1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (c) 2017-2020, The Linux Foundation. All rights reserved.
4 * Copyright (c) 2020, Linaro Limited
5 */
6
7#include <dt-bindings/dma/qcom-gpi.h>
8#include <linux/bitfield.h>
9#include <linux/dma-mapping.h>
10#include <linux/dmaengine.h>
11#include <linux/module.h>
12#include <linux/of_dma.h>
13#include <linux/platform_device.h>
14#include <linux/dma/qcom-gpi-dma.h>
15#include <linux/scatterlist.h>
16#include <linux/slab.h>
17#include "../dmaengine.h"
18#include "../virt-dma.h"
19
20#define TRE_TYPE_DMA		0x10
21#define TRE_TYPE_GO		0x20
22#define TRE_TYPE_CONFIG0	0x22
23
24/* TRE flags */
25#define TRE_FLAGS_CHAIN		BIT(0)
26#define TRE_FLAGS_IEOB		BIT(8)
27#define TRE_FLAGS_IEOT		BIT(9)
28#define TRE_FLAGS_BEI		BIT(10)
29#define TRE_FLAGS_LINK		BIT(11)
30#define TRE_FLAGS_TYPE		GENMASK(23, 16)
31
32/* SPI CONFIG0 WD0 */
33#define TRE_SPI_C0_WORD_SZ	GENMASK(4, 0)
34#define TRE_SPI_C0_LOOPBACK	BIT(8)
35#define TRE_SPI_C0_CS		BIT(11)
36#define TRE_SPI_C0_CPHA		BIT(12)
37#define TRE_SPI_C0_CPOL		BIT(13)
38#define TRE_SPI_C0_TX_PACK	BIT(24)
39#define TRE_SPI_C0_RX_PACK	BIT(25)
40
41/* CONFIG0 WD2 */
42#define TRE_C0_CLK_DIV		GENMASK(11, 0)
43#define TRE_C0_CLK_SRC		GENMASK(19, 16)
44
45/* SPI GO WD0 */
46#define TRE_SPI_GO_CMD		GENMASK(4, 0)
47#define TRE_SPI_GO_CS		GENMASK(10, 8)
48#define TRE_SPI_GO_FRAG		BIT(26)
49
50/* GO WD2 */
51#define TRE_RX_LEN		GENMASK(23, 0)
52
53/* I2C Config0 WD0 */
54#define TRE_I2C_C0_TLOW		GENMASK(7, 0)
55#define TRE_I2C_C0_THIGH	GENMASK(15, 8)
56#define TRE_I2C_C0_TCYL		GENMASK(23, 16)
57#define TRE_I2C_C0_TX_PACK	BIT(24)
58#define TRE_I2C_C0_RX_PACK      BIT(25)
59
60/* I2C GO WD0 */
61#define TRE_I2C_GO_CMD          GENMASK(4, 0)
62#define TRE_I2C_GO_ADDR		GENMASK(14, 8)
63#define TRE_I2C_GO_STRETCH	BIT(26)
64
65/* DMA TRE */
66#define TRE_DMA_LEN		GENMASK(23, 0)
67
68/* Register offsets from gpi-top */
69#define GPII_n_CH_k_CNTXT_0_OFFS(n, k)	(0x20000 + (0x4000 * (n)) + (0x80 * (k)))
70#define GPII_n_CH_k_CNTXT_0_EL_SIZE	GENMASK(31, 24)
71#define GPII_n_CH_k_CNTXT_0_CHSTATE	GENMASK(23, 20)
72#define GPII_n_CH_k_CNTXT_0_ERIDX	GENMASK(18, 14)
73#define GPII_n_CH_k_CNTXT_0_DIR		BIT(3)
74#define GPII_n_CH_k_CNTXT_0_PROTO	GENMASK(2, 0)
75
76#define GPII_n_CH_k_CNTXT_0(el_size, erindex, dir, chtype_proto)  \
77	(FIELD_PREP(GPII_n_CH_k_CNTXT_0_EL_SIZE, el_size)	| \
78	 FIELD_PREP(GPII_n_CH_k_CNTXT_0_ERIDX, erindex)		| \
79	 FIELD_PREP(GPII_n_CH_k_CNTXT_0_DIR, dir)		| \
80	 FIELD_PREP(GPII_n_CH_k_CNTXT_0_PROTO, chtype_proto))
81
82#define GPI_CHTYPE_DIR_IN	(0)
83#define GPI_CHTYPE_DIR_OUT	(1)
84
85#define GPI_CHTYPE_PROTO_GPI	(0x2)
86
87#define GPII_n_CH_k_DOORBELL_0_OFFS(n, k)	(0x22000 + (0x4000 * (n)) + (0x8 * (k)))
88#define GPII_n_CH_CMD_OFFS(n)			(0x23008 + (0x4000 * (n)))
89#define GPII_n_CH_CMD_OPCODE			GENMASK(31, 24)
90#define GPII_n_CH_CMD_CHID			GENMASK(7, 0)
91#define GPII_n_CH_CMD(opcode, chid)				 \
92		     (FIELD_PREP(GPII_n_CH_CMD_OPCODE, opcode) | \
93		      FIELD_PREP(GPII_n_CH_CMD_CHID, chid))
94
95#define GPII_n_CH_CMD_ALLOCATE		(0)
96#define GPII_n_CH_CMD_START		(1)
97#define GPII_n_CH_CMD_STOP		(2)
98#define GPII_n_CH_CMD_RESET		(9)
99#define GPII_n_CH_CMD_DE_ALLOC		(10)
100#define GPII_n_CH_CMD_UART_SW_STALE	(32)
101#define GPII_n_CH_CMD_UART_RFR_READY	(33)
102#define GPII_n_CH_CMD_UART_RFR_NOT_READY (34)
103
104/* EV Context Array */
105#define GPII_n_EV_CH_k_CNTXT_0_OFFS(n, k) (0x21000 + (0x4000 * (n)) + (0x80 * (k)))
106#define GPII_n_EV_k_CNTXT_0_EL_SIZE	GENMASK(31, 24)
107#define GPII_n_EV_k_CNTXT_0_CHSTATE	GENMASK(23, 20)
108#define GPII_n_EV_k_CNTXT_0_INTYPE	BIT(16)
109#define GPII_n_EV_k_CNTXT_0_CHTYPE	GENMASK(3, 0)
110
111#define GPII_n_EV_k_CNTXT_0(el_size, inttype, chtype)		\
112	(FIELD_PREP(GPII_n_EV_k_CNTXT_0_EL_SIZE, el_size) |	\
113	 FIELD_PREP(GPII_n_EV_k_CNTXT_0_INTYPE, inttype)  |	\
114	 FIELD_PREP(GPII_n_EV_k_CNTXT_0_CHTYPE, chtype))
115
116#define GPI_INTTYPE_IRQ		(1)
117#define GPI_CHTYPE_GPI_EV	(0x2)
118
119enum CNTXT_OFFS {
120	CNTXT_0_CONFIG = 0x0,
121	CNTXT_1_R_LENGTH = 0x4,
122	CNTXT_2_RING_BASE_LSB = 0x8,
123	CNTXT_3_RING_BASE_MSB = 0xC,
124	CNTXT_4_RING_RP_LSB = 0x10,
125	CNTXT_5_RING_RP_MSB = 0x14,
126	CNTXT_6_RING_WP_LSB = 0x18,
127	CNTXT_7_RING_WP_MSB = 0x1C,
128	CNTXT_8_RING_INT_MOD = 0x20,
129	CNTXT_9_RING_INTVEC = 0x24,
130	CNTXT_10_RING_MSI_LSB = 0x28,
131	CNTXT_11_RING_MSI_MSB = 0x2C,
132	CNTXT_12_RING_RP_UPDATE_LSB = 0x30,
133	CNTXT_13_RING_RP_UPDATE_MSB = 0x34,
134};
135
136#define GPII_n_EV_CH_k_DOORBELL_0_OFFS(n, k)	(0x22100 + (0x4000 * (n)) + (0x8 * (k)))
137#define GPII_n_EV_CH_CMD_OFFS(n)		(0x23010 + (0x4000 * (n)))
138#define GPII_n_EV_CMD_OPCODE			GENMASK(31, 24)
139#define GPII_n_EV_CMD_CHID			GENMASK(7, 0)
140#define GPII_n_EV_CMD(opcode, chid)				 \
141		     (FIELD_PREP(GPII_n_EV_CMD_OPCODE, opcode) | \
142		      FIELD_PREP(GPII_n_EV_CMD_CHID, chid))
143
144#define GPII_n_EV_CH_CMD_ALLOCATE		(0x00)
145#define GPII_n_EV_CH_CMD_RESET			(0x09)
146#define GPII_n_EV_CH_CMD_DE_ALLOC		(0x0A)
147
148#define GPII_n_CNTXT_TYPE_IRQ_OFFS(n)		(0x23080 + (0x4000 * (n)))
149
150/* mask type register */
151#define GPII_n_CNTXT_TYPE_IRQ_MSK_OFFS(n)	(0x23088 + (0x4000 * (n)))
152#define GPII_n_CNTXT_TYPE_IRQ_MSK_BMSK		GENMASK(6, 0)
153#define GPII_n_CNTXT_TYPE_IRQ_MSK_GENERAL	BIT(6)
154#define GPII_n_CNTXT_TYPE_IRQ_MSK_IEOB		BIT(3)
155#define GPII_n_CNTXT_TYPE_IRQ_MSK_GLOB		BIT(2)
156#define GPII_n_CNTXT_TYPE_IRQ_MSK_EV_CTRL	BIT(1)
157#define GPII_n_CNTXT_TYPE_IRQ_MSK_CH_CTRL	BIT(0)
158
159#define GPII_n_CNTXT_SRC_GPII_CH_IRQ_OFFS(n)	(0x23090 + (0x4000 * (n)))
160#define GPII_n_CNTXT_SRC_EV_CH_IRQ_OFFS(n)	(0x23094 + (0x4000 * (n)))
161
162/* Mask channel control interrupt register */
163#define GPII_n_CNTXT_SRC_CH_IRQ_MSK_OFFS(n)	(0x23098 + (0x4000 * (n)))
164#define GPII_n_CNTXT_SRC_CH_IRQ_MSK_BMSK	GENMASK(1, 0)
165
166/* Mask event control interrupt register */
167#define GPII_n_CNTXT_SRC_EV_CH_IRQ_MSK_OFFS(n)	(0x2309C + (0x4000 * (n)))
168#define GPII_n_CNTXT_SRC_EV_CH_IRQ_MSK_BMSK	BIT(0)
169
170#define GPII_n_CNTXT_SRC_CH_IRQ_CLR_OFFS(n)	(0x230A0 + (0x4000 * (n)))
171#define GPII_n_CNTXT_SRC_EV_CH_IRQ_CLR_OFFS(n)	(0x230A4 + (0x4000 * (n)))
172
173/* Mask event interrupt register */
174#define GPII_n_CNTXT_SRC_IEOB_IRQ_MSK_OFFS(n)	(0x230B8 + (0x4000 * (n)))
175#define GPII_n_CNTXT_SRC_IEOB_IRQ_MSK_BMSK	BIT(0)
176
177#define GPII_n_CNTXT_SRC_IEOB_IRQ_CLR_OFFS(n)	(0x230C0 + (0x4000 * (n)))
178#define GPII_n_CNTXT_GLOB_IRQ_STTS_OFFS(n)	(0x23100 + (0x4000 * (n)))
179#define GPI_GLOB_IRQ_ERROR_INT_MSK		BIT(0)
180
181/* GPII specific Global - Enable bit register */
182#define GPII_n_CNTXT_GLOB_IRQ_EN_OFFS(n)	(0x23108 + (0x4000 * (n)))
183#define GPII_n_CNTXT_GLOB_IRQ_CLR_OFFS(n)	(0x23110 + (0x4000 * (n)))
184#define GPII_n_CNTXT_GPII_IRQ_STTS_OFFS(n)	(0x23118 + (0x4000 * (n)))
185
186/* GPII general interrupt - Enable bit register */
187#define GPII_n_CNTXT_GPII_IRQ_EN_OFFS(n)	(0x23120 + (0x4000 * (n)))
188#define GPII_n_CNTXT_GPII_IRQ_EN_BMSK		GENMASK(3, 0)
189
190#define GPII_n_CNTXT_GPII_IRQ_CLR_OFFS(n)	(0x23128 + (0x4000 * (n)))
191
192/* GPII Interrupt Type register */
193#define GPII_n_CNTXT_INTSET_OFFS(n)		(0x23180 + (0x4000 * (n)))
194#define GPII_n_CNTXT_INTSET_BMSK		BIT(0)
195
196#define GPII_n_CNTXT_MSI_BASE_LSB_OFFS(n)	(0x23188 + (0x4000 * (n)))
197#define GPII_n_CNTXT_MSI_BASE_MSB_OFFS(n)	(0x2318C + (0x4000 * (n)))
198#define GPII_n_CNTXT_SCRATCH_0_OFFS(n)		(0x23400 + (0x4000 * (n)))
199#define GPII_n_CNTXT_SCRATCH_1_OFFS(n)		(0x23404 + (0x4000 * (n)))
200
201#define GPII_n_ERROR_LOG_OFFS(n)		(0x23200 + (0x4000 * (n)))
202
203/* QOS Registers */
204#define GPII_n_CH_k_QOS_OFFS(n, k)		(0x2005C + (0x4000 * (n)) + (0x80 * (k)))
205
206/* Scratch registers */
207#define GPII_n_CH_k_SCRATCH_0_OFFS(n, k)	(0x20060 + (0x4000 * (n)) + (0x80 * (k)))
208#define GPII_n_CH_k_SCRATCH_0_SEID		GENMASK(2, 0)
209#define GPII_n_CH_k_SCRATCH_0_PROTO		GENMASK(7, 4)
210#define GPII_n_CH_k_SCRATCH_0_PAIR		GENMASK(20, 16)
211#define GPII_n_CH_k_SCRATCH_0(pair, proto, seid)		\
212			     (FIELD_PREP(GPII_n_CH_k_SCRATCH_0_PAIR, pair)	| \
213			      FIELD_PREP(GPII_n_CH_k_SCRATCH_0_PROTO, proto)	| \
214			      FIELD_PREP(GPII_n_CH_k_SCRATCH_0_SEID, seid))
215#define GPII_n_CH_k_SCRATCH_1_OFFS(n, k)	(0x20064 + (0x4000 * (n)) + (0x80 * (k)))
216#define GPII_n_CH_k_SCRATCH_2_OFFS(n, k)	(0x20068 + (0x4000 * (n)) + (0x80 * (k)))
217#define GPII_n_CH_k_SCRATCH_3_OFFS(n, k)	(0x2006C + (0x4000 * (n)) + (0x80 * (k)))
218
219struct __packed gpi_tre {
220	u32 dword[4];
221};
222
223enum msm_gpi_tce_code {
224	MSM_GPI_TCE_SUCCESS = 1,
225	MSM_GPI_TCE_EOT = 2,
226	MSM_GPI_TCE_EOB = 4,
227	MSM_GPI_TCE_UNEXP_ERR = 16,
228};
229
230#define CMD_TIMEOUT_MS		(250)
231
232#define MAX_CHANNELS_PER_GPII	(2)
233#define GPI_TX_CHAN		(0)
234#define GPI_RX_CHAN		(1)
235#define STATE_IGNORE		(U32_MAX)
236#define EV_FACTOR		(2)
237#define REQ_OF_DMA_ARGS		(5) /* # of arguments required from client */
238#define CHAN_TRES		64
239
240struct __packed xfer_compl_event {
241	u64 ptr;
242	u32 length:24;
243	u8 code;
244	u16 status;
245	u8 type;
246	u8 chid;
247};
248
249struct __packed immediate_data_event {
250	u8 data_bytes[8];
251	u8 length:4;
252	u8 resvd:4;
253	u16 tre_index;
254	u8 code;
255	u16 status;
256	u8 type;
257	u8 chid;
258};
259
260struct __packed qup_notif_event {
261	u32 status;
262	u32 time;
263	u32 count:24;
264	u8 resvd;
265	u16 resvd1;
266	u8 type;
267	u8 chid;
268};
269
270struct __packed gpi_ere {
271	u32 dword[4];
272};
273
274enum GPI_EV_TYPE {
275	XFER_COMPLETE_EV_TYPE = 0x22,
276	IMMEDIATE_DATA_EV_TYPE = 0x30,
277	QUP_NOTIF_EV_TYPE = 0x31,
278	STALE_EV_TYPE = 0xFF,
279};
280
281union __packed gpi_event {
282	struct __packed xfer_compl_event xfer_compl_event;
283	struct __packed immediate_data_event immediate_data_event;
284	struct __packed qup_notif_event qup_notif_event;
285	struct __packed gpi_ere gpi_ere;
286};
287
288enum gpii_irq_settings {
289	DEFAULT_IRQ_SETTINGS,
290	MASK_IEOB_SETTINGS,
291};
292
293enum gpi_ev_state {
294	DEFAULT_EV_CH_STATE = 0,
295	EV_STATE_NOT_ALLOCATED = DEFAULT_EV_CH_STATE,
296	EV_STATE_ALLOCATED,
297	MAX_EV_STATES
298};
299
300static const char *const gpi_ev_state_str[MAX_EV_STATES] = {
301	[EV_STATE_NOT_ALLOCATED] = "NOT ALLOCATED",
302	[EV_STATE_ALLOCATED] = "ALLOCATED",
303};
304
305#define TO_GPI_EV_STATE_STR(_state) (((_state) >= MAX_EV_STATES) ? \
306				    "INVALID" : gpi_ev_state_str[(_state)])
307
308enum gpi_ch_state {
309	DEFAULT_CH_STATE = 0x0,
310	CH_STATE_NOT_ALLOCATED = DEFAULT_CH_STATE,
311	CH_STATE_ALLOCATED = 0x1,
312	CH_STATE_STARTED = 0x2,
313	CH_STATE_STOPPED = 0x3,
314	CH_STATE_STOP_IN_PROC = 0x4,
315	CH_STATE_ERROR = 0xf,
316	MAX_CH_STATES
317};
318
319enum gpi_cmd {
320	GPI_CH_CMD_BEGIN,
321	GPI_CH_CMD_ALLOCATE = GPI_CH_CMD_BEGIN,
322	GPI_CH_CMD_START,
323	GPI_CH_CMD_STOP,
324	GPI_CH_CMD_RESET,
325	GPI_CH_CMD_DE_ALLOC,
326	GPI_CH_CMD_UART_SW_STALE,
327	GPI_CH_CMD_UART_RFR_READY,
328	GPI_CH_CMD_UART_RFR_NOT_READY,
329	GPI_CH_CMD_END = GPI_CH_CMD_UART_RFR_NOT_READY,
330	GPI_EV_CMD_BEGIN,
331	GPI_EV_CMD_ALLOCATE = GPI_EV_CMD_BEGIN,
332	GPI_EV_CMD_RESET,
333	GPI_EV_CMD_DEALLOC,
334	GPI_EV_CMD_END = GPI_EV_CMD_DEALLOC,
335	GPI_MAX_CMD,
336};
337
338#define IS_CHAN_CMD(_cmd) ((_cmd) <= GPI_CH_CMD_END)
339
340static const char *const gpi_cmd_str[GPI_MAX_CMD] = {
341	[GPI_CH_CMD_ALLOCATE] = "CH ALLOCATE",
342	[GPI_CH_CMD_START] = "CH START",
343	[GPI_CH_CMD_STOP] = "CH STOP",
344	[GPI_CH_CMD_RESET] = "CH_RESET",
345	[GPI_CH_CMD_DE_ALLOC] = "DE ALLOC",
346	[GPI_CH_CMD_UART_SW_STALE] = "UART SW STALE",
347	[GPI_CH_CMD_UART_RFR_READY] = "UART RFR READY",
348	[GPI_CH_CMD_UART_RFR_NOT_READY] = "UART RFR NOT READY",
349	[GPI_EV_CMD_ALLOCATE] = "EV ALLOCATE",
350	[GPI_EV_CMD_RESET] = "EV RESET",
351	[GPI_EV_CMD_DEALLOC] = "EV DEALLOC",
352};
353
354#define TO_GPI_CMD_STR(_cmd) (((_cmd) >= GPI_MAX_CMD) ? "INVALID" : \
355				  gpi_cmd_str[(_cmd)])
356
357/*
358 * @DISABLE_STATE: no register access allowed
359 * @CONFIG_STATE:  client has configured the channel
360 * @PREP_HARDWARE: register access is allowed
361 *		   however, no processing EVENTS
362 * @ACTIVE_STATE: channels are fully operational
363 * @PREPARE_TERMINATE: graceful termination of channels
364 *		       register access is allowed
365 * @PAUSE_STATE: channels are active, but not processing any events
366 */
367enum gpi_pm_state {
368	DISABLE_STATE,
369	CONFIG_STATE,
370	PREPARE_HARDWARE,
371	ACTIVE_STATE,
372	PREPARE_TERMINATE,
373	PAUSE_STATE,
374	MAX_PM_STATE
375};
376
377#define REG_ACCESS_VALID(_pm_state) ((_pm_state) >= PREPARE_HARDWARE)
378
379static const char *const gpi_pm_state_str[MAX_PM_STATE] = {
380	[DISABLE_STATE] = "DISABLE",
381	[CONFIG_STATE] = "CONFIG",
382	[PREPARE_HARDWARE] = "PREPARE HARDWARE",
383	[ACTIVE_STATE] = "ACTIVE",
384	[PREPARE_TERMINATE] = "PREPARE TERMINATE",
385	[PAUSE_STATE] = "PAUSE",
386};
387
388#define TO_GPI_PM_STR(_state) (((_state) >= MAX_PM_STATE) ? \
389			      "INVALID" : gpi_pm_state_str[(_state)])
390
391static const struct {
392	enum gpi_cmd gpi_cmd;
393	u32 opcode;
394	u32 state;
395} gpi_cmd_info[GPI_MAX_CMD] = {
396	{
397		GPI_CH_CMD_ALLOCATE,
398		GPII_n_CH_CMD_ALLOCATE,
399		CH_STATE_ALLOCATED,
400	},
401	{
402		GPI_CH_CMD_START,
403		GPII_n_CH_CMD_START,
404		CH_STATE_STARTED,
405	},
406	{
407		GPI_CH_CMD_STOP,
408		GPII_n_CH_CMD_STOP,
409		CH_STATE_STOPPED,
410	},
411	{
412		GPI_CH_CMD_RESET,
413		GPII_n_CH_CMD_RESET,
414		CH_STATE_ALLOCATED,
415	},
416	{
417		GPI_CH_CMD_DE_ALLOC,
418		GPII_n_CH_CMD_DE_ALLOC,
419		CH_STATE_NOT_ALLOCATED,
420	},
421	{
422		GPI_CH_CMD_UART_SW_STALE,
423		GPII_n_CH_CMD_UART_SW_STALE,
424		STATE_IGNORE,
425	},
426	{
427		GPI_CH_CMD_UART_RFR_READY,
428		GPII_n_CH_CMD_UART_RFR_READY,
429		STATE_IGNORE,
430	},
431	{
432		GPI_CH_CMD_UART_RFR_NOT_READY,
433		GPII_n_CH_CMD_UART_RFR_NOT_READY,
434		STATE_IGNORE,
435	},
436	{
437		GPI_EV_CMD_ALLOCATE,
438		GPII_n_EV_CH_CMD_ALLOCATE,
439		EV_STATE_ALLOCATED,
440	},
441	{
442		GPI_EV_CMD_RESET,
443		GPII_n_EV_CH_CMD_RESET,
444		EV_STATE_ALLOCATED,
445	},
446	{
447		GPI_EV_CMD_DEALLOC,
448		GPII_n_EV_CH_CMD_DE_ALLOC,
449		EV_STATE_NOT_ALLOCATED,
450	},
451};
452
453struct gpi_ring {
454	void *pre_aligned;
455	size_t alloc_size;
456	phys_addr_t phys_addr;
457	dma_addr_t dma_handle;
458	void *base;
459	void *wp;
460	void *rp;
461	u32 len;
462	u32 el_size;
463	u32 elements;
464	bool configured;
465};
466
467struct gpi_dev {
468	struct dma_device dma_device;
469	struct device *dev;
470	struct resource *res;
471	void __iomem *regs;
472	void __iomem *ee_base; /*ee register base address*/
473	u32 max_gpii; /* maximum # of gpii instances available per gpi block */
474	u32 gpii_mask; /* gpii instances available for apps */
475	u32 ev_factor; /* ev ring length factor */
476	struct gpii *gpiis;
477};
478
479struct reg_info {
480	char *name;
481	u32 offset;
482	u32 val;
483};
484
485struct gchan {
486	struct virt_dma_chan vc;
487	u32 chid;
488	u32 seid;
489	u32 protocol;
490	struct gpii *gpii;
491	enum gpi_ch_state ch_state;
492	enum gpi_pm_state pm_state;
493	void __iomem *ch_cntxt_base_reg;
494	void __iomem *ch_cntxt_db_reg;
495	void __iomem *ch_cmd_reg;
496	u32 dir;
497	struct gpi_ring ch_ring;
498	void *config;
499};
500
501struct gpii {
502	u32 gpii_id;
503	struct gchan gchan[MAX_CHANNELS_PER_GPII];
504	struct gpi_dev *gpi_dev;
505	int irq;
506	void __iomem *regs; /* points to gpi top */
507	void __iomem *ev_cntxt_base_reg;
508	void __iomem *ev_cntxt_db_reg;
509	void __iomem *ev_ring_rp_lsb_reg;
510	void __iomem *ev_cmd_reg;
511	void __iomem *ieob_clr_reg;
512	struct mutex ctrl_lock;
513	enum gpi_ev_state ev_state;
514	bool configured_irq;
515	enum gpi_pm_state pm_state;
516	rwlock_t pm_lock;
517	struct gpi_ring ev_ring;
518	struct tasklet_struct ev_task; /* event processing tasklet */
519	struct completion cmd_completion;
520	enum gpi_cmd gpi_cmd;
521	u32 cntxt_type_irq_msk;
522	bool ieob_set;
523};
524
525#define MAX_TRE 3
526
527struct gpi_desc {
528	struct virt_dma_desc vd;
529	size_t len;
530	void *db; /* DB register to program */
531	struct gchan *gchan;
532	struct gpi_tre tre[MAX_TRE];
533	u32 num_tre;
534};
535
536static const u32 GPII_CHAN_DIR[MAX_CHANNELS_PER_GPII] = {
537	GPI_CHTYPE_DIR_OUT, GPI_CHTYPE_DIR_IN
538};
539
540static irqreturn_t gpi_handle_irq(int irq, void *data);
541static void gpi_ring_recycle_ev_element(struct gpi_ring *ring);
542static int gpi_ring_add_element(struct gpi_ring *ring, void **wp);
543static void gpi_process_events(struct gpii *gpii);
544
545static inline struct gchan *to_gchan(struct dma_chan *dma_chan)
546{
547	return container_of(dma_chan, struct gchan, vc.chan);
548}
549
550static inline struct gpi_desc *to_gpi_desc(struct virt_dma_desc *vd)
551{
552	return container_of(vd, struct gpi_desc, vd);
553}
554
555static inline phys_addr_t to_physical(const struct gpi_ring *const ring,
556				      void *addr)
557{
558	return ring->phys_addr + (addr - ring->base);
559}
560
561static inline void *to_virtual(const struct gpi_ring *const ring, phys_addr_t addr)
562{
563	return ring->base + (addr - ring->phys_addr);
564}
565
566static inline u32 gpi_read_reg(struct gpii *gpii, void __iomem *addr)
567{
568	return readl_relaxed(addr);
569}
570
571static inline void gpi_write_reg(struct gpii *gpii, void __iomem *addr, u32 val)
572{
573	writel_relaxed(val, addr);
574}
575
576/* gpi_write_reg_field - write to specific bit field */
577static inline void gpi_write_reg_field(struct gpii *gpii, void __iomem *addr,
578				       u32 mask, u32 shift, u32 val)
579{
580	u32 tmp = gpi_read_reg(gpii, addr);
581
582	tmp &= ~mask;
583	val = tmp | ((val << shift) & mask);
584	gpi_write_reg(gpii, addr, val);
585}
586
587static __always_inline void
588gpi_update_reg(struct gpii *gpii, u32 offset, u32 mask, u32 val)
589{
590	void __iomem *addr = gpii->regs + offset;
591	u32 tmp = gpi_read_reg(gpii, addr);
592
593	tmp &= ~mask;
594	tmp |= u32_encode_bits(val, mask);
595
596	gpi_write_reg(gpii, addr, tmp);
597}
598
599static void gpi_disable_interrupts(struct gpii *gpii)
600{
601	gpi_update_reg(gpii, GPII_n_CNTXT_TYPE_IRQ_MSK_OFFS(gpii->gpii_id),
602		       GPII_n_CNTXT_TYPE_IRQ_MSK_BMSK, 0);
603	gpi_update_reg(gpii, GPII_n_CNTXT_SRC_IEOB_IRQ_MSK_OFFS(gpii->gpii_id),
604		       GPII_n_CNTXT_SRC_IEOB_IRQ_MSK_BMSK, 0);
605	gpi_update_reg(gpii, GPII_n_CNTXT_SRC_CH_IRQ_MSK_OFFS(gpii->gpii_id),
606		       GPII_n_CNTXT_SRC_CH_IRQ_MSK_BMSK, 0);
607	gpi_update_reg(gpii, GPII_n_CNTXT_SRC_EV_CH_IRQ_MSK_OFFS(gpii->gpii_id),
608		       GPII_n_CNTXT_SRC_EV_CH_IRQ_MSK_BMSK, 0);
609	gpi_update_reg(gpii, GPII_n_CNTXT_GLOB_IRQ_EN_OFFS(gpii->gpii_id),
610		       GPII_n_CNTXT_GPII_IRQ_EN_BMSK, 0);
611	gpi_update_reg(gpii, GPII_n_CNTXT_GPII_IRQ_EN_OFFS(gpii->gpii_id),
612		       GPII_n_CNTXT_GPII_IRQ_EN_BMSK, 0);
613	gpi_update_reg(gpii, GPII_n_CNTXT_INTSET_OFFS(gpii->gpii_id),
614		       GPII_n_CNTXT_INTSET_BMSK, 0);
615
616	gpii->cntxt_type_irq_msk = 0;
617	devm_free_irq(gpii->gpi_dev->dev, gpii->irq, gpii);
618	gpii->configured_irq = false;
619}
620
621/* configure and enable interrupts */
622static int gpi_config_interrupts(struct gpii *gpii, enum gpii_irq_settings settings, bool mask)
623{
624	const u32 enable = (GPII_n_CNTXT_TYPE_IRQ_MSK_GENERAL |
625			      GPII_n_CNTXT_TYPE_IRQ_MSK_IEOB |
626			      GPII_n_CNTXT_TYPE_IRQ_MSK_GLOB |
627			      GPII_n_CNTXT_TYPE_IRQ_MSK_EV_CTRL |
628			      GPII_n_CNTXT_TYPE_IRQ_MSK_CH_CTRL);
629	int ret;
630
631	if (!gpii->configured_irq) {
632		ret = devm_request_irq(gpii->gpi_dev->dev, gpii->irq,
633				       gpi_handle_irq, IRQF_TRIGGER_HIGH,
634				       "gpi-dma", gpii);
635		if (ret < 0) {
636			dev_err(gpii->gpi_dev->dev, "error request irq:%d ret:%d\n",
637				gpii->irq, ret);
638			return ret;
639		}
640	}
641
642	if (settings == MASK_IEOB_SETTINGS) {
643		/*
644		 * GPII only uses one EV ring per gpii so we can globally
645		 * enable/disable IEOB interrupt
646		 */
647		if (mask)
648			gpii->cntxt_type_irq_msk |= GPII_n_CNTXT_TYPE_IRQ_MSK_IEOB;
649		else
650			gpii->cntxt_type_irq_msk &= ~(GPII_n_CNTXT_TYPE_IRQ_MSK_IEOB);
651		gpi_update_reg(gpii, GPII_n_CNTXT_TYPE_IRQ_MSK_OFFS(gpii->gpii_id),
652			       GPII_n_CNTXT_TYPE_IRQ_MSK_BMSK, gpii->cntxt_type_irq_msk);
653	} else {
654		gpi_update_reg(gpii, GPII_n_CNTXT_TYPE_IRQ_MSK_OFFS(gpii->gpii_id),
655			       GPII_n_CNTXT_TYPE_IRQ_MSK_BMSK, enable);
656		gpi_update_reg(gpii, GPII_n_CNTXT_SRC_IEOB_IRQ_MSK_OFFS(gpii->gpii_id),
657			       GPII_n_CNTXT_SRC_IEOB_IRQ_MSK_BMSK,
658			       GPII_n_CNTXT_SRC_IEOB_IRQ_MSK_BMSK);
659		gpi_update_reg(gpii, GPII_n_CNTXT_SRC_CH_IRQ_MSK_OFFS(gpii->gpii_id),
660			       GPII_n_CNTXT_SRC_CH_IRQ_MSK_BMSK,
661			       GPII_n_CNTXT_SRC_CH_IRQ_MSK_BMSK);
662		gpi_update_reg(gpii, GPII_n_CNTXT_SRC_EV_CH_IRQ_MSK_OFFS(gpii->gpii_id),
663			       GPII_n_CNTXT_SRC_EV_CH_IRQ_MSK_BMSK,
664			       GPII_n_CNTXT_SRC_EV_CH_IRQ_MSK_BMSK);
665		gpi_update_reg(gpii, GPII_n_CNTXT_GLOB_IRQ_EN_OFFS(gpii->gpii_id),
666			       GPII_n_CNTXT_GPII_IRQ_EN_BMSK,
667			       GPII_n_CNTXT_GPII_IRQ_EN_BMSK);
668		gpi_update_reg(gpii, GPII_n_CNTXT_GPII_IRQ_EN_OFFS(gpii->gpii_id),
669			       GPII_n_CNTXT_GPII_IRQ_EN_BMSK, GPII_n_CNTXT_GPII_IRQ_EN_BMSK);
670		gpi_update_reg(gpii, GPII_n_CNTXT_MSI_BASE_LSB_OFFS(gpii->gpii_id), U32_MAX, 0);
671		gpi_update_reg(gpii, GPII_n_CNTXT_MSI_BASE_MSB_OFFS(gpii->gpii_id), U32_MAX, 0);
672		gpi_update_reg(gpii, GPII_n_CNTXT_SCRATCH_0_OFFS(gpii->gpii_id), U32_MAX, 0);
673		gpi_update_reg(gpii, GPII_n_CNTXT_SCRATCH_1_OFFS(gpii->gpii_id), U32_MAX, 0);
674		gpi_update_reg(gpii, GPII_n_CNTXT_INTSET_OFFS(gpii->gpii_id),
675			       GPII_n_CNTXT_INTSET_BMSK, 1);
676		gpi_update_reg(gpii, GPII_n_ERROR_LOG_OFFS(gpii->gpii_id), U32_MAX, 0);
677
678		gpii->cntxt_type_irq_msk = enable;
679	}
680
681	gpii->configured_irq = true;
682	return 0;
683}
684
685/* Sends gpii event or channel command */
686static int gpi_send_cmd(struct gpii *gpii, struct gchan *gchan,
687			enum gpi_cmd gpi_cmd)
688{
689	u32 chid = MAX_CHANNELS_PER_GPII;
690	unsigned long timeout;
691	void __iomem *cmd_reg;
692	u32 cmd;
693
694	if (gpi_cmd >= GPI_MAX_CMD)
695		return -EINVAL;
696	if (IS_CHAN_CMD(gpi_cmd))
697		chid = gchan->chid;
698
699	dev_dbg(gpii->gpi_dev->dev,
700		"sending cmd: %s:%u\n", TO_GPI_CMD_STR(gpi_cmd), chid);
701
702	/* send opcode and wait for completion */
703	reinit_completion(&gpii->cmd_completion);
704	gpii->gpi_cmd = gpi_cmd;
705
706	cmd_reg = IS_CHAN_CMD(gpi_cmd) ? gchan->ch_cmd_reg : gpii->ev_cmd_reg;
707	cmd = IS_CHAN_CMD(gpi_cmd) ? GPII_n_CH_CMD(gpi_cmd_info[gpi_cmd].opcode, chid) :
708				     GPII_n_EV_CMD(gpi_cmd_info[gpi_cmd].opcode, 0);
709	gpi_write_reg(gpii, cmd_reg, cmd);
710	timeout = wait_for_completion_timeout(&gpii->cmd_completion,
711					      msecs_to_jiffies(CMD_TIMEOUT_MS));
712	if (!timeout) {
713		dev_err(gpii->gpi_dev->dev, "cmd: %s completion timeout:%u\n",
714			TO_GPI_CMD_STR(gpi_cmd), chid);
715		return -EIO;
716	}
717
718	/* confirm new ch state is correct , if the cmd is a state change cmd */
719	if (gpi_cmd_info[gpi_cmd].state == STATE_IGNORE)
720		return 0;
721
722	if (IS_CHAN_CMD(gpi_cmd) && gchan->ch_state == gpi_cmd_info[gpi_cmd].state)
723		return 0;
724
725	if (!IS_CHAN_CMD(gpi_cmd) && gpii->ev_state == gpi_cmd_info[gpi_cmd].state)
726		return 0;
727
728	return -EIO;
729}
730
731/* program transfer ring DB register */
732static inline void gpi_write_ch_db(struct gchan *gchan,
733				   struct gpi_ring *ring, void *wp)
734{
735	struct gpii *gpii = gchan->gpii;
736	phys_addr_t p_wp;
737
738	p_wp = to_physical(ring, wp);
739	gpi_write_reg(gpii, gchan->ch_cntxt_db_reg, p_wp);
740}
741
742/* program event ring DB register */
743static inline void gpi_write_ev_db(struct gpii *gpii,
744				   struct gpi_ring *ring, void *wp)
745{
746	phys_addr_t p_wp;
747
748	p_wp = ring->phys_addr + (wp - ring->base);
749	gpi_write_reg(gpii, gpii->ev_cntxt_db_reg, p_wp);
750}
751
752/* process transfer completion interrupt */
753static void gpi_process_ieob(struct gpii *gpii)
754{
755	gpi_write_reg(gpii, gpii->ieob_clr_reg, BIT(0));
756
757	gpi_config_interrupts(gpii, MASK_IEOB_SETTINGS, 0);
758	tasklet_hi_schedule(&gpii->ev_task);
759}
760
761/* process channel control interrupt */
762static void gpi_process_ch_ctrl_irq(struct gpii *gpii)
763{
764	u32 gpii_id = gpii->gpii_id;
765	u32 offset = GPII_n_CNTXT_SRC_GPII_CH_IRQ_OFFS(gpii_id);
766	u32 ch_irq = gpi_read_reg(gpii, gpii->regs + offset);
767	struct gchan *gchan;
768	u32 chid, state;
769
770	/* clear the status */
771	offset = GPII_n_CNTXT_SRC_CH_IRQ_CLR_OFFS(gpii_id);
772	gpi_write_reg(gpii, gpii->regs + offset, (u32)ch_irq);
773
774	for (chid = 0; chid < MAX_CHANNELS_PER_GPII; chid++) {
775		if (!(BIT(chid) & ch_irq))
776			continue;
777
778		gchan = &gpii->gchan[chid];
779		state = gpi_read_reg(gpii, gchan->ch_cntxt_base_reg +
780				     CNTXT_0_CONFIG);
781		state = FIELD_GET(GPII_n_CH_k_CNTXT_0_CHSTATE, state);
782
783		/*
784		 * CH_CMD_DEALLOC cmd always successful. However cmd does
785		 * not change hardware status. So overwriting software state
786		 * to default state.
787		 */
788		if (gpii->gpi_cmd == GPI_CH_CMD_DE_ALLOC)
789			state = DEFAULT_CH_STATE;
790		gchan->ch_state = state;
791
792		/*
793		 * Triggering complete all if ch_state is not a stop in process.
794		 * Stop in process is a transition state and we will wait for
795		 * stop interrupt before notifying.
796		 */
797		if (gchan->ch_state != CH_STATE_STOP_IN_PROC)
798			complete_all(&gpii->cmd_completion);
799	}
800}
801
802/* processing gpi general error interrupts */
803static void gpi_process_gen_err_irq(struct gpii *gpii)
804{
805	u32 gpii_id = gpii->gpii_id;
806	u32 offset = GPII_n_CNTXT_GPII_IRQ_STTS_OFFS(gpii_id);
807	u32 irq_stts = gpi_read_reg(gpii, gpii->regs + offset);
808
809	/* clear the status */
810	dev_dbg(gpii->gpi_dev->dev, "irq_stts:0x%x\n", irq_stts);
811
812	/* Clear the register */
813	offset = GPII_n_CNTXT_GPII_IRQ_CLR_OFFS(gpii_id);
814	gpi_write_reg(gpii, gpii->regs + offset, irq_stts);
815}
816
817/* processing gpi level error interrupts */
818static void gpi_process_glob_err_irq(struct gpii *gpii)
819{
820	u32 gpii_id = gpii->gpii_id;
821	u32 offset = GPII_n_CNTXT_GLOB_IRQ_STTS_OFFS(gpii_id);
822	u32 irq_stts = gpi_read_reg(gpii, gpii->regs + offset);
823
824	offset = GPII_n_CNTXT_GLOB_IRQ_CLR_OFFS(gpii_id);
825	gpi_write_reg(gpii, gpii->regs + offset, irq_stts);
826
827	/* only error interrupt should be set */
828	if (irq_stts & ~GPI_GLOB_IRQ_ERROR_INT_MSK) {
829		dev_err(gpii->gpi_dev->dev, "invalid error status:0x%x\n", irq_stts);
830		return;
831	}
832
833	offset = GPII_n_ERROR_LOG_OFFS(gpii_id);
834	gpi_write_reg(gpii, gpii->regs + offset, 0);
835}
836
837/* gpii interrupt handler */
838static irqreturn_t gpi_handle_irq(int irq, void *data)
839{
840	struct gpii *gpii = data;
841	u32 gpii_id = gpii->gpii_id;
842	u32 type, offset;
843	unsigned long flags;
844
845	read_lock_irqsave(&gpii->pm_lock, flags);
846
847	/*
848	 * States are out of sync to receive interrupt
849	 * while software state is in DISABLE state, bailing out.
850	 */
851	if (!REG_ACCESS_VALID(gpii->pm_state)) {
852		dev_err(gpii->gpi_dev->dev, "receive interrupt while in %s state\n",
853			TO_GPI_PM_STR(gpii->pm_state));
854		goto exit_irq;
855	}
856
857	offset = GPII_n_CNTXT_TYPE_IRQ_OFFS(gpii->gpii_id);
858	type = gpi_read_reg(gpii, gpii->regs + offset);
859
860	do {
861		/* global gpii error */
862		if (type & GPII_n_CNTXT_TYPE_IRQ_MSK_GLOB) {
863			gpi_process_glob_err_irq(gpii);
864			type &= ~(GPII_n_CNTXT_TYPE_IRQ_MSK_GLOB);
865		}
866
867		/* transfer complete interrupt */
868		if (type & GPII_n_CNTXT_TYPE_IRQ_MSK_IEOB) {
869			gpi_process_ieob(gpii);
870			type &= ~GPII_n_CNTXT_TYPE_IRQ_MSK_IEOB;
871		}
872
873		/* event control irq */
874		if (type & GPII_n_CNTXT_TYPE_IRQ_MSK_EV_CTRL) {
875			u32 ev_state;
876			u32 ev_ch_irq;
877
878			dev_dbg(gpii->gpi_dev->dev,
879				"processing EV CTRL interrupt\n");
880			offset = GPII_n_CNTXT_SRC_EV_CH_IRQ_OFFS(gpii_id);
881			ev_ch_irq = gpi_read_reg(gpii, gpii->regs + offset);
882
883			offset = GPII_n_CNTXT_SRC_EV_CH_IRQ_CLR_OFFS
884				(gpii_id);
885			gpi_write_reg(gpii, gpii->regs + offset, ev_ch_irq);
886			ev_state = gpi_read_reg(gpii, gpii->ev_cntxt_base_reg +
887						CNTXT_0_CONFIG);
888			ev_state = FIELD_GET(GPII_n_EV_k_CNTXT_0_CHSTATE, ev_state);
889
890			/*
891			 * CMD EV_CMD_DEALLOC is always successful. However
892			 * cmd does not change hardware status. So overwriting
893			 * software state to default state.
894			 */
895			if (gpii->gpi_cmd == GPI_EV_CMD_DEALLOC)
896				ev_state = DEFAULT_EV_CH_STATE;
897
898			gpii->ev_state = ev_state;
899			dev_dbg(gpii->gpi_dev->dev, "setting EV state to %s\n",
900				TO_GPI_EV_STATE_STR(gpii->ev_state));
901			complete_all(&gpii->cmd_completion);
902			type &= ~(GPII_n_CNTXT_TYPE_IRQ_MSK_EV_CTRL);
903		}
904
905		/* channel control irq */
906		if (type & GPII_n_CNTXT_TYPE_IRQ_MSK_CH_CTRL) {
907			dev_dbg(gpii->gpi_dev->dev, "process CH CTRL interrupts\n");
908			gpi_process_ch_ctrl_irq(gpii);
909			type &= ~(GPII_n_CNTXT_TYPE_IRQ_MSK_CH_CTRL);
910		}
911
912		if (type) {
913			dev_err(gpii->gpi_dev->dev, "Unhandled interrupt status:0x%x\n", type);
914			gpi_process_gen_err_irq(gpii);
915			goto exit_irq;
916		}
917
918		offset = GPII_n_CNTXT_TYPE_IRQ_OFFS(gpii->gpii_id);
919		type = gpi_read_reg(gpii, gpii->regs + offset);
920	} while (type);
921
922exit_irq:
923	read_unlock_irqrestore(&gpii->pm_lock, flags);
924
925	return IRQ_HANDLED;
926}
927
928/* process DMA Immediate completion data events */
929static void gpi_process_imed_data_event(struct gchan *gchan,
930					struct immediate_data_event *imed_event)
931{
932	struct gpii *gpii = gchan->gpii;
933	struct gpi_ring *ch_ring = &gchan->ch_ring;
934	void *tre = ch_ring->base + (ch_ring->el_size * imed_event->tre_index);
935	struct dmaengine_result result;
936	struct gpi_desc *gpi_desc;
937	struct virt_dma_desc *vd;
938	unsigned long flags;
939	u32 chid;
940
941	/*
942	 * If channel not active don't process event
943	 */
944	if (gchan->pm_state != ACTIVE_STATE) {
945		dev_err(gpii->gpi_dev->dev, "skipping processing event because ch @ %s state\n",
946			TO_GPI_PM_STR(gchan->pm_state));
947		return;
948	}
949
950	spin_lock_irqsave(&gchan->vc.lock, flags);
951	vd = vchan_next_desc(&gchan->vc);
952	if (!vd) {
953		struct gpi_ere *gpi_ere;
954		struct gpi_tre *gpi_tre;
955
956		spin_unlock_irqrestore(&gchan->vc.lock, flags);
957		dev_dbg(gpii->gpi_dev->dev, "event without a pending descriptor!\n");
958		gpi_ere = (struct gpi_ere *)imed_event;
959		dev_dbg(gpii->gpi_dev->dev,
960			"Event: %08x %08x %08x %08x\n",
961			gpi_ere->dword[0], gpi_ere->dword[1],
962			gpi_ere->dword[2], gpi_ere->dword[3]);
963		gpi_tre = tre;
964		dev_dbg(gpii->gpi_dev->dev,
965			"Pending TRE: %08x %08x %08x %08x\n",
966			gpi_tre->dword[0], gpi_tre->dword[1],
967			gpi_tre->dword[2], gpi_tre->dword[3]);
968		return;
969	}
970	gpi_desc = to_gpi_desc(vd);
971	spin_unlock_irqrestore(&gchan->vc.lock, flags);
972
973	/*
974	 * RP pointed by Event is to last TRE processed,
975	 * we need to update ring rp to tre + 1
976	 */
977	tre += ch_ring->el_size;
978	if (tre >= (ch_ring->base + ch_ring->len))
979		tre = ch_ring->base;
980	ch_ring->rp = tre;
981
982	/* make sure rp updates are immediately visible to all cores */
983	smp_wmb();
984
985	chid = imed_event->chid;
986	if (imed_event->code == MSM_GPI_TCE_EOT && gpii->ieob_set) {
987		if (chid == GPI_RX_CHAN)
988			goto gpi_free_desc;
989		else
990			return;
991	}
992
993	if (imed_event->code == MSM_GPI_TCE_UNEXP_ERR)
994		result.result = DMA_TRANS_ABORTED;
995	else
996		result.result = DMA_TRANS_NOERROR;
997	result.residue = gpi_desc->len - imed_event->length;
998
999	dma_cookie_complete(&vd->tx);
1000	dmaengine_desc_get_callback_invoke(&vd->tx, &result);
1001
1002gpi_free_desc:
1003	spin_lock_irqsave(&gchan->vc.lock, flags);
1004	list_del(&vd->node);
1005	spin_unlock_irqrestore(&gchan->vc.lock, flags);
1006	kfree(gpi_desc);
1007	gpi_desc = NULL;
1008}
1009
1010/* processing transfer completion events */
1011static void gpi_process_xfer_compl_event(struct gchan *gchan,
1012					 struct xfer_compl_event *compl_event)
1013{
1014	struct gpii *gpii = gchan->gpii;
1015	struct gpi_ring *ch_ring = &gchan->ch_ring;
1016	void *ev_rp = to_virtual(ch_ring, compl_event->ptr);
1017	struct virt_dma_desc *vd;
1018	struct gpi_desc *gpi_desc;
1019	struct dmaengine_result result;
1020	unsigned long flags;
1021	u32 chid;
1022
1023	/* only process events on active channel */
1024	if (unlikely(gchan->pm_state != ACTIVE_STATE)) {
1025		dev_err(gpii->gpi_dev->dev, "skipping processing event because ch @ %s state\n",
1026			TO_GPI_PM_STR(gchan->pm_state));
1027		return;
1028	}
1029
1030	spin_lock_irqsave(&gchan->vc.lock, flags);
1031	vd = vchan_next_desc(&gchan->vc);
1032	if (!vd) {
1033		struct gpi_ere *gpi_ere;
1034
1035		spin_unlock_irqrestore(&gchan->vc.lock, flags);
1036		dev_err(gpii->gpi_dev->dev, "Event without a pending descriptor!\n");
1037		gpi_ere = (struct gpi_ere *)compl_event;
1038		dev_err(gpii->gpi_dev->dev,
1039			"Event: %08x %08x %08x %08x\n",
1040			gpi_ere->dword[0], gpi_ere->dword[1],
1041			gpi_ere->dword[2], gpi_ere->dword[3]);
1042		return;
1043	}
1044
1045	gpi_desc = to_gpi_desc(vd);
1046	spin_unlock_irqrestore(&gchan->vc.lock, flags);
1047
1048	/*
1049	 * RP pointed by Event is to last TRE processed,
1050	 * we need to update ring rp to ev_rp + 1
1051	 */
1052	ev_rp += ch_ring->el_size;
1053	if (ev_rp >= (ch_ring->base + ch_ring->len))
1054		ev_rp = ch_ring->base;
1055	ch_ring->rp = ev_rp;
1056
1057	/* update must be visible to other cores */
1058	smp_wmb();
1059
1060	chid = compl_event->chid;
1061	if (compl_event->code == MSM_GPI_TCE_EOT && gpii->ieob_set) {
1062		if (chid == GPI_RX_CHAN)
1063			goto gpi_free_desc;
1064		else
1065			return;
1066	}
1067
1068	if (compl_event->code == MSM_GPI_TCE_UNEXP_ERR) {
1069		dev_err(gpii->gpi_dev->dev, "Error in Transaction\n");
1070		result.result = DMA_TRANS_ABORTED;
1071	} else {
1072		dev_dbg(gpii->gpi_dev->dev, "Transaction Success\n");
1073		result.result = DMA_TRANS_NOERROR;
1074	}
1075	result.residue = gpi_desc->len - compl_event->length;
1076	dev_dbg(gpii->gpi_dev->dev, "Residue %d\n", result.residue);
1077
1078	dma_cookie_complete(&vd->tx);
1079	dmaengine_desc_get_callback_invoke(&vd->tx, &result);
1080
1081gpi_free_desc:
1082	spin_lock_irqsave(&gchan->vc.lock, flags);
1083	list_del(&vd->node);
1084	spin_unlock_irqrestore(&gchan->vc.lock, flags);
1085	kfree(gpi_desc);
1086	gpi_desc = NULL;
1087}
1088
1089/* process all events */
1090static void gpi_process_events(struct gpii *gpii)
1091{
1092	struct gpi_ring *ev_ring = &gpii->ev_ring;
1093	phys_addr_t cntxt_rp;
1094	void *rp;
1095	union gpi_event *gpi_event;
1096	struct gchan *gchan;
1097	u32 chid, type;
1098
1099	cntxt_rp = gpi_read_reg(gpii, gpii->ev_ring_rp_lsb_reg);
1100	rp = to_virtual(ev_ring, cntxt_rp);
1101
1102	do {
1103		while (rp != ev_ring->rp) {
1104			gpi_event = ev_ring->rp;
1105			chid = gpi_event->xfer_compl_event.chid;
1106			type = gpi_event->xfer_compl_event.type;
1107
1108			dev_dbg(gpii->gpi_dev->dev,
1109				"Event: CHID:%u, type:%x %08x %08x %08x %08x\n",
1110				chid, type, gpi_event->gpi_ere.dword[0],
1111				gpi_event->gpi_ere.dword[1], gpi_event->gpi_ere.dword[2],
1112				gpi_event->gpi_ere.dword[3]);
1113
1114			switch (type) {
1115			case XFER_COMPLETE_EV_TYPE:
1116				gchan = &gpii->gchan[chid];
1117				gpi_process_xfer_compl_event(gchan,
1118							     &gpi_event->xfer_compl_event);
1119				break;
1120			case STALE_EV_TYPE:
1121				dev_dbg(gpii->gpi_dev->dev, "stale event, not processing\n");
1122				break;
1123			case IMMEDIATE_DATA_EV_TYPE:
1124				gchan = &gpii->gchan[chid];
1125				gpi_process_imed_data_event(gchan,
1126							    &gpi_event->immediate_data_event);
1127				break;
1128			case QUP_NOTIF_EV_TYPE:
1129				dev_dbg(gpii->gpi_dev->dev, "QUP_NOTIF_EV_TYPE\n");
1130				break;
1131			default:
1132				dev_dbg(gpii->gpi_dev->dev,
1133					"not supported event type:0x%x\n", type);
1134			}
1135			gpi_ring_recycle_ev_element(ev_ring);
1136		}
1137		gpi_write_ev_db(gpii, ev_ring, ev_ring->wp);
1138
1139		/* clear pending IEOB events */
1140		gpi_write_reg(gpii, gpii->ieob_clr_reg, BIT(0));
1141
1142		cntxt_rp = gpi_read_reg(gpii, gpii->ev_ring_rp_lsb_reg);
1143		rp = to_virtual(ev_ring, cntxt_rp);
1144
1145	} while (rp != ev_ring->rp);
1146}
1147
1148/* processing events using tasklet */
1149static void gpi_ev_tasklet(unsigned long data)
1150{
1151	struct gpii *gpii = (struct gpii *)data;
1152
1153	read_lock(&gpii->pm_lock);
1154	if (!REG_ACCESS_VALID(gpii->pm_state)) {
1155		read_unlock(&gpii->pm_lock);
1156		dev_err(gpii->gpi_dev->dev, "not processing any events, pm_state:%s\n",
1157			TO_GPI_PM_STR(gpii->pm_state));
1158		return;
1159	}
1160
1161	/* process the events */
1162	gpi_process_events(gpii);
1163
1164	/* enable IEOB, switching back to interrupts */
1165	gpi_config_interrupts(gpii, MASK_IEOB_SETTINGS, 1);
1166	read_unlock(&gpii->pm_lock);
1167}
1168
1169/* marks all pending events for the channel as stale */
1170static void gpi_mark_stale_events(struct gchan *gchan)
1171{
1172	struct gpii *gpii = gchan->gpii;
1173	struct gpi_ring *ev_ring = &gpii->ev_ring;
1174	u32 cntxt_rp, local_rp;
1175	void *ev_rp;
1176
1177	cntxt_rp = gpi_read_reg(gpii, gpii->ev_ring_rp_lsb_reg);
1178
1179	ev_rp = ev_ring->rp;
1180	local_rp = (u32)to_physical(ev_ring, ev_rp);
1181	while (local_rp != cntxt_rp) {
1182		union gpi_event *gpi_event = ev_rp;
1183		u32 chid = gpi_event->xfer_compl_event.chid;
1184
1185		if (chid == gchan->chid)
1186			gpi_event->xfer_compl_event.type = STALE_EV_TYPE;
1187		ev_rp += ev_ring->el_size;
1188		if (ev_rp >= (ev_ring->base + ev_ring->len))
1189			ev_rp = ev_ring->base;
1190		cntxt_rp = gpi_read_reg(gpii, gpii->ev_ring_rp_lsb_reg);
1191		local_rp = (u32)to_physical(ev_ring, ev_rp);
1192	}
1193}
1194
1195/* reset sw state and issue channel reset or de-alloc */
1196static int gpi_reset_chan(struct gchan *gchan, enum gpi_cmd gpi_cmd)
1197{
1198	struct gpii *gpii = gchan->gpii;
1199	struct gpi_ring *ch_ring = &gchan->ch_ring;
1200	unsigned long flags;
1201	LIST_HEAD(list);
1202	int ret;
1203
1204	ret = gpi_send_cmd(gpii, gchan, gpi_cmd);
1205	if (ret) {
1206		dev_err(gpii->gpi_dev->dev, "Error with cmd:%s ret:%d\n",
1207			TO_GPI_CMD_STR(gpi_cmd), ret);
1208		return ret;
1209	}
1210
1211	/* initialize the local ring ptrs */
1212	ch_ring->rp = ch_ring->base;
1213	ch_ring->wp = ch_ring->base;
1214
1215	/* visible to other cores */
1216	smp_wmb();
1217
1218	/* check event ring for any stale events */
1219	write_lock_irq(&gpii->pm_lock);
1220	gpi_mark_stale_events(gchan);
1221
1222	/* remove all async descriptors */
1223	spin_lock_irqsave(&gchan->vc.lock, flags);
1224	vchan_get_all_descriptors(&gchan->vc, &list);
1225	spin_unlock_irqrestore(&gchan->vc.lock, flags);
1226	write_unlock_irq(&gpii->pm_lock);
1227	vchan_dma_desc_free_list(&gchan->vc, &list);
1228
1229	return 0;
1230}
1231
1232static int gpi_start_chan(struct gchan *gchan)
1233{
1234	struct gpii *gpii = gchan->gpii;
1235	int ret;
1236
1237	ret = gpi_send_cmd(gpii, gchan, GPI_CH_CMD_START);
1238	if (ret) {
1239		dev_err(gpii->gpi_dev->dev, "Error with cmd:%s ret:%d\n",
1240			TO_GPI_CMD_STR(GPI_CH_CMD_START), ret);
1241		return ret;
1242	}
1243
1244	/* gpii CH is active now */
1245	write_lock_irq(&gpii->pm_lock);
1246	gchan->pm_state = ACTIVE_STATE;
1247	write_unlock_irq(&gpii->pm_lock);
1248
1249	return 0;
1250}
1251
1252static int gpi_stop_chan(struct gchan *gchan)
1253{
1254	struct gpii *gpii = gchan->gpii;
1255	int ret;
1256
1257	ret = gpi_send_cmd(gpii, gchan, GPI_CH_CMD_STOP);
1258	if (ret) {
1259		dev_err(gpii->gpi_dev->dev, "Error with cmd:%s ret:%d\n",
1260			TO_GPI_CMD_STR(GPI_CH_CMD_STOP), ret);
1261		return ret;
1262	}
1263
1264	return 0;
1265}
1266
1267/* allocate and configure the transfer channel */
1268static int gpi_alloc_chan(struct gchan *chan, bool send_alloc_cmd)
1269{
1270	struct gpii *gpii = chan->gpii;
1271	struct gpi_ring *ring = &chan->ch_ring;
1272	int ret;
1273	u32 id = gpii->gpii_id;
1274	u32 chid = chan->chid;
1275	u32 pair_chid = !chid;
1276
1277	if (send_alloc_cmd) {
1278		ret = gpi_send_cmd(gpii, chan, GPI_CH_CMD_ALLOCATE);
1279		if (ret) {
1280			dev_err(gpii->gpi_dev->dev, "Error with cmd:%s ret:%d\n",
1281				TO_GPI_CMD_STR(GPI_CH_CMD_ALLOCATE), ret);
1282			return ret;
1283		}
1284	}
1285
1286	gpi_write_reg(gpii, chan->ch_cntxt_base_reg + CNTXT_0_CONFIG,
1287		      GPII_n_CH_k_CNTXT_0(ring->el_size, 0, chan->dir, GPI_CHTYPE_PROTO_GPI));
1288	gpi_write_reg(gpii, chan->ch_cntxt_base_reg + CNTXT_1_R_LENGTH, ring->len);
1289	gpi_write_reg(gpii, chan->ch_cntxt_base_reg + CNTXT_2_RING_BASE_LSB, ring->phys_addr);
1290	gpi_write_reg(gpii, chan->ch_cntxt_base_reg + CNTXT_3_RING_BASE_MSB,
1291		      upper_32_bits(ring->phys_addr));
1292	gpi_write_reg(gpii, chan->ch_cntxt_db_reg + CNTXT_5_RING_RP_MSB - CNTXT_4_RING_RP_LSB,
1293		      upper_32_bits(ring->phys_addr));
1294	gpi_write_reg(gpii, gpii->regs + GPII_n_CH_k_SCRATCH_0_OFFS(id, chid),
1295		      GPII_n_CH_k_SCRATCH_0(pair_chid, chan->protocol, chan->seid));
1296	gpi_write_reg(gpii, gpii->regs + GPII_n_CH_k_SCRATCH_1_OFFS(id, chid), 0);
1297	gpi_write_reg(gpii, gpii->regs + GPII_n_CH_k_SCRATCH_2_OFFS(id, chid), 0);
1298	gpi_write_reg(gpii, gpii->regs + GPII_n_CH_k_SCRATCH_3_OFFS(id, chid), 0);
1299	gpi_write_reg(gpii, gpii->regs + GPII_n_CH_k_QOS_OFFS(id, chid), 1);
1300
1301	/* flush all the writes */
1302	wmb();
1303	return 0;
1304}
1305
1306/* allocate and configure event ring */
1307static int gpi_alloc_ev_chan(struct gpii *gpii)
1308{
1309	struct gpi_ring *ring = &gpii->ev_ring;
1310	void __iomem *base = gpii->ev_cntxt_base_reg;
1311	int ret;
1312
1313	ret = gpi_send_cmd(gpii, NULL, GPI_EV_CMD_ALLOCATE);
1314	if (ret) {
1315		dev_err(gpii->gpi_dev->dev, "error with cmd:%s ret:%d\n",
1316			TO_GPI_CMD_STR(GPI_EV_CMD_ALLOCATE), ret);
1317		return ret;
1318	}
1319
1320	/* program event context */
1321	gpi_write_reg(gpii, base + CNTXT_0_CONFIG,
1322		      GPII_n_EV_k_CNTXT_0(ring->el_size, GPI_INTTYPE_IRQ, GPI_CHTYPE_GPI_EV));
1323	gpi_write_reg(gpii, base + CNTXT_1_R_LENGTH, ring->len);
1324	gpi_write_reg(gpii, base + CNTXT_2_RING_BASE_LSB, lower_32_bits(ring->phys_addr));
1325	gpi_write_reg(gpii, base + CNTXT_3_RING_BASE_MSB, upper_32_bits(ring->phys_addr));
1326	gpi_write_reg(gpii, gpii->ev_cntxt_db_reg + CNTXT_5_RING_RP_MSB - CNTXT_4_RING_RP_LSB,
1327		      upper_32_bits(ring->phys_addr));
1328	gpi_write_reg(gpii, base + CNTXT_8_RING_INT_MOD, 0);
1329	gpi_write_reg(gpii, base + CNTXT_10_RING_MSI_LSB, 0);
1330	gpi_write_reg(gpii, base + CNTXT_11_RING_MSI_MSB, 0);
1331	gpi_write_reg(gpii, base + CNTXT_8_RING_INT_MOD, 0);
1332	gpi_write_reg(gpii, base + CNTXT_12_RING_RP_UPDATE_LSB, 0);
1333	gpi_write_reg(gpii, base + CNTXT_13_RING_RP_UPDATE_MSB, 0);
1334
1335	/* add events to ring */
1336	ring->wp = (ring->base + ring->len - ring->el_size);
1337
1338	/* flush all the writes */
1339	wmb();
1340
1341	/* gpii is active now */
1342	write_lock_irq(&gpii->pm_lock);
1343	gpii->pm_state = ACTIVE_STATE;
1344	write_unlock_irq(&gpii->pm_lock);
1345	gpi_write_ev_db(gpii, ring, ring->wp);
1346
1347	return 0;
1348}
1349
1350/* calculate # of ERE/TRE available to queue */
1351static int gpi_ring_num_elements_avail(const struct gpi_ring * const ring)
1352{
1353	int elements = 0;
1354
1355	if (ring->wp < ring->rp) {
1356		elements = ((ring->rp - ring->wp) / ring->el_size) - 1;
1357	} else {
1358		elements = (ring->rp - ring->base) / ring->el_size;
1359		elements += ((ring->base + ring->len - ring->wp) / ring->el_size) - 1;
1360	}
1361
1362	return elements;
1363}
1364
1365static int gpi_ring_add_element(struct gpi_ring *ring, void **wp)
1366{
1367	if (gpi_ring_num_elements_avail(ring) <= 0)
1368		return -ENOMEM;
1369
1370	*wp = ring->wp;
1371	ring->wp += ring->el_size;
1372	if (ring->wp  >= (ring->base + ring->len))
1373		ring->wp = ring->base;
1374
1375	/* visible to other cores */
1376	smp_wmb();
1377
1378	return 0;
1379}
1380
1381static void gpi_ring_recycle_ev_element(struct gpi_ring *ring)
1382{
1383	/* Update the WP */
1384	ring->wp += ring->el_size;
1385	if (ring->wp  >= (ring->base + ring->len))
1386		ring->wp = ring->base;
1387
1388	/* Update the RP */
1389	ring->rp += ring->el_size;
1390	if (ring->rp  >= (ring->base + ring->len))
1391		ring->rp = ring->base;
1392
1393	/* visible to other cores */
1394	smp_wmb();
1395}
1396
1397static void gpi_free_ring(struct gpi_ring *ring,
1398			  struct gpii *gpii)
1399{
1400	dma_free_coherent(gpii->gpi_dev->dev, ring->alloc_size,
1401			  ring->pre_aligned, ring->dma_handle);
1402	memset(ring, 0, sizeof(*ring));
1403}
1404
1405/* allocate memory for transfer and event rings */
1406static int gpi_alloc_ring(struct gpi_ring *ring, u32 elements,
1407			  u32 el_size, struct gpii *gpii)
1408{
1409	u64 len = elements * el_size;
1410	int bit;
1411
1412	/* ring len must be power of 2 */
1413	bit = find_last_bit((unsigned long *)&len, 32);
1414	if (((1 << bit) - 1) & len)
1415		bit++;
1416	len = 1 << bit;
1417	ring->alloc_size = (len + (len - 1));
1418	dev_dbg(gpii->gpi_dev->dev,
1419		"#el:%u el_size:%u len:%u actual_len:%llu alloc_size:%zu\n",
1420		  elements, el_size, (elements * el_size), len,
1421		  ring->alloc_size);
1422
1423	ring->pre_aligned = dma_alloc_coherent(gpii->gpi_dev->dev,
1424					       ring->alloc_size,
1425					       &ring->dma_handle, GFP_KERNEL);
1426	if (!ring->pre_aligned) {
1427		dev_err(gpii->gpi_dev->dev, "could not alloc size:%zu mem for ring\n",
1428			ring->alloc_size);
1429		return -ENOMEM;
1430	}
1431
1432	/* align the physical mem */
1433	ring->phys_addr = (ring->dma_handle + (len - 1)) & ~(len - 1);
1434	ring->base = ring->pre_aligned + (ring->phys_addr - ring->dma_handle);
1435	ring->rp = ring->base;
1436	ring->wp = ring->base;
1437	ring->len = len;
1438	ring->el_size = el_size;
1439	ring->elements = ring->len / ring->el_size;
1440	memset(ring->base, 0, ring->len);
1441	ring->configured = true;
1442
1443	/* update to other cores */
1444	smp_wmb();
1445
1446	dev_dbg(gpii->gpi_dev->dev,
1447		"phy_pre:%pad phy_alig:%pa len:%u el_size:%u elements:%u\n",
1448		&ring->dma_handle, &ring->phys_addr, ring->len,
1449		ring->el_size, ring->elements);
1450
1451	return 0;
1452}
1453
1454/* copy tre into transfer ring */
1455static void gpi_queue_xfer(struct gpii *gpii, struct gchan *gchan,
1456			   struct gpi_tre *gpi_tre, void **wp)
1457{
1458	struct gpi_tre *ch_tre;
1459	int ret;
1460
1461	/* get next tre location we can copy */
1462	ret = gpi_ring_add_element(&gchan->ch_ring, (void **)&ch_tre);
1463	if (unlikely(ret)) {
1464		dev_err(gpii->gpi_dev->dev, "Error adding ring element to xfer ring\n");
1465		return;
1466	}
1467
1468	/* copy the tre info */
1469	memcpy(ch_tre, gpi_tre, sizeof(*ch_tre));
1470	*wp = ch_tre;
1471}
1472
1473/* reset and restart transfer channel */
1474static int gpi_terminate_all(struct dma_chan *chan)
1475{
1476	struct gchan *gchan = to_gchan(chan);
1477	struct gpii *gpii = gchan->gpii;
1478	int schid, echid, i;
1479	int ret = 0;
1480
1481	mutex_lock(&gpii->ctrl_lock);
1482
1483	/*
1484	 * treat both channels as a group if its protocol is not UART
1485	 * STOP, RESET, or START needs to be in lockstep
1486	 */
1487	schid = (gchan->protocol == QCOM_GPI_UART) ? gchan->chid : 0;
1488	echid = (gchan->protocol == QCOM_GPI_UART) ? schid + 1 : MAX_CHANNELS_PER_GPII;
1489
1490	/* stop the channel */
1491	for (i = schid; i < echid; i++) {
1492		gchan = &gpii->gchan[i];
1493
1494		/* disable ch state so no more TRE processing */
1495		write_lock_irq(&gpii->pm_lock);
1496		gchan->pm_state = PREPARE_TERMINATE;
1497		write_unlock_irq(&gpii->pm_lock);
1498
1499		/* send command to Stop the channel */
1500		ret = gpi_stop_chan(gchan);
1501	}
1502
1503	/* reset the channels (clears any pending tre) */
1504	for (i = schid; i < echid; i++) {
1505		gchan = &gpii->gchan[i];
1506
1507		ret = gpi_reset_chan(gchan, GPI_CH_CMD_RESET);
1508		if (ret) {
1509			dev_err(gpii->gpi_dev->dev, "Error resetting channel ret:%d\n", ret);
1510			goto terminate_exit;
1511		}
1512
1513		/* reprogram channel CNTXT */
1514		ret = gpi_alloc_chan(gchan, false);
1515		if (ret) {
1516			dev_err(gpii->gpi_dev->dev, "Error alloc_channel ret:%d\n", ret);
1517			goto terminate_exit;
1518		}
1519	}
1520
1521	/* restart the channels */
1522	for (i = schid; i < echid; i++) {
1523		gchan = &gpii->gchan[i];
1524
1525		ret = gpi_start_chan(gchan);
1526		if (ret) {
1527			dev_err(gpii->gpi_dev->dev, "Error Starting Channel ret:%d\n", ret);
1528			goto terminate_exit;
1529		}
1530	}
1531
1532terminate_exit:
1533	mutex_unlock(&gpii->ctrl_lock);
1534	return ret;
1535}
1536
1537/* pause dma transfer for all channels */
1538static int gpi_pause(struct dma_chan *chan)
1539{
1540	struct gchan *gchan = to_gchan(chan);
1541	struct gpii *gpii = gchan->gpii;
1542	int i, ret;
1543
1544	mutex_lock(&gpii->ctrl_lock);
1545
1546	/*
1547	 * pause/resume are per gpii not per channel, so
1548	 * client needs to call pause only once
1549	 */
1550	if (gpii->pm_state == PAUSE_STATE) {
1551		dev_dbg(gpii->gpi_dev->dev, "channel is already paused\n");
1552		mutex_unlock(&gpii->ctrl_lock);
1553		return 0;
1554	}
1555
1556	/* send stop command to stop the channels */
1557	for (i = 0; i < MAX_CHANNELS_PER_GPII; i++) {
1558		ret = gpi_stop_chan(&gpii->gchan[i]);
1559		if (ret) {
1560			mutex_unlock(&gpii->ctrl_lock);
1561			return ret;
1562		}
1563	}
1564
1565	disable_irq(gpii->irq);
1566
1567	/* Wait for threads to complete out */
1568	tasklet_kill(&gpii->ev_task);
1569
1570	write_lock_irq(&gpii->pm_lock);
1571	gpii->pm_state = PAUSE_STATE;
1572	write_unlock_irq(&gpii->pm_lock);
1573	mutex_unlock(&gpii->ctrl_lock);
1574
1575	return 0;
1576}
1577
1578/* resume dma transfer */
1579static int gpi_resume(struct dma_chan *chan)
1580{
1581	struct gchan *gchan = to_gchan(chan);
1582	struct gpii *gpii = gchan->gpii;
1583	int i, ret;
1584
1585	mutex_lock(&gpii->ctrl_lock);
1586	if (gpii->pm_state == ACTIVE_STATE) {
1587		dev_dbg(gpii->gpi_dev->dev, "channel is already active\n");
1588		mutex_unlock(&gpii->ctrl_lock);
1589		return 0;
1590	}
1591
1592	enable_irq(gpii->irq);
1593
1594	/* send start command to start the channels */
1595	for (i = 0; i < MAX_CHANNELS_PER_GPII; i++) {
1596		ret = gpi_send_cmd(gpii, &gpii->gchan[i], GPI_CH_CMD_START);
1597		if (ret) {
1598			dev_err(gpii->gpi_dev->dev, "Error starting chan, ret:%d\n", ret);
1599			mutex_unlock(&gpii->ctrl_lock);
1600			return ret;
1601		}
1602	}
1603
1604	write_lock_irq(&gpii->pm_lock);
1605	gpii->pm_state = ACTIVE_STATE;
1606	write_unlock_irq(&gpii->pm_lock);
1607	mutex_unlock(&gpii->ctrl_lock);
1608
1609	return 0;
1610}
1611
1612static void gpi_desc_free(struct virt_dma_desc *vd)
1613{
1614	struct gpi_desc *gpi_desc = to_gpi_desc(vd);
1615
1616	kfree(gpi_desc);
1617	gpi_desc = NULL;
1618}
1619
1620static int
1621gpi_peripheral_config(struct dma_chan *chan, struct dma_slave_config *config)
1622{
1623	struct gchan *gchan = to_gchan(chan);
1624
1625	if (!config->peripheral_config)
1626		return -EINVAL;
1627
1628	gchan->config = krealloc(gchan->config, config->peripheral_size, GFP_NOWAIT);
1629	if (!gchan->config)
1630		return -ENOMEM;
1631
1632	memcpy(gchan->config, config->peripheral_config, config->peripheral_size);
1633
1634	return 0;
1635}
1636
1637static int gpi_create_i2c_tre(struct gchan *chan, struct gpi_desc *desc,
1638			      struct scatterlist *sgl, enum dma_transfer_direction direction)
1639{
1640	struct gpi_i2c_config *i2c = chan->config;
1641	struct device *dev = chan->gpii->gpi_dev->dev;
1642	unsigned int tre_idx = 0;
1643	dma_addr_t address;
1644	struct gpi_tre *tre;
1645	unsigned int i;
1646
1647	/* first create config tre if applicable */
1648	if (i2c->set_config) {
1649		tre = &desc->tre[tre_idx];
1650		tre_idx++;
1651
1652		tre->dword[0] = u32_encode_bits(i2c->low_count, TRE_I2C_C0_TLOW);
1653		tre->dword[0] |= u32_encode_bits(i2c->high_count, TRE_I2C_C0_THIGH);
1654		tre->dword[0] |= u32_encode_bits(i2c->cycle_count, TRE_I2C_C0_TCYL);
1655		tre->dword[0] |= u32_encode_bits(i2c->pack_enable, TRE_I2C_C0_TX_PACK);
1656		tre->dword[0] |= u32_encode_bits(i2c->pack_enable, TRE_I2C_C0_RX_PACK);
1657
1658		tre->dword[1] = 0;
1659
1660		tre->dword[2] = u32_encode_bits(i2c->clk_div, TRE_C0_CLK_DIV);
1661
1662		tre->dword[3] = u32_encode_bits(TRE_TYPE_CONFIG0, TRE_FLAGS_TYPE);
1663		tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_CHAIN);
1664	}
1665
1666	/* create the GO tre for Tx */
1667	if (i2c->op == I2C_WRITE) {
1668		tre = &desc->tre[tre_idx];
1669		tre_idx++;
1670
1671		if (i2c->multi_msg)
1672			tre->dword[0] = u32_encode_bits(I2C_READ, TRE_I2C_GO_CMD);
1673		else
1674			tre->dword[0] = u32_encode_bits(i2c->op, TRE_I2C_GO_CMD);
1675
1676		tre->dword[0] |= u32_encode_bits(i2c->addr, TRE_I2C_GO_ADDR);
1677		tre->dword[0] |= u32_encode_bits(i2c->stretch, TRE_I2C_GO_STRETCH);
1678
1679		tre->dword[1] = 0;
1680		tre->dword[2] = u32_encode_bits(i2c->rx_len, TRE_RX_LEN);
1681
1682		tre->dword[3] = u32_encode_bits(TRE_TYPE_GO, TRE_FLAGS_TYPE);
1683
1684		if (i2c->multi_msg)
1685			tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_LINK);
1686		else
1687			tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_CHAIN);
1688	}
1689
1690	if (i2c->op == I2C_READ || i2c->multi_msg == false) {
1691		/* create the DMA TRE */
1692		tre = &desc->tre[tre_idx];
1693		tre_idx++;
1694
1695		address = sg_dma_address(sgl);
1696		tre->dword[0] = lower_32_bits(address);
1697		tre->dword[1] = upper_32_bits(address);
1698
1699		tre->dword[2] = u32_encode_bits(sg_dma_len(sgl), TRE_DMA_LEN);
1700
1701		tre->dword[3] = u32_encode_bits(TRE_TYPE_DMA, TRE_FLAGS_TYPE);
1702		tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_IEOT);
1703	}
1704
1705	for (i = 0; i < tre_idx; i++)
1706		dev_dbg(dev, "TRE:%d %x:%x:%x:%x\n", i, desc->tre[i].dword[0],
1707			desc->tre[i].dword[1], desc->tre[i].dword[2], desc->tre[i].dword[3]);
1708
1709	return tre_idx;
1710}
1711
1712static int gpi_create_spi_tre(struct gchan *chan, struct gpi_desc *desc,
1713			      struct scatterlist *sgl, enum dma_transfer_direction direction)
1714{
1715	struct gpi_spi_config *spi = chan->config;
1716	struct device *dev = chan->gpii->gpi_dev->dev;
1717	unsigned int tre_idx = 0;
1718	dma_addr_t address;
1719	struct gpi_tre *tre;
1720	unsigned int i;
1721
1722	/* first create config tre if applicable */
1723	if (direction == DMA_MEM_TO_DEV && spi->set_config) {
1724		tre = &desc->tre[tre_idx];
1725		tre_idx++;
1726
1727		tre->dword[0] = u32_encode_bits(spi->word_len, TRE_SPI_C0_WORD_SZ);
1728		tre->dword[0] |= u32_encode_bits(spi->loopback_en, TRE_SPI_C0_LOOPBACK);
1729		tre->dword[0] |= u32_encode_bits(spi->clock_pol_high, TRE_SPI_C0_CPOL);
1730		tre->dword[0] |= u32_encode_bits(spi->data_pol_high, TRE_SPI_C0_CPHA);
1731		tre->dword[0] |= u32_encode_bits(spi->pack_en, TRE_SPI_C0_TX_PACK);
1732		tre->dword[0] |= u32_encode_bits(spi->pack_en, TRE_SPI_C0_RX_PACK);
1733
1734		tre->dword[1] = 0;
1735
1736		tre->dword[2] = u32_encode_bits(spi->clk_div, TRE_C0_CLK_DIV);
1737		tre->dword[2] |= u32_encode_bits(spi->clk_src, TRE_C0_CLK_SRC);
1738
1739		tre->dword[3] = u32_encode_bits(TRE_TYPE_CONFIG0, TRE_FLAGS_TYPE);
1740		tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_CHAIN);
1741	}
1742
1743	/* create the GO tre for Tx */
1744	if (direction == DMA_MEM_TO_DEV) {
1745		tre = &desc->tre[tre_idx];
1746		tre_idx++;
1747
1748		tre->dword[0] = u32_encode_bits(spi->fragmentation, TRE_SPI_GO_FRAG);
1749		tre->dword[0] |= u32_encode_bits(spi->cs, TRE_SPI_GO_CS);
1750		tre->dword[0] |= u32_encode_bits(spi->cmd, TRE_SPI_GO_CMD);
1751
1752		tre->dword[1] = 0;
1753
1754		tre->dword[2] = u32_encode_bits(spi->rx_len, TRE_RX_LEN);
1755
1756		tre->dword[3] = u32_encode_bits(TRE_TYPE_GO, TRE_FLAGS_TYPE);
1757		if (spi->cmd == SPI_RX) {
1758			tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_IEOB);
1759			tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_LINK);
1760		} else if (spi->cmd == SPI_TX) {
1761			tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_CHAIN);
1762		} else { /* SPI_DUPLEX */
1763			tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_CHAIN);
1764			tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_LINK);
1765		}
1766	}
1767
1768	/* create the dma tre */
1769	tre = &desc->tre[tre_idx];
1770	tre_idx++;
1771
1772	address = sg_dma_address(sgl);
1773	tre->dword[0] = lower_32_bits(address);
1774	tre->dword[1] = upper_32_bits(address);
1775
1776	tre->dword[2] = u32_encode_bits(sg_dma_len(sgl), TRE_DMA_LEN);
1777
1778	tre->dword[3] = u32_encode_bits(TRE_TYPE_DMA, TRE_FLAGS_TYPE);
1779	if (direction == DMA_MEM_TO_DEV)
1780		tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_IEOT);
1781
1782	for (i = 0; i < tre_idx; i++)
1783		dev_dbg(dev, "TRE:%d %x:%x:%x:%x\n", i, desc->tre[i].dword[0],
1784			desc->tre[i].dword[1], desc->tre[i].dword[2], desc->tre[i].dword[3]);
1785
1786	return tre_idx;
1787}
1788
1789/* copy tre into transfer ring */
1790static struct dma_async_tx_descriptor *
1791gpi_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
1792		  unsigned int sg_len, enum dma_transfer_direction direction,
1793		  unsigned long flags, void *context)
1794{
1795	struct gchan *gchan = to_gchan(chan);
1796	struct gpii *gpii = gchan->gpii;
1797	struct device *dev = gpii->gpi_dev->dev;
1798	struct gpi_ring *ch_ring = &gchan->ch_ring;
1799	struct gpi_desc *gpi_desc;
1800	u32 nr, nr_tre = 0;
1801	u8 set_config;
1802	int i;
1803
1804	gpii->ieob_set = false;
1805	if (!is_slave_direction(direction)) {
1806		dev_err(gpii->gpi_dev->dev, "invalid dma direction: %d\n", direction);
1807		return NULL;
1808	}
1809
1810	if (sg_len > 1) {
1811		dev_err(dev, "Multi sg sent, we support only one atm: %d\n", sg_len);
1812		return NULL;
1813	}
1814
1815	nr_tre = 3;
1816	set_config = *(u32 *)gchan->config;
1817	if (!set_config)
1818		nr_tre = 2;
1819	if (direction == DMA_DEV_TO_MEM) /* rx */
1820		nr_tre = 1;
1821
1822	/* calculate # of elements required & available */
1823	nr = gpi_ring_num_elements_avail(ch_ring);
1824	if (nr < nr_tre) {
1825		dev_err(dev, "not enough space in ring, avail:%u required:%u\n", nr, nr_tre);
1826		return NULL;
1827	}
1828
1829	gpi_desc = kzalloc(sizeof(*gpi_desc), GFP_NOWAIT);
1830	if (!gpi_desc)
1831		return NULL;
1832
1833	/* create TREs for xfer */
1834	if (gchan->protocol == QCOM_GPI_SPI) {
1835		i = gpi_create_spi_tre(gchan, gpi_desc, sgl, direction);
1836	} else if (gchan->protocol == QCOM_GPI_I2C) {
1837		i = gpi_create_i2c_tre(gchan, gpi_desc, sgl, direction);
1838	} else {
1839		dev_err(dev, "invalid peripheral: %d\n", gchan->protocol);
1840		kfree(gpi_desc);
1841		return NULL;
1842	}
1843
1844	/* set up the descriptor */
1845	gpi_desc->gchan = gchan;
1846	gpi_desc->len = sg_dma_len(sgl);
1847	gpi_desc->num_tre  = i;
1848
1849	return vchan_tx_prep(&gchan->vc, &gpi_desc->vd, flags);
1850}
1851
1852/* rings transfer ring db to being transfer */
1853static void gpi_issue_pending(struct dma_chan *chan)
1854{
1855	struct gchan *gchan = to_gchan(chan);
1856	struct gpii *gpii = gchan->gpii;
1857	unsigned long flags, pm_lock_flags;
1858	struct virt_dma_desc *vd = NULL;
1859	struct gpi_desc *gpi_desc;
1860	struct gpi_ring *ch_ring = &gchan->ch_ring;
1861	void *tre, *wp = NULL;
1862	int i;
1863
1864	read_lock_irqsave(&gpii->pm_lock, pm_lock_flags);
1865
1866	/* move all submitted discriptors to issued list */
1867	spin_lock_irqsave(&gchan->vc.lock, flags);
1868	if (vchan_issue_pending(&gchan->vc))
1869		vd = list_last_entry(&gchan->vc.desc_issued,
1870				     struct virt_dma_desc, node);
1871	spin_unlock_irqrestore(&gchan->vc.lock, flags);
1872
1873	/* nothing to do list is empty */
1874	if (!vd) {
1875		read_unlock_irqrestore(&gpii->pm_lock, pm_lock_flags);
1876		return;
1877	}
1878
1879	gpi_desc = to_gpi_desc(vd);
1880	for (i = 0; i < gpi_desc->num_tre; i++) {
1881		tre = &gpi_desc->tre[i];
1882		gpi_queue_xfer(gpii, gchan, tre, &wp);
1883	}
1884
1885	gpi_desc->db = ch_ring->wp;
1886	gpi_write_ch_db(gchan, &gchan->ch_ring, gpi_desc->db);
1887	read_unlock_irqrestore(&gpii->pm_lock, pm_lock_flags);
1888}
1889
1890static int gpi_ch_init(struct gchan *gchan)
1891{
1892	struct gpii *gpii = gchan->gpii;
1893	const int ev_factor = gpii->gpi_dev->ev_factor;
1894	u32 elements;
1895	int i = 0, ret = 0;
1896
1897	gchan->pm_state = CONFIG_STATE;
1898
1899	/* check if both channels are configured before continue */
1900	for (i = 0; i < MAX_CHANNELS_PER_GPII; i++)
1901		if (gpii->gchan[i].pm_state != CONFIG_STATE)
1902			goto exit_gpi_init;
1903
1904	/* protocol must be same for both channels */
1905	if (gpii->gchan[0].protocol != gpii->gchan[1].protocol) {
1906		dev_err(gpii->gpi_dev->dev, "protocol did not match protocol %u != %u\n",
1907			gpii->gchan[0].protocol, gpii->gchan[1].protocol);
1908		ret = -EINVAL;
1909		goto exit_gpi_init;
1910	}
1911
1912	/* allocate memory for event ring */
1913	elements = CHAN_TRES << ev_factor;
1914	ret = gpi_alloc_ring(&gpii->ev_ring, elements,
1915			     sizeof(union gpi_event), gpii);
1916	if (ret)
1917		goto exit_gpi_init;
1918
1919	/* configure interrupts */
1920	write_lock_irq(&gpii->pm_lock);
1921	gpii->pm_state = PREPARE_HARDWARE;
1922	write_unlock_irq(&gpii->pm_lock);
1923	ret = gpi_config_interrupts(gpii, DEFAULT_IRQ_SETTINGS, 0);
1924	if (ret) {
1925		dev_err(gpii->gpi_dev->dev, "error config. interrupts, ret:%d\n", ret);
1926		goto error_config_int;
1927	}
1928
1929	/* allocate event rings */
1930	ret = gpi_alloc_ev_chan(gpii);
1931	if (ret) {
1932		dev_err(gpii->gpi_dev->dev, "error alloc_ev_chan:%d\n", ret);
1933		goto error_alloc_ev_ring;
1934	}
1935
1936	/* Allocate all channels */
1937	for (i = 0; i < MAX_CHANNELS_PER_GPII; i++) {
1938		ret = gpi_alloc_chan(&gpii->gchan[i], true);
1939		if (ret) {
1940			dev_err(gpii->gpi_dev->dev, "Error allocating chan:%d\n", ret);
1941			goto error_alloc_chan;
1942		}
1943	}
1944
1945	/* start channels  */
1946	for (i = 0; i < MAX_CHANNELS_PER_GPII; i++) {
1947		ret = gpi_start_chan(&gpii->gchan[i]);
1948		if (ret) {
1949			dev_err(gpii->gpi_dev->dev, "Error start chan:%d\n", ret);
1950			goto error_start_chan;
1951		}
1952	}
1953	return ret;
1954
1955error_start_chan:
1956	for (i = i - 1; i >= 0; i--) {
1957		gpi_stop_chan(&gpii->gchan[i]);
1958		gpi_send_cmd(gpii, gchan, GPI_CH_CMD_RESET);
1959	}
1960	i = 2;
1961error_alloc_chan:
1962	for (i = i - 1; i >= 0; i--)
1963		gpi_reset_chan(gchan, GPI_CH_CMD_DE_ALLOC);
1964error_alloc_ev_ring:
1965	gpi_disable_interrupts(gpii);
1966error_config_int:
1967	gpi_free_ring(&gpii->ev_ring, gpii);
1968exit_gpi_init:
1969	return ret;
1970}
1971
1972/* release all channel resources */
1973static void gpi_free_chan_resources(struct dma_chan *chan)
1974{
1975	struct gchan *gchan = to_gchan(chan);
1976	struct gpii *gpii = gchan->gpii;
1977	enum gpi_pm_state cur_state;
1978	int ret, i;
1979
1980	mutex_lock(&gpii->ctrl_lock);
1981
1982	cur_state = gchan->pm_state;
1983
1984	/* disable ch state so no more TRE processing for this channel */
1985	write_lock_irq(&gpii->pm_lock);
1986	gchan->pm_state = PREPARE_TERMINATE;
1987	write_unlock_irq(&gpii->pm_lock);
1988
1989	/* attempt to do graceful hardware shutdown */
1990	if (cur_state == ACTIVE_STATE) {
1991		gpi_stop_chan(gchan);
1992
1993		ret = gpi_send_cmd(gpii, gchan, GPI_CH_CMD_RESET);
1994		if (ret)
1995			dev_err(gpii->gpi_dev->dev, "error resetting channel:%d\n", ret);
1996
1997		gpi_reset_chan(gchan, GPI_CH_CMD_DE_ALLOC);
1998	}
1999
2000	/* free all allocated memory */
2001	gpi_free_ring(&gchan->ch_ring, gpii);
2002	vchan_free_chan_resources(&gchan->vc);
2003	kfree(gchan->config);
2004
2005	write_lock_irq(&gpii->pm_lock);
2006	gchan->pm_state = DISABLE_STATE;
2007	write_unlock_irq(&gpii->pm_lock);
2008
2009	/* if other rings are still active exit */
2010	for (i = 0; i < MAX_CHANNELS_PER_GPII; i++)
2011		if (gpii->gchan[i].ch_ring.configured)
2012			goto exit_free;
2013
2014	/* deallocate EV Ring */
2015	cur_state = gpii->pm_state;
2016	write_lock_irq(&gpii->pm_lock);
2017	gpii->pm_state = PREPARE_TERMINATE;
2018	write_unlock_irq(&gpii->pm_lock);
2019
2020	/* wait for threads to complete out */
2021	tasklet_kill(&gpii->ev_task);
2022
2023	/* send command to de allocate event ring */
2024	if (cur_state == ACTIVE_STATE)
2025		gpi_send_cmd(gpii, NULL, GPI_EV_CMD_DEALLOC);
2026
2027	gpi_free_ring(&gpii->ev_ring, gpii);
2028
2029	/* disable interrupts */
2030	if (cur_state == ACTIVE_STATE)
2031		gpi_disable_interrupts(gpii);
2032
2033	/* set final state to disable */
2034	write_lock_irq(&gpii->pm_lock);
2035	gpii->pm_state = DISABLE_STATE;
2036	write_unlock_irq(&gpii->pm_lock);
2037
2038exit_free:
2039	mutex_unlock(&gpii->ctrl_lock);
2040}
2041
2042/* allocate channel resources */
2043static int gpi_alloc_chan_resources(struct dma_chan *chan)
2044{
2045	struct gchan *gchan = to_gchan(chan);
2046	struct gpii *gpii = gchan->gpii;
2047	int ret;
2048
2049	mutex_lock(&gpii->ctrl_lock);
2050
2051	/* allocate memory for transfer ring */
2052	ret = gpi_alloc_ring(&gchan->ch_ring, CHAN_TRES,
2053			     sizeof(struct gpi_tre), gpii);
2054	if (ret)
2055		goto xfer_alloc_err;
2056
2057	ret = gpi_ch_init(gchan);
2058
2059	mutex_unlock(&gpii->ctrl_lock);
2060
2061	return ret;
2062xfer_alloc_err:
2063	mutex_unlock(&gpii->ctrl_lock);
2064
2065	return ret;
2066}
2067
2068static int gpi_find_avail_gpii(struct gpi_dev *gpi_dev, u32 seid)
2069{
2070	struct gchan *tx_chan, *rx_chan;
2071	unsigned int gpii;
2072
2073	/* check if same seid is already configured for another chid */
2074	for (gpii = 0; gpii < gpi_dev->max_gpii; gpii++) {
2075		if (!((1 << gpii) & gpi_dev->gpii_mask))
2076			continue;
2077
2078		tx_chan = &gpi_dev->gpiis[gpii].gchan[GPI_TX_CHAN];
2079		rx_chan = &gpi_dev->gpiis[gpii].gchan[GPI_RX_CHAN];
2080
2081		if (rx_chan->vc.chan.client_count && rx_chan->seid == seid)
2082			return gpii;
2083		if (tx_chan->vc.chan.client_count && tx_chan->seid == seid)
2084			return gpii;
2085	}
2086
2087	/* no channels configured with same seid, return next avail gpii */
2088	for (gpii = 0; gpii < gpi_dev->max_gpii; gpii++) {
2089		if (!((1 << gpii) & gpi_dev->gpii_mask))
2090			continue;
2091
2092		tx_chan = &gpi_dev->gpiis[gpii].gchan[GPI_TX_CHAN];
2093		rx_chan = &gpi_dev->gpiis[gpii].gchan[GPI_RX_CHAN];
2094
2095		/* check if gpii is configured */
2096		if (tx_chan->vc.chan.client_count ||
2097		    rx_chan->vc.chan.client_count)
2098			continue;
2099
2100		/* found a free gpii */
2101		return gpii;
2102	}
2103
2104	/* no gpii instance available to use */
2105	return -EIO;
2106}
2107
2108/* gpi_of_dma_xlate: open client requested channel */
2109static struct dma_chan *gpi_of_dma_xlate(struct of_phandle_args *args,
2110					 struct of_dma *of_dma)
2111{
2112	struct gpi_dev *gpi_dev = (struct gpi_dev *)of_dma->of_dma_data;
2113	u32 seid, chid;
2114	int gpii;
2115	struct gchan *gchan;
2116
2117	if (args->args_count < 3) {
2118		dev_err(gpi_dev->dev, "gpii require minimum 2 args, client passed:%d args\n",
2119			args->args_count);
2120		return NULL;
2121	}
2122
2123	chid = args->args[0];
2124	if (chid >= MAX_CHANNELS_PER_GPII) {
2125		dev_err(gpi_dev->dev, "gpii channel:%d not valid\n", chid);
2126		return NULL;
2127	}
2128
2129	seid = args->args[1];
2130
2131	/* find next available gpii to use */
2132	gpii = gpi_find_avail_gpii(gpi_dev, seid);
2133	if (gpii < 0) {
2134		dev_err(gpi_dev->dev, "no available gpii instances\n");
2135		return NULL;
2136	}
2137
2138	gchan = &gpi_dev->gpiis[gpii].gchan[chid];
2139	if (gchan->vc.chan.client_count) {
2140		dev_err(gpi_dev->dev, "gpii:%d chid:%d seid:%d already configured\n",
2141			gpii, chid, gchan->seid);
2142		return NULL;
2143	}
2144
2145	gchan->seid = seid;
2146	gchan->protocol = args->args[2];
2147
2148	return dma_get_slave_channel(&gchan->vc.chan);
2149}
2150
2151static int gpi_probe(struct platform_device *pdev)
2152{
2153	struct gpi_dev *gpi_dev;
2154	unsigned int i;
2155	u32 ee_offset;
2156	int ret;
2157
2158	gpi_dev = devm_kzalloc(&pdev->dev, sizeof(*gpi_dev), GFP_KERNEL);
2159	if (!gpi_dev)
2160		return -ENOMEM;
2161
2162	gpi_dev->dev = &pdev->dev;
2163	gpi_dev->regs = devm_platform_get_and_ioremap_resource(pdev, 0, &gpi_dev->res);
2164	if (IS_ERR(gpi_dev->regs))
2165		return PTR_ERR(gpi_dev->regs);
2166	gpi_dev->ee_base = gpi_dev->regs;
2167
2168	ret = of_property_read_u32(gpi_dev->dev->of_node, "dma-channels",
2169				   &gpi_dev->max_gpii);
2170	if (ret) {
2171		dev_err(gpi_dev->dev, "missing 'max-no-gpii' DT node\n");
2172		return ret;
2173	}
2174
2175	ret = of_property_read_u32(gpi_dev->dev->of_node, "dma-channel-mask",
2176				   &gpi_dev->gpii_mask);
2177	if (ret) {
2178		dev_err(gpi_dev->dev, "missing 'gpii-mask' DT node\n");
2179		return ret;
2180	}
2181
2182	ee_offset = (uintptr_t)device_get_match_data(gpi_dev->dev);
2183	gpi_dev->ee_base = gpi_dev->ee_base - ee_offset;
2184
2185	gpi_dev->ev_factor = EV_FACTOR;
2186
2187	ret = dma_set_mask(gpi_dev->dev, DMA_BIT_MASK(64));
2188	if (ret) {
2189		dev_err(gpi_dev->dev, "Error setting dma_mask to 64, ret:%d\n", ret);
2190		return ret;
2191	}
2192
2193	gpi_dev->gpiis = devm_kzalloc(gpi_dev->dev, sizeof(*gpi_dev->gpiis) *
2194				      gpi_dev->max_gpii, GFP_KERNEL);
2195	if (!gpi_dev->gpiis)
2196		return -ENOMEM;
2197
2198	/* setup all the supported gpii */
2199	INIT_LIST_HEAD(&gpi_dev->dma_device.channels);
2200	for (i = 0; i < gpi_dev->max_gpii; i++) {
2201		struct gpii *gpii = &gpi_dev->gpiis[i];
2202		int chan;
2203
2204		if (!((1 << i) & gpi_dev->gpii_mask))
2205			continue;
2206
2207		/* set up ev cntxt register map */
2208		gpii->ev_cntxt_base_reg = gpi_dev->ee_base + GPII_n_EV_CH_k_CNTXT_0_OFFS(i, 0);
2209		gpii->ev_cntxt_db_reg = gpi_dev->ee_base + GPII_n_EV_CH_k_DOORBELL_0_OFFS(i, 0);
2210		gpii->ev_ring_rp_lsb_reg = gpii->ev_cntxt_base_reg + CNTXT_4_RING_RP_LSB;
2211		gpii->ev_cmd_reg = gpi_dev->ee_base + GPII_n_EV_CH_CMD_OFFS(i);
2212		gpii->ieob_clr_reg = gpi_dev->ee_base + GPII_n_CNTXT_SRC_IEOB_IRQ_CLR_OFFS(i);
2213
2214		/* set up irq */
2215		ret = platform_get_irq(pdev, i);
2216		if (ret < 0)
2217			return ret;
2218		gpii->irq = ret;
2219
2220		/* set up channel specific register info */
2221		for (chan = 0; chan < MAX_CHANNELS_PER_GPII; chan++) {
2222			struct gchan *gchan = &gpii->gchan[chan];
2223
2224			/* set up ch cntxt register map */
2225			gchan->ch_cntxt_base_reg = gpi_dev->ee_base +
2226				GPII_n_CH_k_CNTXT_0_OFFS(i, chan);
2227			gchan->ch_cntxt_db_reg = gpi_dev->ee_base +
2228				GPII_n_CH_k_DOORBELL_0_OFFS(i, chan);
2229			gchan->ch_cmd_reg = gpi_dev->ee_base + GPII_n_CH_CMD_OFFS(i);
2230
2231			/* vchan setup */
2232			vchan_init(&gchan->vc, &gpi_dev->dma_device);
2233			gchan->vc.desc_free = gpi_desc_free;
2234			gchan->chid = chan;
2235			gchan->gpii = gpii;
2236			gchan->dir = GPII_CHAN_DIR[chan];
2237		}
2238		mutex_init(&gpii->ctrl_lock);
2239		rwlock_init(&gpii->pm_lock);
2240		tasklet_init(&gpii->ev_task, gpi_ev_tasklet,
2241			     (unsigned long)gpii);
2242		init_completion(&gpii->cmd_completion);
2243		gpii->gpii_id = i;
2244		gpii->regs = gpi_dev->ee_base;
2245		gpii->gpi_dev = gpi_dev;
2246	}
2247
2248	platform_set_drvdata(pdev, gpi_dev);
2249
2250	/* clear and Set capabilities */
2251	dma_cap_zero(gpi_dev->dma_device.cap_mask);
2252	dma_cap_set(DMA_SLAVE, gpi_dev->dma_device.cap_mask);
2253
2254	/* configure dmaengine apis */
2255	gpi_dev->dma_device.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
2256	gpi_dev->dma_device.residue_granularity = DMA_RESIDUE_GRANULARITY_DESCRIPTOR;
2257	gpi_dev->dma_device.src_addr_widths = DMA_SLAVE_BUSWIDTH_8_BYTES;
2258	gpi_dev->dma_device.dst_addr_widths = DMA_SLAVE_BUSWIDTH_8_BYTES;
2259	gpi_dev->dma_device.device_alloc_chan_resources = gpi_alloc_chan_resources;
2260	gpi_dev->dma_device.device_free_chan_resources = gpi_free_chan_resources;
2261	gpi_dev->dma_device.device_tx_status = dma_cookie_status;
2262	gpi_dev->dma_device.device_issue_pending = gpi_issue_pending;
2263	gpi_dev->dma_device.device_prep_slave_sg = gpi_prep_slave_sg;
2264	gpi_dev->dma_device.device_config = gpi_peripheral_config;
2265	gpi_dev->dma_device.device_terminate_all = gpi_terminate_all;
2266	gpi_dev->dma_device.dev = gpi_dev->dev;
2267	gpi_dev->dma_device.device_pause = gpi_pause;
2268	gpi_dev->dma_device.device_resume = gpi_resume;
2269
2270	/* register with dmaengine framework */
2271	ret = dma_async_device_register(&gpi_dev->dma_device);
2272	if (ret) {
2273		dev_err(gpi_dev->dev, "async_device_register failed ret:%d", ret);
2274		return ret;
2275	}
2276
2277	ret = of_dma_controller_register(gpi_dev->dev->of_node,
2278					 gpi_of_dma_xlate, gpi_dev);
2279	if (ret) {
2280		dev_err(gpi_dev->dev, "of_dma_controller_reg failed ret:%d", ret);
2281		return ret;
2282	}
2283
2284	return ret;
2285}
2286
2287static const struct of_device_id gpi_of_match[] = {
2288	{ .compatible = "qcom,sdm845-gpi-dma", .data = (void *)0x0 },
2289	{ .compatible = "qcom,sm6350-gpi-dma", .data = (void *)0x10000 },
2290	/*
2291	 * Do not grow the list for compatible devices. Instead use
2292	 * qcom,sdm845-gpi-dma (for ee_offset = 0x0) or qcom,sm6350-gpi-dma
2293	 * (for ee_offset = 0x10000).
2294	 */
2295	{ .compatible = "qcom,sc7280-gpi-dma", .data = (void *)0x10000 },
2296	{ .compatible = "qcom,sm8150-gpi-dma", .data = (void *)0x0 },
2297	{ .compatible = "qcom,sm8250-gpi-dma", .data = (void *)0x0 },
2298	{ .compatible = "qcom,sm8350-gpi-dma", .data = (void *)0x10000 },
2299	{ .compatible = "qcom,sm8450-gpi-dma", .data = (void *)0x10000 },
2300	{ },
2301};
2302MODULE_DEVICE_TABLE(of, gpi_of_match);
2303
2304static struct platform_driver gpi_driver = {
2305	.probe = gpi_probe,
2306	.driver = {
2307		.name = KBUILD_MODNAME,
2308		.of_match_table = gpi_of_match,
2309	},
2310};
2311
2312static int __init gpi_init(void)
2313{
2314	return platform_driver_register(&gpi_driver);
2315}
2316subsys_initcall(gpi_init)
2317
2318MODULE_DESCRIPTION("QCOM GPI DMA engine driver");
2319MODULE_LICENSE("GPL v2");
2320