *fsi_dev = to_fsi_dev(dev);
1367	struct fsi_driver *fsi_drv = to_fsi_drv(drv);
1368	const struct fsi_device_id *id;
1369
1370	if (!fsi_drv->id_table)
1371		return 0;
1372
1373	for (id = fsi_drv->id_table; id->engine_type; id++) {
1374		if (id->engine_type != fsi_dev->engine_type)
1375			continue;
1376		if (id->version == FSI_VERSION_ANY ||
1377		    id->version == fsi_dev->version) {
1378			if (drv->of_match_table) {
1379				if (of_driver_match_device(dev, drv))
1380					return 1;
1381			} else {
1382				return 1;
1383			}
1384		}
1385	}
1386
1387	return 0;
1388}
1389
1390int fsi_driver_register(struct fsi_driver *fsi_drv)
1391{
1392	if (!fsi_drv)
1393		return -EINVAL;
1394	if (!fsi_drv->id_table)
1395		return -EINVAL;
1396
1397	return driver_register(&fsi_drv->drv);
1398}
1399EXPORT_SYMBOL_GPL(fsi_driver_register);
1400
1401void fsi_driver_unregister(struct fsi_driver *fsi_drv)
1402{
1403	driver_unregister(&fsi_drv->drv);
1404}
1405EXPORT_SYMBOL_GPL(fsi_driver_unregister);
1406
1407struct bus_type fsi_bus_type = {
1408	.name		= "fsi",
1409	.match		= fsi_bus_match,
1410};
1411EXPORT_SYMBOL_GPL(fsi_bus_type);
1412
1413static int __init fsi_init(void)
1414{
1415	int rc;
1416
1417	rc = alloc_chrdev_region(&fsi_base_dev, 0, FSI_CHAR_MAX_DEVICES, "fsi");
1418	if (rc)
1419		return rc;
1420	rc = bus_register(&fsi_bus_type);
1421	if (rc)
1422		goto fail_bus;
1423
1424	rc = class_register(&fsi_master_class);
1425	if (rc)
1426		goto fail_class;
1427
1428	return 0;
1429
1430 fail_class:
1431	bus_unregister(&fsi_bus_type);
1432 fail_bus:
1433	unregister_chrdev_region(fsi_base_dev, FSI_CHAR_MAX_DEVICES);
1434	return rc;
1435}
1436postcore_initcall(fsi_init);
1437
1438static void fsi_exit(void)
1439{
1440	class_unregister(&fsi_master_class);
1441	bus_unregister(&fsi_bus_type);
1442	unregister_chrdev_region(fsi_base_dev, FSI_CHAR_MAX_DEVICES);
1443	ida_destroy(&fsi_minor_ida);
1444}
1445module_exit(fsi_exit);
1446module_param(discard_errors, int, 0664);
1447MODULE_LICENSE("GPL");
1448MODULE_PARM_DESC(discard_errors, "Don't invoke error handling on bus accesses");
1449