1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * DMA driver for Nvidia's Tegra20 APB DMA controller.
4 *
5 * Copyright (c) 2012-2013, NVIDIA CORPORATION.  All rights reserved.
6 */
7
8#include <linux/bitops.h>
9#include <linux/clk.h>
10#include <linux/delay.h>
11#include <linux/dmaengine.h>
12#include <linux/dma-mapping.h>
13#include <linux/err.h>
14#include <linux/init.h>
15#include <linux/interrupt.h>
16#include <linux/io.h>
17#include <linux/mm.h>
18#include <linux/module.h>
19#include <linux/of.h>
20#include <linux/of_dma.h>
21#include <linux/platform_device.h>
22#include <linux/pm.h>
23#include <linux/pm_runtime.h>
24#include <linux/reset.h>
25#include <linux/slab.h>
26#include <linux/wait.h>
27
28#include "dmaengine.h"
29
30#define CREATE_TRACE_POINTS
31#include <trace/events/tegra_apb_dma.h>
32
33#define TEGRA_APBDMA_GENERAL			0x0
34#define TEGRA_APBDMA_GENERAL_ENABLE		BIT(31)
35
36#define TEGRA_APBDMA_CONTROL			0x010
37#define TEGRA_APBDMA_IRQ_MASK			0x01c
38#define TEGRA_APBDMA_IRQ_MASK_SET		0x020
39
40/* CSR register */
41#define TEGRA_APBDMA_CHAN_CSR			0x00
42#define TEGRA_APBDMA_CSR_ENB			BIT(31)
43#define TEGRA_APBDMA_CSR_IE_EOC			BIT(30)
44#define TEGRA_APBDMA_CSR_HOLD			BIT(29)
45#define TEGRA_APBDMA_CSR_DIR			BIT(28)
46#define TEGRA_APBDMA_CSR_ONCE			BIT(27)
47#define TEGRA_APBDMA_CSR_FLOW			BIT(21)
48#define TEGRA_APBDMA_CSR_REQ_SEL_SHIFT		16
49#define TEGRA_APBDMA_CSR_REQ_SEL_MASK		0x1F
50#define TEGRA_APBDMA_CSR_WCOUNT_MASK		0xFFFC
51
52/* STATUS register */
53#define TEGRA_APBDMA_CHAN_STATUS		0x004
54#define TEGRA_APBDMA_STATUS_BUSY		BIT(31)
55#define TEGRA_APBDMA_STATUS_ISE_EOC		BIT(30)
56#define TEGRA_APBDMA_STATUS_HALT		BIT(29)
57#define TEGRA_APBDMA_STATUS_PING_PONG		BIT(28)
58#define TEGRA_APBDMA_STATUS_COUNT_SHIFT		2
59#define TEGRA_APBDMA_STATUS_COUNT_MASK		0xFFFC
60
61#define TEGRA_APBDMA_CHAN_CSRE			0x00C
62#define TEGRA_APBDMA_CHAN_CSRE_PAUSE		BIT(31)
63
64/* AHB memory address */
65#define TEGRA_APBDMA_CHAN_AHBPTR		0x010
66
67/* AHB sequence register */
68#define TEGRA_APBDMA_CHAN_AHBSEQ		0x14
69#define TEGRA_APBDMA_AHBSEQ_INTR_ENB		BIT(31)
70#define TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_8		(0 << 28)
71#define TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_16	(1 << 28)
72#define TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_32	(2 << 28)
73#define TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_64	(3 << 28)
74#define TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_128	(4 << 28)
75#define TEGRA_APBDMA_AHBSEQ_DATA_SWAP		BIT(27)
76#define TEGRA_APBDMA_AHBSEQ_BURST_1		(4 << 24)
77#define TEGRA_APBDMA_AHBSEQ_BURST_4		(5 << 24)
78#define TEGRA_APBDMA_AHBSEQ_BURST_8		(6 << 24)
79#define TEGRA_APBDMA_AHBSEQ_DBL_BUF		BIT(19)
80#define TEGRA_APBDMA_AHBSEQ_WRAP_SHIFT		16
81#define TEGRA_APBDMA_AHBSEQ_WRAP_NONE		0
82
83/* APB address */
84#define TEGRA_APBDMA_CHAN_APBPTR		0x018
85
86/* APB sequence register */
87#define TEGRA_APBDMA_CHAN_APBSEQ		0x01c
88#define TEGRA_APBDMA_APBSEQ_BUS_WIDTH_8		(0 << 28)
89#define TEGRA_APBDMA_APBSEQ_BUS_WIDTH_16	(1 << 28)
90#define TEGRA_APBDMA_APBSEQ_BUS_WIDTH_32	(2 << 28)
91#define TEGRA_APBDMA_APBSEQ_BUS_WIDTH_64	(3 << 28)
92#define TEGRA_APBDMA_APBSEQ_BUS_WIDTH_128	(4 << 28)
93#define TEGRA_APBDMA_APBSEQ_DATA_SWAP		BIT(27)
94#define TEGRA_APBDMA_APBSEQ_WRAP_WORD_1		(1 << 16)
95
96/* Tegra148 specific registers */
97#define TEGRA_APBDMA_CHAN_WCOUNT		0x20
98
99#define TEGRA_APBDMA_CHAN_WORD_TRANSFER		0x24
100
101/*
102 * If any burst is in flight and DMA paused then this is the time to complete
103 * on-flight burst and update DMA status register.
104 */
105#define TEGRA_APBDMA_BURST_COMPLETE_TIME	20
106
107/* Channel base address offset from APBDMA base address */
108#define TEGRA_APBDMA_CHANNEL_BASE_ADD_OFFSET	0x1000
109
110#define TEGRA_APBDMA_SLAVE_ID_INVALID	(TEGRA_APBDMA_CSR_REQ_SEL_MASK + 1)
111
112struct tegra_dma;
113
114/*
115 * tegra_dma_chip_data Tegra chip specific DMA data
116 * @nr_channels: Number of channels available in the controller.
117 * @channel_reg_size: Channel register size/stride.
118 * @max_dma_count: Maximum DMA transfer count supported by DMA controller.
119 * @support_channel_pause: Support channel wise pause of dma.
120 * @support_separate_wcount_reg: Support separate word count register.
121 */
122struct tegra_dma_chip_data {
123	unsigned int nr_channels;
124	unsigned int channel_reg_size;
125	unsigned int max_dma_count;
126	bool support_channel_pause;
127	bool support_separate_wcount_reg;
128};
129
130/* DMA channel registers */
131struct tegra_dma_channel_regs {
132	u32 csr;
133	u32 ahb_ptr;
134	u32 apb_ptr;
135	u32 ahb_seq;
136	u32 apb_seq;
137	u32 wcount;
138};
139
140/*
141 * tegra_dma_sg_req: DMA request details to configure hardware. This
142 * contains the details for one transfer to configure DMA hw.
143 * The client's request for data transfer can be broken into multiple
144 * sub-transfer as per requester details and hw support.
145 * This sub transfer get added in the list of transfer and point to Tegra
146 * DMA descriptor which manages the transfer details.
147 */
148struct tegra_dma_sg_req {
149	struct tegra_dma_channel_regs	ch_regs;
150	unsigned int			req_len;
151	bool				configured;
152	bool				last_sg;
153	struct list_head		node;
154	struct tegra_dma_desc		*dma_desc;
155	unsigned int			words_xferred;
156};
157
158/*
159 * tegra_dma_desc: Tegra DMA descriptors which manages the client requests.
160 * This descriptor keep track of transfer status, callbacks and request
161 * counts etc.
162 */
163struct tegra_dma_desc {
164	struct dma_async_tx_descriptor	txd;
165	unsigned int			bytes_requested;
166	unsigned int			bytes_transferred;
167	enum dma_status			dma_status;
168	struct list_head		node;
169	struct list_head		tx_list;
170	struct list_head		cb_node;
171	unsigned int			cb_count;
172};
173
174struct tegra_dma_channel;
175
176typedef void (*dma_isr_handler)(struct tegra_dma_channel *tdc,
177				bool to_terminate);
178
179/* tegra_dma_channel: Channel specific information */
180struct tegra_dma_channel {
181	struct dma_chan		dma_chan;
182	char			name[12];
183	bool			config_init;
184	unsigned int		id;
185	void __iomem		*chan_addr;
186	spinlock_t		lock;
187	bool			busy;
188	struct tegra_dma	*tdma;
189	bool			cyclic;
190
191	/* Different lists for managing the requests */
192	struct list_head	free_sg_req;
193	struct list_head	pending_sg_req;
194	struct list_head	free_dma_desc;
195	struct list_head	cb_desc;
196
197	/* ISR handler and tasklet for bottom half of isr handling */
198	dma_isr_handler		isr_handler;
199	struct tasklet_struct	tasklet;
200
201	/* Channel-slave specific configuration */
202	unsigned int slave_id;
203	struct dma_slave_config dma_sconfig;
204	struct tegra_dma_channel_regs channel_reg;
205
206	struct wait_queue_head wq;
207};
208
209/* tegra_dma: Tegra DMA specific information */
210struct tegra_dma {
211	struct dma_device		dma_dev;
212	struct device			*dev;
213	struct clk			*dma_clk;
214	struct reset_control		*rst;
215	spinlock_t			global_lock;
216	void __iomem			*base_addr;
217	const struct tegra_dma_chip_data *chip_data;
218
219	/*
220	 * Counter for managing global pausing of the DMA controller.
221	 * Only applicable for devices that don't support individual
222	 * channel pausing.
223	 */
224	u32				global_pause_count;
225
226	/* Last member of the structure */
227	struct tegra_dma_channel channels[];
228};
229
230static inline void tdma_write(struct tegra_dma *tdma, u32 reg, u32 val)
231{
232	writel(val, tdma->base_addr + reg);
233}
234
235static inline void tdc_write(struct tegra_dma_channel *tdc,
236			     u32 reg, u32 val)
237{
238	writel(val, tdc->chan_addr + reg);
239}
240
241static inline u32 tdc_read(struct tegra_dma_channel *tdc, u32 reg)
242{
243	return readl(tdc->chan_addr + reg);
244}
245
246static inline struct tegra_dma_channel *to_tegra_dma_chan(struct dma_chan *dc)
247{
248	return container_of(dc, struct tegra_dma_channel, dma_chan);
249}
250
251static inline struct tegra_dma_desc *
252txd_to_tegra_dma_desc(struct dma_async_tx_descriptor *td)
253{
254	return container_of(td, struct tegra_dma_desc, txd);
255}
256
257static inline struct device *tdc2dev(struct tegra_dma_channel *tdc)
258{
259	return &tdc->dma_chan.dev->device;
260}
261
262static dma_cookie_t tegra_dma_tx_submit(struct dma_async_tx_descriptor *tx);
263
264/* Get DMA desc from free list, if not there then allocate it.  */
265static struct tegra_dma_desc *tegra_dma_desc_get(struct tegra_dma_channel *tdc)
266{
267	struct tegra_dma_desc *dma_desc;
268	unsigned long flags;
269
270	spin_lock_irqsave(&tdc->lock, flags);
271
272	/* Do not allocate if desc are waiting for ack */
273	list_for_each_entry(dma_desc, &tdc->free_dma_desc, node) {
274		if (async_tx_test_ack(&dma_desc->txd) && !dma_desc->cb_count) {
275			list_del(&dma_desc->node);
276			spin_unlock_irqrestore(&tdc->lock, flags);
277			dma_desc->txd.flags = 0;
278			return dma_desc;
279		}
280	}
281
282	spin_unlock_irqrestore(&tdc->lock, flags);
283
284	/* Allocate DMA desc */
285	dma_desc = kzalloc(sizeof(*dma_desc), GFP_NOWAIT);
286	if (!dma_desc)
287		return NULL;
288
289	dma_async_tx_descriptor_init(&dma_desc->txd, &tdc->dma_chan);
290	dma_desc->txd.tx_submit = tegra_dma_tx_submit;
291	dma_desc->txd.flags = 0;
292
293	return dma_desc;
294}
295
296static void tegra_dma_desc_put(struct tegra_dma_channel *tdc,
297			       struct tegra_dma_desc *dma_desc)
298{
299	unsigned long flags;
300
301	spin_lock_irqsave(&tdc->lock, flags);
302	if (!list_empty(&dma_desc->tx_list))
303		list_splice_init(&dma_desc->tx_list, &tdc->free_sg_req);
304	list_add_tail(&dma_desc->node, &tdc->free_dma_desc);
305	spin_unlock_irqrestore(&tdc->lock, flags);
306}
307
308static struct tegra_dma_sg_req *
309tegra_dma_sg_req_get(struct tegra_dma_channel *tdc)
310{
311	struct tegra_dma_sg_req *sg_req;
312	unsigned long flags;
313
314	spin_lock_irqsave(&tdc->lock, flags);
315	if (!list_empty(&tdc->free_sg_req)) {
316		sg_req = list_first_entry(&tdc->free_sg_req, typeof(*sg_req),
317					  node);
318		list_del(&sg_req->node);
319		spin_unlock_irqrestore(&tdc->lock, flags);
320		return sg_req;
321	}
322	spin_unlock_irqrestore(&tdc->lock, flags);
323
324	sg_req = kzalloc(sizeof(*sg_req), GFP_NOWAIT);
325
326	return sg_req;
327}
328
329static int tegra_dma_slave_config(struct dma_chan *dc,
330				  struct dma_slave_config *sconfig)
331{
332	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
333
334	if (!list_empty(&tdc->pending_sg_req)) {
335		dev_err(tdc2dev(tdc), "Configuration not allowed\n");
336		return -EBUSY;
337	}
338
339	memcpy(&tdc->dma_sconfig, sconfig, sizeof(*sconfig));
340	tdc->config_init = true;
341
342	return 0;
343}
344
345static void tegra_dma_global_pause(struct tegra_dma_channel *tdc,
346				   bool wait_for_burst_complete)
347{
348	struct tegra_dma *tdma = tdc->tdma;
349
350	spin_lock(&tdma->global_lock);
351
352	if (tdc->tdma->global_pause_count == 0) {
353		tdma_write(tdma, TEGRA_APBDMA_GENERAL, 0);
354		if (wait_for_burst_complete)
355			udelay(TEGRA_APBDMA_BURST_COMPLETE_TIME);
356	}
357
358	tdc->tdma->global_pause_count++;
359
360	spin_unlock(&tdma->global_lock);
361}
362
363static void tegra_dma_global_resume(struct tegra_dma_channel *tdc)
364{
365	struct tegra_dma *tdma = tdc->tdma;
366
367	spin_lock(&tdma->global_lock);
368
369	if (WARN_ON(tdc->tdma->global_pause_count == 0))
370		goto out;
371
372	if (--tdc->tdma->global_pause_count == 0)
373		tdma_write(tdma, TEGRA_APBDMA_GENERAL,
374			   TEGRA_APBDMA_GENERAL_ENABLE);
375
376out:
377	spin_unlock(&tdma->global_lock);
378}
379
380static void tegra_dma_pause(struct tegra_dma_channel *tdc,
381			    bool wait_for_burst_complete)
382{
383	struct tegra_dma *tdma = tdc->tdma;
384
385	if (tdma->chip_data->support_channel_pause) {
386		tdc_write(tdc, TEGRA_APBDMA_CHAN_CSRE,
387			  TEGRA_APBDMA_CHAN_CSRE_PAUSE);
388		if (wait_for_burst_complete)
389			udelay(TEGRA_APBDMA_BURST_COMPLETE_TIME);
390	} else {
391		tegra_dma_global_pause(tdc, wait_for_burst_complete);
392	}
393}
394
395static void tegra_dma_resume(struct tegra_dma_channel *tdc)
396{
397	struct tegra_dma *tdma = tdc->tdma;
398
399	if (tdma->chip_data->support_channel_pause)
400		tdc_write(tdc, TEGRA_APBDMA_CHAN_CSRE, 0);
401	else
402		tegra_dma_global_resume(tdc);
403}
404
405static void tegra_dma_stop(struct tegra_dma_channel *tdc)
406{
407	u32 csr, status;
408
409	/* Disable interrupts */
410	csr = tdc_read(tdc, TEGRA_APBDMA_CHAN_CSR);
411	csr &= ~TEGRA_APBDMA_CSR_IE_EOC;
412	tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR, csr);
413
414	/* Disable DMA */
415	csr &= ~TEGRA_APBDMA_CSR_ENB;
416	tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR, csr);
417
418	/* Clear interrupt status if it is there */
419	status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
420	if (status & TEGRA_APBDMA_STATUS_ISE_EOC) {
421		dev_dbg(tdc2dev(tdc), "%s():clearing interrupt\n", __func__);
422		tdc_write(tdc, TEGRA_APBDMA_CHAN_STATUS, status);
423	}
424	tdc->busy = false;
425}
426
427static void tegra_dma_start(struct tegra_dma_channel *tdc,
428			    struct tegra_dma_sg_req *sg_req)
429{
430	struct tegra_dma_channel_regs *ch_regs = &sg_req->ch_regs;
431
432	tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR, ch_regs->csr);
433	tdc_write(tdc, TEGRA_APBDMA_CHAN_APBSEQ, ch_regs->apb_seq);
434	tdc_write(tdc, TEGRA_APBDMA_CHAN_APBPTR, ch_regs->apb_ptr);
435	tdc_write(tdc, TEGRA_APBDMA_CHAN_AHBSEQ, ch_regs->ahb_seq);
436	tdc_write(tdc, TEGRA_APBDMA_CHAN_AHBPTR, ch_regs->ahb_ptr);
437	if (tdc->tdma->chip_data->support_separate_wcount_reg)
438		tdc_write(tdc, TEGRA_APBDMA_CHAN_WCOUNT, ch_regs->wcount);
439
440	/* Start DMA */
441	tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR,
442		  ch_regs->csr | TEGRA_APBDMA_CSR_ENB);
443}
444
445static void tegra_dma_configure_for_next(struct tegra_dma_channel *tdc,
446					 struct tegra_dma_sg_req *nsg_req)
447{
448	unsigned long status;
449
450	/*
451	 * The DMA controller reloads the new configuration for next transfer
452	 * after last burst of current transfer completes.
453	 * If there is no IEC status then this makes sure that last burst
454	 * has not be completed. There may be case that last burst is on
455	 * flight and so it can complete but because DMA is paused, it
456	 * will not generates interrupt as well as not reload the new
457	 * configuration.
458	 * If there is already IEC status then interrupt handler need to
459	 * load new configuration.
460	 */
461	tegra_dma_pause(tdc, false);
462	status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
463
464	/*
465	 * If interrupt is pending then do nothing as the ISR will handle
466	 * the programing for new request.
467	 */
468	if (status & TEGRA_APBDMA_STATUS_ISE_EOC) {
469		dev_err(tdc2dev(tdc),
470			"Skipping new configuration as interrupt is pending\n");
471		tegra_dma_resume(tdc);
472		return;
473	}
474
475	/* Safe to program new configuration */
476	tdc_write(tdc, TEGRA_APBDMA_CHAN_APBPTR, nsg_req->ch_regs.apb_ptr);
477	tdc_write(tdc, TEGRA_APBDMA_CHAN_AHBPTR, nsg_req->ch_regs.ahb_ptr);
478	if (tdc->tdma->chip_data->support_separate_wcount_reg)
479		tdc_write(tdc, TEGRA_APBDMA_CHAN_WCOUNT,
480			  nsg_req->ch_regs.wcount);
481	tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR,
482		  nsg_req->ch_regs.csr | TEGRA_APBDMA_CSR_ENB);
483	nsg_req->configured = true;
484	nsg_req->words_xferred = 0;
485
486	tegra_dma_resume(tdc);
487}
488
489static void tdc_start_head_req(struct tegra_dma_channel *tdc)
490{
491	struct tegra_dma_sg_req *sg_req;
492
493	sg_req = list_first_entry(&tdc->pending_sg_req, typeof(*sg_req), node);
494	tegra_dma_start(tdc, sg_req);
495	sg_req->configured = true;
496	sg_req->words_xferred = 0;
497	tdc->busy = true;
498}
499
500static void tdc_configure_next_head_desc(struct tegra_dma_channel *tdc)
501{
502	struct tegra_dma_sg_req *hsgreq, *hnsgreq;
503
504	hsgreq = list_first_entry(&tdc->pending_sg_req, typeof(*hsgreq), node);
505	if (!list_is_last(&hsgreq->node, &tdc->pending_sg_req)) {
506		hnsgreq = list_first_entry(&hsgreq->node, typeof(*hnsgreq),
507					   node);
508		tegra_dma_configure_for_next(tdc, hnsgreq);
509	}
510}
511
512static inline unsigned int
513get_current_xferred_count(struct tegra_dma_channel *tdc,
514			  struct tegra_dma_sg_req *sg_req,
515			  unsigned long status)
516{
517	return sg_req->req_len - (status & TEGRA_APBDMA_STATUS_COUNT_MASK) - 4;
518}
519
520static void tegra_dma_abort_all(struct tegra_dma_channel *tdc)
521{
522	struct tegra_dma_desc *dma_desc;
523	struct tegra_dma_sg_req *sgreq;
524
525	while (!list_empty(&tdc->pending_sg_req)) {
526		sgreq = list_first_entry(&tdc->pending_sg_req, typeof(*sgreq),
527					 node);
528		list_move_tail(&sgreq->node, &tdc->free_sg_req);
529		if (sgreq->last_sg) {
530			dma_desc = sgreq->dma_desc;
531			dma_desc->dma_status = DMA_ERROR;
532			list_add_tail(&dma_desc->node, &tdc->free_dma_desc);
533
534			/* Add in cb list if it is not there. */
535			if (!dma_desc->cb_count)
536				list_add_tail(&dma_desc->cb_node,
537					      &tdc->cb_desc);
538			dma_desc->cb_count++;
539		}
540	}
541	tdc->isr_handler = NULL;
542}
543
544static bool handle_continuous_head_request(struct tegra_dma_channel *tdc,
545					   bool to_terminate)
546{
547	struct tegra_dma_sg_req *hsgreq;
548
549	/*
550	 * Check that head req on list should be in flight.
551	 * If it is not in flight then abort transfer as
552	 * looping of transfer can not continue.
553	 */
554	hsgreq = list_first_entry(&tdc->pending_sg_req, typeof(*hsgreq), node);
555	if (!hsgreq->configured) {
556		tegra_dma_stop(tdc);
557		pm_runtime_put(tdc->tdma->dev);
558		dev_err(tdc2dev(tdc), "DMA transfer underflow, aborting DMA\n");
559		tegra_dma_abort_all(tdc);
560		return false;
561	}
562
563	/* Configure next request */
564	if (!to_terminate)
565		tdc_configure_next_head_desc(tdc);
566
567	return true;
568}
569
570static void handle_once_dma_done(struct tegra_dma_channel *tdc,
571				 bool to_terminate)
572{
573	struct tegra_dma_desc *dma_desc;
574	struct tegra_dma_sg_req *sgreq;
575
576	tdc->busy = false;
577	sgreq = list_first_entry(&tdc->pending_sg_req, typeof(*sgreq), node);
578	dma_desc = sgreq->dma_desc;
579	dma_desc->bytes_transferred += sgreq->req_len;
580
581	list_del(&sgreq->node);
582	if (sgreq->last_sg) {
583		dma_desc->dma_status = DMA_COMPLETE;
584		dma_cookie_complete(&dma_desc->txd);
585		if (!dma_desc->cb_count)
586			list_add_tail(&dma_desc->cb_node, &tdc->cb_desc);
587		dma_desc->cb_count++;
588		list_add_tail(&dma_desc->node, &tdc->free_dma_desc);
589	}
590	list_add_tail(&sgreq->node, &tdc->free_sg_req);
591
592	/* Do not start DMA if it is going to be terminate */
593	if (to_terminate)
594		return;
595
596	if (list_empty(&tdc->pending_sg_req)) {
597		pm_runtime_put(tdc->tdma->dev);
598		return;
599	}
600
601	tdc_start_head_req(tdc);
602}
603
604static void handle_cont_sngl_cycle_dma_done(struct tegra_dma_channel *tdc,
605					    bool to_terminate)
606{
607	struct tegra_dma_desc *dma_desc;
608	struct tegra_dma_sg_req *sgreq;
609	bool st;
610
611	sgreq = list_first_entry(&tdc->pending_sg_req, typeof(*sgreq), node);
612	dma_desc = sgreq->dma_desc;
613	/* if we dma for long enough the transfer count will wrap */
614	dma_desc->bytes_transferred =
615		(dma_desc->bytes_transferred + sgreq->req_len) %
616		dma_desc->bytes_requested;
617
618	/* Callback need to be call */
619	if (!dma_desc->cb_count)
620		list_add_tail(&dma_desc->cb_node, &tdc->cb_desc);
621	dma_desc->cb_count++;
622
623	sgreq->words_xferred = 0;
624
625	/* If not last req then put at end of pending list */
626	if (!list_is_last(&sgreq->node, &tdc->pending_sg_req)) {
627		list_move_tail(&sgreq->node, &tdc->pending_sg_req);
628		sgreq->configured = false;
629		st = handle_continuous_head_request(tdc, to_terminate);
630		if (!st)
631			dma_desc->dma_status = DMA_ERROR;
632	}
633}
634
635static void tegra_dma_tasklet(struct tasklet_struct *t)
636{
637	struct tegra_dma_channel *tdc = from_tasklet(tdc, t, tasklet);
638	struct dmaengine_desc_callback cb;
639	struct tegra_dma_desc *dma_desc;
640	unsigned int cb_count;
641	unsigned long flags;
642
643	spin_lock_irqsave(&tdc->lock, flags);
644	while (!list_empty(&tdc->cb_desc)) {
645		dma_desc = list_first_entry(&tdc->cb_desc, typeof(*dma_desc),
646					    cb_node);
647		list_del(&dma_desc->cb_node);
648		dmaengine_desc_get_callback(&dma_desc->txd, &cb);
649		cb_count = dma_desc->cb_count;
650		dma_desc->cb_count = 0;
651		trace_tegra_dma_complete_cb(&tdc->dma_chan, cb_count,
652					    cb.callback);
653		spin_unlock_irqrestore(&tdc->lock, flags);
654		while (cb_count--)
655			dmaengine_desc_callback_invoke(&cb, NULL);
656		spin_lock_irqsave(&tdc->lock, flags);
657	}
658	spin_unlock_irqrestore(&tdc->lock, flags);
659}
660
661static irqreturn_t tegra_dma_isr(int irq, void *dev_id)
662{
663	struct tegra_dma_channel *tdc = dev_id;
664	u32 status;
665
666	spin_lock(&tdc->lock);
667
668	trace_tegra_dma_isr(&tdc->dma_chan, irq);
669	status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
670	if (status & TEGRA_APBDMA_STATUS_ISE_EOC) {
671		tdc_write(tdc, TEGRA_APBDMA_CHAN_STATUS, status);
672		tdc->isr_handler(tdc, false);
673		tasklet_schedule(&tdc->tasklet);
674		wake_up_all(&tdc->wq);
675		spin_unlock(&tdc->lock);
676		return IRQ_HANDLED;
677	}
678
679	spin_unlock(&tdc->lock);
680	dev_info(tdc2dev(tdc), "Interrupt already served status 0x%08x\n",
681		 status);
682
683	return IRQ_NONE;
684}
685
686static dma_cookie_t tegra_dma_tx_submit(struct dma_async_tx_descriptor *txd)
687{
688	struct tegra_dma_desc *dma_desc = txd_to_tegra_dma_desc(txd);
689	struct tegra_dma_channel *tdc = to_tegra_dma_chan(txd->chan);
690	unsigned long flags;
691	dma_cookie_t cookie;
692
693	spin_lock_irqsave(&tdc->lock, flags);
694	dma_desc->dma_status = DMA_IN_PROGRESS;
695	cookie = dma_cookie_assign(&dma_desc->txd);
696	list_splice_tail_init(&dma_desc->tx_list, &tdc->pending_sg_req);
697	spin_unlock_irqrestore(&tdc->lock, flags);
698
699	return cookie;
700}
701
702static void tegra_dma_issue_pending(struct dma_chan *dc)
703{
704	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
705	unsigned long flags;
706	int err;
707
708	spin_lock_irqsave(&tdc->lock, flags);
709	if (list_empty(&tdc->pending_sg_req)) {
710		dev_err(tdc2dev(tdc), "No DMA request\n");
711		goto end;
712	}
713	if (!tdc->busy) {
714		err = pm_runtime_resume_and_get(tdc->tdma->dev);
715		if (err < 0) {
716			dev_err(tdc2dev(tdc), "Failed to enable DMA\n");
717			goto end;
718		}
719
720		tdc_start_head_req(tdc);
721
722		/* Continuous single mode: Configure next req */
723		if (tdc->cyclic) {
724			/*
725			 * Wait for 1 burst time for configure DMA for
726			 * next transfer.
727			 */
728			udelay(TEGRA_APBDMA_BURST_COMPLETE_TIME);
729			tdc_configure_next_head_desc(tdc);
730		}
731	}
732end:
733	spin_unlock_irqrestore(&tdc->lock, flags);
734}
735
736static int tegra_dma_terminate_all(struct dma_chan *dc)
737{
738	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
739	struct tegra_dma_desc *dma_desc;
740	struct tegra_dma_sg_req *sgreq;
741	unsigned long flags;
742	u32 status, wcount;
743	bool was_busy;
744
745	spin_lock_irqsave(&tdc->lock, flags);
746
747	if (!tdc->busy)
748		goto skip_dma_stop;
749
750	/* Pause DMA before checking the queue status */
751	tegra_dma_pause(tdc, true);
752
753	status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
754	if (status & TEGRA_APBDMA_STATUS_ISE_EOC) {
755		dev_dbg(tdc2dev(tdc), "%s():handling isr\n", __func__);
756		tdc->isr_handler(tdc, true);
757		status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
758	}
759	if (tdc->tdma->chip_data->support_separate_wcount_reg)
760		wcount = tdc_read(tdc, TEGRA_APBDMA_CHAN_WORD_TRANSFER);
761	else
762		wcount = status;
763
764	was_busy = tdc->busy;
765	tegra_dma_stop(tdc);
766
767	if (!list_empty(&tdc->pending_sg_req) && was_busy) {
768		sgreq = list_first_entry(&tdc->pending_sg_req, typeof(*sgreq),
769					 node);
770		sgreq->dma_desc->bytes_transferred +=
771				get_current_xferred_count(tdc, sgreq, wcount);
772	}
773	tegra_dma_resume(tdc);
774
775	pm_runtime_put(tdc->tdma->dev);
776	wake_up_all(&tdc->wq);
777
778skip_dma_stop:
779	tegra_dma_abort_all(tdc);
780
781	while (!list_empty(&tdc->cb_desc)) {
782		dma_desc = list_first_entry(&tdc->cb_desc, typeof(*dma_desc),
783					    cb_node);
784		list_del(&dma_desc->cb_node);
785		dma_desc->cb_count = 0;
786	}
787	spin_unlock_irqrestore(&tdc->lock, flags);
788
789	return 0;
790}
791
792static bool tegra_dma_eoc_interrupt_deasserted(struct tegra_dma_channel *tdc)
793{
794	unsigned long flags;
795	u32 status;
796
797	spin_lock_irqsave(&tdc->lock, flags);
798	status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
799	spin_unlock_irqrestore(&tdc->lock, flags);
800
801	return !(status & TEGRA_APBDMA_STATUS_ISE_EOC);
802}
803
804static void tegra_dma_synchronize(struct dma_chan *dc)
805{
806	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
807	int err;
808
809	err = pm_runtime_resume_and_get(tdc->tdma->dev);
810	if (err < 0) {
811		dev_err(tdc2dev(tdc), "Failed to synchronize DMA: %d\n", err);
812		return;
813	}
814
815	/*
816	 * CPU, which handles interrupt, could be busy in
817	 * uninterruptible state, in this case sibling CPU
818	 * should wait until interrupt is handled.
819	 */
820	wait_event(tdc->wq, tegra_dma_eoc_interrupt_deasserted(tdc));
821
822	tasklet_kill(&tdc->tasklet);
823
824	pm_runtime_put(tdc->tdma->dev);
825}
826
827static unsigned int tegra_dma_sg_bytes_xferred(struct tegra_dma_channel *tdc,
828					       struct tegra_dma_sg_req *sg_req)
829{
830	u32 status, wcount = 0;
831
832	if (!list_is_first(&sg_req->node, &tdc->pending_sg_req))
833		return 0;
834
835	if (tdc->tdma->chip_data->support_separate_wcount_reg)
836		wcount = tdc_read(tdc, TEGRA_APBDMA_CHAN_WORD_TRANSFER);
837
838	status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
839
840	if (!tdc->tdma->chip_data->support_separate_wcount_reg)
841		wcount = status;
842
843	if (status & TEGRA_APBDMA_STATUS_ISE_EOC)
844		return sg_req->req_len;
845
846	wcount = get_current_xferred_count(tdc, sg_req, wcount);
847
848	if (!wcount) {
849		/*
850		 * If wcount wasn't ever polled for this SG before, then
851		 * simply assume that transfer hasn't started yet.
852		 *
853		 * Otherwise it's the end of the transfer.
854		 *
855		 * The alternative would be to poll the status register
856		 * until EOC bit is set or wcount goes UP. That's so
857		 * because EOC bit is getting set only after the last
858		 * burst's completion and counter is less than the actual
859		 * transfer size by 4 bytes. The counter value wraps around
860		 * in a cyclic mode before EOC is set(!), so we can't easily
861		 * distinguish start of transfer from its end.
862		 */
863		if (sg_req->words_xferred)
864			wcount = sg_req->req_len - 4;
865
866	} else if (wcount < sg_req->words_xferred) {
867		/*
868		 * This case will never happen for a non-cyclic transfer.
869		 *
870		 * For a cyclic transfer, although it is possible for the
871		 * next transfer to have already started (resetting the word
872		 * count), this case should still not happen because we should
873		 * have detected that the EOC bit is set and hence the transfer
874		 * was completed.
875		 */
876		WARN_ON_ONCE(1);
877
878		wcount = sg_req->req_len - 4;
879	} else {
880		sg_req->words_xferred = wcount;
881	}
882
883	return wcount;
884}
885
886static enum dma_status tegra_dma_tx_status(struct dma_chan *dc,
887					   dma_cookie_t cookie,
888					   struct dma_tx_state *txstate)
889{
890	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
891	struct tegra_dma_desc *dma_desc;
892	struct tegra_dma_sg_req *sg_req;
893	enum dma_status ret;
894	unsigned long flags;
895	unsigned int residual;
896	unsigned int bytes = 0;
897
898	ret = dma_cookie_status(dc, cookie, txstate);
899	if (ret == DMA_COMPLETE)
900		return ret;
901
902	spin_lock_irqsave(&tdc->lock, flags);
903
904	/* Check on wait_ack desc status */
905	list_for_each_entry(dma_desc, &tdc->free_dma_desc, node) {
906		if (dma_desc->txd.cookie == cookie) {
907			ret = dma_desc->dma_status;
908			goto found;
909		}
910	}
911
912	/* Check in pending list */
913	list_for_each_entry(sg_req, &tdc->pending_sg_req, node) {
914		dma_desc = sg_req->dma_desc;
915		if (dma_desc->txd.cookie == cookie) {
916			bytes = tegra_dma_sg_bytes_xferred(tdc, sg_req);
917			ret = dma_desc->dma_status;
918			goto found;
919		}
920	}
921
922	dev_dbg(tdc2dev(tdc), "cookie %d not found\n", cookie);
923	dma_desc = NULL;
924
925found:
926	if (dma_desc && txstate) {
927		residual = dma_desc->bytes_requested -
928			   ((dma_desc->bytes_transferred + bytes) %
929			    dma_desc->bytes_requested);
930		dma_set_residue(txstate, residual);
931	}
932
933	trace_tegra_dma_tx_status(&tdc->dma_chan, cookie, txstate);
934	spin_unlock_irqrestore(&tdc->lock, flags);
935
936	return ret;
937}
938
939static inline unsigned int get_bus_width(struct tegra_dma_channel *tdc,
940					 enum dma_slave_buswidth slave_bw)
941{
942	switch (slave_bw) {
943	case DMA_SLAVE_BUSWIDTH_1_BYTE:
944		return TEGRA_APBDMA_APBSEQ_BUS_WIDTH_8;
945	case DMA_SLAVE_BUSWIDTH_2_BYTES:
946		return TEGRA_APBDMA_APBSEQ_BUS_WIDTH_16;
947	case DMA_SLAVE_BUSWIDTH_4_BYTES:
948		return TEGRA_APBDMA_APBSEQ_BUS_WIDTH_32;
949	case DMA_SLAVE_BUSWIDTH_8_BYTES:
950		return TEGRA_APBDMA_APBSEQ_BUS_WIDTH_64;
951	default:
952		dev_warn(tdc2dev(tdc),
953			 "slave bw is not supported, using 32bits\n");
954		return TEGRA_APBDMA_APBSEQ_BUS_WIDTH_32;
955	}
956}
957
958static inline unsigned int get_burst_size(struct tegra_dma_channel *tdc,
959					  u32 burst_size,
960					  enum dma_slave_buswidth slave_bw,
961					  u32 len)
962{
963	unsigned int burst_byte, burst_ahb_width;
964
965	/*
966	 * burst_size from client is in terms of the bus_width.
967	 * convert them into AHB memory width which is 4 byte.
968	 */
969	burst_byte = burst_size * slave_bw;
970	burst_ahb_width = burst_byte / 4;
971
972	/* If burst size is 0 then calculate the burst size based on length */
973	if (!burst_ahb_width) {
974		if (len & 0xF)
975			return TEGRA_APBDMA_AHBSEQ_BURST_1;
976		else if ((len >> 4) & 0x1)
977			return TEGRA_APBDMA_AHBSEQ_BURST_4;
978		else
979			return TEGRA_APBDMA_AHBSEQ_BURST_8;
980	}
981	if (burst_ahb_width < 4)
982		return TEGRA_APBDMA_AHBSEQ_BURST_1;
983	else if (burst_ahb_width < 8)
984		return TEGRA_APBDMA_AHBSEQ_BURST_4;
985	else
986		return TEGRA_APBDMA_AHBSEQ_BURST_8;
987}
988
989static int get_transfer_param(struct tegra_dma_channel *tdc,
990			      enum dma_transfer_direction direction,
991			      u32 *apb_addr,
992			      u32 *apb_seq,
993			      u32 *csr,
994			      unsigned int *burst_size,
995			      enum dma_slave_buswidth *slave_bw)
996{
997	switch (direction) {
998	case DMA_MEM_TO_DEV:
999		*apb_addr = tdc->dma_sconfig.dst_addr;
1000		*apb_seq = get_bus_width(tdc, tdc->dma_sconfig.dst_addr_width);
1001		*burst_size = tdc->dma_sconfig.dst_maxburst;
1002		*slave_bw = tdc->dma_sconfig.dst_addr_width;
1003		*csr = TEGRA_APBDMA_CSR_DIR;
1004		return 0;
1005
1006	case DMA_DEV_TO_MEM:
1007		*apb_addr = tdc->dma_sconfig.src_addr;
1008		*apb_seq = get_bus_width(tdc, tdc->dma_sconfig.src_addr_width);
1009		*burst_size = tdc->dma_sconfig.src_maxburst;
1010		*slave_bw = tdc->dma_sconfig.src_addr_width;
1011		*csr = 0;
1012		return 0;
1013
1014	default:
1015		dev_err(tdc2dev(tdc), "DMA direction is not supported\n");
1016		break;
1017	}
1018
1019	return -EINVAL;
1020}
1021
1022static void tegra_dma_prep_wcount(struct tegra_dma_channel *tdc,
1023				  struct tegra_dma_channel_regs *ch_regs,
1024				  u32 len)
1025{
1026	u32 len_field = (len - 4) & 0xFFFC;
1027
1028	if (tdc->tdma->chip_data->support_separate_wcount_reg)
1029		ch_regs->wcount = len_field;
1030	else
1031		ch_regs->csr |= len_field;
1032}
1033
1034static struct dma_async_tx_descriptor *
1035tegra_dma_prep_slave_sg(struct dma_chan *dc,
1036			struct scatterlist *sgl,
1037			unsigned int sg_len,
1038			enum dma_transfer_direction direction,
1039			unsigned long flags,
1040			void *context)
1041{
1042	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
1043	struct tegra_dma_sg_req *sg_req = NULL;
1044	u32 csr, ahb_seq, apb_ptr, apb_seq;
1045	enum dma_slave_buswidth slave_bw;
1046	struct tegra_dma_desc *dma_desc;
1047	struct list_head req_list;
1048	struct scatterlist *sg;
1049	unsigned int burst_size;
1050	unsigned int i;
1051
1052	if (!tdc->config_init) {
1053		dev_err(tdc2dev(tdc), "DMA channel is not configured\n");
1054		return NULL;
1055	}
1056	if (sg_len < 1) {
1057		dev_err(tdc2dev(tdc), "Invalid segment length %d\n", sg_len);
1058		return NULL;
1059	}
1060
1061	if (get_transfer_param(tdc, direction, &apb_ptr, &apb_seq, &csr,
1062			       &burst_size, &slave_bw) < 0)
1063		return NULL;
1064
1065	INIT_LIST_HEAD(&req_list);
1066
1067	ahb_seq = TEGRA_APBDMA_AHBSEQ_INTR_ENB;
1068	ahb_seq |= TEGRA_APBDMA_AHBSEQ_WRAP_NONE <<
1069					TEGRA_APBDMA_AHBSEQ_WRAP_SHIFT;
1070	ahb_seq |= TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_32;
1071
1072	csr |= TEGRA_APBDMA_CSR_ONCE;
1073
1074	if (tdc->slave_id != TEGRA_APBDMA_SLAVE_ID_INVALID) {
1075		csr |= TEGRA_APBDMA_CSR_FLOW;
1076		csr |= tdc->slave_id << TEGRA_APBDMA_CSR_REQ_SEL_SHIFT;
1077	}
1078
1079	if (flags & DMA_PREP_INTERRUPT) {
1080		csr |= TEGRA_APBDMA_CSR_IE_EOC;
1081	} else {
1082		WARN_ON_ONCE(1);
1083		return NULL;
1084	}
1085
1086	apb_seq |= TEGRA_APBDMA_APBSEQ_WRAP_WORD_1;
1087
1088	dma_desc = tegra_dma_desc_get(tdc);
1089	if (!dma_desc) {
1090		dev_err(tdc2dev(tdc), "DMA descriptors not available\n");
1091		return NULL;
1092	}
1093	INIT_LIST_HEAD(&dma_desc->tx_list);
1094	INIT_LIST_HEAD(&dma_desc->cb_node);
1095	dma_desc->cb_count = 0;
1096	dma_desc->bytes_requested = 0;
1097	dma_desc->bytes_transferred = 0;
1098	dma_desc->dma_status = DMA_IN_PROGRESS;
1099
1100	/* Make transfer requests */
1101	for_each_sg(sgl, sg, sg_len, i) {
1102		u32 len, mem;
1103
1104		mem = sg_dma_address(sg);
1105		len = sg_dma_len(sg);
1106
1107		if ((len & 3) || (mem & 3) ||
1108		    len > tdc->tdma->chip_data->max_dma_count) {
1109			dev_err(tdc2dev(tdc),
1110				"DMA length/memory address is not supported\n");
1111			tegra_dma_desc_put(tdc, dma_desc);
1112			return NULL;
1113		}
1114
1115		sg_req = tegra_dma_sg_req_get(tdc);
1116		if (!sg_req) {
1117			dev_err(tdc2dev(tdc), "DMA sg-req not available\n");
1118			tegra_dma_desc_put(tdc, dma_desc);
1119			return NULL;
1120		}
1121
1122		ahb_seq |= get_burst_size(tdc, burst_size, slave_bw, len);
1123		dma_desc->bytes_requested += len;
1124
1125		sg_req->ch_regs.apb_ptr = apb_ptr;
1126		sg_req->ch_regs.ahb_ptr = mem;
1127		sg_req->ch_regs.csr = csr;
1128		tegra_dma_prep_wcount(tdc, &sg_req->ch_regs, len);
1129		sg_req->ch_regs.apb_seq = apb_seq;
1130		sg_req->ch_regs.ahb_seq = ahb_seq;
1131		sg_req->configured = false;
1132		sg_req->last_sg = false;
1133		sg_req->dma_desc = dma_desc;
1134		sg_req->req_len = len;
1135
1136		list_add_tail(&sg_req->node, &dma_desc->tx_list);
1137	}
1138	sg_req->last_sg = true;
1139	if (flags & DMA_CTRL_ACK)
1140		dma_desc->txd.flags = DMA_CTRL_ACK;
1141
1142	/*
1143	 * Make sure that mode should not be conflicting with currently
1144	 * configured mode.
1145	 */
1146	if (!tdc->isr_handler) {
1147		tdc->isr_handler = handle_once_dma_done;
1148		tdc->cyclic = false;
1149	} else {
1150		if (tdc->cyclic) {
1151			dev_err(tdc2dev(tdc), "DMA configured in cyclic mode\n");
1152			tegra_dma_desc_put(tdc, dma_desc);
1153			return NULL;
1154		}
1155	}
1156
1157	return &dma_desc->txd;
1158}
1159
1160static struct dma_async_tx_descriptor *
1161tegra_dma_prep_dma_cyclic(struct dma_chan *dc, dma_addr_t buf_addr,
1162			  size_t buf_len,
1163			  size_t period_len,
1164			  enum dma_transfer_direction direction,
1165			  unsigned long flags)
1166{
1167	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
1168	struct tegra_dma_sg_req *sg_req = NULL;
1169	u32 csr, ahb_seq, apb_ptr, apb_seq;
1170	enum dma_slave_buswidth slave_bw;
1171	struct tegra_dma_desc *dma_desc;
1172	dma_addr_t mem = buf_addr;
1173	unsigned int burst_size;
1174	size_t len, remain_len;
1175
1176	if (!buf_len || !period_len) {
1177		dev_err(tdc2dev(tdc), "Invalid buffer/period len\n");
1178		return NULL;
1179	}
1180
1181	if (!tdc->config_init) {
1182		dev_err(tdc2dev(tdc), "DMA slave is not configured\n");
1183		return NULL;
1184	}
1185
1186	/*
1187	 * We allow to take more number of requests till DMA is
1188	 * not started. The driver will loop over all requests.
1189	 * Once DMA is started then new requests can be queued only after
1190	 * terminating the DMA.
1191	 */
1192	if (tdc->busy) {
1193		dev_err(tdc2dev(tdc), "Request not allowed when DMA running\n");
1194		return NULL;
1195	}
1196
1197	/*
1198	 * We only support cycle transfer when buf_len is multiple of
1199	 * period_len.
1200	 */
1201	if (buf_len % period_len) {
1202		dev_err(tdc2dev(tdc), "buf_len is not multiple of period_len\n");
1203		return NULL;
1204	}
1205
1206	len = period_len;
1207	if ((len & 3) || (buf_addr & 3) ||
1208	    len > tdc->tdma->chip_data->max_dma_count) {
1209		dev_err(tdc2dev(tdc), "Req len/mem address is not correct\n");
1210		return NULL;
1211	}
1212
1213	if (get_transfer_param(tdc, direction, &apb_ptr, &apb_seq, &csr,
1214			       &burst_size, &slave_bw) < 0)
1215		return NULL;
1216
1217	ahb_seq = TEGRA_APBDMA_AHBSEQ_INTR_ENB;
1218	ahb_seq |= TEGRA_APBDMA_AHBSEQ_WRAP_NONE <<
1219					TEGRA_APBDMA_AHBSEQ_WRAP_SHIFT;
1220	ahb_seq |= TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_32;
1221
1222	if (tdc->slave_id != TEGRA_APBDMA_SLAVE_ID_INVALID) {
1223		csr |= TEGRA_APBDMA_CSR_FLOW;
1224		csr |= tdc->slave_id << TEGRA_APBDMA_CSR_REQ_SEL_SHIFT;
1225	}
1226
1227	if (flags & DMA_PREP_INTERRUPT) {
1228		csr |= TEGRA_APBDMA_CSR_IE_EOC;
1229	} else {
1230		WARN_ON_ONCE(1);
1231		return NULL;
1232	}
1233
1234	apb_seq |= TEGRA_APBDMA_APBSEQ_WRAP_WORD_1;
1235
1236	dma_desc = tegra_dma_desc_get(tdc);
1237	if (!dma_desc) {
1238		dev_err(tdc2dev(tdc), "not enough descriptors available\n");
1239		return NULL;
1240	}
1241
1242	INIT_LIST_HEAD(&dma_desc->tx_list);
1243	INIT_LIST_HEAD(&dma_desc->cb_node);
1244	dma_desc->cb_count = 0;
1245
1246	dma_desc->bytes_transferred = 0;
1247	dma_desc->bytes_requested = buf_len;
1248	remain_len = buf_len;
1249
1250	/* Split transfer equal to period size */
1251	while (remain_len) {
1252		sg_req = tegra_dma_sg_req_get(tdc);
1253		if (!sg_req) {
1254			dev_err(tdc2dev(tdc), "DMA sg-req not available\n");
1255			tegra_dma_desc_put(tdc, dma_desc);
1256			return NULL;
1257		}
1258
1259		ahb_seq |= get_burst_size(tdc, burst_size, slave_bw, len);
1260		sg_req->ch_regs.apb_ptr = apb_ptr;
1261		sg_req->ch_regs.ahb_ptr = mem;
1262		sg_req->ch_regs.csr = csr;
1263		tegra_dma_prep_wcount(tdc, &sg_req->ch_regs, len);
1264		sg_req->ch_regs.apb_seq = apb_seq;
1265		sg_req->ch_regs.ahb_seq = ahb_seq;
1266		sg_req->configured = false;
1267		sg_req->last_sg = false;
1268		sg_req->dma_desc = dma_desc;
1269		sg_req->req_len = len;
1270
1271		list_add_tail(&sg_req->node, &dma_desc->tx_list);
1272		remain_len -= len;
1273		mem += len;
1274	}
1275	sg_req->last_sg = true;
1276	if (flags & DMA_CTRL_ACK)
1277		dma_desc->txd.flags = DMA_CTRL_ACK;
1278
1279	/*
1280	 * Make sure that mode should not be conflicting with currently
1281	 * configured mode.
1282	 */
1283	if (!tdc->isr_handler) {
1284		tdc->isr_handler = handle_cont_sngl_cycle_dma_done;
1285		tdc->cyclic = true;
1286	} else {
1287		if (!tdc->cyclic) {
1288			dev_err(tdc2dev(tdc), "DMA configuration conflict\n");
1289			tegra_dma_desc_put(tdc, dma_desc);
1290			return NULL;
1291		}
1292	}
1293
1294	return &dma_desc->txd;
1295}
1296
1297static int tegra_dma_alloc_chan_resources(struct dma_chan *dc)
1298{
1299	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
1300
1301	dma_cookie_init(&tdc->dma_chan);
1302
1303	return 0;
1304}
1305
1306static void tegra_dma_free_chan_resources(struct dma_chan *dc)
1307{
1308	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
1309	struct tegra_dma_desc *dma_desc;
1310	struct tegra_dma_sg_req *sg_req;
1311	struct list_head dma_desc_list;
1312	struct list_head sg_req_list;
1313
1314	INIT_LIST_HEAD(&dma_desc_list);
1315	INIT_LIST_HEAD(&sg_req_list);
1316
1317	dev_dbg(tdc2dev(tdc), "Freeing channel %d\n", tdc->id);
1318
1319	tegra_dma_terminate_all(dc);
1320	tasklet_kill(&tdc->tasklet);
1321
1322	list_splice_init(&tdc->pending_sg_req, &sg_req_list);
1323	list_splice_init(&tdc->free_sg_req, &sg_req_list);
1324	list_splice_init(&tdc->free_dma_desc, &dma_desc_list);
1325	INIT_LIST_HEAD(&tdc->cb_desc);
1326	tdc->config_init = false;
1327	tdc->isr_handler = NULL;
1328
1329	while (!list_empty(&dma_desc_list)) {
1330		dma_desc = list_first_entry(&dma_desc_list, typeof(*dma_desc),
1331					    node);
1332		list_del(&dma_desc->node);
1333		kfree(dma_desc);
1334	}
1335
1336	while (!list_empty(&sg_req_list)) {
1337		sg_req = list_first_entry(&sg_req_list, typeof(*sg_req), node);
1338		list_del(&sg_req->node);
1339		kfree(sg_req);
1340	}
1341
1342	tdc->slave_id = TEGRA_APBDMA_SLAVE_ID_INVALID;
1343}
1344
1345static struct dma_chan *tegra_dma_of_xlate(struct of_phandle_args *dma_spec,
1346					   struct of_dma *ofdma)
1347{
1348	struct tegra_dma *tdma = ofdma->of_dma_data;
1349	struct tegra_dma_channel *tdc;
1350	struct dma_chan *chan;
1351
1352	if (dma_spec->args[0] > TEGRA_APBDMA_CSR_REQ_SEL_MASK) {
1353		dev_err(tdma->dev, "Invalid slave id: %d\n", dma_spec->args[0]);
1354		return NULL;
1355	}
1356
1357	chan = dma_get_any_slave_channel(&tdma->dma_dev);
1358	if (!chan)
1359		return NULL;
1360
1361	tdc = to_tegra_dma_chan(chan);
1362	tdc->slave_id = dma_spec->args[0];
1363
1364	return chan;
1365}
1366
1367/* Tegra20 specific DMA controller information */
1368static const struct tegra_dma_chip_data tegra20_dma_chip_data = {
1369	.nr_channels		= 16,
1370	.channel_reg_size	= 0x20,
1371	.max_dma_count		= 1024UL * 64,
1372	.support_channel_pause	= false,
1373	.support_separate_wcount_reg = false,
1374};
1375
1376/* Tegra30 specific DMA controller information */
1377static const struct tegra_dma_chip_data tegra30_dma_chip_data = {
1378	.nr_channels		= 32,
1379	.channel_reg_size	= 0x20,
1380	.max_dma_count		= 1024UL * 64,
1381	.support_channel_pause	= false,
1382	.support_separate_wcount_reg = false,
1383};
1384
1385/* Tegra114 specific DMA controller information */
1386static const struct tegra_dma_chip_data tegra114_dma_chip_data = {
1387	.nr_channels		= 32,
1388	.channel_reg_size	= 0x20,
1389	.max_dma_count		= 1024UL * 64,
1390	.support_channel_pause	= true,
1391	.support_separate_wcount_reg = false,
1392};
1393
1394/* Tegra148 specific DMA controller information */
1395static const struct tegra_dma_chip_data tegra148_dma_chip_data = {
1396	.nr_channels		= 32,
1397	.channel_reg_size	= 0x40,
1398	.max_dma_count		= 1024UL * 64,
1399	.support_channel_pause	= true,
1400	.support_separate_wcount_reg = true,
1401};
1402
1403static int tegra_dma_init_hw(struct tegra_dma *tdma)
1404{
1405	int err;
1406
1407	err = reset_control_assert(tdma->rst);
1408	if (err) {
1409		dev_err(tdma->dev, "failed to assert reset: %d\n", err);
1410		return err;
1411	}
1412
1413	err = clk_enable(tdma->dma_clk);
1414	if (err) {
1415		dev_err(tdma->dev, "failed to enable clk: %d\n", err);
1416		return err;
1417	}
1418
1419	/* reset DMA controller */
1420	udelay(2);
1421	reset_control_deassert(tdma->rst);
1422
1423	/* enable global DMA registers */
1424	tdma_write(tdma, TEGRA_APBDMA_GENERAL, TEGRA_APBDMA_GENERAL_ENABLE);
1425	tdma_write(tdma, TEGRA_APBDMA_CONTROL, 0);
1426	tdma_write(tdma, TEGRA_APBDMA_IRQ_MASK_SET, 0xFFFFFFFF);
1427
1428	clk_disable(tdma->dma_clk);
1429
1430	return 0;
1431}
1432
1433static int tegra_dma_probe(struct platform_device *pdev)
1434{
1435	const struct tegra_dma_chip_data *cdata;
1436	struct tegra_dma *tdma;
1437	unsigned int i;
1438	size_t size;
1439	int ret;
1440
1441	cdata = of_device_get_match_data(&pdev->dev);
1442	size = struct_size(tdma, channels, cdata->nr_channels);
1443
1444	tdma = devm_kzalloc(&pdev->dev, size, GFP_KERNEL);
1445	if (!tdma)
1446		return -ENOMEM;
1447
1448	tdma->dev = &pdev->dev;
1449	tdma->chip_data = cdata;
1450	platform_set_drvdata(pdev, tdma);
1451
1452	tdma->base_addr = devm_platform_ioremap_resource(pdev, 0);
1453	if (IS_ERR(tdma->base_addr))
1454		return PTR_ERR(tdma->base_addr);
1455
1456	tdma->dma_clk = devm_clk_get(&pdev->dev, NULL);
1457	if (IS_ERR(tdma->dma_clk)) {
1458		dev_err(&pdev->dev, "Error: Missing controller clock\n");
1459		return PTR_ERR(tdma->dma_clk);
1460	}
1461
1462	tdma->rst = devm_reset_control_get(&pdev->dev, "dma");
1463	if (IS_ERR(tdma->rst)) {
1464		dev_err(&pdev->dev, "Error: Missing reset\n");
1465		return PTR_ERR(tdma->rst);
1466	}
1467
1468	spin_lock_init(&tdma->global_lock);
1469
1470	ret = clk_prepare(tdma->dma_clk);
1471	if (ret)
1472		return ret;
1473
1474	ret = tegra_dma_init_hw(tdma);
1475	if (ret)
1476		goto err_clk_unprepare;
1477
1478	pm_runtime_irq_safe(&pdev->dev);
1479	pm_runtime_enable(&pdev->dev);
1480
1481	INIT_LIST_HEAD(&tdma->dma_dev.channels);
1482	for (i = 0; i < cdata->nr_channels; i++) {
1483		struct tegra_dma_channel *tdc = &tdma->channels[i];
1484		int irq;
1485
1486		tdc->chan_addr = tdma->base_addr +
1487				 TEGRA_APBDMA_CHANNEL_BASE_ADD_OFFSET +
1488				 (i * cdata->channel_reg_size);
1489
1490		irq = platform_get_irq(pdev, i);
1491		if (irq < 0) {
1492			ret = irq;
1493			goto err_pm_disable;
1494		}
1495
1496		snprintf(tdc->name, sizeof(tdc->name), "apbdma.%d", i);
1497		ret = devm_request_irq(&pdev->dev, irq, tegra_dma_isr, 0,
1498				       tdc->name, tdc);
1499		if (ret) {
1500			dev_err(&pdev->dev,
1501				"request_irq failed with err %d channel %d\n",
1502				ret, i);
1503			goto err_pm_disable;
1504		}
1505
1506		tdc->dma_chan.device = &tdma->dma_dev;
1507		dma_cookie_init(&tdc->dma_chan);
1508		list_add_tail(&tdc->dma_chan.device_node,
1509			      &tdma->dma_dev.channels);
1510		tdc->tdma = tdma;
1511		tdc->id = i;
1512		tdc->slave_id = TEGRA_APBDMA_SLAVE_ID_INVALID;
1513
1514		tasklet_setup(&tdc->tasklet, tegra_dma_tasklet);
1515		spin_lock_init(&tdc->lock);
1516		init_waitqueue_head(&tdc->wq);
1517
1518		INIT_LIST_HEAD(&tdc->pending_sg_req);
1519		INIT_LIST_HEAD(&tdc->free_sg_req);
1520		INIT_LIST_HEAD(&tdc->free_dma_desc);
1521		INIT_LIST_HEAD(&tdc->cb_desc);
1522	}
1523
1524	dma_cap_set(DMA_SLAVE, tdma->dma_dev.cap_mask);
1525	dma_cap_set(DMA_PRIVATE, tdma->dma_dev.cap_mask);
1526	dma_cap_set(DMA_CYCLIC, tdma->dma_dev.cap_mask);
1527
1528	tdma->global_pause_count = 0;
1529	tdma->dma_dev.dev = &pdev->dev;
1530	tdma->dma_dev.device_alloc_chan_resources =
1531					tegra_dma_alloc_chan_resources;
1532	tdma->dma_dev.device_free_chan_resources =
1533					tegra_dma_free_chan_resources;
1534	tdma->dma_dev.device_prep_slave_sg = tegra_dma_prep_slave_sg;
1535	tdma->dma_dev.device_prep_dma_cyclic = tegra_dma_prep_dma_cyclic;
1536	tdma->dma_dev.src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
1537		BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
1538		BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) |
1539		BIT(DMA_SLAVE_BUSWIDTH_8_BYTES);
1540	tdma->dma_dev.dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
1541		BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
1542		BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) |
1543		BIT(DMA_SLAVE_BUSWIDTH_8_BYTES);
1544	tdma->dma_dev.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1545	tdma->dma_dev.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1546	tdma->dma_dev.device_config = tegra_dma_slave_config;
1547	tdma->dma_dev.device_terminate_all = tegra_dma_terminate_all;
1548	tdma->dma_dev.device_synchronize = tegra_dma_synchronize;
1549	tdma->dma_dev.device_tx_status = tegra_dma_tx_status;
1550	tdma->dma_dev.device_issue_pending = tegra_dma_issue_pending;
1551
1552	ret = dma_async_device_register(&tdma->dma_dev);
1553	if (ret < 0) {
1554		dev_err(&pdev->dev,
1555			"Tegra20 APB DMA driver registration failed %d\n", ret);
1556		goto err_pm_disable;
1557	}
1558
1559	ret = of_dma_controller_register(pdev->dev.of_node,
1560					 tegra_dma_of_xlate, tdma);
1561	if (ret < 0) {
1562		dev_err(&pdev->dev,
1563			"Tegra20 APB DMA OF registration failed %d\n", ret);
1564		goto err_unregister_dma_dev;
1565	}
1566
1567	dev_info(&pdev->dev, "Tegra20 APB DMA driver registered %u channels\n",
1568		 cdata->nr_channels);
1569
1570	return 0;
1571
1572err_unregister_dma_dev:
1573	dma_async_device_unregister(&tdma->dma_dev);
1574
1575err_pm_disable:
1576	pm_runtime_disable(&pdev->dev);
1577
1578err_clk_unprepare:
1579	clk_unprepare(tdma->dma_clk);
1580
1581	return ret;
1582}
1583
1584static void tegra_dma_remove(struct platform_device *pdev)
1585{
1586	struct tegra_dma *tdma = platform_get_drvdata(pdev);
1587
1588	of_dma_controller_free(pdev->dev.of_node);
1589	dma_async_device_unregister(&tdma->dma_dev);
1590	pm_runtime_disable(&pdev->dev);
1591	clk_unprepare(tdma->dma_clk);
1592}
1593
1594static int __maybe_unused tegra_dma_runtime_suspend(struct device *dev)
1595{
1596	struct tegra_dma *tdma = dev_get_drvdata(dev);
1597
1598	clk_disable(tdma->dma_clk);
1599
1600	return 0;
1601}
1602
1603static int __maybe_unused tegra_dma_runtime_resume(struct device *dev)
1604{
1605	struct tegra_dma *tdma = dev_get_drvdata(dev);
1606
1607	return clk_enable(tdma->dma_clk);
1608}
1609
1610static int __maybe_unused tegra_dma_dev_suspend(struct device *dev)
1611{
1612	struct tegra_dma *tdma = dev_get_drvdata(dev);
1613	unsigned long flags;
1614	unsigned int i;
1615	bool busy;
1616
1617	for (i = 0; i < tdma->chip_data->nr_channels; i++) {
1618		struct tegra_dma_channel *tdc = &tdma->channels[i];
1619
1620		tasklet_kill(&tdc->tasklet);
1621
1622		spin_lock_irqsave(&tdc->lock, flags);
1623		busy = tdc->busy;
1624		spin_unlock_irqrestore(&tdc->lock, flags);
1625
1626		if (busy) {
1627			dev_err(tdma->dev, "channel %u busy\n", i);
1628			return -EBUSY;
1629		}
1630	}
1631
1632	return pm_runtime_force_suspend(dev);
1633}
1634
1635static int __maybe_unused tegra_dma_dev_resume(struct device *dev)
1636{
1637	struct tegra_dma *tdma = dev_get_drvdata(dev);
1638	int err;
1639
1640	err = tegra_dma_init_hw(tdma);
1641	if (err)
1642		return err;
1643
1644	return pm_runtime_force_resume(dev);
1645}
1646
1647static const struct dev_pm_ops tegra_dma_dev_pm_ops = {
1648	SET_RUNTIME_PM_OPS(tegra_dma_runtime_suspend, tegra_dma_runtime_resume,
1649			   NULL)
1650	SET_SYSTEM_SLEEP_PM_OPS(tegra_dma_dev_suspend, tegra_dma_dev_resume)
1651};
1652
1653static const struct of_device_id tegra_dma_of_match[] = {
1654	{
1655		.compatible = "nvidia,tegra148-apbdma",
1656		.data = &tegra148_dma_chip_data,
1657	}, {
1658		.compatible = "nvidia,tegra114-apbdma",
1659		.data = &tegra114_dma_chip_data,
1660	}, {
1661		.compatible = "nvidia,tegra30-apbdma",
1662		.data = &tegra30_dma_chip_data,
1663	}, {
1664		.compatible = "nvidia,tegra20-apbdma",
1665		.data = &tegra20_dma_chip_data,
1666	}, {
1667	},
1668};
1669MODULE_DEVICE_TABLE(of, tegra_dma_of_match);
1670
1671static struct platform_driver tegra_dmac_driver = {
1672	.driver = {
1673		.name	= "tegra-apbdma",
1674		.pm	= &tegra_dma_dev_pm_ops,
1675		.of_match_table = tegra_dma_of_match,
1676	},
1677	.probe		= tegra_dma_probe,
1678	.remove_new	= tegra_dma_remove,
1679};
1680
1681module_platform_driver(tegra_dmac_driver);
1682
1683MODULE_DESCRIPTION("NVIDIA Tegra APB DMA Controller driver");
1684MODULE_AUTHOR("Laxman Dewangan <ldewangan@nvidia.com>");
1685MODULE_LICENSE("GPL v2");
1686