1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Copyright (C) 2014 Emilio L��pez
4 * Emilio L��pez <emilio@elopez.com.ar>
5 */
6
7#include <linux/bitmap.h>
8#include <linux/bitops.h>
9#include <linux/clk.h>
10#include <linux/dma-mapping.h>
11#include <linux/dmaengine.h>
12#include <linux/dmapool.h>
13#include <linux/interrupt.h>
14#include <linux/module.h>
15#include <linux/of_dma.h>
16#include <linux/platform_device.h>
17#include <linux/slab.h>
18#include <linux/spinlock.h>
19
20#include "virt-dma.h"
21
22/** Common macros to normal and dedicated DMA registers **/
23
24#define SUN4I_DMA_CFG_LOADING			BIT(31)
25#define SUN4I_DMA_CFG_DST_DATA_WIDTH(width)	((width) << 25)
26#define SUN4I_DMA_CFG_DST_BURST_LENGTH(len)	((len) << 23)
27#define SUN4I_DMA_CFG_DST_ADDR_MODE(mode)	((mode) << 21)
28#define SUN4I_DMA_CFG_DST_DRQ_TYPE(type)	((type) << 16)
29#define SUN4I_DMA_CFG_SRC_DATA_WIDTH(width)	((width) << 9)
30#define SUN4I_DMA_CFG_SRC_BURST_LENGTH(len)	((len) << 7)
31#define SUN4I_DMA_CFG_SRC_ADDR_MODE(mode)	((mode) << 5)
32#define SUN4I_DMA_CFG_SRC_DRQ_TYPE(type)	(type)
33
34/** Normal DMA register values **/
35
36/* Normal DMA source/destination data request type values */
37#define SUN4I_NDMA_DRQ_TYPE_SDRAM		0x16
38#define SUN4I_NDMA_DRQ_TYPE_LIMIT		(0x1F + 1)
39
40/** Normal DMA register layout **/
41
42/* Dedicated DMA source/destination address mode values */
43#define SUN4I_NDMA_ADDR_MODE_LINEAR		0
44#define SUN4I_NDMA_ADDR_MODE_IO			1
45
46/* Normal DMA configuration register layout */
47#define SUN4I_NDMA_CFG_CONT_MODE		BIT(30)
48#define SUN4I_NDMA_CFG_WAIT_STATE(n)		((n) << 27)
49#define SUN4I_NDMA_CFG_DST_NON_SECURE		BIT(22)
50#define SUN4I_NDMA_CFG_BYTE_COUNT_MODE_REMAIN	BIT(15)
51#define SUN4I_NDMA_CFG_SRC_NON_SECURE		BIT(6)
52
53/** Dedicated DMA register values **/
54
55/* Dedicated DMA source/destination address mode values */
56#define SUN4I_DDMA_ADDR_MODE_LINEAR		0
57#define SUN4I_DDMA_ADDR_MODE_IO			1
58#define SUN4I_DDMA_ADDR_MODE_HORIZONTAL_PAGE	2
59#define SUN4I_DDMA_ADDR_MODE_VERTICAL_PAGE	3
60
61/* Dedicated DMA source/destination data request type values */
62#define SUN4I_DDMA_DRQ_TYPE_SDRAM		0x1
63#define SUN4I_DDMA_DRQ_TYPE_LIMIT		(0x1F + 1)
64
65/** Dedicated DMA register layout **/
66
67/* Dedicated DMA configuration register layout */
68#define SUN4I_DDMA_CFG_BUSY			BIT(30)
69#define SUN4I_DDMA_CFG_CONT_MODE		BIT(29)
70#define SUN4I_DDMA_CFG_DST_NON_SECURE		BIT(28)
71#define SUN4I_DDMA_CFG_BYTE_COUNT_MODE_REMAIN	BIT(15)
72#define SUN4I_DDMA_CFG_SRC_NON_SECURE		BIT(12)
73
74/* Dedicated DMA parameter register layout */
75#define SUN4I_DDMA_PARA_DST_DATA_BLK_SIZE(n)	(((n) - 1) << 24)
76#define SUN4I_DDMA_PARA_DST_WAIT_CYCLES(n)	(((n) - 1) << 16)
77#define SUN4I_DDMA_PARA_SRC_DATA_BLK_SIZE(n)	(((n) - 1) << 8)
78#define SUN4I_DDMA_PARA_SRC_WAIT_CYCLES(n)	(((n) - 1) << 0)
79
80/** DMA register offsets **/
81
82/* General register offsets */
83#define SUN4I_DMA_IRQ_ENABLE_REG		0x0
84#define SUN4I_DMA_IRQ_PENDING_STATUS_REG	0x4
85
86/* Normal DMA register offsets */
87#define SUN4I_NDMA_CHANNEL_REG_BASE(n)		(0x100 + (n) * 0x20)
88#define SUN4I_NDMA_CFG_REG			0x0
89#define SUN4I_NDMA_SRC_ADDR_REG			0x4
90#define SUN4I_NDMA_DST_ADDR_REG		0x8
91#define SUN4I_NDMA_BYTE_COUNT_REG		0xC
92
93/* Dedicated DMA register offsets */
94#define SUN4I_DDMA_CHANNEL_REG_BASE(n)		(0x300 + (n) * 0x20)
95#define SUN4I_DDMA_CFG_REG			0x0
96#define SUN4I_DDMA_SRC_ADDR_REG			0x4
97#define SUN4I_DDMA_DST_ADDR_REG		0x8
98#define SUN4I_DDMA_BYTE_COUNT_REG		0xC
99#define SUN4I_DDMA_PARA_REG			0x18
100
101/** DMA Driver **/
102
103/*
104 * Normal DMA has 8 channels, and Dedicated DMA has another 8, so
105 * that's 16 channels. As for endpoints, there's 29 and 21
106 * respectively. Given that the Normal DMA endpoints (other than
107 * SDRAM) can be used as tx/rx, we need 78 vchans in total
108 */
109#define SUN4I_NDMA_NR_MAX_CHANNELS	8
110#define SUN4I_DDMA_NR_MAX_CHANNELS	8
111#define SUN4I_DMA_NR_MAX_CHANNELS					\
112	(SUN4I_NDMA_NR_MAX_CHANNELS + SUN4I_DDMA_NR_MAX_CHANNELS)
113#define SUN4I_NDMA_NR_MAX_VCHANS	(29 * 2 - 1)
114#define SUN4I_DDMA_NR_MAX_VCHANS	21
115#define SUN4I_DMA_NR_MAX_VCHANS						\
116	(SUN4I_NDMA_NR_MAX_VCHANS + SUN4I_DDMA_NR_MAX_VCHANS)
117
118/* This set of SUN4I_DDMA timing parameters were found experimentally while
119 * working with the SPI driver and seem to make it behave correctly */
120#define SUN4I_DDMA_MAGIC_SPI_PARAMETERS \
121	(SUN4I_DDMA_PARA_DST_DATA_BLK_SIZE(1) |			\
122	 SUN4I_DDMA_PARA_SRC_DATA_BLK_SIZE(1) |				\
123	 SUN4I_DDMA_PARA_DST_WAIT_CYCLES(2) |				\
124	 SUN4I_DDMA_PARA_SRC_WAIT_CYCLES(2))
125
126/*
127 * Normal DMA supports individual transfers (segments) up to 128k.
128 * Dedicated DMA supports transfers up to 16M. We can only report
129 * one size limit, so we have to use the smaller value.
130 */
131#define SUN4I_NDMA_MAX_SEG_SIZE		SZ_128K
132#define SUN4I_DDMA_MAX_SEG_SIZE		SZ_16M
133#define SUN4I_DMA_MAX_SEG_SIZE		SUN4I_NDMA_MAX_SEG_SIZE
134
135struct sun4i_dma_pchan {
136	/* Register base of channel */
137	void __iomem			*base;
138	/* vchan currently being serviced */
139	struct sun4i_dma_vchan		*vchan;
140	/* Is this a dedicated pchan? */
141	int				is_dedicated;
142};
143
144struct sun4i_dma_vchan {
145	struct virt_dma_chan		vc;
146	struct dma_slave_config		cfg;
147	struct sun4i_dma_pchan		*pchan;
148	struct sun4i_dma_promise	*processing;
149	struct sun4i_dma_contract	*contract;
150	u8				endpoint;
151	int				is_dedicated;
152};
153
154struct sun4i_dma_promise {
155	u32				cfg;
156	u32				para;
157	dma_addr_t			src;
158	dma_addr_t			dst;
159	size_t				len;
160	struct list_head		list;
161};
162
163/* A contract is a set of promises */
164struct sun4i_dma_contract {
165	struct virt_dma_desc		vd;
166	struct list_head		demands;
167	struct list_head		completed_demands;
168	bool				is_cyclic : 1;
169	bool				use_half_int : 1;
170};
171
172struct sun4i_dma_dev {
173	DECLARE_BITMAP(pchans_used, SUN4I_DMA_NR_MAX_CHANNELS);
174	struct dma_device		slave;
175	struct sun4i_dma_pchan		*pchans;
176	struct sun4i_dma_vchan		*vchans;
177	void __iomem			*base;
178	struct clk			*clk;
179	int				irq;
180	spinlock_t			lock;
181};
182
183static struct sun4i_dma_dev *to_sun4i_dma_dev(struct dma_device *dev)
184{
185	return container_of(dev, struct sun4i_dma_dev, slave);
186}
187
188static struct sun4i_dma_vchan *to_sun4i_dma_vchan(struct dma_chan *chan)
189{
190	return container_of(chan, struct sun4i_dma_vchan, vc.chan);
191}
192
193static struct sun4i_dma_contract *to_sun4i_dma_contract(struct virt_dma_desc *vd)
194{
195	return container_of(vd, struct sun4i_dma_contract, vd);
196}
197
198static struct device *chan2dev(struct dma_chan *chan)
199{
200	return &chan->dev->device;
201}
202
203static int convert_burst(u32 maxburst)
204{
205	if (maxburst > 8)
206		return -EINVAL;
207
208	/* 1 -> 0, 4 -> 1, 8 -> 2 */
209	return (maxburst >> 2);
210}
211
212static int convert_buswidth(enum dma_slave_buswidth addr_width)
213{
214	if (addr_width > DMA_SLAVE_BUSWIDTH_4_BYTES)
215		return -EINVAL;
216
217	/* 8 (1 byte) -> 0, 16 (2 bytes) -> 1, 32 (4 bytes) -> 2 */
218	return (addr_width >> 1);
219}
220
221static void sun4i_dma_free_chan_resources(struct dma_chan *chan)
222{
223	struct sun4i_dma_vchan *vchan = to_sun4i_dma_vchan(chan);
224
225	vchan_free_chan_resources(&vchan->vc);
226}
227
228static struct sun4i_dma_pchan *find_and_use_pchan(struct sun4i_dma_dev *priv,
229						  struct sun4i_dma_vchan *vchan)
230{
231	struct sun4i_dma_pchan *pchan = NULL, *pchans = priv->pchans;
232	unsigned long flags;
233	int i, max;
234
235	/*
236	 * pchans 0-SUN4I_NDMA_NR_MAX_CHANNELS are normal, and
237	 * SUN4I_NDMA_NR_MAX_CHANNELS+ are dedicated ones
238	 */
239	if (vchan->is_dedicated) {
240		i = SUN4I_NDMA_NR_MAX_CHANNELS;
241		max = SUN4I_DMA_NR_MAX_CHANNELS;
242	} else {
243		i = 0;
244		max = SUN4I_NDMA_NR_MAX_CHANNELS;
245	}
246
247	spin_lock_irqsave(&priv->lock, flags);
248	for_each_clear_bit_from(i, priv->pchans_used, max) {
249		pchan = &pchans[i];
250		pchan->vchan = vchan;
251		set_bit(i, priv->pchans_used);
252		break;
253	}
254	spin_unlock_irqrestore(&priv->lock, flags);
255
256	return pchan;
257}
258
259static void release_pchan(struct sun4i_dma_dev *priv,
260			  struct sun4i_dma_pchan *pchan)
261{
262	unsigned long flags;
263	int nr = pchan - priv->pchans;
264
265	spin_lock_irqsave(&priv->lock, flags);
266
267	pchan->vchan = NULL;
268	clear_bit(nr, priv->pchans_used);
269
270	spin_unlock_irqrestore(&priv->lock, flags);
271}
272
273static void configure_pchan(struct sun4i_dma_pchan *pchan,
274			    struct sun4i_dma_promise *d)
275{
276	/*
277	 * Configure addresses and misc parameters depending on type
278	 * SUN4I_DDMA has an extra field with timing parameters
279	 */
280	if (pchan->is_dedicated) {
281		writel_relaxed(d->src, pchan->base + SUN4I_DDMA_SRC_ADDR_REG);
282		writel_relaxed(d->dst, pchan->base + SUN4I_DDMA_DST_ADDR_REG);
283		writel_relaxed(d->len, pchan->base + SUN4I_DDMA_BYTE_COUNT_REG);
284		writel_relaxed(d->para, pchan->base + SUN4I_DDMA_PARA_REG);
285		writel_relaxed(d->cfg, pchan->base + SUN4I_DDMA_CFG_REG);
286	} else {
287		writel_relaxed(d->src, pchan->base + SUN4I_NDMA_SRC_ADDR_REG);
288		writel_relaxed(d->dst, pchan->base + SUN4I_NDMA_DST_ADDR_REG);
289		writel_relaxed(d->len, pchan->base + SUN4I_NDMA_BYTE_COUNT_REG);
290		writel_relaxed(d->cfg, pchan->base + SUN4I_NDMA_CFG_REG);
291	}
292}
293
294static void set_pchan_interrupt(struct sun4i_dma_dev *priv,
295				struct sun4i_dma_pchan *pchan,
296				int half, int end)
297{
298	u32 reg;
299	int pchan_number = pchan - priv->pchans;
300	unsigned long flags;
301
302	spin_lock_irqsave(&priv->lock, flags);
303
304	reg = readl_relaxed(priv->base + SUN4I_DMA_IRQ_ENABLE_REG);
305
306	if (half)
307		reg |= BIT(pchan_number * 2);
308	else
309		reg &= ~BIT(pchan_number * 2);
310
311	if (end)
312		reg |= BIT(pchan_number * 2 + 1);
313	else
314		reg &= ~BIT(pchan_number * 2 + 1);
315
316	writel_relaxed(reg, priv->base + SUN4I_DMA_IRQ_ENABLE_REG);
317
318	spin_unlock_irqrestore(&priv->lock, flags);
319}
320
321/*
322 * Execute pending operations on a vchan
323 *
324 * When given a vchan, this function will try to acquire a suitable
325 * pchan and, if successful, will configure it to fulfill a promise
326 * from the next pending contract.
327 *
328 * This function must be called with &vchan->vc.lock held.
329 */
330static int __execute_vchan_pending(struct sun4i_dma_dev *priv,
331				   struct sun4i_dma_vchan *vchan)
332{
333	struct sun4i_dma_promise *promise = NULL;
334	struct sun4i_dma_contract *contract = NULL;
335	struct sun4i_dma_pchan *pchan;
336	struct virt_dma_desc *vd;
337	int ret;
338
339	lockdep_assert_held(&vchan->vc.lock);
340
341	/* We need a pchan to do anything, so secure one if available */
342	pchan = find_and_use_pchan(priv, vchan);
343	if (!pchan)
344		return -EBUSY;
345
346	/*
347	 * Channel endpoints must not be repeated, so if this vchan
348	 * has already submitted some work, we can't do anything else
349	 */
350	if (vchan->processing) {
351		dev_dbg(chan2dev(&vchan->vc.chan),
352			"processing something to this endpoint already\n");
353		ret = -EBUSY;
354		goto release_pchan;
355	}
356
357	do {
358		/* Figure out which contract we're working with today */
359		vd = vchan_next_desc(&vchan->vc);
360		if (!vd) {
361			dev_dbg(chan2dev(&vchan->vc.chan),
362				"No pending contract found");
363			ret = 0;
364			goto release_pchan;
365		}
366
367		contract = to_sun4i_dma_contract(vd);
368		if (list_empty(&contract->demands)) {
369			/* The contract has been completed so mark it as such */
370			list_del(&contract->vd.node);
371			vchan_cookie_complete(&contract->vd);
372			dev_dbg(chan2dev(&vchan->vc.chan),
373				"Empty contract found and marked complete");
374		}
375	} while (list_empty(&contract->demands));
376
377	/* Now find out what we need to do */
378	promise = list_first_entry(&contract->demands,
379				   struct sun4i_dma_promise, list);
380	vchan->processing = promise;
381
382	/* ... and make it reality */
383	if (promise) {
384		vchan->contract = contract;
385		vchan->pchan = pchan;
386		set_pchan_interrupt(priv, pchan, contract->use_half_int, 1);
387		configure_pchan(pchan, promise);
388	}
389
390	return 0;
391
392release_pchan:
393	release_pchan(priv, pchan);
394	return ret;
395}
396
397static int sanitize_config(struct dma_slave_config *sconfig,
398			   enum dma_transfer_direction direction)
399{
400	switch (direction) {
401	case DMA_MEM_TO_DEV:
402		if ((sconfig->dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) ||
403		    !sconfig->dst_maxburst)
404			return -EINVAL;
405
406		if (sconfig->src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
407			sconfig->src_addr_width = sconfig->dst_addr_width;
408
409		if (!sconfig->src_maxburst)
410			sconfig->src_maxburst = sconfig->dst_maxburst;
411
412		break;
413
414	case DMA_DEV_TO_MEM:
415		if ((sconfig->src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) ||
416		    !sconfig->src_maxburst)
417			return -EINVAL;
418
419		if (sconfig->dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
420			sconfig->dst_addr_width = sconfig->src_addr_width;
421
422		if (!sconfig->dst_maxburst)
423			sconfig->dst_maxburst = sconfig->src_maxburst;
424
425		break;
426	default:
427		return 0;
428	}
429
430	return 0;
431}
432
433/*
434 * Generate a promise, to be used in a normal DMA contract.
435 *
436 * A NDMA promise contains all the information required to program the
437 * normal part of the DMA Engine and get data copied. A non-executed
438 * promise will live in the demands list on a contract. Once it has been
439 * completed, it will be moved to the completed demands list for later freeing.
440 * All linked promises will be freed when the corresponding contract is freed
441 */
442static struct sun4i_dma_promise *
443generate_ndma_promise(struct dma_chan *chan, dma_addr_t src, dma_addr_t dest,
444		      size_t len, struct dma_slave_config *sconfig,
445		      enum dma_transfer_direction direction)
446{
447	struct sun4i_dma_promise *promise;
448	int ret;
449
450	ret = sanitize_config(sconfig, direction);
451	if (ret)
452		return NULL;
453
454	promise = kzalloc(sizeof(*promise), GFP_NOWAIT);
455	if (!promise)
456		return NULL;
457
458	promise->src = src;
459	promise->dst = dest;
460	promise->len = len;
461	promise->cfg = SUN4I_DMA_CFG_LOADING |
462		SUN4I_NDMA_CFG_BYTE_COUNT_MODE_REMAIN;
463
464	dev_dbg(chan2dev(chan),
465		"src burst %d, dst burst %d, src buswidth %d, dst buswidth %d",
466		sconfig->src_maxburst, sconfig->dst_maxburst,
467		sconfig->src_addr_width, sconfig->dst_addr_width);
468
469	/* Source burst */
470	ret = convert_burst(sconfig->src_maxburst);
471	if (ret < 0)
472		goto fail;
473	promise->cfg |= SUN4I_DMA_CFG_SRC_BURST_LENGTH(ret);
474
475	/* Destination burst */
476	ret = convert_burst(sconfig->dst_maxburst);
477	if (ret < 0)
478		goto fail;
479	promise->cfg |= SUN4I_DMA_CFG_DST_BURST_LENGTH(ret);
480
481	/* Source bus width */
482	ret = convert_buswidth(sconfig->src_addr_width);
483	if (ret < 0)
484		goto fail;
485	promise->cfg |= SUN4I_DMA_CFG_SRC_DATA_WIDTH(ret);
486
487	/* Destination bus width */
488	ret = convert_buswidth(sconfig->dst_addr_width);
489	if (ret < 0)
490		goto fail;
491	promise->cfg |= SUN4I_DMA_CFG_DST_DATA_WIDTH(ret);
492
493	return promise;
494
495fail:
496	kfree(promise);
497	return NULL;
498}
499
500/*
501 * Generate a promise, to be used in a dedicated DMA contract.
502 *
503 * A DDMA promise contains all the information required to program the
504 * Dedicated part of the DMA Engine and get data copied. A non-executed
505 * promise will live in the demands list on a contract. Once it has been
506 * completed, it will be moved to the completed demands list for later freeing.
507 * All linked promises will be freed when the corresponding contract is freed
508 */
509static struct sun4i_dma_promise *
510generate_ddma_promise(struct dma_chan *chan, dma_addr_t src, dma_addr_t dest,
511		      size_t len, struct dma_slave_config *sconfig)
512{
513	struct sun4i_dma_promise *promise;
514	int ret;
515
516	promise = kzalloc(sizeof(*promise), GFP_NOWAIT);
517	if (!promise)
518		return NULL;
519
520	promise->src = src;
521	promise->dst = dest;
522	promise->len = len;
523	promise->cfg = SUN4I_DMA_CFG_LOADING |
524		SUN4I_DDMA_CFG_BYTE_COUNT_MODE_REMAIN;
525
526	/* Source burst */
527	ret = convert_burst(sconfig->src_maxburst);
528	if (ret < 0)
529		goto fail;
530	promise->cfg |= SUN4I_DMA_CFG_SRC_BURST_LENGTH(ret);
531
532	/* Destination burst */
533	ret = convert_burst(sconfig->dst_maxburst);
534	if (ret < 0)
535		goto fail;
536	promise->cfg |= SUN4I_DMA_CFG_DST_BURST_LENGTH(ret);
537
538	/* Source bus width */
539	ret = convert_buswidth(sconfig->src_addr_width);
540	if (ret < 0)
541		goto fail;
542	promise->cfg |= SUN4I_DMA_CFG_SRC_DATA_WIDTH(ret);
543
544	/* Destination bus width */
545	ret = convert_buswidth(sconfig->dst_addr_width);
546	if (ret < 0)
547		goto fail;
548	promise->cfg |= SUN4I_DMA_CFG_DST_DATA_WIDTH(ret);
549
550	return promise;
551
552fail:
553	kfree(promise);
554	return NULL;
555}
556
557/*
558 * Generate a contract
559 *
560 * Contracts function as DMA descriptors. As our hardware does not support
561 * linked lists, we need to implement SG via software. We use a contract
562 * to hold all the pieces of the request and process them serially one
563 * after another. Each piece is represented as a promise.
564 */
565static struct sun4i_dma_contract *generate_dma_contract(void)
566{
567	struct sun4i_dma_contract *contract;
568
569	contract = kzalloc(sizeof(*contract), GFP_NOWAIT);
570	if (!contract)
571		return NULL;
572
573	INIT_LIST_HEAD(&contract->demands);
574	INIT_LIST_HEAD(&contract->completed_demands);
575
576	return contract;
577}
578
579/*
580 * Get next promise on a cyclic transfer
581 *
582 * Cyclic contracts contain a series of promises which are executed on a
583 * loop. This function returns the next promise from a cyclic contract,
584 * so it can be programmed into the hardware.
585 */
586static struct sun4i_dma_promise *
587get_next_cyclic_promise(struct sun4i_dma_contract *contract)
588{
589	struct sun4i_dma_promise *promise;
590
591	promise = list_first_entry_or_null(&contract->demands,
592					   struct sun4i_dma_promise, list);
593	if (!promise) {
594		list_splice_init(&contract->completed_demands,
595				 &contract->demands);
596		promise = list_first_entry(&contract->demands,
597					   struct sun4i_dma_promise, list);
598	}
599
600	return promise;
601}
602
603/*
604 * Free a contract and all its associated promises
605 */
606static void sun4i_dma_free_contract(struct virt_dma_desc *vd)
607{
608	struct sun4i_dma_contract *contract = to_sun4i_dma_contract(vd);
609	struct sun4i_dma_promise *promise, *tmp;
610
611	/* Free all the demands and completed demands */
612	list_for_each_entry_safe(promise, tmp, &contract->demands, list)
613		kfree(promise);
614
615	list_for_each_entry_safe(promise, tmp, &contract->completed_demands, list)
616		kfree(promise);
617
618	kfree(contract);
619}
620
621static struct dma_async_tx_descriptor *
622sun4i_dma_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest,
623			  dma_addr_t src, size_t len, unsigned long flags)
624{
625	struct sun4i_dma_vchan *vchan = to_sun4i_dma_vchan(chan);
626	struct dma_slave_config *sconfig = &vchan->cfg;
627	struct sun4i_dma_promise *promise;
628	struct sun4i_dma_contract *contract;
629
630	contract = generate_dma_contract();
631	if (!contract)
632		return NULL;
633
634	/*
635	 * We can only do the copy to bus aligned addresses, so
636	 * choose the best one so we get decent performance. We also
637	 * maximize the burst size for this same reason.
638	 */
639	sconfig->src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
640	sconfig->dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
641	sconfig->src_maxburst = 8;
642	sconfig->dst_maxburst = 8;
643
644	if (vchan->is_dedicated)
645		promise = generate_ddma_promise(chan, src, dest, len, sconfig);
646	else
647		promise = generate_ndma_promise(chan, src, dest, len, sconfig,
648						DMA_MEM_TO_MEM);
649
650	if (!promise) {
651		kfree(contract);
652		return NULL;
653	}
654
655	/* Configure memcpy mode */
656	if (vchan->is_dedicated) {
657		promise->cfg |= SUN4I_DMA_CFG_SRC_DRQ_TYPE(SUN4I_DDMA_DRQ_TYPE_SDRAM) |
658				SUN4I_DMA_CFG_DST_DRQ_TYPE(SUN4I_DDMA_DRQ_TYPE_SDRAM);
659	} else {
660		promise->cfg |= SUN4I_DMA_CFG_SRC_DRQ_TYPE(SUN4I_NDMA_DRQ_TYPE_SDRAM) |
661				SUN4I_DMA_CFG_DST_DRQ_TYPE(SUN4I_NDMA_DRQ_TYPE_SDRAM);
662	}
663
664	/* Fill the contract with our only promise */
665	list_add_tail(&promise->list, &contract->demands);
666
667	/* And add it to the vchan */
668	return vchan_tx_prep(&vchan->vc, &contract->vd, flags);
669}
670
671static struct dma_async_tx_descriptor *
672sun4i_dma_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t buf, size_t len,
673			  size_t period_len, enum dma_transfer_direction dir,
674			  unsigned long flags)
675{
676	struct sun4i_dma_vchan *vchan = to_sun4i_dma_vchan(chan);
677	struct dma_slave_config *sconfig = &vchan->cfg;
678	struct sun4i_dma_promise *promise;
679	struct sun4i_dma_contract *contract;
680	dma_addr_t src, dest;
681	u32 endpoints;
682	int nr_periods, offset, plength, i;
683	u8 ram_type, io_mode, linear_mode;
684
685	if (!is_slave_direction(dir)) {
686		dev_err(chan2dev(chan), "Invalid DMA direction\n");
687		return NULL;
688	}
689
690	contract = generate_dma_contract();
691	if (!contract)
692		return NULL;
693
694	contract->is_cyclic = 1;
695
696	if (vchan->is_dedicated) {
697		io_mode = SUN4I_DDMA_ADDR_MODE_IO;
698		linear_mode = SUN4I_DDMA_ADDR_MODE_LINEAR;
699		ram_type = SUN4I_DDMA_DRQ_TYPE_SDRAM;
700	} else {
701		io_mode = SUN4I_NDMA_ADDR_MODE_IO;
702		linear_mode = SUN4I_NDMA_ADDR_MODE_LINEAR;
703		ram_type = SUN4I_NDMA_DRQ_TYPE_SDRAM;
704	}
705
706	if (dir == DMA_MEM_TO_DEV) {
707		src = buf;
708		dest = sconfig->dst_addr;
709		endpoints = SUN4I_DMA_CFG_DST_DRQ_TYPE(vchan->endpoint) |
710			    SUN4I_DMA_CFG_DST_ADDR_MODE(io_mode) |
711			    SUN4I_DMA_CFG_SRC_DRQ_TYPE(ram_type) |
712			    SUN4I_DMA_CFG_SRC_ADDR_MODE(linear_mode);
713	} else {
714		src = sconfig->src_addr;
715		dest = buf;
716		endpoints = SUN4I_DMA_CFG_DST_DRQ_TYPE(ram_type) |
717			    SUN4I_DMA_CFG_DST_ADDR_MODE(linear_mode) |
718			    SUN4I_DMA_CFG_SRC_DRQ_TYPE(vchan->endpoint) |
719			    SUN4I_DMA_CFG_SRC_ADDR_MODE(io_mode);
720	}
721
722	/*
723	 * We will be using half done interrupts to make two periods
724	 * out of a promise, so we need to program the DMA engine less
725	 * often
726	 */
727
728	/*
729	 * The engine can interrupt on half-transfer, so we can use
730	 * this feature to program the engine half as often as if we
731	 * didn't use it (keep in mind the hardware doesn't support
732	 * linked lists).
733	 *
734	 * Say you have a set of periods (| marks the start/end, I for
735	 * interrupt, P for programming the engine to do a new
736	 * transfer), the easy but slow way would be to do
737	 *
738	 *  |---|---|---|---| (periods / promises)
739	 *  P  I,P I,P I,P  I
740	 *
741	 * Using half transfer interrupts you can do
742	 *
743	 *  |-------|-------| (promises as configured on hw)
744	 *  |---|---|---|---| (periods)
745	 *  P   I  I,P  I   I
746	 *
747	 * Which requires half the engine programming for the same
748	 * functionality.
749	 *
750	 * This only works if two periods fit in a single promise. That will
751	 * always be the case for dedicated DMA, where the hardware has a much
752	 * larger maximum transfer size than advertised to clients.
753	 */
754	if (vchan->is_dedicated || period_len <= SUN4I_NDMA_MAX_SEG_SIZE / 2) {
755		period_len *= 2;
756		contract->use_half_int = 1;
757	}
758
759	nr_periods = DIV_ROUND_UP(len, period_len);
760	for (i = 0; i < nr_periods; i++) {
761		/* Calculate the offset in the buffer and the length needed */
762		offset = i * period_len;
763		plength = min((len - offset), period_len);
764		if (dir == DMA_MEM_TO_DEV)
765			src = buf + offset;
766		else
767			dest = buf + offset;
768
769		/* Make the promise */
770		if (vchan->is_dedicated)
771			promise = generate_ddma_promise(chan, src, dest,
772							plength, sconfig);
773		else
774			promise = generate_ndma_promise(chan, src, dest,
775							plength, sconfig, dir);
776
777		if (!promise) {
778			/* TODO: should we free everything? */
779			return NULL;
780		}
781		promise->cfg |= endpoints;
782
783		/* Then add it to the contract */
784		list_add_tail(&promise->list, &contract->demands);
785	}
786
787	/* And add it to the vchan */
788	return vchan_tx_prep(&vchan->vc, &contract->vd, flags);
789}
790
791static struct dma_async_tx_descriptor *
792sun4i_dma_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
793			unsigned int sg_len, enum dma_transfer_direction dir,
794			unsigned long flags, void *context)
795{
796	struct sun4i_dma_vchan *vchan = to_sun4i_dma_vchan(chan);
797	struct dma_slave_config *sconfig = &vchan->cfg;
798	struct sun4i_dma_promise *promise;
799	struct sun4i_dma_contract *contract;
800	u8 ram_type, io_mode, linear_mode;
801	struct scatterlist *sg;
802	dma_addr_t srcaddr, dstaddr;
803	u32 endpoints, para;
804	int i;
805
806	if (!sgl)
807		return NULL;
808
809	if (!is_slave_direction(dir)) {
810		dev_err(chan2dev(chan), "Invalid DMA direction\n");
811		return NULL;
812	}
813
814	contract = generate_dma_contract();
815	if (!contract)
816		return NULL;
817
818	if (vchan->is_dedicated) {
819		io_mode = SUN4I_DDMA_ADDR_MODE_IO;
820		linear_mode = SUN4I_DDMA_ADDR_MODE_LINEAR;
821		ram_type = SUN4I_DDMA_DRQ_TYPE_SDRAM;
822	} else {
823		io_mode = SUN4I_NDMA_ADDR_MODE_IO;
824		linear_mode = SUN4I_NDMA_ADDR_MODE_LINEAR;
825		ram_type = SUN4I_NDMA_DRQ_TYPE_SDRAM;
826	}
827
828	if (dir == DMA_MEM_TO_DEV)
829		endpoints = SUN4I_DMA_CFG_DST_DRQ_TYPE(vchan->endpoint) |
830			    SUN4I_DMA_CFG_DST_ADDR_MODE(io_mode) |
831			    SUN4I_DMA_CFG_SRC_DRQ_TYPE(ram_type) |
832			    SUN4I_DMA_CFG_SRC_ADDR_MODE(linear_mode);
833	else
834		endpoints = SUN4I_DMA_CFG_DST_DRQ_TYPE(ram_type) |
835			    SUN4I_DMA_CFG_DST_ADDR_MODE(linear_mode) |
836			    SUN4I_DMA_CFG_SRC_DRQ_TYPE(vchan->endpoint) |
837			    SUN4I_DMA_CFG_SRC_ADDR_MODE(io_mode);
838
839	for_each_sg(sgl, sg, sg_len, i) {
840		/* Figure out addresses */
841		if (dir == DMA_MEM_TO_DEV) {
842			srcaddr = sg_dma_address(sg);
843			dstaddr = sconfig->dst_addr;
844		} else {
845			srcaddr = sconfig->src_addr;
846			dstaddr = sg_dma_address(sg);
847		}
848
849		/*
850		 * These are the magic DMA engine timings that keep SPI going.
851		 * I haven't seen any interface on DMAEngine to configure
852		 * timings, and so far they seem to work for everything we
853		 * support, so I've kept them here. I don't know if other
854		 * devices need different timings because, as usual, we only
855		 * have the "para" bitfield meanings, but no comment on what
856		 * the values should be when doing a certain operation :|
857		 */
858		para = SUN4I_DDMA_MAGIC_SPI_PARAMETERS;
859
860		/* And make a suitable promise */
861		if (vchan->is_dedicated)
862			promise = generate_ddma_promise(chan, srcaddr, dstaddr,
863							sg_dma_len(sg),
864							sconfig);
865		else
866			promise = generate_ndma_promise(chan, srcaddr, dstaddr,
867							sg_dma_len(sg),
868							sconfig, dir);
869
870		if (!promise)
871			return NULL; /* TODO: should we free everything? */
872
873		promise->cfg |= endpoints;
874		promise->para = para;
875
876		/* Then add it to the contract */
877		list_add_tail(&promise->list, &contract->demands);
878	}
879
880	/*
881	 * Once we've got all the promises ready, add the contract
882	 * to the pending list on the vchan
883	 */
884	return vchan_tx_prep(&vchan->vc, &contract->vd, flags);
885}
886
887static int sun4i_dma_terminate_all(struct dma_chan *chan)
888{
889	struct sun4i_dma_dev *priv = to_sun4i_dma_dev(chan->device);
890	struct sun4i_dma_vchan *vchan = to_sun4i_dma_vchan(chan);
891	struct sun4i_dma_pchan *pchan = vchan->pchan;
892	LIST_HEAD(head);
893	unsigned long flags;
894
895	spin_lock_irqsave(&vchan->vc.lock, flags);
896	vchan_get_all_descriptors(&vchan->vc, &head);
897	spin_unlock_irqrestore(&vchan->vc.lock, flags);
898
899	/*
900	 * Clearing the configuration register will halt the pchan. Interrupts
901	 * may still trigger, so don't forget to disable them.
902	 */
903	if (pchan) {
904		if (pchan->is_dedicated)
905			writel(0, pchan->base + SUN4I_DDMA_CFG_REG);
906		else
907			writel(0, pchan->base + SUN4I_NDMA_CFG_REG);
908		set_pchan_interrupt(priv, pchan, 0, 0);
909		release_pchan(priv, pchan);
910	}
911
912	spin_lock_irqsave(&vchan->vc.lock, flags);
913	/* Clear these so the vchan is usable again */
914	vchan->processing = NULL;
915	vchan->pchan = NULL;
916	spin_unlock_irqrestore(&vchan->vc.lock, flags);
917
918	vchan_dma_desc_free_list(&vchan->vc, &head);
919
920	return 0;
921}
922
923static int sun4i_dma_config(struct dma_chan *chan,
924			    struct dma_slave_config *config)
925{
926	struct sun4i_dma_vchan *vchan = to_sun4i_dma_vchan(chan);
927
928	memcpy(&vchan->cfg, config, sizeof(*config));
929
930	return 0;
931}
932
933static struct dma_chan *sun4i_dma_of_xlate(struct of_phandle_args *dma_spec,
934					   struct of_dma *ofdma)
935{
936	struct sun4i_dma_dev *priv = ofdma->of_dma_data;
937	struct sun4i_dma_vchan *vchan;
938	struct dma_chan *chan;
939	u8 is_dedicated = dma_spec->args[0];
940	u8 endpoint = dma_spec->args[1];
941
942	/* Check if type is Normal or Dedicated */
943	if (is_dedicated != 0 && is_dedicated != 1)
944		return NULL;
945
946	/* Make sure the endpoint looks sane */
947	if ((is_dedicated && endpoint >= SUN4I_DDMA_DRQ_TYPE_LIMIT) ||
948	    (!is_dedicated && endpoint >= SUN4I_NDMA_DRQ_TYPE_LIMIT))
949		return NULL;
950
951	chan = dma_get_any_slave_channel(&priv->slave);
952	if (!chan)
953		return NULL;
954
955	/* Assign the endpoint to the vchan */
956	vchan = to_sun4i_dma_vchan(chan);
957	vchan->is_dedicated = is_dedicated;
958	vchan->endpoint = endpoint;
959
960	return chan;
961}
962
963static enum dma_status sun4i_dma_tx_status(struct dma_chan *chan,
964					   dma_cookie_t cookie,
965					   struct dma_tx_state *state)
966{
967	struct sun4i_dma_vchan *vchan = to_sun4i_dma_vchan(chan);
968	struct sun4i_dma_pchan *pchan = vchan->pchan;
969	struct sun4i_dma_contract *contract;
970	struct sun4i_dma_promise *promise;
971	struct virt_dma_desc *vd;
972	unsigned long flags;
973	enum dma_status ret;
974	size_t bytes = 0;
975
976	ret = dma_cookie_status(chan, cookie, state);
977	if (!state || (ret == DMA_COMPLETE))
978		return ret;
979
980	spin_lock_irqsave(&vchan->vc.lock, flags);
981	vd = vchan_find_desc(&vchan->vc, cookie);
982	if (!vd)
983		goto exit;
984	contract = to_sun4i_dma_contract(vd);
985
986	list_for_each_entry(promise, &contract->demands, list)
987		bytes += promise->len;
988
989	/*
990	 * The hardware is configured to return the remaining byte
991	 * quantity. If possible, replace the first listed element's
992	 * full size with the actual remaining amount
993	 */
994	promise = list_first_entry_or_null(&contract->demands,
995					   struct sun4i_dma_promise, list);
996	if (promise && pchan) {
997		bytes -= promise->len;
998		if (pchan->is_dedicated)
999			bytes += readl(pchan->base + SUN4I_DDMA_BYTE_COUNT_REG);
1000		else
1001			bytes += readl(pchan->base + SUN4I_NDMA_BYTE_COUNT_REG);
1002	}
1003
1004exit:
1005
1006	dma_set_residue(state, bytes);
1007	spin_unlock_irqrestore(&vchan->vc.lock, flags);
1008
1009	return ret;
1010}
1011
1012static void sun4i_dma_issue_pending(struct dma_chan *chan)
1013{
1014	struct sun4i_dma_dev *priv = to_sun4i_dma_dev(chan->device);
1015	struct sun4i_dma_vchan *vchan = to_sun4i_dma_vchan(chan);
1016	unsigned long flags;
1017
1018	spin_lock_irqsave(&vchan->vc.lock, flags);
1019
1020	/*
1021	 * If there are pending transactions for this vchan, push one of
1022	 * them into the engine to get the ball rolling.
1023	 */
1024	if (vchan_issue_pending(&vchan->vc))
1025		__execute_vchan_pending(priv, vchan);
1026
1027	spin_unlock_irqrestore(&vchan->vc.lock, flags);
1028}
1029
1030static irqreturn_t sun4i_dma_interrupt(int irq, void *dev_id)
1031{
1032	struct sun4i_dma_dev *priv = dev_id;
1033	struct sun4i_dma_pchan *pchans = priv->pchans, *pchan;
1034	struct sun4i_dma_vchan *vchan;
1035	struct sun4i_dma_contract *contract;
1036	struct sun4i_dma_promise *promise;
1037	unsigned long pendirq, irqs, disableirqs;
1038	int bit, i, free_room, allow_mitigation = 1;
1039
1040	pendirq = readl_relaxed(priv->base + SUN4I_DMA_IRQ_PENDING_STATUS_REG);
1041
1042handle_pending:
1043
1044	disableirqs = 0;
1045	free_room = 0;
1046
1047	for_each_set_bit(bit, &pendirq, 32) {
1048		pchan = &pchans[bit >> 1];
1049		vchan = pchan->vchan;
1050		if (!vchan) /* a terminated channel may still interrupt */
1051			continue;
1052		contract = vchan->contract;
1053
1054		/*
1055		 * Disable the IRQ and free the pchan if it's an end
1056		 * interrupt (odd bit)
1057		 */
1058		if (bit & 1) {
1059			spin_lock(&vchan->vc.lock);
1060
1061			/*
1062			 * Move the promise into the completed list now that
1063			 * we're done with it
1064			 */
1065			list_move_tail(&vchan->processing->list,
1066				       &contract->completed_demands);
1067
1068			/*
1069			 * Cyclic DMA transfers are special:
1070			 * - There's always something we can dispatch
1071			 * - We need to run the callback
1072			 * - Latency is very important, as this is used by audio
1073			 * We therefore just cycle through the list and dispatch
1074			 * whatever we have here, reusing the pchan. There's
1075			 * no need to run the thread after this.
1076			 *
1077			 * For non-cyclic transfers we need to look around,
1078			 * so we can program some more work, or notify the
1079			 * client that their transfers have been completed.
1080			 */
1081			if (contract->is_cyclic) {
1082				promise = get_next_cyclic_promise(contract);
1083				vchan->processing = promise;
1084				configure_pchan(pchan, promise);
1085				vchan_cyclic_callback(&contract->vd);
1086			} else {
1087				vchan->processing = NULL;
1088				vchan->pchan = NULL;
1089
1090				free_room = 1;
1091				disableirqs |= BIT(bit);
1092				release_pchan(priv, pchan);
1093			}
1094
1095			spin_unlock(&vchan->vc.lock);
1096		} else {
1097			/* Half done interrupt */
1098			if (contract->is_cyclic)
1099				vchan_cyclic_callback(&contract->vd);
1100			else
1101				disableirqs |= BIT(bit);
1102		}
1103	}
1104
1105	/* Disable the IRQs for events we handled */
1106	spin_lock(&priv->lock);
1107	irqs = readl_relaxed(priv->base + SUN4I_DMA_IRQ_ENABLE_REG);
1108	writel_relaxed(irqs & ~disableirqs,
1109		       priv->base + SUN4I_DMA_IRQ_ENABLE_REG);
1110	spin_unlock(&priv->lock);
1111
1112	/* Writing 1 to the pending field will clear the pending interrupt */
1113	writel_relaxed(pendirq, priv->base + SUN4I_DMA_IRQ_PENDING_STATUS_REG);
1114
1115	/*
1116	 * If a pchan was freed, we may be able to schedule something else,
1117	 * so have a look around
1118	 */
1119	if (free_room) {
1120		for (i = 0; i < SUN4I_DMA_NR_MAX_VCHANS; i++) {
1121			vchan = &priv->vchans[i];
1122			spin_lock(&vchan->vc.lock);
1123			__execute_vchan_pending(priv, vchan);
1124			spin_unlock(&vchan->vc.lock);
1125		}
1126	}
1127
1128	/*
1129	 * Handle newer interrupts if some showed up, but only do it once
1130	 * to avoid a too long a loop
1131	 */
1132	if (allow_mitigation) {
1133		pendirq = readl_relaxed(priv->base +
1134					SUN4I_DMA_IRQ_PENDING_STATUS_REG);
1135		if (pendirq) {
1136			allow_mitigation = 0;
1137			goto handle_pending;
1138		}
1139	}
1140
1141	return IRQ_HANDLED;
1142}
1143
1144static int sun4i_dma_probe(struct platform_device *pdev)
1145{
1146	struct sun4i_dma_dev *priv;
1147	int i, j, ret;
1148
1149	priv = devm_kzalloc(&pdev->dev, sizeof(*priv), GFP_KERNEL);
1150	if (!priv)
1151		return -ENOMEM;
1152
1153	priv->base = devm_platform_ioremap_resource(pdev, 0);
1154	if (IS_ERR(priv->base))
1155		return PTR_ERR(priv->base);
1156
1157	priv->irq = platform_get_irq(pdev, 0);
1158	if (priv->irq < 0)
1159		return priv->irq;
1160
1161	priv->clk = devm_clk_get(&pdev->dev, NULL);
1162	if (IS_ERR(priv->clk)) {
1163		dev_err(&pdev->dev, "No clock specified\n");
1164		return PTR_ERR(priv->clk);
1165	}
1166
1167	platform_set_drvdata(pdev, priv);
1168	spin_lock_init(&priv->lock);
1169
1170	dma_set_max_seg_size(&pdev->dev, SUN4I_DMA_MAX_SEG_SIZE);
1171
1172	dma_cap_zero(priv->slave.cap_mask);
1173	dma_cap_set(DMA_PRIVATE, priv->slave.cap_mask);
1174	dma_cap_set(DMA_MEMCPY, priv->slave.cap_mask);
1175	dma_cap_set(DMA_CYCLIC, priv->slave.cap_mask);
1176	dma_cap_set(DMA_SLAVE, priv->slave.cap_mask);
1177
1178	INIT_LIST_HEAD(&priv->slave.channels);
1179	priv->slave.device_free_chan_resources	= sun4i_dma_free_chan_resources;
1180	priv->slave.device_tx_status		= sun4i_dma_tx_status;
1181	priv->slave.device_issue_pending	= sun4i_dma_issue_pending;
1182	priv->slave.device_prep_slave_sg	= sun4i_dma_prep_slave_sg;
1183	priv->slave.device_prep_dma_memcpy	= sun4i_dma_prep_dma_memcpy;
1184	priv->slave.device_prep_dma_cyclic	= sun4i_dma_prep_dma_cyclic;
1185	priv->slave.device_config		= sun4i_dma_config;
1186	priv->slave.device_terminate_all	= sun4i_dma_terminate_all;
1187	priv->slave.copy_align			= 2;
1188	priv->slave.src_addr_widths		= BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
1189						  BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
1190						  BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
1191	priv->slave.dst_addr_widths		= BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
1192						  BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
1193						  BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
1194	priv->slave.directions			= BIT(DMA_DEV_TO_MEM) |
1195						  BIT(DMA_MEM_TO_DEV);
1196	priv->slave.residue_granularity		= DMA_RESIDUE_GRANULARITY_BURST;
1197
1198	priv->slave.dev = &pdev->dev;
1199
1200	priv->pchans = devm_kcalloc(&pdev->dev, SUN4I_DMA_NR_MAX_CHANNELS,
1201				    sizeof(struct sun4i_dma_pchan), GFP_KERNEL);
1202	priv->vchans = devm_kcalloc(&pdev->dev, SUN4I_DMA_NR_MAX_VCHANS,
1203				    sizeof(struct sun4i_dma_vchan), GFP_KERNEL);
1204	if (!priv->vchans || !priv->pchans)
1205		return -ENOMEM;
1206
1207	/*
1208	 * [0..SUN4I_NDMA_NR_MAX_CHANNELS) are normal pchans, and
1209	 * [SUN4I_NDMA_NR_MAX_CHANNELS..SUN4I_DMA_NR_MAX_CHANNELS) are
1210	 * dedicated ones
1211	 */
1212	for (i = 0; i < SUN4I_NDMA_NR_MAX_CHANNELS; i++)
1213		priv->pchans[i].base = priv->base +
1214			SUN4I_NDMA_CHANNEL_REG_BASE(i);
1215
1216	for (j = 0; i < SUN4I_DMA_NR_MAX_CHANNELS; i++, j++) {
1217		priv->pchans[i].base = priv->base +
1218			SUN4I_DDMA_CHANNEL_REG_BASE(j);
1219		priv->pchans[i].is_dedicated = 1;
1220	}
1221
1222	for (i = 0; i < SUN4I_DMA_NR_MAX_VCHANS; i++) {
1223		struct sun4i_dma_vchan *vchan = &priv->vchans[i];
1224
1225		spin_lock_init(&vchan->vc.lock);
1226		vchan->vc.desc_free = sun4i_dma_free_contract;
1227		vchan_init(&vchan->vc, &priv->slave);
1228	}
1229
1230	ret = clk_prepare_enable(priv->clk);
1231	if (ret) {
1232		dev_err(&pdev->dev, "Couldn't enable the clock\n");
1233		return ret;
1234	}
1235
1236	/*
1237	 * Make sure the IRQs are all disabled and accounted for. The bootloader
1238	 * likes to leave these dirty
1239	 */
1240	writel(0, priv->base + SUN4I_DMA_IRQ_ENABLE_REG);
1241	writel(0xFFFFFFFF, priv->base + SUN4I_DMA_IRQ_PENDING_STATUS_REG);
1242
1243	ret = devm_request_irq(&pdev->dev, priv->irq, sun4i_dma_interrupt,
1244			       0, dev_name(&pdev->dev), priv);
1245	if (ret) {
1246		dev_err(&pdev->dev, "Cannot request IRQ\n");
1247		goto err_clk_disable;
1248	}
1249
1250	ret = dma_async_device_register(&priv->slave);
1251	if (ret) {
1252		dev_warn(&pdev->dev, "Failed to register DMA engine device\n");
1253		goto err_clk_disable;
1254	}
1255
1256	ret = of_dma_controller_register(pdev->dev.of_node, sun4i_dma_of_xlate,
1257					 priv);
1258	if (ret) {
1259		dev_err(&pdev->dev, "of_dma_controller_register failed\n");
1260		goto err_dma_unregister;
1261	}
1262
1263	dev_dbg(&pdev->dev, "Successfully probed SUN4I_DMA\n");
1264
1265	return 0;
1266
1267err_dma_unregister:
1268	dma_async_device_unregister(&priv->slave);
1269err_clk_disable:
1270	clk_disable_unprepare(priv->clk);
1271	return ret;
1272}
1273
1274static void sun4i_dma_remove(struct platform_device *pdev)
1275{
1276	struct sun4i_dma_dev *priv = platform_get_drvdata(pdev);
1277
1278	/* Disable IRQ so no more work is scheduled */
1279	disable_irq(priv->irq);
1280
1281	of_dma_controller_free(pdev->dev.of_node);
1282	dma_async_device_unregister(&priv->slave);
1283
1284	clk_disable_unprepare(priv->clk);
1285}
1286
1287static const struct of_device_id sun4i_dma_match[] = {
1288	{ .compatible = "allwinner,sun4i-a10-dma" },
1289	{ /* sentinel */ },
1290};
1291MODULE_DEVICE_TABLE(of, sun4i_dma_match);
1292
1293static struct platform_driver sun4i_dma_driver = {
1294	.probe	= sun4i_dma_probe,
1295	.remove_new = sun4i_dma_remove,
1296	.driver	= {
1297		.name		= "sun4i-dma",
1298		.of_match_table	= sun4i_dma_match,
1299	},
1300};
1301
1302module_platform_driver(sun4i_dma_driver);
1303
1304MODULE_DESCRIPTION("Allwinner A10 Dedicated DMA Controller Driver");
1305MODULE_AUTHOR("Emilio L��pez <emilio@elopez.com.ar>");
1306MODULE_LICENSE("GPL");
1307