1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Copyright (C) 2006-2009 DENX Software Engineering.
4 *
5 * Author: Yuri Tikhonov <yur@emcraft.com>
6 *
7 * Further porting to arch/powerpc by
8 * 	Anatolij Gustschin <agust@denx.de>
9 */
10
11/*
12 * This driver supports the asynchrounous DMA copy and RAID engines available
13 * on the AMCC PPC440SPe Processors.
14 * Based on the Intel Xscale(R) family of I/O Processors (IOP 32x, 33x, 134x)
15 * ADMA driver written by D.Williams.
16 */
17
18#include <linux/init.h>
19#include <linux/module.h>
20#include <linux/async_tx.h>
21#include <linux/delay.h>
22#include <linux/dma-mapping.h>
23#include <linux/spinlock.h>
24#include <linux/interrupt.h>
25#include <linux/slab.h>
26#include <linux/uaccess.h>
27#include <linux/proc_fs.h>
28#include <linux/of.h>
29#include <linux/of_address.h>
30#include <linux/of_irq.h>
31#include <linux/platform_device.h>
32#include <asm/dcr.h>
33#include <asm/dcr-regs.h>
34#include "adma.h"
35#include "../dmaengine.h"
36
37enum ppc_adma_init_code {
38	PPC_ADMA_INIT_OK = 0,
39	PPC_ADMA_INIT_MEMRES,
40	PPC_ADMA_INIT_MEMREG,
41	PPC_ADMA_INIT_ALLOC,
42	PPC_ADMA_INIT_COHERENT,
43	PPC_ADMA_INIT_CHANNEL,
44	PPC_ADMA_INIT_IRQ1,
45	PPC_ADMA_INIT_IRQ2,
46	PPC_ADMA_INIT_REGISTER
47};
48
49static char *ppc_adma_errors[] = {
50	[PPC_ADMA_INIT_OK] = "ok",
51	[PPC_ADMA_INIT_MEMRES] = "failed to get memory resource",
52	[PPC_ADMA_INIT_MEMREG] = "failed to request memory region",
53	[PPC_ADMA_INIT_ALLOC] = "failed to allocate memory for adev "
54				"structure",
55	[PPC_ADMA_INIT_COHERENT] = "failed to allocate coherent memory for "
56				   "hardware descriptors",
57	[PPC_ADMA_INIT_CHANNEL] = "failed to allocate memory for channel",
58	[PPC_ADMA_INIT_IRQ1] = "failed to request first irq",
59	[PPC_ADMA_INIT_IRQ2] = "failed to request second irq",
60	[PPC_ADMA_INIT_REGISTER] = "failed to register dma async device",
61};
62
63static enum ppc_adma_init_code
64ppc440spe_adma_devices[PPC440SPE_ADMA_ENGINES_NUM];
65
66struct ppc_dma_chan_ref {
67	struct dma_chan *chan;
68	struct list_head node;
69};
70
71/* The list of channels exported by ppc440spe ADMA */
72static struct list_head
73ppc440spe_adma_chan_list = LIST_HEAD_INIT(ppc440spe_adma_chan_list);
74
75/* This flag is set when want to refetch the xor chain in the interrupt
76 * handler
77 */
78static u32 do_xor_refetch;
79
80/* Pointer to DMA0, DMA1 CP/CS FIFO */
81static void *ppc440spe_dma_fifo_buf;
82
83/* Pointers to last submitted to DMA0, DMA1 CDBs */
84static struct ppc440spe_adma_desc_slot *chan_last_sub[3];
85static struct ppc440spe_adma_desc_slot *chan_first_cdb[3];
86
87/* Pointer to last linked and submitted xor CB */
88static struct ppc440spe_adma_desc_slot *xor_last_linked;
89static struct ppc440spe_adma_desc_slot *xor_last_submit;
90
91/* This array is used in data-check operations for storing a pattern */
92static char ppc440spe_qword[16];
93
94static atomic_t ppc440spe_adma_err_irq_ref;
95static dcr_host_t ppc440spe_mq_dcr_host;
96static unsigned int ppc440spe_mq_dcr_len;
97
98/* Since RXOR operations use the common register (MQ0_CF2H) for setting-up
99 * the block size in transactions, then we do not allow to activate more than
100 * only one RXOR transactions simultaneously. So use this var to store
101 * the information about is RXOR currently active (PPC440SPE_RXOR_RUN bit is
102 * set) or not (PPC440SPE_RXOR_RUN is clear).
103 */
104static unsigned long ppc440spe_rxor_state;
105
106/* These are used in enable & check routines
107 */
108static u32 ppc440spe_r6_enabled;
109static struct ppc440spe_adma_chan *ppc440spe_r6_tchan;
110static struct completion ppc440spe_r6_test_comp;
111
112static int ppc440spe_adma_dma2rxor_prep_src(
113		struct ppc440spe_adma_desc_slot *desc,
114		struct ppc440spe_rxor *cursor, int index,
115		int src_cnt, u32 addr);
116static void ppc440spe_adma_dma2rxor_set_src(
117		struct ppc440spe_adma_desc_slot *desc,
118		int index, dma_addr_t addr);
119static void ppc440spe_adma_dma2rxor_set_mult(
120		struct ppc440spe_adma_desc_slot *desc,
121		int index, u8 mult);
122
123#ifdef ADMA_LL_DEBUG
124#define ADMA_LL_DBG(x) ({ if (1) x; 0; })
125#else
126#define ADMA_LL_DBG(x) ({ if (0) x; 0; })
127#endif
128
129static void print_cb(struct ppc440spe_adma_chan *chan, void *block)
130{
131	struct dma_cdb *cdb;
132	struct xor_cb *cb;
133	int i;
134
135	switch (chan->device->id) {
136	case 0:
137	case 1:
138		cdb = block;
139
140		pr_debug("CDB at %p [%d]:\n"
141			"\t attr 0x%02x opc 0x%02x cnt 0x%08x\n"
142			"\t sg1u 0x%08x sg1l 0x%08x\n"
143			"\t sg2u 0x%08x sg2l 0x%08x\n"
144			"\t sg3u 0x%08x sg3l 0x%08x\n",
145			cdb, chan->device->id,
146			cdb->attr, cdb->opc, le32_to_cpu(cdb->cnt),
147			le32_to_cpu(cdb->sg1u), le32_to_cpu(cdb->sg1l),
148			le32_to_cpu(cdb->sg2u), le32_to_cpu(cdb->sg2l),
149			le32_to_cpu(cdb->sg3u), le32_to_cpu(cdb->sg3l)
150		);
151		break;
152	case 2:
153		cb = block;
154
155		pr_debug("CB at %p [%d]:\n"
156			"\t cbc 0x%08x cbbc 0x%08x cbs 0x%08x\n"
157			"\t cbtah 0x%08x cbtal 0x%08x\n"
158			"\t cblah 0x%08x cblal 0x%08x\n",
159			cb, chan->device->id,
160			cb->cbc, cb->cbbc, cb->cbs,
161			cb->cbtah, cb->cbtal,
162			cb->cblah, cb->cblal);
163		for (i = 0; i < 16; i++) {
164			if (i && !cb->ops[i].h && !cb->ops[i].l)
165				continue;
166			pr_debug("\t ops[%2d]: h 0x%08x l 0x%08x\n",
167				i, cb->ops[i].h, cb->ops[i].l);
168		}
169		break;
170	}
171}
172
173static void print_cb_list(struct ppc440spe_adma_chan *chan,
174			  struct ppc440spe_adma_desc_slot *iter)
175{
176	for (; iter; iter = iter->hw_next)
177		print_cb(chan, iter->hw_desc);
178}
179
180static void prep_dma_xor_dbg(int id, dma_addr_t dst, dma_addr_t *src,
181			     unsigned int src_cnt)
182{
183	int i;
184
185	pr_debug("\n%s(%d):\nsrc: ", __func__, id);
186	for (i = 0; i < src_cnt; i++)
187		pr_debug("\t0x%016llx ", src[i]);
188	pr_debug("dst:\n\t0x%016llx\n", dst);
189}
190
191static void prep_dma_pq_dbg(int id, dma_addr_t *dst, dma_addr_t *src,
192			    unsigned int src_cnt)
193{
194	int i;
195
196	pr_debug("\n%s(%d):\nsrc: ", __func__, id);
197	for (i = 0; i < src_cnt; i++)
198		pr_debug("\t0x%016llx ", src[i]);
199	pr_debug("dst: ");
200	for (i = 0; i < 2; i++)
201		pr_debug("\t0x%016llx ", dst[i]);
202}
203
204static void prep_dma_pqzero_sum_dbg(int id, dma_addr_t *src,
205				    unsigned int src_cnt,
206				    const unsigned char *scf)
207{
208	int i;
209
210	pr_debug("\n%s(%d):\nsrc(coef): ", __func__, id);
211	if (scf) {
212		for (i = 0; i < src_cnt; i++)
213			pr_debug("\t0x%016llx(0x%02x) ", src[i], scf[i]);
214	} else {
215		for (i = 0; i < src_cnt; i++)
216			pr_debug("\t0x%016llx(no) ", src[i]);
217	}
218
219	pr_debug("dst: ");
220	for (i = 0; i < 2; i++)
221		pr_debug("\t0x%016llx ", src[src_cnt + i]);
222}
223
224/******************************************************************************
225 * Command (Descriptor) Blocks low-level routines
226 ******************************************************************************/
227/**
228 * ppc440spe_desc_init_interrupt - initialize the descriptor for INTERRUPT
229 * pseudo operation
230 */
231static void ppc440spe_desc_init_interrupt(struct ppc440spe_adma_desc_slot *desc,
232					  struct ppc440spe_adma_chan *chan)
233{
234	struct xor_cb *p;
235
236	switch (chan->device->id) {
237	case PPC440SPE_XOR_ID:
238		p = desc->hw_desc;
239		memset(desc->hw_desc, 0, sizeof(struct xor_cb));
240		/* NOP with Command Block Complete Enable */
241		p->cbc = XOR_CBCR_CBCE_BIT;
242		break;
243	case PPC440SPE_DMA0_ID:
244	case PPC440SPE_DMA1_ID:
245		memset(desc->hw_desc, 0, sizeof(struct dma_cdb));
246		/* NOP with interrupt */
247		set_bit(PPC440SPE_DESC_INT, &desc->flags);
248		break;
249	default:
250		printk(KERN_ERR "Unsupported id %d in %s\n", chan->device->id,
251				__func__);
252		break;
253	}
254}
255
256/**
257 * ppc440spe_desc_init_null_xor - initialize the descriptor for NULL XOR
258 * pseudo operation
259 */
260static void ppc440spe_desc_init_null_xor(struct ppc440spe_adma_desc_slot *desc)
261{
262	memset(desc->hw_desc, 0, sizeof(struct xor_cb));
263	desc->hw_next = NULL;
264	desc->src_cnt = 0;
265	desc->dst_cnt = 1;
266}
267
268/**
269 * ppc440spe_desc_init_xor - initialize the descriptor for XOR operation
270 */
271static void ppc440spe_desc_init_xor(struct ppc440spe_adma_desc_slot *desc,
272					 int src_cnt, unsigned long flags)
273{
274	struct xor_cb *hw_desc = desc->hw_desc;
275
276	memset(desc->hw_desc, 0, sizeof(struct xor_cb));
277	desc->hw_next = NULL;
278	desc->src_cnt = src_cnt;
279	desc->dst_cnt = 1;
280
281	hw_desc->cbc = XOR_CBCR_TGT_BIT | src_cnt;
282	if (flags & DMA_PREP_INTERRUPT)
283		/* Enable interrupt on completion */
284		hw_desc->cbc |= XOR_CBCR_CBCE_BIT;
285}
286
287/**
288 * ppc440spe_desc_init_dma2pq - initialize the descriptor for PQ
289 * operation in DMA2 controller
290 */
291static void ppc440spe_desc_init_dma2pq(struct ppc440spe_adma_desc_slot *desc,
292		int dst_cnt, int src_cnt, unsigned long flags)
293{
294	struct xor_cb *hw_desc = desc->hw_desc;
295
296	memset(desc->hw_desc, 0, sizeof(struct xor_cb));
297	desc->hw_next = NULL;
298	desc->src_cnt = src_cnt;
299	desc->dst_cnt = dst_cnt;
300	memset(desc->reverse_flags, 0, sizeof(desc->reverse_flags));
301	desc->descs_per_op = 0;
302
303	hw_desc->cbc = XOR_CBCR_TGT_BIT;
304	if (flags & DMA_PREP_INTERRUPT)
305		/* Enable interrupt on completion */
306		hw_desc->cbc |= XOR_CBCR_CBCE_BIT;
307}
308
309#define DMA_CTRL_FLAGS_LAST	DMA_PREP_FENCE
310#define DMA_PREP_ZERO_P		(DMA_CTRL_FLAGS_LAST << 1)
311#define DMA_PREP_ZERO_Q		(DMA_PREP_ZERO_P << 1)
312
313/**
314 * ppc440spe_desc_init_dma01pq - initialize the descriptors for PQ operation
315 * with DMA0/1
316 */
317static void ppc440spe_desc_init_dma01pq(struct ppc440spe_adma_desc_slot *desc,
318				int dst_cnt, int src_cnt, unsigned long flags,
319				unsigned long op)
320{
321	struct dma_cdb *hw_desc;
322	struct ppc440spe_adma_desc_slot *iter;
323	u8 dopc;
324
325	/* Common initialization of a PQ descriptors chain */
326	set_bits(op, &desc->flags);
327	desc->src_cnt = src_cnt;
328	desc->dst_cnt = dst_cnt;
329
330	/* WXOR MULTICAST if both P and Q are being computed
331	 * MV_SG1_SG2 if Q only
332	 */
333	dopc = (desc->dst_cnt == DMA_DEST_MAX_NUM) ?
334		DMA_CDB_OPC_MULTICAST : DMA_CDB_OPC_MV_SG1_SG2;
335
336	list_for_each_entry(iter, &desc->group_list, chain_node) {
337		hw_desc = iter->hw_desc;
338		memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
339
340		if (likely(!list_is_last(&iter->chain_node,
341				&desc->group_list))) {
342			/* set 'next' pointer */
343			iter->hw_next = list_entry(iter->chain_node.next,
344				struct ppc440spe_adma_desc_slot, chain_node);
345			clear_bit(PPC440SPE_DESC_INT, &iter->flags);
346		} else {
347			/* this is the last descriptor.
348			 * this slot will be pasted from ADMA level
349			 * each time it wants to configure parameters
350			 * of the transaction (src, dst, ...)
351			 */
352			iter->hw_next = NULL;
353			if (flags & DMA_PREP_INTERRUPT)
354				set_bit(PPC440SPE_DESC_INT, &iter->flags);
355			else
356				clear_bit(PPC440SPE_DESC_INT, &iter->flags);
357		}
358	}
359
360	/* Set OPS depending on WXOR/RXOR type of operation */
361	if (!test_bit(PPC440SPE_DESC_RXOR, &desc->flags)) {
362		/* This is a WXOR only chain:
363		 * - first descriptors are for zeroing destinations
364		 *   if PPC440SPE_ZERO_P/Q set;
365		 * - descriptors remained are for GF-XOR operations.
366		 */
367		iter = list_first_entry(&desc->group_list,
368					struct ppc440spe_adma_desc_slot,
369					chain_node);
370
371		if (test_bit(PPC440SPE_ZERO_P, &desc->flags)) {
372			hw_desc = iter->hw_desc;
373			hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
374			iter = list_first_entry(&iter->chain_node,
375					struct ppc440spe_adma_desc_slot,
376					chain_node);
377		}
378
379		if (test_bit(PPC440SPE_ZERO_Q, &desc->flags)) {
380			hw_desc = iter->hw_desc;
381			hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
382			iter = list_first_entry(&iter->chain_node,
383					struct ppc440spe_adma_desc_slot,
384					chain_node);
385		}
386
387		list_for_each_entry_from(iter, &desc->group_list, chain_node) {
388			hw_desc = iter->hw_desc;
389			hw_desc->opc = dopc;
390		}
391	} else {
392		/* This is either RXOR-only or mixed RXOR/WXOR */
393
394		/* The first 1 or 2 slots in chain are always RXOR,
395		 * if need to calculate P & Q, then there are two
396		 * RXOR slots; if only P or only Q, then there is one
397		 */
398		iter = list_first_entry(&desc->group_list,
399					struct ppc440spe_adma_desc_slot,
400					chain_node);
401		hw_desc = iter->hw_desc;
402		hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
403
404		if (desc->dst_cnt == DMA_DEST_MAX_NUM) {
405			iter = list_first_entry(&iter->chain_node,
406						struct ppc440spe_adma_desc_slot,
407						chain_node);
408			hw_desc = iter->hw_desc;
409			hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
410		}
411
412		/* The remaining descs (if any) are WXORs */
413		if (test_bit(PPC440SPE_DESC_WXOR, &desc->flags)) {
414			iter = list_first_entry(&iter->chain_node,
415						struct ppc440spe_adma_desc_slot,
416						chain_node);
417			list_for_each_entry_from(iter, &desc->group_list,
418						chain_node) {
419				hw_desc = iter->hw_desc;
420				hw_desc->opc = dopc;
421			}
422		}
423	}
424}
425
426/**
427 * ppc440spe_desc_init_dma01pqzero_sum - initialize the descriptor
428 * for PQ_ZERO_SUM operation
429 */
430static void ppc440spe_desc_init_dma01pqzero_sum(
431				struct ppc440spe_adma_desc_slot *desc,
432				int dst_cnt, int src_cnt)
433{
434	struct dma_cdb *hw_desc;
435	struct ppc440spe_adma_desc_slot *iter;
436	int i = 0;
437	u8 dopc = (dst_cnt == 2) ? DMA_CDB_OPC_MULTICAST :
438				   DMA_CDB_OPC_MV_SG1_SG2;
439	/*
440	 * Initialize starting from 2nd or 3rd descriptor dependent
441	 * on dst_cnt. First one or two slots are for cloning P
442	 * and/or Q to chan->pdest and/or chan->qdest as we have
443	 * to preserve original P/Q.
444	 */
445	iter = list_first_entry(&desc->group_list,
446				struct ppc440spe_adma_desc_slot, chain_node);
447	iter = list_entry(iter->chain_node.next,
448			  struct ppc440spe_adma_desc_slot, chain_node);
449
450	if (dst_cnt > 1) {
451		iter = list_entry(iter->chain_node.next,
452				  struct ppc440spe_adma_desc_slot, chain_node);
453	}
454	/* initialize each source descriptor in chain */
455	list_for_each_entry_from(iter, &desc->group_list, chain_node) {
456		hw_desc = iter->hw_desc;
457		memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
458		iter->src_cnt = 0;
459		iter->dst_cnt = 0;
460
461		/* This is a ZERO_SUM operation:
462		 * - <src_cnt> descriptors starting from 2nd or 3rd
463		 *   descriptor are for GF-XOR operations;
464		 * - remaining <dst_cnt> descriptors are for checking the result
465		 */
466		if (i++ < src_cnt)
467			/* MV_SG1_SG2 if only Q is being verified
468			 * MULTICAST if both P and Q are being verified
469			 */
470			hw_desc->opc = dopc;
471		else
472			/* DMA_CDB_OPC_DCHECK128 operation */
473			hw_desc->opc = DMA_CDB_OPC_DCHECK128;
474
475		if (likely(!list_is_last(&iter->chain_node,
476					 &desc->group_list))) {
477			/* set 'next' pointer */
478			iter->hw_next = list_entry(iter->chain_node.next,
479						struct ppc440spe_adma_desc_slot,
480						chain_node);
481		} else {
482			/* this is the last descriptor.
483			 * this slot will be pasted from ADMA level
484			 * each time it wants to configure parameters
485			 * of the transaction (src, dst, ...)
486			 */
487			iter->hw_next = NULL;
488			/* always enable interrupt generation since we get
489			 * the status of pqzero from the handler
490			 */
491			set_bit(PPC440SPE_DESC_INT, &iter->flags);
492		}
493	}
494	desc->src_cnt = src_cnt;
495	desc->dst_cnt = dst_cnt;
496}
497
498/**
499 * ppc440spe_desc_init_memcpy - initialize the descriptor for MEMCPY operation
500 */
501static void ppc440spe_desc_init_memcpy(struct ppc440spe_adma_desc_slot *desc,
502					unsigned long flags)
503{
504	struct dma_cdb *hw_desc = desc->hw_desc;
505
506	memset(desc->hw_desc, 0, sizeof(struct dma_cdb));
507	desc->hw_next = NULL;
508	desc->src_cnt = 1;
509	desc->dst_cnt = 1;
510
511	if (flags & DMA_PREP_INTERRUPT)
512		set_bit(PPC440SPE_DESC_INT, &desc->flags);
513	else
514		clear_bit(PPC440SPE_DESC_INT, &desc->flags);
515
516	hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
517}
518
519/**
520 * ppc440spe_desc_set_src_addr - set source address into the descriptor
521 */
522static void ppc440spe_desc_set_src_addr(struct ppc440spe_adma_desc_slot *desc,
523					struct ppc440spe_adma_chan *chan,
524					int src_idx, dma_addr_t addrh,
525					dma_addr_t addrl)
526{
527	struct dma_cdb *dma_hw_desc;
528	struct xor_cb *xor_hw_desc;
529	phys_addr_t addr64, tmplow, tmphi;
530
531	switch (chan->device->id) {
532	case PPC440SPE_DMA0_ID:
533	case PPC440SPE_DMA1_ID:
534		if (!addrh) {
535			addr64 = addrl;
536			tmphi = (addr64 >> 32);
537			tmplow = (addr64 & 0xFFFFFFFF);
538		} else {
539			tmphi = addrh;
540			tmplow = addrl;
541		}
542		dma_hw_desc = desc->hw_desc;
543		dma_hw_desc->sg1l = cpu_to_le32((u32)tmplow);
544		dma_hw_desc->sg1u |= cpu_to_le32((u32)tmphi);
545		break;
546	case PPC440SPE_XOR_ID:
547		xor_hw_desc = desc->hw_desc;
548		xor_hw_desc->ops[src_idx].l = addrl;
549		xor_hw_desc->ops[src_idx].h |= addrh;
550		break;
551	}
552}
553
554/**
555 * ppc440spe_desc_set_src_mult - set source address mult into the descriptor
556 */
557static void ppc440spe_desc_set_src_mult(struct ppc440spe_adma_desc_slot *desc,
558			struct ppc440spe_adma_chan *chan, u32 mult_index,
559			int sg_index, unsigned char mult_value)
560{
561	struct dma_cdb *dma_hw_desc;
562	u32 *psgu;
563
564	switch (chan->device->id) {
565	case PPC440SPE_DMA0_ID:
566	case PPC440SPE_DMA1_ID:
567		dma_hw_desc = desc->hw_desc;
568
569		switch (sg_index) {
570		/* for RXOR operations set multiplier
571		 * into source cued address
572		 */
573		case DMA_CDB_SG_SRC:
574			psgu = &dma_hw_desc->sg1u;
575			break;
576		/* for WXOR operations set multiplier
577		 * into destination cued address(es)
578		 */
579		case DMA_CDB_SG_DST1:
580			psgu = &dma_hw_desc->sg2u;
581			break;
582		case DMA_CDB_SG_DST2:
583			psgu = &dma_hw_desc->sg3u;
584			break;
585		default:
586			BUG();
587		}
588
589		*psgu |= cpu_to_le32(mult_value << mult_index);
590		break;
591	case PPC440SPE_XOR_ID:
592		break;
593	default:
594		BUG();
595	}
596}
597
598/**
599 * ppc440spe_desc_set_dest_addr - set destination address into the descriptor
600 */
601static void ppc440spe_desc_set_dest_addr(struct ppc440spe_adma_desc_slot *desc,
602				struct ppc440spe_adma_chan *chan,
603				dma_addr_t addrh, dma_addr_t addrl,
604				u32 dst_idx)
605{
606	struct dma_cdb *dma_hw_desc;
607	struct xor_cb *xor_hw_desc;
608	phys_addr_t addr64, tmphi, tmplow;
609	u32 *psgu, *psgl;
610
611	switch (chan->device->id) {
612	case PPC440SPE_DMA0_ID:
613	case PPC440SPE_DMA1_ID:
614		if (!addrh) {
615			addr64 = addrl;
616			tmphi = (addr64 >> 32);
617			tmplow = (addr64 & 0xFFFFFFFF);
618		} else {
619			tmphi = addrh;
620			tmplow = addrl;
621		}
622		dma_hw_desc = desc->hw_desc;
623
624		psgu = dst_idx ? &dma_hw_desc->sg3u : &dma_hw_desc->sg2u;
625		psgl = dst_idx ? &dma_hw_desc->sg3l : &dma_hw_desc->sg2l;
626
627		*psgl = cpu_to_le32((u32)tmplow);
628		*psgu |= cpu_to_le32((u32)tmphi);
629		break;
630	case PPC440SPE_XOR_ID:
631		xor_hw_desc = desc->hw_desc;
632		xor_hw_desc->cbtal = addrl;
633		xor_hw_desc->cbtah |= addrh;
634		break;
635	}
636}
637
638/**
639 * ppc440spe_desc_set_byte_count - set number of data bytes involved
640 * into the operation
641 */
642static void ppc440spe_desc_set_byte_count(struct ppc440spe_adma_desc_slot *desc,
643				struct ppc440spe_adma_chan *chan,
644				u32 byte_count)
645{
646	struct dma_cdb *dma_hw_desc;
647	struct xor_cb *xor_hw_desc;
648
649	switch (chan->device->id) {
650	case PPC440SPE_DMA0_ID:
651	case PPC440SPE_DMA1_ID:
652		dma_hw_desc = desc->hw_desc;
653		dma_hw_desc->cnt = cpu_to_le32(byte_count);
654		break;
655	case PPC440SPE_XOR_ID:
656		xor_hw_desc = desc->hw_desc;
657		xor_hw_desc->cbbc = byte_count;
658		break;
659	}
660}
661
662/**
663 * ppc440spe_desc_set_rxor_block_size - set RXOR block size
664 */
665static inline void ppc440spe_desc_set_rxor_block_size(u32 byte_count)
666{
667	/* assume that byte_count is aligned on the 512-boundary;
668	 * thus write it directly to the register (bits 23:31 are
669	 * reserved there).
670	 */
671	dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_CF2H, byte_count);
672}
673
674/**
675 * ppc440spe_desc_set_dcheck - set CHECK pattern
676 */
677static void ppc440spe_desc_set_dcheck(struct ppc440spe_adma_desc_slot *desc,
678				struct ppc440spe_adma_chan *chan, u8 *qword)
679{
680	struct dma_cdb *dma_hw_desc;
681
682	switch (chan->device->id) {
683	case PPC440SPE_DMA0_ID:
684	case PPC440SPE_DMA1_ID:
685		dma_hw_desc = desc->hw_desc;
686		iowrite32(qword[0], &dma_hw_desc->sg3l);
687		iowrite32(qword[4], &dma_hw_desc->sg3u);
688		iowrite32(qword[8], &dma_hw_desc->sg2l);
689		iowrite32(qword[12], &dma_hw_desc->sg2u);
690		break;
691	default:
692		BUG();
693	}
694}
695
696/**
697 * ppc440spe_xor_set_link - set link address in xor CB
698 */
699static void ppc440spe_xor_set_link(struct ppc440spe_adma_desc_slot *prev_desc,
700				struct ppc440spe_adma_desc_slot *next_desc)
701{
702	struct xor_cb *xor_hw_desc = prev_desc->hw_desc;
703
704	if (unlikely(!next_desc || !(next_desc->phys))) {
705		printk(KERN_ERR "%s: next_desc=0x%p; next_desc->phys=0x%llx\n",
706			__func__, next_desc,
707			next_desc ? next_desc->phys : 0);
708		BUG();
709	}
710
711	xor_hw_desc->cbs = 0;
712	xor_hw_desc->cblal = next_desc->phys;
713	xor_hw_desc->cblah = 0;
714	xor_hw_desc->cbc |= XOR_CBCR_LNK_BIT;
715}
716
717/**
718 * ppc440spe_desc_set_link - set the address of descriptor following this
719 * descriptor in chain
720 */
721static void ppc440spe_desc_set_link(struct ppc440spe_adma_chan *chan,
722				struct ppc440spe_adma_desc_slot *prev_desc,
723				struct ppc440spe_adma_desc_slot *next_desc)
724{
725	unsigned long flags;
726	struct ppc440spe_adma_desc_slot *tail = next_desc;
727
728	if (unlikely(!prev_desc || !next_desc ||
729		(prev_desc->hw_next && prev_desc->hw_next != next_desc))) {
730		/* If previous next is overwritten something is wrong.
731		 * though we may refetch from append to initiate list
732		 * processing; in this case - it's ok.
733		 */
734		printk(KERN_ERR "%s: prev_desc=0x%p; next_desc=0x%p; "
735			"prev->hw_next=0x%p\n", __func__, prev_desc,
736			next_desc, prev_desc ? prev_desc->hw_next : 0);
737		BUG();
738	}
739
740	local_irq_save(flags);
741
742	/* do s/w chaining both for DMA and XOR descriptors */
743	prev_desc->hw_next = next_desc;
744
745	switch (chan->device->id) {
746	case PPC440SPE_DMA0_ID:
747	case PPC440SPE_DMA1_ID:
748		break;
749	case PPC440SPE_XOR_ID:
750		/* bind descriptor to the chain */
751		while (tail->hw_next)
752			tail = tail->hw_next;
753		xor_last_linked = tail;
754
755		if (prev_desc == xor_last_submit)
756			/* do not link to the last submitted CB */
757			break;
758		ppc440spe_xor_set_link(prev_desc, next_desc);
759		break;
760	}
761
762	local_irq_restore(flags);
763}
764
765/**
766 * ppc440spe_desc_get_link - get the address of the descriptor that
767 * follows this one
768 */
769static inline u32 ppc440spe_desc_get_link(struct ppc440spe_adma_desc_slot *desc,
770					struct ppc440spe_adma_chan *chan)
771{
772	if (!desc->hw_next)
773		return 0;
774
775	return desc->hw_next->phys;
776}
777
778/**
779 * ppc440spe_desc_is_aligned - check alignment
780 */
781static inline int ppc440spe_desc_is_aligned(
782	struct ppc440spe_adma_desc_slot *desc, int num_slots)
783{
784	return (desc->idx & (num_slots - 1)) ? 0 : 1;
785}
786
787/**
788 * ppc440spe_chan_xor_slot_count - get the number of slots necessary for
789 * XOR operation
790 */
791static int ppc440spe_chan_xor_slot_count(size_t len, int src_cnt,
792			int *slots_per_op)
793{
794	int slot_cnt;
795
796	/* each XOR descriptor provides up to 16 source operands */
797	slot_cnt = *slots_per_op = (src_cnt + XOR_MAX_OPS - 1)/XOR_MAX_OPS;
798
799	if (likely(len <= PPC440SPE_ADMA_XOR_MAX_BYTE_COUNT))
800		return slot_cnt;
801
802	printk(KERN_ERR "%s: len %d > max %d !!\n",
803		__func__, len, PPC440SPE_ADMA_XOR_MAX_BYTE_COUNT);
804	BUG();
805	return slot_cnt;
806}
807
808/**
809 * ppc440spe_dma2_pq_slot_count - get the number of slots necessary for
810 * DMA2 PQ operation
811 */
812static int ppc440spe_dma2_pq_slot_count(dma_addr_t *srcs,
813		int src_cnt, size_t len)
814{
815	signed long long order = 0;
816	int state = 0;
817	int addr_count = 0;
818	int i;
819	for (i = 1; i < src_cnt; i++) {
820		dma_addr_t cur_addr = srcs[i];
821		dma_addr_t old_addr = srcs[i-1];
822		switch (state) {
823		case 0:
824			if (cur_addr == old_addr + len) {
825				/* direct RXOR */
826				order = 1;
827				state = 1;
828				if (i == src_cnt-1)
829					addr_count++;
830			} else if (old_addr == cur_addr + len) {
831				/* reverse RXOR */
832				order = -1;
833				state = 1;
834				if (i == src_cnt-1)
835					addr_count++;
836			} else {
837				state = 3;
838			}
839			break;
840		case 1:
841			if (i == src_cnt-2 || (order == -1
842				&& cur_addr != old_addr - len)) {
843				order = 0;
844				state = 0;
845				addr_count++;
846			} else if (cur_addr == old_addr + len*order) {
847				state = 2;
848				if (i == src_cnt-1)
849					addr_count++;
850			} else if (cur_addr == old_addr + 2*len) {
851				state = 2;
852				if (i == src_cnt-1)
853					addr_count++;
854			} else if (cur_addr == old_addr + 3*len) {
855				state = 2;
856				if (i == src_cnt-1)
857					addr_count++;
858			} else {
859				order = 0;
860				state = 0;
861				addr_count++;
862			}
863			break;
864		case 2:
865			order = 0;
866			state = 0;
867			addr_count++;
868				break;
869		}
870		if (state == 3)
871			break;
872	}
873	if (src_cnt <= 1 || (state != 1 && state != 2)) {
874		pr_err("%s: src_cnt=%d, state=%d, addr_count=%d, order=%lld\n",
875			__func__, src_cnt, state, addr_count, order);
876		for (i = 0; i < src_cnt; i++)
877			pr_err("\t[%d] 0x%llx \n", i, srcs[i]);
878		BUG();
879	}
880
881	return (addr_count + XOR_MAX_OPS - 1) / XOR_MAX_OPS;
882}
883
884
885/******************************************************************************
886 * ADMA channel low-level routines
887 ******************************************************************************/
888
889static u32
890ppc440spe_chan_get_current_descriptor(struct ppc440spe_adma_chan *chan);
891static void ppc440spe_chan_append(struct ppc440spe_adma_chan *chan);
892
893/**
894 * ppc440spe_adma_device_clear_eot_status - interrupt ack to XOR or DMA engine
895 */
896static void ppc440spe_adma_device_clear_eot_status(
897					struct ppc440spe_adma_chan *chan)
898{
899	struct dma_regs *dma_reg;
900	struct xor_regs *xor_reg;
901	u8 *p = chan->device->dma_desc_pool_virt;
902	struct dma_cdb *cdb;
903	u32 rv, i;
904
905	switch (chan->device->id) {
906	case PPC440SPE_DMA0_ID:
907	case PPC440SPE_DMA1_ID:
908		/* read FIFO to ack */
909		dma_reg = chan->device->dma_reg;
910		while ((rv = ioread32(&dma_reg->csfpl))) {
911			i = rv & DMA_CDB_ADDR_MSK;
912			cdb = (struct dma_cdb *)&p[i -
913			    (u32)chan->device->dma_desc_pool];
914
915			/* Clear opcode to ack. This is necessary for
916			 * ZeroSum operations only
917			 */
918			cdb->opc = 0;
919
920			if (test_bit(PPC440SPE_RXOR_RUN,
921			    &ppc440spe_rxor_state)) {
922				/* probably this is a completed RXOR op,
923				 * get pointer to CDB using the fact that
924				 * physical and virtual addresses of CDB
925				 * in pools have the same offsets
926				 */
927				if (le32_to_cpu(cdb->sg1u) &
928				    DMA_CUED_XOR_BASE) {
929					/* this is a RXOR */
930					clear_bit(PPC440SPE_RXOR_RUN,
931						  &ppc440spe_rxor_state);
932				}
933			}
934
935			if (rv & DMA_CDB_STATUS_MSK) {
936				/* ZeroSum check failed
937				 */
938				struct ppc440spe_adma_desc_slot *iter;
939				dma_addr_t phys = rv & ~DMA_CDB_MSK;
940
941				/*
942				 * Update the status of corresponding
943				 * descriptor.
944				 */
945				list_for_each_entry(iter, &chan->chain,
946				    chain_node) {
947					if (iter->phys == phys)
948						break;
949				}
950				/*
951				 * if cannot find the corresponding
952				 * slot it's a bug
953				 */
954				BUG_ON(&iter->chain_node == &chan->chain);
955
956				if (iter->xor_check_result) {
957					if (test_bit(PPC440SPE_DESC_PCHECK,
958						     &iter->flags)) {
959						*iter->xor_check_result |=
960							SUM_CHECK_P_RESULT;
961					} else
962					if (test_bit(PPC440SPE_DESC_QCHECK,
963						     &iter->flags)) {
964						*iter->xor_check_result |=
965							SUM_CHECK_Q_RESULT;
966					} else
967						BUG();
968				}
969			}
970		}
971
972		rv = ioread32(&dma_reg->dsts);
973		if (rv) {
974			pr_err("DMA%d err status: 0x%x\n",
975			       chan->device->id, rv);
976			/* write back to clear */
977			iowrite32(rv, &dma_reg->dsts);
978		}
979		break;
980	case PPC440SPE_XOR_ID:
981		/* reset status bits to ack */
982		xor_reg = chan->device->xor_reg;
983		rv = ioread32be(&xor_reg->sr);
984		iowrite32be(rv, &xor_reg->sr);
985
986		if (rv & (XOR_IE_ICBIE_BIT|XOR_IE_ICIE_BIT|XOR_IE_RPTIE_BIT)) {
987			if (rv & XOR_IE_RPTIE_BIT) {
988				/* Read PLB Timeout Error.
989				 * Try to resubmit the CB
990				 */
991				u32 val = ioread32be(&xor_reg->ccbalr);
992
993				iowrite32be(val, &xor_reg->cblalr);
994
995				val = ioread32be(&xor_reg->crsr);
996				iowrite32be(val | XOR_CRSR_XAE_BIT,
997					    &xor_reg->crsr);
998			} else
999				pr_err("XOR ERR 0x%x status\n", rv);
1000			break;
1001		}
1002
1003		/*  if the XORcore is idle, but there are unprocessed CBs
1004		 * then refetch the s/w chain here
1005		 */
1006		if (!(ioread32be(&xor_reg->sr) & XOR_SR_XCP_BIT) &&
1007		    do_xor_refetch)
1008			ppc440spe_chan_append(chan);
1009		break;
1010	}
1011}
1012
1013/**
1014 * ppc440spe_chan_is_busy - get the channel status
1015 */
1016static int ppc440spe_chan_is_busy(struct ppc440spe_adma_chan *chan)
1017{
1018	struct dma_regs *dma_reg;
1019	struct xor_regs *xor_reg;
1020	int busy = 0;
1021
1022	switch (chan->device->id) {
1023	case PPC440SPE_DMA0_ID:
1024	case PPC440SPE_DMA1_ID:
1025		dma_reg = chan->device->dma_reg;
1026		/*  if command FIFO's head and tail pointers are equal and
1027		 * status tail is the same as command, then channel is free
1028		 */
1029		if (ioread16(&dma_reg->cpfhp) != ioread16(&dma_reg->cpftp) ||
1030		    ioread16(&dma_reg->cpftp) != ioread16(&dma_reg->csftp))
1031			busy = 1;
1032		break;
1033	case PPC440SPE_XOR_ID:
1034		/* use the special status bit for the XORcore
1035		 */
1036		xor_reg = chan->device->xor_reg;
1037		busy = (ioread32be(&xor_reg->sr) & XOR_SR_XCP_BIT) ? 1 : 0;
1038		break;
1039	}
1040
1041	return busy;
1042}
1043
1044/**
1045 * ppc440spe_chan_set_first_xor_descriptor -  init XORcore chain
1046 */
1047static void ppc440spe_chan_set_first_xor_descriptor(
1048				struct ppc440spe_adma_chan *chan,
1049				struct ppc440spe_adma_desc_slot *next_desc)
1050{
1051	struct xor_regs *xor_reg = chan->device->xor_reg;
1052
1053	if (ioread32be(&xor_reg->sr) & XOR_SR_XCP_BIT)
1054		printk(KERN_INFO "%s: Warn: XORcore is running "
1055			"when try to set the first CDB!\n",
1056			__func__);
1057
1058	xor_last_submit = xor_last_linked = next_desc;
1059
1060	iowrite32be(XOR_CRSR_64BA_BIT, &xor_reg->crsr);
1061
1062	iowrite32be(next_desc->phys, &xor_reg->cblalr);
1063	iowrite32be(0, &xor_reg->cblahr);
1064	iowrite32be(ioread32be(&xor_reg->cbcr) | XOR_CBCR_LNK_BIT,
1065		    &xor_reg->cbcr);
1066
1067	chan->hw_chain_inited = 1;
1068}
1069
1070/**
1071 * ppc440spe_dma_put_desc - put DMA0,1 descriptor to FIFO.
1072 * called with irqs disabled
1073 */
1074static void ppc440spe_dma_put_desc(struct ppc440spe_adma_chan *chan,
1075		struct ppc440spe_adma_desc_slot *desc)
1076{
1077	u32 pcdb;
1078	struct dma_regs *dma_reg = chan->device->dma_reg;
1079
1080	pcdb = desc->phys;
1081	if (!test_bit(PPC440SPE_DESC_INT, &desc->flags))
1082		pcdb |= DMA_CDB_NO_INT;
1083
1084	chan_last_sub[chan->device->id] = desc;
1085
1086	ADMA_LL_DBG(print_cb(chan, desc->hw_desc));
1087
1088	iowrite32(pcdb, &dma_reg->cpfpl);
1089}
1090
1091/**
1092 * ppc440spe_chan_append - update the h/w chain in the channel
1093 */
1094static void ppc440spe_chan_append(struct ppc440spe_adma_chan *chan)
1095{
1096	struct xor_regs *xor_reg;
1097	struct ppc440spe_adma_desc_slot *iter;
1098	struct xor_cb *xcb;
1099	u32 cur_desc;
1100	unsigned long flags;
1101
1102	local_irq_save(flags);
1103
1104	switch (chan->device->id) {
1105	case PPC440SPE_DMA0_ID:
1106	case PPC440SPE_DMA1_ID:
1107		cur_desc = ppc440spe_chan_get_current_descriptor(chan);
1108
1109		if (likely(cur_desc)) {
1110			iter = chan_last_sub[chan->device->id];
1111			BUG_ON(!iter);
1112		} else {
1113			/* first peer */
1114			iter = chan_first_cdb[chan->device->id];
1115			BUG_ON(!iter);
1116			ppc440spe_dma_put_desc(chan, iter);
1117			chan->hw_chain_inited = 1;
1118		}
1119
1120		/* is there something new to append */
1121		if (!iter->hw_next)
1122			break;
1123
1124		/* flush descriptors from the s/w queue to fifo */
1125		list_for_each_entry_continue(iter, &chan->chain, chain_node) {
1126			ppc440spe_dma_put_desc(chan, iter);
1127			if (!iter->hw_next)
1128				break;
1129		}
1130		break;
1131	case PPC440SPE_XOR_ID:
1132		/* update h/w links and refetch */
1133		if (!xor_last_submit->hw_next)
1134			break;
1135
1136		xor_reg = chan->device->xor_reg;
1137		/* the last linked CDB has to generate an interrupt
1138		 * that we'd be able to append the next lists to h/w
1139		 * regardless of the XOR engine state at the moment of
1140		 * appending of these next lists
1141		 */
1142		xcb = xor_last_linked->hw_desc;
1143		xcb->cbc |= XOR_CBCR_CBCE_BIT;
1144
1145		if (!(ioread32be(&xor_reg->sr) & XOR_SR_XCP_BIT)) {
1146			/* XORcore is idle. Refetch now */
1147			do_xor_refetch = 0;
1148			ppc440spe_xor_set_link(xor_last_submit,
1149				xor_last_submit->hw_next);
1150
1151			ADMA_LL_DBG(print_cb_list(chan,
1152				xor_last_submit->hw_next));
1153
1154			xor_last_submit = xor_last_linked;
1155			iowrite32be(ioread32be(&xor_reg->crsr) |
1156				    XOR_CRSR_RCBE_BIT | XOR_CRSR_64BA_BIT,
1157				    &xor_reg->crsr);
1158		} else {
1159			/* XORcore is running. Refetch later in the handler */
1160			do_xor_refetch = 1;
1161		}
1162
1163		break;
1164	}
1165
1166	local_irq_restore(flags);
1167}
1168
1169/**
1170 * ppc440spe_chan_get_current_descriptor - get the currently executed descriptor
1171 */
1172static u32
1173ppc440spe_chan_get_current_descriptor(struct ppc440spe_adma_chan *chan)
1174{
1175	struct dma_regs *dma_reg;
1176	struct xor_regs *xor_reg;
1177
1178	if (unlikely(!chan->hw_chain_inited))
1179		/* h/w descriptor chain is not initialized yet */
1180		return 0;
1181
1182	switch (chan->device->id) {
1183	case PPC440SPE_DMA0_ID:
1184	case PPC440SPE_DMA1_ID:
1185		dma_reg = chan->device->dma_reg;
1186		return ioread32(&dma_reg->acpl) & (~DMA_CDB_MSK);
1187	case PPC440SPE_XOR_ID:
1188		xor_reg = chan->device->xor_reg;
1189		return ioread32be(&xor_reg->ccbalr);
1190	}
1191	return 0;
1192}
1193
1194/**
1195 * ppc440spe_chan_run - enable the channel
1196 */
1197static void ppc440spe_chan_run(struct ppc440spe_adma_chan *chan)
1198{
1199	struct xor_regs *xor_reg;
1200
1201	switch (chan->device->id) {
1202	case PPC440SPE_DMA0_ID:
1203	case PPC440SPE_DMA1_ID:
1204		/* DMAs are always enabled, do nothing */
1205		break;
1206	case PPC440SPE_XOR_ID:
1207		/* drain write buffer */
1208		xor_reg = chan->device->xor_reg;
1209
1210		/* fetch descriptor pointed to in <link> */
1211		iowrite32be(XOR_CRSR_64BA_BIT | XOR_CRSR_XAE_BIT,
1212			    &xor_reg->crsr);
1213		break;
1214	}
1215}
1216
1217/******************************************************************************
1218 * ADMA device level
1219 ******************************************************************************/
1220
1221static void ppc440spe_chan_start_null_xor(struct ppc440spe_adma_chan *chan);
1222static int ppc440spe_adma_alloc_chan_resources(struct dma_chan *chan);
1223
1224static dma_cookie_t
1225ppc440spe_adma_tx_submit(struct dma_async_tx_descriptor *tx);
1226
1227static void ppc440spe_adma_set_dest(struct ppc440spe_adma_desc_slot *tx,
1228				    dma_addr_t addr, int index);
1229static void
1230ppc440spe_adma_memcpy_xor_set_src(struct ppc440spe_adma_desc_slot *tx,
1231				  dma_addr_t addr, int index);
1232
1233static void
1234ppc440spe_adma_pq_set_dest(struct ppc440spe_adma_desc_slot *tx,
1235			   dma_addr_t *paddr, unsigned long flags);
1236static void
1237ppc440spe_adma_pq_set_src(struct ppc440spe_adma_desc_slot *tx,
1238			  dma_addr_t addr, int index);
1239static void
1240ppc440spe_adma_pq_set_src_mult(struct ppc440spe_adma_desc_slot *tx,
1241			       unsigned char mult, int index, int dst_pos);
1242static void
1243ppc440spe_adma_pqzero_sum_set_dest(struct ppc440spe_adma_desc_slot *tx,
1244				   dma_addr_t paddr, dma_addr_t qaddr);
1245
1246static struct page *ppc440spe_rxor_srcs[32];
1247
1248/**
1249 * ppc440spe_can_rxor - check if the operands may be processed with RXOR
1250 */
1251static int ppc440spe_can_rxor(struct page **srcs, int src_cnt, size_t len)
1252{
1253	int i, order = 0, state = 0;
1254	int idx = 0;
1255
1256	if (unlikely(!(src_cnt > 1)))
1257		return 0;
1258
1259	BUG_ON(src_cnt > ARRAY_SIZE(ppc440spe_rxor_srcs));
1260
1261	/* Skip holes in the source list before checking */
1262	for (i = 0; i < src_cnt; i++) {
1263		if (!srcs[i])
1264			continue;
1265		ppc440spe_rxor_srcs[idx++] = srcs[i];
1266	}
1267	src_cnt = idx;
1268
1269	for (i = 1; i < src_cnt; i++) {
1270		char *cur_addr = page_address(ppc440spe_rxor_srcs[i]);
1271		char *old_addr = page_address(ppc440spe_rxor_srcs[i - 1]);
1272
1273		switch (state) {
1274		case 0:
1275			if (cur_addr == old_addr + len) {
1276				/* direct RXOR */
1277				order = 1;
1278				state = 1;
1279			} else if (old_addr == cur_addr + len) {
1280				/* reverse RXOR */
1281				order = -1;
1282				state = 1;
1283			} else
1284				goto out;
1285			break;
1286		case 1:
1287			if ((i == src_cnt - 2) ||
1288			    (order == -1 && cur_addr != old_addr - len)) {
1289				order = 0;
1290				state = 0;
1291			} else if ((cur_addr == old_addr + len * order) ||
1292				   (cur_addr == old_addr + 2 * len) ||
1293				   (cur_addr == old_addr + 3 * len)) {
1294				state = 2;
1295			} else {
1296				order = 0;
1297				state = 0;
1298			}
1299			break;
1300		case 2:
1301			order = 0;
1302			state = 0;
1303			break;
1304		}
1305	}
1306
1307out:
1308	if (state == 1 || state == 2)
1309		return 1;
1310
1311	return 0;
1312}
1313
1314/**
1315 * ppc440spe_adma_device_estimate - estimate the efficiency of processing
1316 *	the operation given on this channel. It's assumed that 'chan' is
1317 *	capable to process 'cap' type of operation.
1318 * @chan: channel to use
1319 * @cap: type of transaction
1320 * @dst_lst: array of destination pointers
1321 * @dst_cnt: number of destination operands
1322 * @src_lst: array of source pointers
1323 * @src_cnt: number of source operands
1324 * @src_sz: size of each source operand
1325 */
1326static int ppc440spe_adma_estimate(struct dma_chan *chan,
1327	enum dma_transaction_type cap, struct page **dst_lst, int dst_cnt,
1328	struct page **src_lst, int src_cnt, size_t src_sz)
1329{
1330	int ef = 1;
1331
1332	if (cap == DMA_PQ || cap == DMA_PQ_VAL) {
1333		/* If RAID-6 capabilities were not activated don't try
1334		 * to use them
1335		 */
1336		if (unlikely(!ppc440spe_r6_enabled))
1337			return -1;
1338	}
1339	/*  In the current implementation of ppc440spe ADMA driver it
1340	 * makes sense to pick out only pq case, because it may be
1341	 * processed:
1342	 * (1) either using Biskup method on DMA2;
1343	 * (2) or on DMA0/1.
1344	 *  Thus we give a favour to (1) if the sources are suitable;
1345	 * else let it be processed on one of the DMA0/1 engines.
1346	 *  In the sum_product case where destination is also the
1347	 * source process it on DMA0/1 only.
1348	 */
1349	if (cap == DMA_PQ && chan->chan_id == PPC440SPE_XOR_ID) {
1350
1351		if (dst_cnt == 1 && src_cnt == 2 && dst_lst[0] == src_lst[1])
1352			ef = 0; /* sum_product case, process on DMA0/1 */
1353		else if (ppc440spe_can_rxor(src_lst, src_cnt, src_sz))
1354			ef = 3; /* override (DMA0/1 + idle) */
1355		else
1356			ef = 0; /* can't process on DMA2 if !rxor */
1357	}
1358
1359	/* channel idleness increases the priority */
1360	if (likely(ef) &&
1361	    !ppc440spe_chan_is_busy(to_ppc440spe_adma_chan(chan)))
1362		ef++;
1363
1364	return ef;
1365}
1366
1367struct dma_chan *
1368ppc440spe_async_tx_find_best_channel(enum dma_transaction_type cap,
1369	struct page **dst_lst, int dst_cnt, struct page **src_lst,
1370	int src_cnt, size_t src_sz)
1371{
1372	struct dma_chan *best_chan = NULL;
1373	struct ppc_dma_chan_ref *ref;
1374	int best_rank = -1;
1375
1376	if (unlikely(!src_sz))
1377		return NULL;
1378	if (src_sz > PAGE_SIZE) {
1379		/*
1380		 * should a user of the api ever pass > PAGE_SIZE requests
1381		 * we sort out cases where temporary page-sized buffers
1382		 * are used.
1383		 */
1384		switch (cap) {
1385		case DMA_PQ:
1386			if (src_cnt == 1 && dst_lst[1] == src_lst[0])
1387				return NULL;
1388			if (src_cnt == 2 && dst_lst[1] == src_lst[1])
1389				return NULL;
1390			break;
1391		case DMA_PQ_VAL:
1392		case DMA_XOR_VAL:
1393			return NULL;
1394		default:
1395			break;
1396		}
1397	}
1398
1399	list_for_each_entry(ref, &ppc440spe_adma_chan_list, node) {
1400		if (dma_has_cap(cap, ref->chan->device->cap_mask)) {
1401			int rank;
1402
1403			rank = ppc440spe_adma_estimate(ref->chan, cap, dst_lst,
1404					dst_cnt, src_lst, src_cnt, src_sz);
1405			if (rank > best_rank) {
1406				best_rank = rank;
1407				best_chan = ref->chan;
1408			}
1409		}
1410	}
1411
1412	return best_chan;
1413}
1414EXPORT_SYMBOL_GPL(ppc440spe_async_tx_find_best_channel);
1415
1416/**
1417 * ppc440spe_get_group_entry - get group entry with index idx
1418 * @tdesc: is the last allocated slot in the group.
1419 */
1420static struct ppc440spe_adma_desc_slot *
1421ppc440spe_get_group_entry(struct ppc440spe_adma_desc_slot *tdesc, u32 entry_idx)
1422{
1423	struct ppc440spe_adma_desc_slot *iter = tdesc->group_head;
1424	int i = 0;
1425
1426	if (entry_idx < 0 || entry_idx >= (tdesc->src_cnt + tdesc->dst_cnt)) {
1427		printk("%s: entry_idx %d, src_cnt %d, dst_cnt %d\n",
1428			__func__, entry_idx, tdesc->src_cnt, tdesc->dst_cnt);
1429		BUG();
1430	}
1431
1432	list_for_each_entry(iter, &tdesc->group_list, chain_node) {
1433		if (i++ == entry_idx)
1434			break;
1435	}
1436	return iter;
1437}
1438
1439/**
1440 * ppc440spe_adma_free_slots - flags descriptor slots for reuse
1441 * @slot: Slot to free
1442 * Caller must hold &ppc440spe_chan->lock while calling this function
1443 */
1444static void ppc440spe_adma_free_slots(struct ppc440spe_adma_desc_slot *slot,
1445				      struct ppc440spe_adma_chan *chan)
1446{
1447	int stride = slot->slots_per_op;
1448
1449	while (stride--) {
1450		slot->slots_per_op = 0;
1451		slot = list_entry(slot->slot_node.next,
1452				struct ppc440spe_adma_desc_slot,
1453				slot_node);
1454	}
1455}
1456
1457/**
1458 * ppc440spe_adma_run_tx_complete_actions - call functions to be called
1459 * upon completion
1460 */
1461static dma_cookie_t ppc440spe_adma_run_tx_complete_actions(
1462		struct ppc440spe_adma_desc_slot *desc,
1463		struct ppc440spe_adma_chan *chan,
1464		dma_cookie_t cookie)
1465{
1466	BUG_ON(desc->async_tx.cookie < 0);
1467	if (desc->async_tx.cookie > 0) {
1468		cookie = desc->async_tx.cookie;
1469		desc->async_tx.cookie = 0;
1470
1471		dma_descriptor_unmap(&desc->async_tx);
1472		/* call the callback (must not sleep or submit new
1473		 * operations to this channel)
1474		 */
1475		dmaengine_desc_get_callback_invoke(&desc->async_tx, NULL);
1476	}
1477
1478	/* run dependent operations */
1479	dma_run_dependencies(&desc->async_tx);
1480
1481	return cookie;
1482}
1483
1484/**
1485 * ppc440spe_adma_clean_slot - clean up CDB slot (if ack is set)
1486 */
1487static int ppc440spe_adma_clean_slot(struct ppc440spe_adma_desc_slot *desc,
1488		struct ppc440spe_adma_chan *chan)
1489{
1490	/* the client is allowed to attach dependent operations
1491	 * until 'ack' is set
1492	 */
1493	if (!async_tx_test_ack(&desc->async_tx))
1494		return 0;
1495
1496	/* leave the last descriptor in the chain
1497	 * so we can append to it
1498	 */
1499	if (list_is_last(&desc->chain_node, &chan->chain) ||
1500	    desc->phys == ppc440spe_chan_get_current_descriptor(chan))
1501		return 1;
1502
1503	if (chan->device->id != PPC440SPE_XOR_ID) {
1504		/* our DMA interrupt handler clears opc field of
1505		 * each processed descriptor. For all types of
1506		 * operations except for ZeroSum we do not actually
1507		 * need ack from the interrupt handler. ZeroSum is a
1508		 * special case since the result of this operation
1509		 * is available from the handler only, so if we see
1510		 * such type of descriptor (which is unprocessed yet)
1511		 * then leave it in chain.
1512		 */
1513		struct dma_cdb *cdb = desc->hw_desc;
1514		if (cdb->opc == DMA_CDB_OPC_DCHECK128)
1515			return 1;
1516	}
1517
1518	dev_dbg(chan->device->common.dev, "\tfree slot %llx: %d stride: %d\n",
1519		desc->phys, desc->idx, desc->slots_per_op);
1520
1521	list_del(&desc->chain_node);
1522	ppc440spe_adma_free_slots(desc, chan);
1523	return 0;
1524}
1525
1526/**
1527 * __ppc440spe_adma_slot_cleanup - this is the common clean-up routine
1528 *	which runs through the channel CDBs list until reach the descriptor
1529 *	currently processed. When routine determines that all CDBs of group
1530 *	are completed then corresponding callbacks (if any) are called and slots
1531 *	are freed.
1532 */
1533static void __ppc440spe_adma_slot_cleanup(struct ppc440spe_adma_chan *chan)
1534{
1535	struct ppc440spe_adma_desc_slot *iter, *_iter, *group_start = NULL;
1536	dma_cookie_t cookie = 0;
1537	u32 current_desc = ppc440spe_chan_get_current_descriptor(chan);
1538	int busy = ppc440spe_chan_is_busy(chan);
1539	int seen_current = 0, slot_cnt = 0, slots_per_op = 0;
1540
1541	dev_dbg(chan->device->common.dev, "ppc440spe adma%d: %s\n",
1542		chan->device->id, __func__);
1543
1544	if (!current_desc) {
1545		/*  There were no transactions yet, so
1546		 * nothing to clean
1547		 */
1548		return;
1549	}
1550
1551	/* free completed slots from the chain starting with
1552	 * the oldest descriptor
1553	 */
1554	list_for_each_entry_safe(iter, _iter, &chan->chain,
1555					chain_node) {
1556		dev_dbg(chan->device->common.dev, "\tcookie: %d slot: %d "
1557		    "busy: %d this_desc: %#llx next_desc: %#x "
1558		    "cur: %#x ack: %d\n",
1559		    iter->async_tx.cookie, iter->idx, busy, iter->phys,
1560		    ppc440spe_desc_get_link(iter, chan), current_desc,
1561		    async_tx_test_ack(&iter->async_tx));
1562		prefetch(_iter);
1563		prefetch(&_iter->async_tx);
1564
1565		/* do not advance past the current descriptor loaded into the
1566		 * hardware channel,subsequent descriptors are either in process
1567		 * or have not been submitted
1568		 */
1569		if (seen_current)
1570			break;
1571
1572		/* stop the search if we reach the current descriptor and the
1573		 * channel is busy, or if it appears that the current descriptor
1574		 * needs to be re-read (i.e. has been appended to)
1575		 */
1576		if (iter->phys == current_desc) {
1577			BUG_ON(seen_current++);
1578			if (busy || ppc440spe_desc_get_link(iter, chan)) {
1579				/* not all descriptors of the group have
1580				 * been completed; exit.
1581				 */
1582				break;
1583			}
1584		}
1585
1586		/* detect the start of a group transaction */
1587		if (!slot_cnt && !slots_per_op) {
1588			slot_cnt = iter->slot_cnt;
1589			slots_per_op = iter->slots_per_op;
1590			if (slot_cnt <= slots_per_op) {
1591				slot_cnt = 0;
1592				slots_per_op = 0;
1593			}
1594		}
1595
1596		if (slot_cnt) {
1597			if (!group_start)
1598				group_start = iter;
1599			slot_cnt -= slots_per_op;
1600		}
1601
1602		/* all the members of a group are complete */
1603		if (slots_per_op != 0 && slot_cnt == 0) {
1604			struct ppc440spe_adma_desc_slot *grp_iter, *_grp_iter;
1605			int end_of_chain = 0;
1606
1607			/* clean up the group */
1608			slot_cnt = group_start->slot_cnt;
1609			grp_iter = group_start;
1610			list_for_each_entry_safe_from(grp_iter, _grp_iter,
1611				&chan->chain, chain_node) {
1612
1613				cookie = ppc440spe_adma_run_tx_complete_actions(
1614					grp_iter, chan, cookie);
1615
1616				slot_cnt -= slots_per_op;
1617				end_of_chain = ppc440spe_adma_clean_slot(
1618				    grp_iter, chan);
1619				if (end_of_chain && slot_cnt) {
1620					/* Should wait for ZeroSum completion */
1621					if (cookie > 0)
1622						chan->common.completed_cookie = cookie;
1623					return;
1624				}
1625
1626				if (slot_cnt == 0 || end_of_chain)
1627					break;
1628			}
1629
1630			/* the group should be complete at this point */
1631			BUG_ON(slot_cnt);
1632
1633			slots_per_op = 0;
1634			group_start = NULL;
1635			if (end_of_chain)
1636				break;
1637			else
1638				continue;
1639		} else if (slots_per_op) /* wait for group completion */
1640			continue;
1641
1642		cookie = ppc440spe_adma_run_tx_complete_actions(iter, chan,
1643		    cookie);
1644
1645		if (ppc440spe_adma_clean_slot(iter, chan))
1646			break;
1647	}
1648
1649	BUG_ON(!seen_current);
1650
1651	if (cookie > 0) {
1652		chan->common.completed_cookie = cookie;
1653		pr_debug("\tcompleted cookie %d\n", cookie);
1654	}
1655
1656}
1657
1658/**
1659 * ppc440spe_adma_tasklet - clean up watch-dog initiator
1660 */
1661static void ppc440spe_adma_tasklet(struct tasklet_struct *t)
1662{
1663	struct ppc440spe_adma_chan *chan = from_tasklet(chan, t, irq_tasklet);
1664
1665	spin_lock_nested(&chan->lock, SINGLE_DEPTH_NESTING);
1666	__ppc440spe_adma_slot_cleanup(chan);
1667	spin_unlock(&chan->lock);
1668}
1669
1670/**
1671 * ppc440spe_adma_slot_cleanup - clean up scheduled initiator
1672 */
1673static void ppc440spe_adma_slot_cleanup(struct ppc440spe_adma_chan *chan)
1674{
1675	spin_lock_bh(&chan->lock);
1676	__ppc440spe_adma_slot_cleanup(chan);
1677	spin_unlock_bh(&chan->lock);
1678}
1679
1680/**
1681 * ppc440spe_adma_alloc_slots - allocate free slots (if any)
1682 */
1683static struct ppc440spe_adma_desc_slot *ppc440spe_adma_alloc_slots(
1684		struct ppc440spe_adma_chan *chan, int num_slots,
1685		int slots_per_op)
1686{
1687	struct ppc440spe_adma_desc_slot *iter = NULL, *_iter;
1688	struct ppc440spe_adma_desc_slot *alloc_start = NULL;
1689	int slots_found, retry = 0;
1690	LIST_HEAD(chain);
1691
1692
1693	BUG_ON(!num_slots || !slots_per_op);
1694	/* start search from the last allocated descrtiptor
1695	 * if a contiguous allocation can not be found start searching
1696	 * from the beginning of the list
1697	 */
1698retry:
1699	slots_found = 0;
1700	if (retry == 0)
1701		iter = chan->last_used;
1702	else
1703		iter = list_entry(&chan->all_slots,
1704				  struct ppc440spe_adma_desc_slot,
1705				  slot_node);
1706	list_for_each_entry_safe_continue(iter, _iter, &chan->all_slots,
1707	    slot_node) {
1708		prefetch(_iter);
1709		prefetch(&_iter->async_tx);
1710		if (iter->slots_per_op) {
1711			slots_found = 0;
1712			continue;
1713		}
1714
1715		/* start the allocation if the slot is correctly aligned */
1716		if (!slots_found++)
1717			alloc_start = iter;
1718
1719		if (slots_found == num_slots) {
1720			struct ppc440spe_adma_desc_slot *alloc_tail = NULL;
1721			struct ppc440spe_adma_desc_slot *last_used = NULL;
1722
1723			iter = alloc_start;
1724			while (num_slots) {
1725				int i;
1726				/* pre-ack all but the last descriptor */
1727				if (num_slots != slots_per_op)
1728					async_tx_ack(&iter->async_tx);
1729
1730				list_add_tail(&iter->chain_node, &chain);
1731				alloc_tail = iter;
1732				iter->async_tx.cookie = 0;
1733				iter->hw_next = NULL;
1734				iter->flags = 0;
1735				iter->slot_cnt = num_slots;
1736				iter->xor_check_result = NULL;
1737				for (i = 0; i < slots_per_op; i++) {
1738					iter->slots_per_op = slots_per_op - i;
1739					last_used = iter;
1740					iter = list_entry(iter->slot_node.next,
1741						struct ppc440spe_adma_desc_slot,
1742						slot_node);
1743				}
1744				num_slots -= slots_per_op;
1745			}
1746			alloc_tail->group_head = alloc_start;
1747			alloc_tail->async_tx.cookie = -EBUSY;
1748			list_splice(&chain, &alloc_tail->group_list);
1749			chan->last_used = last_used;
1750			return alloc_tail;
1751		}
1752	}
1753	if (!retry++)
1754		goto retry;
1755
1756	/* try to free some slots if the allocation fails */
1757	tasklet_schedule(&chan->irq_tasklet);
1758	return NULL;
1759}
1760
1761/**
1762 * ppc440spe_adma_alloc_chan_resources -  allocate pools for CDB slots
1763 */
1764static int ppc440spe_adma_alloc_chan_resources(struct dma_chan *chan)
1765{
1766	struct ppc440spe_adma_chan *ppc440spe_chan;
1767	struct ppc440spe_adma_desc_slot *slot = NULL;
1768	char *hw_desc;
1769	int i, db_sz;
1770	int init;
1771
1772	ppc440spe_chan = to_ppc440spe_adma_chan(chan);
1773	init = ppc440spe_chan->slots_allocated ? 0 : 1;
1774	chan->chan_id = ppc440spe_chan->device->id;
1775
1776	/* Allocate descriptor slots */
1777	i = ppc440spe_chan->slots_allocated;
1778	if (ppc440spe_chan->device->id != PPC440SPE_XOR_ID)
1779		db_sz = sizeof(struct dma_cdb);
1780	else
1781		db_sz = sizeof(struct xor_cb);
1782
1783	for (; i < (ppc440spe_chan->device->pool_size / db_sz); i++) {
1784		slot = kzalloc(sizeof(struct ppc440spe_adma_desc_slot),
1785			       GFP_KERNEL);
1786		if (!slot) {
1787			printk(KERN_INFO "SPE ADMA Channel only initialized"
1788				" %d descriptor slots", i--);
1789			break;
1790		}
1791
1792		hw_desc = (char *) ppc440spe_chan->device->dma_desc_pool_virt;
1793		slot->hw_desc = (void *) &hw_desc[i * db_sz];
1794		dma_async_tx_descriptor_init(&slot->async_tx, chan);
1795		slot->async_tx.tx_submit = ppc440spe_adma_tx_submit;
1796		INIT_LIST_HEAD(&slot->chain_node);
1797		INIT_LIST_HEAD(&slot->slot_node);
1798		INIT_LIST_HEAD(&slot->group_list);
1799		slot->phys = ppc440spe_chan->device->dma_desc_pool + i * db_sz;
1800		slot->idx = i;
1801
1802		spin_lock_bh(&ppc440spe_chan->lock);
1803		ppc440spe_chan->slots_allocated++;
1804		list_add_tail(&slot->slot_node, &ppc440spe_chan->all_slots);
1805		spin_unlock_bh(&ppc440spe_chan->lock);
1806	}
1807
1808	if (i && !ppc440spe_chan->last_used) {
1809		ppc440spe_chan->last_used =
1810			list_entry(ppc440spe_chan->all_slots.next,
1811				struct ppc440spe_adma_desc_slot,
1812				slot_node);
1813	}
1814
1815	dev_dbg(ppc440spe_chan->device->common.dev,
1816		"ppc440spe adma%d: allocated %d descriptor slots\n",
1817		ppc440spe_chan->device->id, i);
1818
1819	/* initialize the channel and the chain with a null operation */
1820	if (init) {
1821		switch (ppc440spe_chan->device->id) {
1822		case PPC440SPE_DMA0_ID:
1823		case PPC440SPE_DMA1_ID:
1824			ppc440spe_chan->hw_chain_inited = 0;
1825			/* Use WXOR for self-testing */
1826			if (!ppc440spe_r6_tchan)
1827				ppc440spe_r6_tchan = ppc440spe_chan;
1828			break;
1829		case PPC440SPE_XOR_ID:
1830			ppc440spe_chan_start_null_xor(ppc440spe_chan);
1831			break;
1832		default:
1833			BUG();
1834		}
1835		ppc440spe_chan->needs_unmap = 1;
1836	}
1837
1838	return (i > 0) ? i : -ENOMEM;
1839}
1840
1841/**
1842 * ppc440spe_rxor_set_region_data -
1843 */
1844static void ppc440spe_rxor_set_region(struct ppc440spe_adma_desc_slot *desc,
1845	u8 xor_arg_no, u32 mask)
1846{
1847	struct xor_cb *xcb = desc->hw_desc;
1848
1849	xcb->ops[xor_arg_no].h |= mask;
1850}
1851
1852/**
1853 * ppc440spe_rxor_set_src -
1854 */
1855static void ppc440spe_rxor_set_src(struct ppc440spe_adma_desc_slot *desc,
1856	u8 xor_arg_no, dma_addr_t addr)
1857{
1858	struct xor_cb *xcb = desc->hw_desc;
1859
1860	xcb->ops[xor_arg_no].h |= DMA_CUED_XOR_BASE;
1861	xcb->ops[xor_arg_no].l = addr;
1862}
1863
1864/**
1865 * ppc440spe_rxor_set_mult -
1866 */
1867static void ppc440spe_rxor_set_mult(struct ppc440spe_adma_desc_slot *desc,
1868	u8 xor_arg_no, u8 idx, u8 mult)
1869{
1870	struct xor_cb *xcb = desc->hw_desc;
1871
1872	xcb->ops[xor_arg_no].h |= mult << (DMA_CUED_MULT1_OFF + idx * 8);
1873}
1874
1875/**
1876 * ppc440spe_adma_check_threshold - append CDBs to h/w chain if threshold
1877 *	has been achieved
1878 */
1879static void ppc440spe_adma_check_threshold(struct ppc440spe_adma_chan *chan)
1880{
1881	dev_dbg(chan->device->common.dev, "ppc440spe adma%d: pending: %d\n",
1882		chan->device->id, chan->pending);
1883
1884	if (chan->pending >= PPC440SPE_ADMA_THRESHOLD) {
1885		chan->pending = 0;
1886		ppc440spe_chan_append(chan);
1887	}
1888}
1889
1890/**
1891 * ppc440spe_adma_tx_submit - submit new descriptor group to the channel
1892 *	(it's not necessary that descriptors will be submitted to the h/w
1893 *	chains too right now)
1894 */
1895static dma_cookie_t ppc440spe_adma_tx_submit(struct dma_async_tx_descriptor *tx)
1896{
1897	struct ppc440spe_adma_desc_slot *sw_desc;
1898	struct ppc440spe_adma_chan *chan = to_ppc440spe_adma_chan(tx->chan);
1899	struct ppc440spe_adma_desc_slot *group_start, *old_chain_tail;
1900	int slot_cnt;
1901	int slots_per_op;
1902	dma_cookie_t cookie;
1903
1904	sw_desc = tx_to_ppc440spe_adma_slot(tx);
1905
1906	group_start = sw_desc->group_head;
1907	slot_cnt = group_start->slot_cnt;
1908	slots_per_op = group_start->slots_per_op;
1909
1910	spin_lock_bh(&chan->lock);
1911	cookie = dma_cookie_assign(tx);
1912
1913	if (unlikely(list_empty(&chan->chain))) {
1914		/* first peer */
1915		list_splice_init(&sw_desc->group_list, &chan->chain);
1916		chan_first_cdb[chan->device->id] = group_start;
1917	} else {
1918		/* isn't first peer, bind CDBs to chain */
1919		old_chain_tail = list_entry(chan->chain.prev,
1920					struct ppc440spe_adma_desc_slot,
1921					chain_node);
1922		list_splice_init(&sw_desc->group_list,
1923		    &old_chain_tail->chain_node);
1924		/* fix up the hardware chain */
1925		ppc440spe_desc_set_link(chan, old_chain_tail, group_start);
1926	}
1927
1928	/* increment the pending count by the number of operations */
1929	chan->pending += slot_cnt / slots_per_op;
1930	ppc440spe_adma_check_threshold(chan);
1931	spin_unlock_bh(&chan->lock);
1932
1933	dev_dbg(chan->device->common.dev,
1934		"ppc440spe adma%d: %s cookie: %d slot: %d tx %p\n",
1935		chan->device->id, __func__,
1936		sw_desc->async_tx.cookie, sw_desc->idx, sw_desc);
1937
1938	return cookie;
1939}
1940
1941/**
1942 * ppc440spe_adma_prep_dma_interrupt - prepare CDB for a pseudo DMA operation
1943 */
1944static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_interrupt(
1945		struct dma_chan *chan, unsigned long flags)
1946{
1947	struct ppc440spe_adma_chan *ppc440spe_chan;
1948	struct ppc440spe_adma_desc_slot *sw_desc, *group_start;
1949	int slot_cnt, slots_per_op;
1950
1951	ppc440spe_chan = to_ppc440spe_adma_chan(chan);
1952
1953	dev_dbg(ppc440spe_chan->device->common.dev,
1954		"ppc440spe adma%d: %s\n", ppc440spe_chan->device->id,
1955		__func__);
1956
1957	spin_lock_bh(&ppc440spe_chan->lock);
1958	slot_cnt = slots_per_op = 1;
1959	sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt,
1960			slots_per_op);
1961	if (sw_desc) {
1962		group_start = sw_desc->group_head;
1963		ppc440spe_desc_init_interrupt(group_start, ppc440spe_chan);
1964		group_start->unmap_len = 0;
1965		sw_desc->async_tx.flags = flags;
1966	}
1967	spin_unlock_bh(&ppc440spe_chan->lock);
1968
1969	return sw_desc ? &sw_desc->async_tx : NULL;
1970}
1971
1972/**
1973 * ppc440spe_adma_prep_dma_memcpy - prepare CDB for a MEMCPY operation
1974 */
1975static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_memcpy(
1976		struct dma_chan *chan, dma_addr_t dma_dest,
1977		dma_addr_t dma_src, size_t len, unsigned long flags)
1978{
1979	struct ppc440spe_adma_chan *ppc440spe_chan;
1980	struct ppc440spe_adma_desc_slot *sw_desc, *group_start;
1981	int slot_cnt, slots_per_op;
1982
1983	ppc440spe_chan = to_ppc440spe_adma_chan(chan);
1984
1985	if (unlikely(!len))
1986		return NULL;
1987
1988	BUG_ON(len > PPC440SPE_ADMA_DMA_MAX_BYTE_COUNT);
1989
1990	spin_lock_bh(&ppc440spe_chan->lock);
1991
1992	dev_dbg(ppc440spe_chan->device->common.dev,
1993		"ppc440spe adma%d: %s len: %u int_en %d\n",
1994		ppc440spe_chan->device->id, __func__, len,
1995		flags & DMA_PREP_INTERRUPT ? 1 : 0);
1996	slot_cnt = slots_per_op = 1;
1997	sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt,
1998		slots_per_op);
1999	if (sw_desc) {
2000		group_start = sw_desc->group_head;
2001		ppc440spe_desc_init_memcpy(group_start, flags);
2002		ppc440spe_adma_set_dest(group_start, dma_dest, 0);
2003		ppc440spe_adma_memcpy_xor_set_src(group_start, dma_src, 0);
2004		ppc440spe_desc_set_byte_count(group_start, ppc440spe_chan, len);
2005		sw_desc->unmap_len = len;
2006		sw_desc->async_tx.flags = flags;
2007	}
2008	spin_unlock_bh(&ppc440spe_chan->lock);
2009
2010	return sw_desc ? &sw_desc->async_tx : NULL;
2011}
2012
2013/**
2014 * ppc440spe_adma_prep_dma_xor - prepare CDB for a XOR operation
2015 */
2016static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_xor(
2017		struct dma_chan *chan, dma_addr_t dma_dest,
2018		dma_addr_t *dma_src, u32 src_cnt, size_t len,
2019		unsigned long flags)
2020{
2021	struct ppc440spe_adma_chan *ppc440spe_chan;
2022	struct ppc440spe_adma_desc_slot *sw_desc, *group_start;
2023	int slot_cnt, slots_per_op;
2024
2025	ppc440spe_chan = to_ppc440spe_adma_chan(chan);
2026
2027	ADMA_LL_DBG(prep_dma_xor_dbg(ppc440spe_chan->device->id,
2028				     dma_dest, dma_src, src_cnt));
2029	if (unlikely(!len))
2030		return NULL;
2031	BUG_ON(len > PPC440SPE_ADMA_XOR_MAX_BYTE_COUNT);
2032
2033	dev_dbg(ppc440spe_chan->device->common.dev,
2034		"ppc440spe adma%d: %s src_cnt: %d len: %u int_en: %d\n",
2035		ppc440spe_chan->device->id, __func__, src_cnt, len,
2036		flags & DMA_PREP_INTERRUPT ? 1 : 0);
2037
2038	spin_lock_bh(&ppc440spe_chan->lock);
2039	slot_cnt = ppc440spe_chan_xor_slot_count(len, src_cnt, &slots_per_op);
2040	sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt,
2041			slots_per_op);
2042	if (sw_desc) {
2043		group_start = sw_desc->group_head;
2044		ppc440spe_desc_init_xor(group_start, src_cnt, flags);
2045		ppc440spe_adma_set_dest(group_start, dma_dest, 0);
2046		while (src_cnt--)
2047			ppc440spe_adma_memcpy_xor_set_src(group_start,
2048				dma_src[src_cnt], src_cnt);
2049		ppc440spe_desc_set_byte_count(group_start, ppc440spe_chan, len);
2050		sw_desc->unmap_len = len;
2051		sw_desc->async_tx.flags = flags;
2052	}
2053	spin_unlock_bh(&ppc440spe_chan->lock);
2054
2055	return sw_desc ? &sw_desc->async_tx : NULL;
2056}
2057
2058static inline void
2059ppc440spe_desc_set_xor_src_cnt(struct ppc440spe_adma_desc_slot *desc,
2060				int src_cnt);
2061static void ppc440spe_init_rxor_cursor(struct ppc440spe_rxor *cursor);
2062
2063/**
2064 * ppc440spe_adma_init_dma2rxor_slot -
2065 */
2066static void ppc440spe_adma_init_dma2rxor_slot(
2067		struct ppc440spe_adma_desc_slot *desc,
2068		dma_addr_t *src, int src_cnt)
2069{
2070	int i;
2071
2072	/* initialize CDB */
2073	for (i = 0; i < src_cnt; i++) {
2074		ppc440spe_adma_dma2rxor_prep_src(desc, &desc->rxor_cursor, i,
2075						 desc->src_cnt, (u32)src[i]);
2076	}
2077}
2078
2079/**
2080 * ppc440spe_dma01_prep_mult -
2081 * for Q operation where destination is also the source
2082 */
2083static struct ppc440spe_adma_desc_slot *ppc440spe_dma01_prep_mult(
2084		struct ppc440spe_adma_chan *ppc440spe_chan,
2085		dma_addr_t *dst, int dst_cnt, dma_addr_t *src, int src_cnt,
2086		const unsigned char *scf, size_t len, unsigned long flags)
2087{
2088	struct ppc440spe_adma_desc_slot *sw_desc = NULL;
2089	unsigned long op = 0;
2090	int slot_cnt;
2091
2092	set_bit(PPC440SPE_DESC_WXOR, &op);
2093	slot_cnt = 2;
2094
2095	spin_lock_bh(&ppc440spe_chan->lock);
2096
2097	/* use WXOR, each descriptor occupies one slot */
2098	sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, 1);
2099	if (sw_desc) {
2100		struct ppc440spe_adma_chan *chan;
2101		struct ppc440spe_adma_desc_slot *iter;
2102		struct dma_cdb *hw_desc;
2103
2104		chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
2105		set_bits(op, &sw_desc->flags);
2106		sw_desc->src_cnt = src_cnt;
2107		sw_desc->dst_cnt = dst_cnt;
2108		/* First descriptor, zero data in the destination and copy it
2109		 * to q page using MULTICAST transfer.
2110		 */
2111		iter = list_first_entry(&sw_desc->group_list,
2112					struct ppc440spe_adma_desc_slot,
2113					chain_node);
2114		memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
2115		/* set 'next' pointer */
2116		iter->hw_next = list_entry(iter->chain_node.next,
2117					   struct ppc440spe_adma_desc_slot,
2118					   chain_node);
2119		clear_bit(PPC440SPE_DESC_INT, &iter->flags);
2120		hw_desc = iter->hw_desc;
2121		hw_desc->opc = DMA_CDB_OPC_MULTICAST;
2122
2123		ppc440spe_desc_set_dest_addr(iter, chan,
2124					     DMA_CUED_XOR_BASE, dst[0], 0);
2125		ppc440spe_desc_set_dest_addr(iter, chan, 0, dst[1], 1);
2126		ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB,
2127					    src[0]);
2128		ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len);
2129		iter->unmap_len = len;
2130
2131		/*
2132		 * Second descriptor, multiply data from the q page
2133		 * and store the result in real destination.
2134		 */
2135		iter = list_first_entry(&iter->chain_node,
2136					struct ppc440spe_adma_desc_slot,
2137					chain_node);
2138		memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
2139		iter->hw_next = NULL;
2140		if (flags & DMA_PREP_INTERRUPT)
2141			set_bit(PPC440SPE_DESC_INT, &iter->flags);
2142		else
2143			clear_bit(PPC440SPE_DESC_INT, &iter->flags);
2144
2145		hw_desc = iter->hw_desc;
2146		hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
2147		ppc440spe_desc_set_src_addr(iter, chan, 0,
2148					    DMA_CUED_XOR_HB, dst[1]);
2149		ppc440spe_desc_set_dest_addr(iter, chan,
2150					     DMA_CUED_XOR_BASE, dst[0], 0);
2151
2152		ppc440spe_desc_set_src_mult(iter, chan, DMA_CUED_MULT1_OFF,
2153					    DMA_CDB_SG_DST1, scf[0]);
2154		ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len);
2155		iter->unmap_len = len;
2156		sw_desc->async_tx.flags = flags;
2157	}
2158
2159	spin_unlock_bh(&ppc440spe_chan->lock);
2160
2161	return sw_desc;
2162}
2163
2164/**
2165 * ppc440spe_dma01_prep_sum_product -
2166 * Dx = A*(P+Pxy) + B*(Q+Qxy) operation where destination is also
2167 * the source.
2168 */
2169static struct ppc440spe_adma_desc_slot *ppc440spe_dma01_prep_sum_product(
2170		struct ppc440spe_adma_chan *ppc440spe_chan,
2171		dma_addr_t *dst, dma_addr_t *src, int src_cnt,
2172		const unsigned char *scf, size_t len, unsigned long flags)
2173{
2174	struct ppc440spe_adma_desc_slot *sw_desc = NULL;
2175	unsigned long op = 0;
2176	int slot_cnt;
2177
2178	set_bit(PPC440SPE_DESC_WXOR, &op);
2179	slot_cnt = 3;
2180
2181	spin_lock_bh(&ppc440spe_chan->lock);
2182
2183	/* WXOR, each descriptor occupies one slot */
2184	sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, 1);
2185	if (sw_desc) {
2186		struct ppc440spe_adma_chan *chan;
2187		struct ppc440spe_adma_desc_slot *iter;
2188		struct dma_cdb *hw_desc;
2189
2190		chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
2191		set_bits(op, &sw_desc->flags);
2192		sw_desc->src_cnt = src_cnt;
2193		sw_desc->dst_cnt = 1;
2194		/* 1st descriptor, src[1] data to q page and zero destination */
2195		iter = list_first_entry(&sw_desc->group_list,
2196					struct ppc440spe_adma_desc_slot,
2197					chain_node);
2198		memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
2199		iter->hw_next = list_entry(iter->chain_node.next,
2200					   struct ppc440spe_adma_desc_slot,
2201					   chain_node);
2202		clear_bit(PPC440SPE_DESC_INT, &iter->flags);
2203		hw_desc = iter->hw_desc;
2204		hw_desc->opc = DMA_CDB_OPC_MULTICAST;
2205
2206		ppc440spe_desc_set_dest_addr(iter, chan, DMA_CUED_XOR_BASE,
2207					     *dst, 0);
2208		ppc440spe_desc_set_dest_addr(iter, chan, 0,
2209					     ppc440spe_chan->qdest, 1);
2210		ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB,
2211					    src[1]);
2212		ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len);
2213		iter->unmap_len = len;
2214
2215		/* 2nd descriptor, multiply src[1] data and store the
2216		 * result in destination */
2217		iter = list_first_entry(&iter->chain_node,
2218					struct ppc440spe_adma_desc_slot,
2219					chain_node);
2220		memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
2221		/* set 'next' pointer */
2222		iter->hw_next = list_entry(iter->chain_node.next,
2223					   struct ppc440spe_adma_desc_slot,
2224					   chain_node);
2225		if (flags & DMA_PREP_INTERRUPT)
2226			set_bit(PPC440SPE_DESC_INT, &iter->flags);
2227		else
2228			clear_bit(PPC440SPE_DESC_INT, &iter->flags);
2229
2230		hw_desc = iter->hw_desc;
2231		hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
2232		ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB,
2233					    ppc440spe_chan->qdest);
2234		ppc440spe_desc_set_dest_addr(iter, chan, DMA_CUED_XOR_BASE,
2235					     *dst, 0);
2236		ppc440spe_desc_set_src_mult(iter, chan,	DMA_CUED_MULT1_OFF,
2237					    DMA_CDB_SG_DST1, scf[1]);
2238		ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len);
2239		iter->unmap_len = len;
2240
2241		/*
2242		 * 3rd descriptor, multiply src[0] data and xor it
2243		 * with destination
2244		 */
2245		iter = list_first_entry(&iter->chain_node,
2246					struct ppc440spe_adma_desc_slot,
2247					chain_node);
2248		memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
2249		iter->hw_next = NULL;
2250		if (flags & DMA_PREP_INTERRUPT)
2251			set_bit(PPC440SPE_DESC_INT, &iter->flags);
2252		else
2253			clear_bit(PPC440SPE_DESC_INT, &iter->flags);
2254
2255		hw_desc = iter->hw_desc;
2256		hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
2257		ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB,
2258					    src[0]);
2259		ppc440spe_desc_set_dest_addr(iter, chan, DMA_CUED_XOR_BASE,
2260					     *dst, 0);
2261		ppc440spe_desc_set_src_mult(iter, chan, DMA_CUED_MULT1_OFF,
2262					    DMA_CDB_SG_DST1, scf[0]);
2263		ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len);
2264		iter->unmap_len = len;
2265		sw_desc->async_tx.flags = flags;
2266	}
2267
2268	spin_unlock_bh(&ppc440spe_chan->lock);
2269
2270	return sw_desc;
2271}
2272
2273static struct ppc440spe_adma_desc_slot *ppc440spe_dma01_prep_pq(
2274		struct ppc440spe_adma_chan *ppc440spe_chan,
2275		dma_addr_t *dst, int dst_cnt, dma_addr_t *src, int src_cnt,
2276		const unsigned char *scf, size_t len, unsigned long flags)
2277{
2278	int slot_cnt;
2279	struct ppc440spe_adma_desc_slot *sw_desc = NULL, *iter;
2280	unsigned long op = 0;
2281	unsigned char mult = 1;
2282
2283	pr_debug("%s: dst_cnt %d, src_cnt %d, len %d\n",
2284		 __func__, dst_cnt, src_cnt, len);
2285	/*  select operations WXOR/RXOR depending on the
2286	 * source addresses of operators and the number
2287	 * of destinations (RXOR support only Q-parity calculations)
2288	 */
2289	set_bit(PPC440SPE_DESC_WXOR, &op);
2290	if (!test_and_set_bit(PPC440SPE_RXOR_RUN, &ppc440spe_rxor_state)) {
2291		/* no active RXOR;
2292		 * do RXOR if:
2293		 * - there are more than 1 source,
2294		 * - len is aligned on 512-byte boundary,
2295		 * - source addresses fit to one of 4 possible regions.
2296		 */
2297		if (src_cnt > 1 &&
2298		    !(len & MQ0_CF2H_RXOR_BS_MASK) &&
2299		    (src[0] + len) == src[1]) {
2300			/* may do RXOR R1 R2 */
2301			set_bit(PPC440SPE_DESC_RXOR, &op);
2302			if (src_cnt != 2) {
2303				/* may try to enhance region of RXOR */
2304				if ((src[1] + len) == src[2]) {
2305					/* do RXOR R1 R2 R3 */
2306					set_bit(PPC440SPE_DESC_RXOR123,
2307						&op);
2308				} else if ((src[1] + len * 2) == src[2]) {
2309					/* do RXOR R1 R2 R4 */
2310					set_bit(PPC440SPE_DESC_RXOR124, &op);
2311				} else if ((src[1] + len * 3) == src[2]) {
2312					/* do RXOR R1 R2 R5 */
2313					set_bit(PPC440SPE_DESC_RXOR125,
2314						&op);
2315				} else {
2316					/* do RXOR R1 R2 */
2317					set_bit(PPC440SPE_DESC_RXOR12,
2318						&op);
2319				}
2320			} else {
2321				/* do RXOR R1 R2 */
2322				set_bit(PPC440SPE_DESC_RXOR12, &op);
2323			}
2324		}
2325
2326		if (!test_bit(PPC440SPE_DESC_RXOR, &op)) {
2327			/* can not do this operation with RXOR */
2328			clear_bit(PPC440SPE_RXOR_RUN,
2329				&ppc440spe_rxor_state);
2330		} else {
2331			/* can do; set block size right now */
2332			ppc440spe_desc_set_rxor_block_size(len);
2333		}
2334	}
2335
2336	/* Number of necessary slots depends on operation type selected */
2337	if (!test_bit(PPC440SPE_DESC_RXOR, &op)) {
2338		/*  This is a WXOR only chain. Need descriptors for each
2339		 * source to GF-XOR them with WXOR, and need descriptors
2340		 * for each destination to zero them with WXOR
2341		 */
2342		slot_cnt = src_cnt;
2343
2344		if (flags & DMA_PREP_ZERO_P) {
2345			slot_cnt++;
2346			set_bit(PPC440SPE_ZERO_P, &op);
2347		}
2348		if (flags & DMA_PREP_ZERO_Q) {
2349			slot_cnt++;
2350			set_bit(PPC440SPE_ZERO_Q, &op);
2351		}
2352	} else {
2353		/*  Need 1/2 descriptor for RXOR operation, and
2354		 * need (src_cnt - (2 or 3)) for WXOR of sources
2355		 * remained (if any)
2356		 */
2357		slot_cnt = dst_cnt;
2358
2359		if (flags & DMA_PREP_ZERO_P)
2360			set_bit(PPC440SPE_ZERO_P, &op);
2361		if (flags & DMA_PREP_ZERO_Q)
2362			set_bit(PPC440SPE_ZERO_Q, &op);
2363
2364		if (test_bit(PPC440SPE_DESC_RXOR12, &op))
2365			slot_cnt += src_cnt - 2;
2366		else
2367			slot_cnt += src_cnt - 3;
2368
2369		/*  Thus we have either RXOR only chain or
2370		 * mixed RXOR/WXOR
2371		 */
2372		if (slot_cnt == dst_cnt)
2373			/* RXOR only chain */
2374			clear_bit(PPC440SPE_DESC_WXOR, &op);
2375	}
2376
2377	spin_lock_bh(&ppc440spe_chan->lock);
2378	/* for both RXOR/WXOR each descriptor occupies one slot */
2379	sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, 1);
2380	if (sw_desc) {
2381		ppc440spe_desc_init_dma01pq(sw_desc, dst_cnt, src_cnt,
2382				flags, op);
2383
2384		/* setup dst/src/mult */
2385		pr_debug("%s: set dst descriptor 0, 1: 0x%016llx, 0x%016llx\n",
2386			 __func__, dst[0], dst[1]);
2387		ppc440spe_adma_pq_set_dest(sw_desc, dst, flags);
2388		while (src_cnt--) {
2389			ppc440spe_adma_pq_set_src(sw_desc, src[src_cnt],
2390						  src_cnt);
2391
2392			/* NOTE: "Multi = 0 is equivalent to = 1" as it
2393			 * stated in 440SPSPe_RAID6_Addendum_UM_1_17.pdf
2394			 * doesn't work for RXOR with DMA0/1! Instead, multi=0
2395			 * leads to zeroing source data after RXOR.
2396			 * So, for P case set-up mult=1 explicitly.
2397			 */
2398			if (!(flags & DMA_PREP_PQ_DISABLE_Q))
2399				mult = scf[src_cnt];
2400			ppc440spe_adma_pq_set_src_mult(sw_desc,
2401				mult, src_cnt,  dst_cnt - 1);
2402		}
2403
2404		/* Setup byte count foreach slot just allocated */
2405		sw_desc->async_tx.flags = flags;
2406		list_for_each_entry(iter, &sw_desc->group_list,
2407				chain_node) {
2408			ppc440spe_desc_set_byte_count(iter,
2409				ppc440spe_chan, len);
2410			iter->unmap_len = len;
2411		}
2412	}
2413	spin_unlock_bh(&ppc440spe_chan->lock);
2414
2415	return sw_desc;
2416}
2417
2418static struct ppc440spe_adma_desc_slot *ppc440spe_dma2_prep_pq(
2419		struct ppc440spe_adma_chan *ppc440spe_chan,
2420		dma_addr_t *dst, int dst_cnt, dma_addr_t *src, int src_cnt,
2421		const unsigned char *scf, size_t len, unsigned long flags)
2422{
2423	int slot_cnt, descs_per_op;
2424	struct ppc440spe_adma_desc_slot *sw_desc = NULL, *iter;
2425	unsigned long op = 0;
2426	unsigned char mult = 1;
2427
2428	BUG_ON(!dst_cnt);
2429	/*pr_debug("%s: dst_cnt %d, src_cnt %d, len %d\n",
2430		 __func__, dst_cnt, src_cnt, len);*/
2431
2432	spin_lock_bh(&ppc440spe_chan->lock);
2433	descs_per_op = ppc440spe_dma2_pq_slot_count(src, src_cnt, len);
2434	if (descs_per_op < 0) {
2435		spin_unlock_bh(&ppc440spe_chan->lock);
2436		return NULL;
2437	}
2438
2439	/* depending on number of sources we have 1 or 2 RXOR chains */
2440	slot_cnt = descs_per_op * dst_cnt;
2441
2442	sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, 1);
2443	if (sw_desc) {
2444		op = slot_cnt;
2445		sw_desc->async_tx.flags = flags;
2446		list_for_each_entry(iter, &sw_desc->group_list, chain_node) {
2447			ppc440spe_desc_init_dma2pq(iter, dst_cnt, src_cnt,
2448				--op ? 0 : flags);
2449			ppc440spe_desc_set_byte_count(iter, ppc440spe_chan,
2450				len);
2451			iter->unmap_len = len;
2452
2453			ppc440spe_init_rxor_cursor(&(iter->rxor_cursor));
2454			iter->rxor_cursor.len = len;
2455			iter->descs_per_op = descs_per_op;
2456		}
2457		op = 0;
2458		list_for_each_entry(iter, &sw_desc->group_list, chain_node) {
2459			op++;
2460			if (op % descs_per_op == 0)
2461				ppc440spe_adma_init_dma2rxor_slot(iter, src,
2462								  src_cnt);
2463			if (likely(!list_is_last(&iter->chain_node,
2464						 &sw_desc->group_list))) {
2465				/* set 'next' pointer */
2466				iter->hw_next =
2467					list_entry(iter->chain_node.next,
2468						struct ppc440spe_adma_desc_slot,
2469						chain_node);
2470				ppc440spe_xor_set_link(iter, iter->hw_next);
2471			} else {
2472				/* this is the last descriptor. */
2473				iter->hw_next = NULL;
2474			}
2475		}
2476
2477		/* fixup head descriptor */
2478		sw_desc->dst_cnt = dst_cnt;
2479		if (flags & DMA_PREP_ZERO_P)
2480			set_bit(PPC440SPE_ZERO_P, &sw_desc->flags);
2481		if (flags & DMA_PREP_ZERO_Q)
2482			set_bit(PPC440SPE_ZERO_Q, &sw_desc->flags);
2483
2484		/* setup dst/src/mult */
2485		ppc440spe_adma_pq_set_dest(sw_desc, dst, flags);
2486
2487		while (src_cnt--) {
2488			/* handle descriptors (if dst_cnt == 2) inside
2489			 * the ppc440spe_adma_pq_set_srcxxx() functions
2490			 */
2491			ppc440spe_adma_pq_set_src(sw_desc, src[src_cnt],
2492						  src_cnt);
2493			if (!(flags & DMA_PREP_PQ_DISABLE_Q))
2494				mult = scf[src_cnt];
2495			ppc440spe_adma_pq_set_src_mult(sw_desc,
2496					mult, src_cnt, dst_cnt - 1);
2497		}
2498	}
2499	spin_unlock_bh(&ppc440spe_chan->lock);
2500	ppc440spe_desc_set_rxor_block_size(len);
2501	return sw_desc;
2502}
2503
2504/**
2505 * ppc440spe_adma_prep_dma_pq - prepare CDB (group) for a GF-XOR operation
2506 */
2507static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_pq(
2508		struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src,
2509		unsigned int src_cnt, const unsigned char *scf,
2510		size_t len, unsigned long flags)
2511{
2512	struct ppc440spe_adma_chan *ppc440spe_chan;
2513	struct ppc440spe_adma_desc_slot *sw_desc = NULL;
2514	int dst_cnt = 0;
2515
2516	ppc440spe_chan = to_ppc440spe_adma_chan(chan);
2517
2518	ADMA_LL_DBG(prep_dma_pq_dbg(ppc440spe_chan->device->id,
2519				    dst, src, src_cnt));
2520	BUG_ON(!len);
2521	BUG_ON(len > PPC440SPE_ADMA_XOR_MAX_BYTE_COUNT);
2522	BUG_ON(!src_cnt);
2523
2524	if (src_cnt == 1 && dst[1] == src[0]) {
2525		dma_addr_t dest[2];
2526
2527		/* dst[1] is real destination (Q) */
2528		dest[0] = dst[1];
2529		/* this is the page to multicast source data to */
2530		dest[1] = ppc440spe_chan->qdest;
2531		sw_desc = ppc440spe_dma01_prep_mult(ppc440spe_chan,
2532				dest, 2, src, src_cnt, scf, len, flags);
2533		return sw_desc ? &sw_desc->async_tx : NULL;
2534	}
2535
2536	if (src_cnt == 2 && dst[1] == src[1]) {
2537		sw_desc = ppc440spe_dma01_prep_sum_product(ppc440spe_chan,
2538					&dst[1], src, 2, scf, len, flags);
2539		return sw_desc ? &sw_desc->async_tx : NULL;
2540	}
2541
2542	if (!(flags & DMA_PREP_PQ_DISABLE_P)) {
2543		BUG_ON(!dst[0]);
2544		dst_cnt++;
2545		flags |= DMA_PREP_ZERO_P;
2546	}
2547
2548	if (!(flags & DMA_PREP_PQ_DISABLE_Q)) {
2549		BUG_ON(!dst[1]);
2550		dst_cnt++;
2551		flags |= DMA_PREP_ZERO_Q;
2552	}
2553
2554	BUG_ON(!dst_cnt);
2555
2556	dev_dbg(ppc440spe_chan->device->common.dev,
2557		"ppc440spe adma%d: %s src_cnt: %d len: %u int_en: %d\n",
2558		ppc440spe_chan->device->id, __func__, src_cnt, len,
2559		flags & DMA_PREP_INTERRUPT ? 1 : 0);
2560
2561	switch (ppc440spe_chan->device->id) {
2562	case PPC440SPE_DMA0_ID:
2563	case PPC440SPE_DMA1_ID:
2564		sw_desc = ppc440spe_dma01_prep_pq(ppc440spe_chan,
2565				dst, dst_cnt, src, src_cnt, scf,
2566				len, flags);
2567		break;
2568
2569	case PPC440SPE_XOR_ID:
2570		sw_desc = ppc440spe_dma2_prep_pq(ppc440spe_chan,
2571				dst, dst_cnt, src, src_cnt, scf,
2572				len, flags);
2573		break;
2574	}
2575
2576	return sw_desc ? &sw_desc->async_tx : NULL;
2577}
2578
2579/**
2580 * ppc440spe_adma_prep_dma_pqzero_sum - prepare CDB group for
2581 * a PQ_ZERO_SUM operation
2582 */
2583static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_pqzero_sum(
2584		struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src,
2585		unsigned int src_cnt, const unsigned char *scf, size_t len,
2586		enum sum_check_flags *pqres, unsigned long flags)
2587{
2588	struct ppc440spe_adma_chan *ppc440spe_chan;
2589	struct ppc440spe_adma_desc_slot *sw_desc, *iter;
2590	dma_addr_t pdest, qdest;
2591	int slot_cnt, slots_per_op, idst, dst_cnt;
2592
2593	ppc440spe_chan = to_ppc440spe_adma_chan(chan);
2594
2595	if (flags & DMA_PREP_PQ_DISABLE_P)
2596		pdest = 0;
2597	else
2598		pdest = pq[0];
2599
2600	if (flags & DMA_PREP_PQ_DISABLE_Q)
2601		qdest = 0;
2602	else
2603		qdest = pq[1];
2604
2605	ADMA_LL_DBG(prep_dma_pqzero_sum_dbg(ppc440spe_chan->device->id,
2606					    src, src_cnt, scf));
2607
2608	/* Always use WXOR for P/Q calculations (two destinations).
2609	 * Need 1 or 2 extra slots to verify results are zero.
2610	 */
2611	idst = dst_cnt = (pdest && qdest) ? 2 : 1;
2612
2613	/* One additional slot per destination to clone P/Q
2614	 * before calculation (we have to preserve destinations).
2615	 */
2616	slot_cnt = src_cnt + dst_cnt * 2;
2617	slots_per_op = 1;
2618
2619	spin_lock_bh(&ppc440spe_chan->lock);
2620	sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt,
2621					     slots_per_op);
2622	if (sw_desc) {
2623		ppc440spe_desc_init_dma01pqzero_sum(sw_desc, dst_cnt, src_cnt);
2624
2625		/* Setup byte count for each slot just allocated */
2626		sw_desc->async_tx.flags = flags;
2627		list_for_each_entry(iter, &sw_desc->group_list, chain_node) {
2628			ppc440spe_desc_set_byte_count(iter, ppc440spe_chan,
2629						      len);
2630			iter->unmap_len = len;
2631		}
2632
2633		if (pdest) {
2634			struct dma_cdb *hw_desc;
2635			struct ppc440spe_adma_chan *chan;
2636
2637			iter = sw_desc->group_head;
2638			chan = to_ppc440spe_adma_chan(iter->async_tx.chan);
2639			memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
2640			iter->hw_next = list_entry(iter->chain_node.next,
2641						struct ppc440spe_adma_desc_slot,
2642						chain_node);
2643			hw_desc = iter->hw_desc;
2644			hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
2645			iter->src_cnt = 0;
2646			iter->dst_cnt = 0;
2647			ppc440spe_desc_set_dest_addr(iter, chan, 0,
2648						     ppc440spe_chan->pdest, 0);
2649			ppc440spe_desc_set_src_addr(iter, chan, 0, 0, pdest);
2650			ppc440spe_desc_set_byte_count(iter, ppc440spe_chan,
2651						      len);
2652			iter->unmap_len = 0;
2653			/* override pdest to preserve original P */
2654			pdest = ppc440spe_chan->pdest;
2655		}
2656		if (qdest) {
2657			struct dma_cdb *hw_desc;
2658			struct ppc440spe_adma_chan *chan;
2659
2660			iter = list_first_entry(&sw_desc->group_list,
2661						struct ppc440spe_adma_desc_slot,
2662						chain_node);
2663			chan = to_ppc440spe_adma_chan(iter->async_tx.chan);
2664
2665			if (pdest) {
2666				iter = list_entry(iter->chain_node.next,
2667						struct ppc440spe_adma_desc_slot,
2668						chain_node);
2669			}
2670
2671			memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
2672			iter->hw_next = list_entry(iter->chain_node.next,
2673						struct ppc440spe_adma_desc_slot,
2674						chain_node);
2675			hw_desc = iter->hw_desc;
2676			hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
2677			iter->src_cnt = 0;
2678			iter->dst_cnt = 0;
2679			ppc440spe_desc_set_dest_addr(iter, chan, 0,
2680						     ppc440spe_chan->qdest, 0);
2681			ppc440spe_desc_set_src_addr(iter, chan, 0, 0, qdest);
2682			ppc440spe_desc_set_byte_count(iter, ppc440spe_chan,
2683						      len);
2684			iter->unmap_len = 0;
2685			/* override qdest to preserve original Q */
2686			qdest = ppc440spe_chan->qdest;
2687		}
2688
2689		/* Setup destinations for P/Q ops */
2690		ppc440spe_adma_pqzero_sum_set_dest(sw_desc, pdest, qdest);
2691
2692		/* Setup zero QWORDs into DCHECK CDBs */
2693		idst = dst_cnt;
2694		list_for_each_entry_reverse(iter, &sw_desc->group_list,
2695					    chain_node) {
2696			/*
2697			 * The last CDB corresponds to Q-parity check,
2698			 * the one before last CDB corresponds
2699			 * P-parity check
2700			 */
2701			if (idst == DMA_DEST_MAX_NUM) {
2702				if (idst == dst_cnt) {
2703					set_bit(PPC440SPE_DESC_QCHECK,
2704						&iter->flags);
2705				} else {
2706					set_bit(PPC440SPE_DESC_PCHECK,
2707						&iter->flags);
2708				}
2709			} else {
2710				if (qdest) {
2711					set_bit(PPC440SPE_DESC_QCHECK,
2712						&iter->flags);
2713				} else {
2714					set_bit(PPC440SPE_DESC_PCHECK,
2715						&iter->flags);
2716				}
2717			}
2718			iter->xor_check_result = pqres;
2719
2720			/*
2721			 * set it to zero, if check fail then result will
2722			 * be updated
2723			 */
2724			*iter->xor_check_result = 0;
2725			ppc440spe_desc_set_dcheck(iter, ppc440spe_chan,
2726				ppc440spe_qword);
2727
2728			if (!(--dst_cnt))
2729				break;
2730		}
2731
2732		/* Setup sources and mults for P/Q ops */
2733		list_for_each_entry_continue_reverse(iter, &sw_desc->group_list,
2734						     chain_node) {
2735			struct ppc440spe_adma_chan *chan;
2736			u32 mult_dst;
2737
2738			chan = to_ppc440spe_adma_chan(iter->async_tx.chan);
2739			ppc440spe_desc_set_src_addr(iter, chan, 0,
2740						    DMA_CUED_XOR_HB,
2741						    src[src_cnt - 1]);
2742			if (qdest) {
2743				mult_dst = (dst_cnt - 1) ? DMA_CDB_SG_DST2 :
2744							   DMA_CDB_SG_DST1;
2745				ppc440spe_desc_set_src_mult(iter, chan,
2746							    DMA_CUED_MULT1_OFF,
2747							    mult_dst,
2748							    scf[src_cnt - 1]);
2749			}
2750			if (!(--src_cnt))
2751				break;
2752		}
2753	}
2754	spin_unlock_bh(&ppc440spe_chan->lock);
2755	return sw_desc ? &sw_desc->async_tx : NULL;
2756}
2757
2758/**
2759 * ppc440spe_adma_prep_dma_xor_zero_sum - prepare CDB group for
2760 * XOR ZERO_SUM operation
2761 */
2762static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_xor_zero_sum(
2763		struct dma_chan *chan, dma_addr_t *src, unsigned int src_cnt,
2764		size_t len, enum sum_check_flags *result, unsigned long flags)
2765{
2766	struct dma_async_tx_descriptor *tx;
2767	dma_addr_t pq[2];
2768
2769	/* validate P, disable Q */
2770	pq[0] = src[0];
2771	pq[1] = 0;
2772	flags |= DMA_PREP_PQ_DISABLE_Q;
2773
2774	tx = ppc440spe_adma_prep_dma_pqzero_sum(chan, pq, &src[1],
2775						src_cnt - 1, 0, len,
2776						result, flags);
2777	return tx;
2778}
2779
2780/**
2781 * ppc440spe_adma_set_dest - set destination address into descriptor
2782 */
2783static void ppc440spe_adma_set_dest(struct ppc440spe_adma_desc_slot *sw_desc,
2784		dma_addr_t addr, int index)
2785{
2786	struct ppc440spe_adma_chan *chan;
2787
2788	BUG_ON(index >= sw_desc->dst_cnt);
2789
2790	chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
2791
2792	switch (chan->device->id) {
2793	case PPC440SPE_DMA0_ID:
2794	case PPC440SPE_DMA1_ID:
2795		/* to do: support transfers lengths >
2796		 * PPC440SPE_ADMA_DMA/XOR_MAX_BYTE_COUNT
2797		 */
2798		ppc440spe_desc_set_dest_addr(sw_desc->group_head,
2799			chan, 0, addr, index);
2800		break;
2801	case PPC440SPE_XOR_ID:
2802		sw_desc = ppc440spe_get_group_entry(sw_desc, index);
2803		ppc440spe_desc_set_dest_addr(sw_desc,
2804			chan, 0, addr, index);
2805		break;
2806	}
2807}
2808
2809static void ppc440spe_adma_pq_zero_op(struct ppc440spe_adma_desc_slot *iter,
2810		struct ppc440spe_adma_chan *chan, dma_addr_t addr)
2811{
2812	/*  To clear destinations update the descriptor
2813	 * (P or Q depending on index) as follows:
2814	 * addr is destination (0 corresponds to SG2):
2815	 */
2816	ppc440spe_desc_set_dest_addr(iter, chan, DMA_CUED_XOR_BASE, addr, 0);
2817
2818	/* ... and the addr is source: */
2819	ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB, addr);
2820
2821	/* addr is always SG2 then the mult is always DST1 */
2822	ppc440spe_desc_set_src_mult(iter, chan, DMA_CUED_MULT1_OFF,
2823				    DMA_CDB_SG_DST1, 1);
2824}
2825
2826/**
2827 * ppc440spe_adma_pq_set_dest - set destination address into descriptor
2828 * for the PQXOR operation
2829 */
2830static void ppc440spe_adma_pq_set_dest(struct ppc440spe_adma_desc_slot *sw_desc,
2831		dma_addr_t *addrs, unsigned long flags)
2832{
2833	struct ppc440spe_adma_desc_slot *iter;
2834	struct ppc440spe_adma_chan *chan;
2835	dma_addr_t paddr, qaddr;
2836	dma_addr_t addr = 0, ppath, qpath;
2837	int index = 0, i;
2838
2839	chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
2840
2841	if (flags & DMA_PREP_PQ_DISABLE_P)
2842		paddr = 0;
2843	else
2844		paddr = addrs[0];
2845
2846	if (flags & DMA_PREP_PQ_DISABLE_Q)
2847		qaddr = 0;
2848	else
2849		qaddr = addrs[1];
2850
2851	if (!paddr || !qaddr)
2852		addr = paddr ? paddr : qaddr;
2853
2854	switch (chan->device->id) {
2855	case PPC440SPE_DMA0_ID:
2856	case PPC440SPE_DMA1_ID:
2857		/* walk through the WXOR source list and set P/Q-destinations
2858		 * for each slot:
2859		 */
2860		if (!test_bit(PPC440SPE_DESC_RXOR, &sw_desc->flags)) {
2861			/* This is WXOR-only chain; may have 1/2 zero descs */
2862			if (test_bit(PPC440SPE_ZERO_P, &sw_desc->flags))
2863				index++;
2864			if (test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags))
2865				index++;
2866
2867			iter = ppc440spe_get_group_entry(sw_desc, index);
2868			if (addr) {
2869				/* one destination */
2870				list_for_each_entry_from(iter,
2871					&sw_desc->group_list, chain_node)
2872					ppc440spe_desc_set_dest_addr(iter, chan,
2873						DMA_CUED_XOR_BASE, addr, 0);
2874			} else {
2875				/* two destinations */
2876				list_for_each_entry_from(iter,
2877					&sw_desc->group_list, chain_node) {
2878					ppc440spe_desc_set_dest_addr(iter, chan,
2879						DMA_CUED_XOR_BASE, paddr, 0);
2880					ppc440spe_desc_set_dest_addr(iter, chan,
2881						DMA_CUED_XOR_BASE, qaddr, 1);
2882				}
2883			}
2884
2885			if (index) {
2886				/*  To clear destinations update the descriptor
2887				 * (1st,2nd, or both depending on flags)
2888				 */
2889				index = 0;
2890				if (test_bit(PPC440SPE_ZERO_P,
2891						&sw_desc->flags)) {
2892					iter = ppc440spe_get_group_entry(
2893							sw_desc, index++);
2894					ppc440spe_adma_pq_zero_op(iter, chan,
2895							paddr);
2896				}
2897
2898				if (test_bit(PPC440SPE_ZERO_Q,
2899						&sw_desc->flags)) {
2900					iter = ppc440spe_get_group_entry(
2901							sw_desc, index++);
2902					ppc440spe_adma_pq_zero_op(iter, chan,
2903							qaddr);
2904				}
2905
2906				return;
2907			}
2908		} else {
2909			/* This is RXOR-only or RXOR/WXOR mixed chain */
2910
2911			/* If we want to include destination into calculations,
2912			 * then make dest addresses cued with mult=1 (XOR).
2913			 */
2914			ppath = test_bit(PPC440SPE_ZERO_P, &sw_desc->flags) ?
2915					DMA_CUED_XOR_HB :
2916					DMA_CUED_XOR_BASE |
2917						(1 << DMA_CUED_MULT1_OFF);
2918			qpath = test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags) ?
2919					DMA_CUED_XOR_HB :
2920					DMA_CUED_XOR_BASE |
2921						(1 << DMA_CUED_MULT1_OFF);
2922
2923			/* Setup destination(s) in RXOR slot(s) */
2924			iter = ppc440spe_get_group_entry(sw_desc, index++);
2925			ppc440spe_desc_set_dest_addr(iter, chan,
2926						paddr ? ppath : qpath,
2927						paddr ? paddr : qaddr, 0);
2928			if (!addr) {
2929				/* two destinations */
2930				iter = ppc440spe_get_group_entry(sw_desc,
2931								 index++);
2932				ppc440spe_desc_set_dest_addr(iter, chan,
2933						qpath, qaddr, 0);
2934			}
2935
2936			if (test_bit(PPC440SPE_DESC_WXOR, &sw_desc->flags)) {
2937				/* Setup destination(s) in remaining WXOR
2938				 * slots
2939				 */
2940				iter = ppc440spe_get_group_entry(sw_desc,
2941								 index);
2942				if (addr) {
2943					/* one destination */
2944					list_for_each_entry_from(iter,
2945					    &sw_desc->group_list,
2946					    chain_node)
2947						ppc440spe_desc_set_dest_addr(
2948							iter, chan,
2949							DMA_CUED_XOR_BASE,
2950							addr, 0);
2951
2952				} else {
2953					/* two destinations */
2954					list_for_each_entry_from(iter,
2955					    &sw_desc->group_list,
2956					    chain_node) {
2957						ppc440spe_desc_set_dest_addr(
2958							iter, chan,
2959							DMA_CUED_XOR_BASE,
2960							paddr, 0);
2961						ppc440spe_desc_set_dest_addr(
2962							iter, chan,
2963							DMA_CUED_XOR_BASE,
2964							qaddr, 1);
2965					}
2966				}
2967			}
2968
2969		}
2970		break;
2971
2972	case PPC440SPE_XOR_ID:
2973		/* DMA2 descriptors have only 1 destination, so there are
2974		 * two chains - one for each dest.
2975		 * If we want to include destination into calculations,
2976		 * then make dest addresses cued with mult=1 (XOR).
2977		 */
2978		ppath = test_bit(PPC440SPE_ZERO_P, &sw_desc->flags) ?
2979				DMA_CUED_XOR_HB :
2980				DMA_CUED_XOR_BASE |
2981					(1 << DMA_CUED_MULT1_OFF);
2982
2983		qpath = test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags) ?
2984				DMA_CUED_XOR_HB :
2985				DMA_CUED_XOR_BASE |
2986					(1 << DMA_CUED_MULT1_OFF);
2987
2988		iter = ppc440spe_get_group_entry(sw_desc, 0);
2989		for (i = 0; i < sw_desc->descs_per_op; i++) {
2990			ppc440spe_desc_set_dest_addr(iter, chan,
2991				paddr ? ppath : qpath,
2992				paddr ? paddr : qaddr, 0);
2993			iter = list_entry(iter->chain_node.next,
2994					  struct ppc440spe_adma_desc_slot,
2995					  chain_node);
2996		}
2997
2998		if (!addr) {
2999			/* Two destinations; setup Q here */
3000			iter = ppc440spe_get_group_entry(sw_desc,
3001				sw_desc->descs_per_op);
3002			for (i = 0; i < sw_desc->descs_per_op; i++) {
3003				ppc440spe_desc_set_dest_addr(iter,
3004					chan, qpath, qaddr, 0);
3005				iter = list_entry(iter->chain_node.next,
3006						struct ppc440spe_adma_desc_slot,
3007						chain_node);
3008			}
3009		}
3010
3011		break;
3012	}
3013}
3014
3015/**
3016 * ppc440spe_adma_pq_zero_sum_set_dest - set destination address into descriptor
3017 * for the PQ_ZERO_SUM operation
3018 */
3019static void ppc440spe_adma_pqzero_sum_set_dest(
3020		struct ppc440spe_adma_desc_slot *sw_desc,
3021		dma_addr_t paddr, dma_addr_t qaddr)
3022{
3023	struct ppc440spe_adma_desc_slot *iter, *end;
3024	struct ppc440spe_adma_chan *chan;
3025	dma_addr_t addr = 0;
3026	int idx;
3027
3028	chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
3029
3030	/* walk through the WXOR source list and set P/Q-destinations
3031	 * for each slot
3032	 */
3033	idx = (paddr && qaddr) ? 2 : 1;
3034	/* set end */
3035	list_for_each_entry_reverse(end, &sw_desc->group_list,
3036				    chain_node) {
3037		if (!(--idx))
3038			break;
3039	}
3040	/* set start */
3041	idx = (paddr && qaddr) ? 2 : 1;
3042	iter = ppc440spe_get_group_entry(sw_desc, idx);
3043
3044	if (paddr && qaddr) {
3045		/* two destinations */
3046		list_for_each_entry_from(iter, &sw_desc->group_list,
3047					 chain_node) {
3048			if (unlikely(iter == end))
3049				break;
3050			ppc440spe_desc_set_dest_addr(iter, chan,
3051						DMA_CUED_XOR_BASE, paddr, 0);
3052			ppc440spe_desc_set_dest_addr(iter, chan,
3053						DMA_CUED_XOR_BASE, qaddr, 1);
3054		}
3055	} else {
3056		/* one destination */
3057		addr = paddr ? paddr : qaddr;
3058		list_for_each_entry_from(iter, &sw_desc->group_list,
3059					 chain_node) {
3060			if (unlikely(iter == end))
3061				break;
3062			ppc440spe_desc_set_dest_addr(iter, chan,
3063						DMA_CUED_XOR_BASE, addr, 0);
3064		}
3065	}
3066
3067	/*  The remaining descriptors are DATACHECK. These have no need in
3068	 * destination. Actually, these destinations are used there
3069	 * as sources for check operation. So, set addr as source.
3070	 */
3071	ppc440spe_desc_set_src_addr(end, chan, 0, 0, addr ? addr : paddr);
3072
3073	if (!addr) {
3074		end = list_entry(end->chain_node.next,
3075				 struct ppc440spe_adma_desc_slot, chain_node);
3076		ppc440spe_desc_set_src_addr(end, chan, 0, 0, qaddr);
3077	}
3078}
3079
3080/**
3081 * ppc440spe_desc_set_xor_src_cnt - set source count into descriptor
3082 */
3083static inline void ppc440spe_desc_set_xor_src_cnt(
3084			struct ppc440spe_adma_desc_slot *desc,
3085			int src_cnt)
3086{
3087	struct xor_cb *hw_desc = desc->hw_desc;
3088
3089	hw_desc->cbc &= ~XOR_CDCR_OAC_MSK;
3090	hw_desc->cbc |= src_cnt;
3091}
3092
3093/**
3094 * ppc440spe_adma_pq_set_src - set source address into descriptor
3095 */
3096static void ppc440spe_adma_pq_set_src(struct ppc440spe_adma_desc_slot *sw_desc,
3097		dma_addr_t addr, int index)
3098{
3099	struct ppc440spe_adma_chan *chan;
3100	dma_addr_t haddr = 0;
3101	struct ppc440spe_adma_desc_slot *iter = NULL;
3102
3103	chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
3104
3105	switch (chan->device->id) {
3106	case PPC440SPE_DMA0_ID:
3107	case PPC440SPE_DMA1_ID:
3108		/* DMA0,1 may do: WXOR, RXOR, RXOR+WXORs chain
3109		 */
3110		if (test_bit(PPC440SPE_DESC_RXOR, &sw_desc->flags)) {
3111			/* RXOR-only or RXOR/WXOR operation */
3112			int iskip = test_bit(PPC440SPE_DESC_RXOR12,
3113				&sw_desc->flags) ?  2 : 3;
3114
3115			if (index == 0) {
3116				/* 1st slot (RXOR) */
3117				/* setup sources region (R1-2-3, R1-2-4,
3118				 * or R1-2-5)
3119				 */
3120				if (test_bit(PPC440SPE_DESC_RXOR12,
3121						&sw_desc->flags))
3122					haddr = DMA_RXOR12 <<
3123						DMA_CUED_REGION_OFF;
3124				else if (test_bit(PPC440SPE_DESC_RXOR123,
3125				    &sw_desc->flags))
3126					haddr = DMA_RXOR123 <<
3127						DMA_CUED_REGION_OFF;
3128				else if (test_bit(PPC440SPE_DESC_RXOR124,
3129				    &sw_desc->flags))
3130					haddr = DMA_RXOR124 <<
3131						DMA_CUED_REGION_OFF;
3132				else if (test_bit(PPC440SPE_DESC_RXOR125,
3133				    &sw_desc->flags))
3134					haddr = DMA_RXOR125 <<
3135						DMA_CUED_REGION_OFF;
3136				else
3137					BUG();
3138				haddr |= DMA_CUED_XOR_BASE;
3139				iter = ppc440spe_get_group_entry(sw_desc, 0);
3140			} else if (index < iskip) {
3141				/* 1st slot (RXOR)
3142				 * shall actually set source address only once
3143				 * instead of first <iskip>
3144				 */
3145				iter = NULL;
3146			} else {
3147				/* 2nd/3d and next slots (WXOR);
3148				 * skip first slot with RXOR
3149				 */
3150				haddr = DMA_CUED_XOR_HB;
3151				iter = ppc440spe_get_group_entry(sw_desc,
3152				    index - iskip + sw_desc->dst_cnt);
3153			}
3154		} else {
3155			int znum = 0;
3156
3157			/* WXOR-only operation; skip first slots with
3158			 * zeroing destinations
3159			 */
3160			if (test_bit(PPC440SPE_ZERO_P, &sw_desc->flags))
3161				znum++;
3162			if (test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags))
3163				znum++;
3164
3165			haddr = DMA_CUED_XOR_HB;
3166			iter = ppc440spe_get_group_entry(sw_desc,
3167					index + znum);
3168		}
3169
3170		if (likely(iter)) {
3171			ppc440spe_desc_set_src_addr(iter, chan, 0, haddr, addr);
3172
3173			if (!index &&
3174			    test_bit(PPC440SPE_DESC_RXOR, &sw_desc->flags) &&
3175			    sw_desc->dst_cnt == 2) {
3176				/* if we have two destinations for RXOR, then
3177				 * setup source in the second descr too
3178				 */
3179				iter = ppc440spe_get_group_entry(sw_desc, 1);
3180				ppc440spe_desc_set_src_addr(iter, chan, 0,
3181					haddr, addr);
3182			}
3183		}
3184		break;
3185
3186	case PPC440SPE_XOR_ID:
3187		/* DMA2 may do Biskup */
3188		iter = sw_desc->group_head;
3189		if (iter->dst_cnt == 2) {
3190			/* both P & Q calculations required; set P src here */
3191			ppc440spe_adma_dma2rxor_set_src(iter, index, addr);
3192
3193			/* this is for Q */
3194			iter = ppc440spe_get_group_entry(sw_desc,
3195				sw_desc->descs_per_op);
3196		}
3197		ppc440spe_adma_dma2rxor_set_src(iter, index, addr);
3198		break;
3199	}
3200}
3201
3202/**
3203 * ppc440spe_adma_memcpy_xor_set_src - set source address into descriptor
3204 */
3205static void ppc440spe_adma_memcpy_xor_set_src(
3206		struct ppc440spe_adma_desc_slot *sw_desc,
3207		dma_addr_t addr, int index)
3208{
3209	struct ppc440spe_adma_chan *chan;
3210
3211	chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
3212	sw_desc = sw_desc->group_head;
3213
3214	if (likely(sw_desc))
3215		ppc440spe_desc_set_src_addr(sw_desc, chan, index, 0, addr);
3216}
3217
3218/**
3219 * ppc440spe_adma_dma2rxor_inc_addr  -
3220 */
3221static void ppc440spe_adma_dma2rxor_inc_addr(
3222		struct ppc440spe_adma_desc_slot *desc,
3223		struct ppc440spe_rxor *cursor, int index, int src_cnt)
3224{
3225	cursor->addr_count++;
3226	if (index == src_cnt - 1) {
3227		ppc440spe_desc_set_xor_src_cnt(desc, cursor->addr_count);
3228	} else if (cursor->addr_count == XOR_MAX_OPS) {
3229		ppc440spe_desc_set_xor_src_cnt(desc, cursor->addr_count);
3230		cursor->addr_count = 0;
3231		cursor->desc_count++;
3232	}
3233}
3234
3235/**
3236 * ppc440spe_adma_dma2rxor_prep_src - setup RXOR types in DMA2 CDB
3237 */
3238static int ppc440spe_adma_dma2rxor_prep_src(
3239		struct ppc440spe_adma_desc_slot *hdesc,
3240		struct ppc440spe_rxor *cursor, int index,
3241		int src_cnt, u32 addr)
3242{
3243	u32 sign;
3244	struct ppc440spe_adma_desc_slot *desc = hdesc;
3245	int i;
3246
3247	for (i = 0; i < cursor->desc_count; i++) {
3248		desc = list_entry(hdesc->chain_node.next,
3249				  struct ppc440spe_adma_desc_slot,
3250				  chain_node);
3251	}
3252
3253	switch (cursor->state) {
3254	case 0:
3255		if (addr == cursor->addrl + cursor->len) {
3256			/* direct RXOR */
3257			cursor->state = 1;
3258			cursor->xor_count++;
3259			if (index == src_cnt-1) {
3260				ppc440spe_rxor_set_region(desc,
3261					cursor->addr_count,
3262					DMA_RXOR12 << DMA_CUED_REGION_OFF);
3263				ppc440spe_adma_dma2rxor_inc_addr(
3264					desc, cursor, index, src_cnt);
3265			}
3266		} else if (cursor->addrl == addr + cursor->len) {
3267			/* reverse RXOR */
3268			cursor->state = 1;
3269			cursor->xor_count++;
3270			set_bit(cursor->addr_count, &desc->reverse_flags[0]);
3271			if (index == src_cnt-1) {
3272				ppc440spe_rxor_set_region(desc,
3273					cursor->addr_count,
3274					DMA_RXOR12 << DMA_CUED_REGION_OFF);
3275				ppc440spe_adma_dma2rxor_inc_addr(
3276					desc, cursor, index, src_cnt);
3277			}
3278		} else {
3279			printk(KERN_ERR "Cannot build "
3280				"DMA2 RXOR command block.\n");
3281			BUG();
3282		}
3283		break;
3284	case 1:
3285		sign = test_bit(cursor->addr_count,
3286				desc->reverse_flags)
3287			? -1 : 1;
3288		if (index == src_cnt-2 || (sign == -1
3289			&& addr != cursor->addrl - 2*cursor->len)) {
3290			cursor->state = 0;
3291			cursor->xor_count = 1;
3292			cursor->addrl = addr;
3293			ppc440spe_rxor_set_region(desc,
3294				cursor->addr_count,
3295				DMA_RXOR12 << DMA_CUED_REGION_OFF);
3296			ppc440spe_adma_dma2rxor_inc_addr(
3297				desc, cursor, index, src_cnt);
3298		} else if (addr == cursor->addrl + 2*sign*cursor->len) {
3299			cursor->state = 2;
3300			cursor->xor_count = 0;
3301			ppc440spe_rxor_set_region(desc,
3302				cursor->addr_count,
3303				DMA_RXOR123 << DMA_CUED_REGION_OFF);
3304			if (index == src_cnt-1) {
3305				ppc440spe_adma_dma2rxor_inc_addr(
3306					desc, cursor, index, src_cnt);
3307			}
3308		} else if (addr == cursor->addrl + 3*cursor->len) {
3309			cursor->state = 2;
3310			cursor->xor_count = 0;
3311			ppc440spe_rxor_set_region(desc,
3312				cursor->addr_count,
3313				DMA_RXOR124 << DMA_CUED_REGION_OFF);
3314			if (index == src_cnt-1) {
3315				ppc440spe_adma_dma2rxor_inc_addr(
3316					desc, cursor, index, src_cnt);
3317			}
3318		} else if (addr == cursor->addrl + 4*cursor->len) {
3319			cursor->state = 2;
3320			cursor->xor_count = 0;
3321			ppc440spe_rxor_set_region(desc,
3322				cursor->addr_count,
3323				DMA_RXOR125 << DMA_CUED_REGION_OFF);
3324			if (index == src_cnt-1) {
3325				ppc440spe_adma_dma2rxor_inc_addr(
3326					desc, cursor, index, src_cnt);
3327			}
3328		} else {
3329			cursor->state = 0;
3330			cursor->xor_count = 1;
3331			cursor->addrl = addr;
3332			ppc440spe_rxor_set_region(desc,
3333				cursor->addr_count,
3334				DMA_RXOR12 << DMA_CUED_REGION_OFF);
3335			ppc440spe_adma_dma2rxor_inc_addr(
3336				desc, cursor, index, src_cnt);
3337		}
3338		break;
3339	case 2:
3340		cursor->state = 0;
3341		cursor->addrl = addr;
3342		cursor->xor_count++;
3343		if (index) {
3344			ppc440spe_adma_dma2rxor_inc_addr(
3345				desc, cursor, index, src_cnt);
3346		}
3347		break;
3348	}
3349
3350	return 0;
3351}
3352
3353/**
3354 * ppc440spe_adma_dma2rxor_set_src - set RXOR source address; it's assumed that
3355 *	ppc440spe_adma_dma2rxor_prep_src() has already done prior this call
3356 */
3357static void ppc440spe_adma_dma2rxor_set_src(
3358		struct ppc440spe_adma_desc_slot *desc,
3359		int index, dma_addr_t addr)
3360{
3361	struct xor_cb *xcb = desc->hw_desc;
3362	int k = 0, op = 0, lop = 0;
3363
3364	/* get the RXOR operand which corresponds to index addr */
3365	while (op <= index) {
3366		lop = op;
3367		if (k == XOR_MAX_OPS) {
3368			k = 0;
3369			desc = list_entry(desc->chain_node.next,
3370				struct ppc440spe_adma_desc_slot, chain_node);
3371			xcb = desc->hw_desc;
3372
3373		}
3374		if ((xcb->ops[k++].h & (DMA_RXOR12 << DMA_CUED_REGION_OFF)) ==
3375		    (DMA_RXOR12 << DMA_CUED_REGION_OFF))
3376			op += 2;
3377		else
3378			op += 3;
3379	}
3380
3381	BUG_ON(k < 1);
3382
3383	if (test_bit(k-1, desc->reverse_flags)) {
3384		/* reverse operand order; put last op in RXOR group */
3385		if (index == op - 1)
3386			ppc440spe_rxor_set_src(desc, k - 1, addr);
3387	} else {
3388		/* direct operand order; put first op in RXOR group */
3389		if (index == lop)
3390			ppc440spe_rxor_set_src(desc, k - 1, addr);
3391	}
3392}
3393
3394/**
3395 * ppc440spe_adma_dma2rxor_set_mult - set RXOR multipliers; it's assumed that
3396 *	ppc440spe_adma_dma2rxor_prep_src() has already done prior this call
3397 */
3398static void ppc440spe_adma_dma2rxor_set_mult(
3399		struct ppc440spe_adma_desc_slot *desc,
3400		int index, u8 mult)
3401{
3402	struct xor_cb *xcb = desc->hw_desc;
3403	int k = 0, op = 0, lop = 0;
3404
3405	/* get the RXOR operand which corresponds to index mult */
3406	while (op <= index) {
3407		lop = op;
3408		if (k == XOR_MAX_OPS) {
3409			k = 0;
3410			desc = list_entry(desc->chain_node.next,
3411					  struct ppc440spe_adma_desc_slot,
3412					  chain_node);
3413			xcb = desc->hw_desc;
3414
3415		}
3416		if ((xcb->ops[k++].h & (DMA_RXOR12 << DMA_CUED_REGION_OFF)) ==
3417		    (DMA_RXOR12 << DMA_CUED_REGION_OFF))
3418			op += 2;
3419		else
3420			op += 3;
3421	}
3422
3423	BUG_ON(k < 1);
3424	if (test_bit(k-1, desc->reverse_flags)) {
3425		/* reverse order */
3426		ppc440spe_rxor_set_mult(desc, k - 1, op - index - 1, mult);
3427	} else {
3428		/* direct order */
3429		ppc440spe_rxor_set_mult(desc, k - 1, index - lop, mult);
3430	}
3431}
3432
3433/**
3434 * ppc440spe_init_rxor_cursor -
3435 */
3436static void ppc440spe_init_rxor_cursor(struct ppc440spe_rxor *cursor)
3437{
3438	memset(cursor, 0, sizeof(struct ppc440spe_rxor));
3439	cursor->state = 2;
3440}
3441
3442/**
3443 * ppc440spe_adma_pq_set_src_mult - set multiplication coefficient into
3444 * descriptor for the PQXOR operation
3445 */
3446static void ppc440spe_adma_pq_set_src_mult(
3447		struct ppc440spe_adma_desc_slot *sw_desc,
3448		unsigned char mult, int index, int dst_pos)
3449{
3450	struct ppc440spe_adma_chan *chan;
3451	u32 mult_idx, mult_dst;
3452	struct ppc440spe_adma_desc_slot *iter = NULL, *iter1 = NULL;
3453
3454	chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
3455
3456	switch (chan->device->id) {
3457	case PPC440SPE_DMA0_ID:
3458	case PPC440SPE_DMA1_ID:
3459		if (test_bit(PPC440SPE_DESC_RXOR, &sw_desc->flags)) {
3460			int region = test_bit(PPC440SPE_DESC_RXOR12,
3461					&sw_desc->flags) ? 2 : 3;
3462
3463			if (index < region) {
3464				/* RXOR multipliers */
3465				iter = ppc440spe_get_group_entry(sw_desc,
3466					sw_desc->dst_cnt - 1);
3467				if (sw_desc->dst_cnt == 2)
3468					iter1 = ppc440spe_get_group_entry(
3469							sw_desc, 0);
3470
3471				mult_idx = DMA_CUED_MULT1_OFF + (index << 3);
3472				mult_dst = DMA_CDB_SG_SRC;
3473			} else {
3474				/* WXOR multiplier */
3475				iter = ppc440spe_get_group_entry(sw_desc,
3476							index - region +
3477							sw_desc->dst_cnt);
3478				mult_idx = DMA_CUED_MULT1_OFF;
3479				mult_dst = dst_pos ? DMA_CDB_SG_DST2 :
3480						     DMA_CDB_SG_DST1;
3481			}
3482		} else {
3483			int znum = 0;
3484
3485			/* WXOR-only;
3486			 * skip first slots with destinations (if ZERO_DST has
3487			 * place)
3488			 */
3489			if (test_bit(PPC440SPE_ZERO_P, &sw_desc->flags))
3490				znum++;
3491			if (test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags))
3492				znum++;
3493
3494			iter = ppc440spe_get_group_entry(sw_desc, index + znum);
3495			mult_idx = DMA_CUED_MULT1_OFF;
3496			mult_dst = dst_pos ? DMA_CDB_SG_DST2 : DMA_CDB_SG_DST1;
3497		}
3498
3499		if (likely(iter)) {
3500			ppc440spe_desc_set_src_mult(iter, chan,
3501				mult_idx, mult_dst, mult);
3502
3503			if (unlikely(iter1)) {
3504				/* if we have two destinations for RXOR, then
3505				 * we've just set Q mult. Set-up P now.
3506				 */
3507				ppc440spe_desc_set_src_mult(iter1, chan,
3508					mult_idx, mult_dst, 1);
3509			}
3510
3511		}
3512		break;
3513
3514	case PPC440SPE_XOR_ID:
3515		iter = sw_desc->group_head;
3516		if (sw_desc->dst_cnt == 2) {
3517			/* both P & Q calculations required; set P mult here */
3518			ppc440spe_adma_dma2rxor_set_mult(iter, index, 1);
3519
3520			/* and then set Q mult */
3521			iter = ppc440spe_get_group_entry(sw_desc,
3522			       sw_desc->descs_per_op);
3523		}
3524		ppc440spe_adma_dma2rxor_set_mult(iter, index, mult);
3525		break;
3526	}
3527}
3528
3529/**
3530 * ppc440spe_adma_free_chan_resources - free the resources allocated
3531 */
3532static void ppc440spe_adma_free_chan_resources(struct dma_chan *chan)
3533{
3534	struct ppc440spe_adma_chan *ppc440spe_chan;
3535	struct ppc440spe_adma_desc_slot *iter, *_iter;
3536	int in_use_descs = 0;
3537
3538	ppc440spe_chan = to_ppc440spe_adma_chan(chan);
3539	ppc440spe_adma_slot_cleanup(ppc440spe_chan);
3540
3541	spin_lock_bh(&ppc440spe_chan->lock);
3542	list_for_each_entry_safe(iter, _iter, &ppc440spe_chan->chain,
3543					chain_node) {
3544		in_use_descs++;
3545		list_del(&iter->chain_node);
3546	}
3547	list_for_each_entry_safe_reverse(iter, _iter,
3548			&ppc440spe_chan->all_slots, slot_node) {
3549		list_del(&iter->slot_node);
3550		kfree(iter);
3551		ppc440spe_chan->slots_allocated--;
3552	}
3553	ppc440spe_chan->last_used = NULL;
3554
3555	dev_dbg(ppc440spe_chan->device->common.dev,
3556		"ppc440spe adma%d %s slots_allocated %d\n",
3557		ppc440spe_chan->device->id,
3558		__func__, ppc440spe_chan->slots_allocated);
3559	spin_unlock_bh(&ppc440spe_chan->lock);
3560
3561	/* one is ok since we left it on there on purpose */
3562	if (in_use_descs > 1)
3563		printk(KERN_ERR "SPE: Freeing %d in use descriptors!\n",
3564			in_use_descs - 1);
3565}
3566
3567/**
3568 * ppc440spe_adma_tx_status - poll the status of an ADMA transaction
3569 * @chan: ADMA channel handle
3570 * @cookie: ADMA transaction identifier
3571 * @txstate: a holder for the current state of the channel
3572 */
3573static enum dma_status ppc440spe_adma_tx_status(struct dma_chan *chan,
3574			dma_cookie_t cookie, struct dma_tx_state *txstate)
3575{
3576	struct ppc440spe_adma_chan *ppc440spe_chan;
3577	enum dma_status ret;
3578
3579	ppc440spe_chan = to_ppc440spe_adma_chan(chan);
3580	ret = dma_cookie_status(chan, cookie, txstate);
3581	if (ret == DMA_COMPLETE)
3582		return ret;
3583
3584	ppc440spe_adma_slot_cleanup(ppc440spe_chan);
3585
3586	return dma_cookie_status(chan, cookie, txstate);
3587}
3588
3589/**
3590 * ppc440spe_adma_eot_handler - end of transfer interrupt handler
3591 */
3592static irqreturn_t ppc440spe_adma_eot_handler(int irq, void *data)
3593{
3594	struct ppc440spe_adma_chan *chan = data;
3595
3596	dev_dbg(chan->device->common.dev,
3597		"ppc440spe adma%d: %s\n", chan->device->id, __func__);
3598
3599	tasklet_schedule(&chan->irq_tasklet);
3600	ppc440spe_adma_device_clear_eot_status(chan);
3601
3602	return IRQ_HANDLED;
3603}
3604
3605/**
3606 * ppc440spe_adma_err_handler - DMA error interrupt handler;
3607 *	do the same things as a eot handler
3608 */
3609static irqreturn_t ppc440spe_adma_err_handler(int irq, void *data)
3610{
3611	struct ppc440spe_adma_chan *chan = data;
3612
3613	dev_dbg(chan->device->common.dev,
3614		"ppc440spe adma%d: %s\n", chan->device->id, __func__);
3615
3616	tasklet_schedule(&chan->irq_tasklet);
3617	ppc440spe_adma_device_clear_eot_status(chan);
3618
3619	return IRQ_HANDLED;
3620}
3621
3622/**
3623 * ppc440spe_test_callback - called when test operation has been done
3624 */
3625static void ppc440spe_test_callback(void *unused)
3626{
3627	complete(&ppc440spe_r6_test_comp);
3628}
3629
3630/**
3631 * ppc440spe_adma_issue_pending - flush all pending descriptors to h/w
3632 */
3633static void ppc440spe_adma_issue_pending(struct dma_chan *chan)
3634{
3635	struct ppc440spe_adma_chan *ppc440spe_chan;
3636
3637	ppc440spe_chan = to_ppc440spe_adma_chan(chan);
3638	dev_dbg(ppc440spe_chan->device->common.dev,
3639		"ppc440spe adma%d: %s %d \n", ppc440spe_chan->device->id,
3640		__func__, ppc440spe_chan->pending);
3641
3642	if (ppc440spe_chan->pending) {
3643		ppc440spe_chan->pending = 0;
3644		ppc440spe_chan_append(ppc440spe_chan);
3645	}
3646}
3647
3648/**
3649 * ppc440spe_chan_start_null_xor - initiate the first XOR operation (DMA engines
3650 *	use FIFOs (as opposite to chains used in XOR) so this is a XOR
3651 *	specific operation)
3652 */
3653static void ppc440spe_chan_start_null_xor(struct ppc440spe_adma_chan *chan)
3654{
3655	struct ppc440spe_adma_desc_slot *sw_desc, *group_start;
3656	dma_cookie_t cookie;
3657	int slot_cnt, slots_per_op;
3658
3659	dev_dbg(chan->device->common.dev,
3660		"ppc440spe adma%d: %s\n", chan->device->id, __func__);
3661
3662	spin_lock_bh(&chan->lock);
3663	slot_cnt = ppc440spe_chan_xor_slot_count(0, 2, &slots_per_op);
3664	sw_desc = ppc440spe_adma_alloc_slots(chan, slot_cnt, slots_per_op);
3665	if (sw_desc) {
3666		group_start = sw_desc->group_head;
3667		list_splice_init(&sw_desc->group_list, &chan->chain);
3668		async_tx_ack(&sw_desc->async_tx);
3669		ppc440spe_desc_init_null_xor(group_start);
3670
3671		cookie = dma_cookie_assign(&sw_desc->async_tx);
3672
3673		/* initialize the completed cookie to be less than
3674		 * the most recently used cookie
3675		 */
3676		chan->common.completed_cookie = cookie - 1;
3677
3678		/* channel should not be busy */
3679		BUG_ON(ppc440spe_chan_is_busy(chan));
3680
3681		/* set the descriptor address */
3682		ppc440spe_chan_set_first_xor_descriptor(chan, sw_desc);
3683
3684		/* run the descriptor */
3685		ppc440spe_chan_run(chan);
3686	} else
3687		printk(KERN_ERR "ppc440spe adma%d"
3688			" failed to allocate null descriptor\n",
3689			chan->device->id);
3690	spin_unlock_bh(&chan->lock);
3691}
3692
3693/**
3694 * ppc440spe_test_raid6 - test are RAID-6 capabilities enabled successfully.
3695 *	For this we just perform one WXOR operation with the same source
3696 *	and destination addresses, the GF-multiplier is 1; so if RAID-6
3697 *	capabilities are enabled then we'll get src/dst filled with zero.
3698 */
3699static int ppc440spe_test_raid6(struct ppc440spe_adma_chan *chan)
3700{
3701	struct ppc440spe_adma_desc_slot *sw_desc, *iter;
3702	struct page *pg;
3703	char *a;
3704	dma_addr_t dma_addr, addrs[2];
3705	unsigned long op = 0;
3706	int rval = 0;
3707
3708	set_bit(PPC440SPE_DESC_WXOR, &op);
3709
3710	pg = alloc_page(GFP_KERNEL);
3711	if (!pg)
3712		return -ENOMEM;
3713
3714	spin_lock_bh(&chan->lock);
3715	sw_desc = ppc440spe_adma_alloc_slots(chan, 1, 1);
3716	if (sw_desc) {
3717		/* 1 src, 1 dsr, int_ena, WXOR */
3718		ppc440spe_desc_init_dma01pq(sw_desc, 1, 1, 1, op);
3719		list_for_each_entry(iter, &sw_desc->group_list, chain_node) {
3720			ppc440spe_desc_set_byte_count(iter, chan, PAGE_SIZE);
3721			iter->unmap_len = PAGE_SIZE;
3722		}
3723	} else {
3724		rval = -EFAULT;
3725		spin_unlock_bh(&chan->lock);
3726		goto exit;
3727	}
3728	spin_unlock_bh(&chan->lock);
3729
3730	/* Fill the test page with ones */
3731	memset(page_address(pg), 0xFF, PAGE_SIZE);
3732	dma_addr = dma_map_page(chan->device->dev, pg, 0,
3733				PAGE_SIZE, DMA_BIDIRECTIONAL);
3734
3735	/* Setup addresses */
3736	ppc440spe_adma_pq_set_src(sw_desc, dma_addr, 0);
3737	ppc440spe_adma_pq_set_src_mult(sw_desc, 1, 0, 0);
3738	addrs[0] = dma_addr;
3739	addrs[1] = 0;
3740	ppc440spe_adma_pq_set_dest(sw_desc, addrs, DMA_PREP_PQ_DISABLE_Q);
3741
3742	async_tx_ack(&sw_desc->async_tx);
3743	sw_desc->async_tx.callback = ppc440spe_test_callback;
3744	sw_desc->async_tx.callback_param = NULL;
3745
3746	init_completion(&ppc440spe_r6_test_comp);
3747
3748	ppc440spe_adma_tx_submit(&sw_desc->async_tx);
3749	ppc440spe_adma_issue_pending(&chan->common);
3750
3751	wait_for_completion(&ppc440spe_r6_test_comp);
3752
3753	/* Now check if the test page is zeroed */
3754	a = page_address(pg);
3755	if ((*(u32 *)a) == 0 && memcmp(a, a+4, PAGE_SIZE-4) == 0) {
3756		/* page is zero - RAID-6 enabled */
3757		rval = 0;
3758	} else {
3759		/* RAID-6 was not enabled */
3760		rval = -EINVAL;
3761	}
3762exit:
3763	__free_page(pg);
3764	return rval;
3765}
3766
3767static void ppc440spe_adma_init_capabilities(struct ppc440spe_adma_device *adev)
3768{
3769	switch (adev->id) {
3770	case PPC440SPE_DMA0_ID:
3771	case PPC440SPE_DMA1_ID:
3772		dma_cap_set(DMA_MEMCPY, adev->common.cap_mask);
3773		dma_cap_set(DMA_INTERRUPT, adev->common.cap_mask);
3774		dma_cap_set(DMA_PQ, adev->common.cap_mask);
3775		dma_cap_set(DMA_PQ_VAL, adev->common.cap_mask);
3776		dma_cap_set(DMA_XOR_VAL, adev->common.cap_mask);
3777		break;
3778	case PPC440SPE_XOR_ID:
3779		dma_cap_set(DMA_XOR, adev->common.cap_mask);
3780		dma_cap_set(DMA_PQ, adev->common.cap_mask);
3781		dma_cap_set(DMA_INTERRUPT, adev->common.cap_mask);
3782		adev->common.cap_mask = adev->common.cap_mask;
3783		break;
3784	}
3785
3786	/* Set base routines */
3787	adev->common.device_alloc_chan_resources =
3788				ppc440spe_adma_alloc_chan_resources;
3789	adev->common.device_free_chan_resources =
3790				ppc440spe_adma_free_chan_resources;
3791	adev->common.device_tx_status = ppc440spe_adma_tx_status;
3792	adev->common.device_issue_pending = ppc440spe_adma_issue_pending;
3793
3794	/* Set prep routines based on capability */
3795	if (dma_has_cap(DMA_MEMCPY, adev->common.cap_mask)) {
3796		adev->common.device_prep_dma_memcpy =
3797			ppc440spe_adma_prep_dma_memcpy;
3798	}
3799	if (dma_has_cap(DMA_XOR, adev->common.cap_mask)) {
3800		adev->common.max_xor = XOR_MAX_OPS;
3801		adev->common.device_prep_dma_xor =
3802			ppc440spe_adma_prep_dma_xor;
3803	}
3804	if (dma_has_cap(DMA_PQ, adev->common.cap_mask)) {
3805		switch (adev->id) {
3806		case PPC440SPE_DMA0_ID:
3807			dma_set_maxpq(&adev->common,
3808				DMA0_FIFO_SIZE / sizeof(struct dma_cdb), 0);
3809			break;
3810		case PPC440SPE_DMA1_ID:
3811			dma_set_maxpq(&adev->common,
3812				DMA1_FIFO_SIZE / sizeof(struct dma_cdb), 0);
3813			break;
3814		case PPC440SPE_XOR_ID:
3815			adev->common.max_pq = XOR_MAX_OPS * 3;
3816			break;
3817		}
3818		adev->common.device_prep_dma_pq =
3819			ppc440spe_adma_prep_dma_pq;
3820	}
3821	if (dma_has_cap(DMA_PQ_VAL, adev->common.cap_mask)) {
3822		switch (adev->id) {
3823		case PPC440SPE_DMA0_ID:
3824			adev->common.max_pq = DMA0_FIFO_SIZE /
3825						sizeof(struct dma_cdb);
3826			break;
3827		case PPC440SPE_DMA1_ID:
3828			adev->common.max_pq = DMA1_FIFO_SIZE /
3829						sizeof(struct dma_cdb);
3830			break;
3831		}
3832		adev->common.device_prep_dma_pq_val =
3833			ppc440spe_adma_prep_dma_pqzero_sum;
3834	}
3835	if (dma_has_cap(DMA_XOR_VAL, adev->common.cap_mask)) {
3836		switch (adev->id) {
3837		case PPC440SPE_DMA0_ID:
3838			adev->common.max_xor = DMA0_FIFO_SIZE /
3839						sizeof(struct dma_cdb);
3840			break;
3841		case PPC440SPE_DMA1_ID:
3842			adev->common.max_xor = DMA1_FIFO_SIZE /
3843						sizeof(struct dma_cdb);
3844			break;
3845		}
3846		adev->common.device_prep_dma_xor_val =
3847			ppc440spe_adma_prep_dma_xor_zero_sum;
3848	}
3849	if (dma_has_cap(DMA_INTERRUPT, adev->common.cap_mask)) {
3850		adev->common.device_prep_dma_interrupt =
3851			ppc440spe_adma_prep_dma_interrupt;
3852	}
3853	pr_info("%s: AMCC(R) PPC440SP(E) ADMA Engine: "
3854	  "( %s%s%s%s%s%s)\n",
3855	  dev_name(adev->dev),
3856	  dma_has_cap(DMA_PQ, adev->common.cap_mask) ? "pq " : "",
3857	  dma_has_cap(DMA_PQ_VAL, adev->common.cap_mask) ? "pq_val " : "",
3858	  dma_has_cap(DMA_XOR, adev->common.cap_mask) ? "xor " : "",
3859	  dma_has_cap(DMA_XOR_VAL, adev->common.cap_mask) ? "xor_val " : "",
3860	  dma_has_cap(DMA_MEMCPY, adev->common.cap_mask) ? "memcpy " : "",
3861	  dma_has_cap(DMA_INTERRUPT, adev->common.cap_mask) ? "intr " : "");
3862}
3863
3864static int ppc440spe_adma_setup_irqs(struct ppc440spe_adma_device *adev,
3865				     struct ppc440spe_adma_chan *chan,
3866				     int *initcode)
3867{
3868	struct platform_device *ofdev;
3869	struct device_node *np;
3870	int ret;
3871
3872	ofdev = container_of(adev->dev, struct platform_device, dev);
3873	np = ofdev->dev.of_node;
3874	if (adev->id != PPC440SPE_XOR_ID) {
3875		adev->err_irq = irq_of_parse_and_map(np, 1);
3876		if (!adev->err_irq) {
3877			dev_warn(adev->dev, "no err irq resource?\n");
3878			*initcode = PPC_ADMA_INIT_IRQ2;
3879			adev->err_irq = -ENXIO;
3880		} else
3881			atomic_inc(&ppc440spe_adma_err_irq_ref);
3882	} else {
3883		adev->err_irq = -ENXIO;
3884	}
3885
3886	adev->irq = irq_of_parse_and_map(np, 0);
3887	if (!adev->irq) {
3888		dev_err(adev->dev, "no irq resource\n");
3889		*initcode = PPC_ADMA_INIT_IRQ1;
3890		ret = -ENXIO;
3891		goto err_irq_map;
3892	}
3893	dev_dbg(adev->dev, "irq %d, err irq %d\n",
3894		adev->irq, adev->err_irq);
3895
3896	ret = request_irq(adev->irq, ppc440spe_adma_eot_handler,
3897			  0, dev_driver_string(adev->dev), chan);
3898	if (ret) {
3899		dev_err(adev->dev, "can't request irq %d\n",
3900			adev->irq);
3901		*initcode = PPC_ADMA_INIT_IRQ1;
3902		ret = -EIO;
3903		goto err_req1;
3904	}
3905
3906	/* only DMA engines have a separate error IRQ
3907	 * so it's Ok if err_irq < 0 in XOR engine case.
3908	 */
3909	if (adev->err_irq > 0) {
3910		/* both DMA engines share common error IRQ */
3911		ret = request_irq(adev->err_irq,
3912				  ppc440spe_adma_err_handler,
3913				  IRQF_SHARED,
3914				  dev_driver_string(adev->dev),
3915				  chan);
3916		if (ret) {
3917			dev_err(adev->dev, "can't request irq %d\n",
3918				adev->err_irq);
3919			*initcode = PPC_ADMA_INIT_IRQ2;
3920			ret = -EIO;
3921			goto err_req2;
3922		}
3923	}
3924
3925	if (adev->id == PPC440SPE_XOR_ID) {
3926		/* enable XOR engine interrupts */
3927		iowrite32be(XOR_IE_CBCIE_BIT | XOR_IE_ICBIE_BIT |
3928			    XOR_IE_ICIE_BIT | XOR_IE_RPTIE_BIT,
3929			    &adev->xor_reg->ier);
3930	} else {
3931		u32 mask, enable;
3932
3933		np = of_find_compatible_node(NULL, NULL, "ibm,i2o-440spe");
3934		if (!np) {
3935			pr_err("%s: can't find I2O device tree node\n",
3936				__func__);
3937			ret = -ENODEV;
3938			goto err_req2;
3939		}
3940		adev->i2o_reg = of_iomap(np, 0);
3941		if (!adev->i2o_reg) {
3942			pr_err("%s: failed to map I2O registers\n", __func__);
3943			of_node_put(np);
3944			ret = -EINVAL;
3945			goto err_req2;
3946		}
3947		of_node_put(np);
3948		/* Unmask 'CS FIFO Attention' interrupts and
3949		 * enable generating interrupts on errors
3950		 */
3951		enable = (adev->id == PPC440SPE_DMA0_ID) ?
3952			 ~(I2O_IOPIM_P0SNE | I2O_IOPIM_P0EM) :
3953			 ~(I2O_IOPIM_P1SNE | I2O_IOPIM_P1EM);
3954		mask = ioread32(&adev->i2o_reg->iopim) & enable;
3955		iowrite32(mask, &adev->i2o_reg->iopim);
3956	}
3957	return 0;
3958
3959err_req2:
3960	free_irq(adev->irq, chan);
3961err_req1:
3962	irq_dispose_mapping(adev->irq);
3963err_irq_map:
3964	if (adev->err_irq > 0) {
3965		if (atomic_dec_and_test(&ppc440spe_adma_err_irq_ref))
3966			irq_dispose_mapping(adev->err_irq);
3967	}
3968	return ret;
3969}
3970
3971static void ppc440spe_adma_release_irqs(struct ppc440spe_adma_device *adev,
3972					struct ppc440spe_adma_chan *chan)
3973{
3974	u32 mask, disable;
3975
3976	if (adev->id == PPC440SPE_XOR_ID) {
3977		/* disable XOR engine interrupts */
3978		mask = ioread32be(&adev->xor_reg->ier);
3979		mask &= ~(XOR_IE_CBCIE_BIT | XOR_IE_ICBIE_BIT |
3980			  XOR_IE_ICIE_BIT | XOR_IE_RPTIE_BIT);
3981		iowrite32be(mask, &adev->xor_reg->ier);
3982	} else {
3983		/* disable DMAx engine interrupts */
3984		disable = (adev->id == PPC440SPE_DMA0_ID) ?
3985			  (I2O_IOPIM_P0SNE | I2O_IOPIM_P0EM) :
3986			  (I2O_IOPIM_P1SNE | I2O_IOPIM_P1EM);
3987		mask = ioread32(&adev->i2o_reg->iopim) | disable;
3988		iowrite32(mask, &adev->i2o_reg->iopim);
3989	}
3990	free_irq(adev->irq, chan);
3991	irq_dispose_mapping(adev->irq);
3992	if (adev->err_irq > 0) {
3993		free_irq(adev->err_irq, chan);
3994		if (atomic_dec_and_test(&ppc440spe_adma_err_irq_ref)) {
3995			irq_dispose_mapping(adev->err_irq);
3996			iounmap(adev->i2o_reg);
3997		}
3998	}
3999}
4000
4001/**
4002 * ppc440spe_adma_probe - probe the asynch device
4003 */
4004static int ppc440spe_adma_probe(struct platform_device *ofdev)
4005{
4006	struct device_node *np = ofdev->dev.of_node;
4007	struct resource res;
4008	struct ppc440spe_adma_device *adev;
4009	struct ppc440spe_adma_chan *chan;
4010	struct ppc_dma_chan_ref *ref, *_ref;
4011	int ret = 0, initcode = PPC_ADMA_INIT_OK;
4012	const u32 *idx;
4013	int len;
4014	void *regs;
4015	u32 id, pool_size;
4016
4017	if (of_device_is_compatible(np, "amcc,xor-accelerator")) {
4018		id = PPC440SPE_XOR_ID;
4019		/* As far as the XOR engine is concerned, it does not
4020		 * use FIFOs but uses linked list. So there is no dependency
4021		 * between pool size to allocate and the engine configuration.
4022		 */
4023		pool_size = PAGE_SIZE << 1;
4024	} else {
4025		/* it is DMA0 or DMA1 */
4026		idx = of_get_property(np, "cell-index", &len);
4027		if (!idx || (len != sizeof(u32))) {
4028			dev_err(&ofdev->dev, "Device node %pOF has missing "
4029				"or invalid cell-index property\n",
4030				np);
4031			return -EINVAL;
4032		}
4033		id = *idx;
4034		/* DMA0,1 engines use FIFO to maintain CDBs, so we
4035		 * should allocate the pool accordingly to size of this
4036		 * FIFO. Thus, the pool size depends on the FIFO depth:
4037		 * how much CDBs pointers the FIFO may contain then so
4038		 * much CDBs we should provide in the pool.
4039		 * That is
4040		 *   CDB size = 32B;
4041		 *   CDBs number = (DMA0_FIFO_SIZE >> 3);
4042		 *   Pool size = CDBs number * CDB size =
4043		 *      = (DMA0_FIFO_SIZE >> 3) << 5 = DMA0_FIFO_SIZE << 2.
4044		 */
4045		pool_size = (id == PPC440SPE_DMA0_ID) ?
4046			    DMA0_FIFO_SIZE : DMA1_FIFO_SIZE;
4047		pool_size <<= 2;
4048	}
4049
4050	if (of_address_to_resource(np, 0, &res)) {
4051		dev_err(&ofdev->dev, "failed to get memory resource\n");
4052		initcode = PPC_ADMA_INIT_MEMRES;
4053		ret = -ENODEV;
4054		goto out;
4055	}
4056
4057	if (!request_mem_region(res.start, resource_size(&res),
4058				dev_driver_string(&ofdev->dev))) {
4059		dev_err(&ofdev->dev, "failed to request memory region %pR\n",
4060			&res);
4061		initcode = PPC_ADMA_INIT_MEMREG;
4062		ret = -EBUSY;
4063		goto out;
4064	}
4065
4066	/* create a device */
4067	adev = kzalloc(sizeof(*adev), GFP_KERNEL);
4068	if (!adev) {
4069		initcode = PPC_ADMA_INIT_ALLOC;
4070		ret = -ENOMEM;
4071		goto err_adev_alloc;
4072	}
4073
4074	adev->id = id;
4075	adev->pool_size = pool_size;
4076	/* allocate coherent memory for hardware descriptors */
4077	adev->dma_desc_pool_virt = dma_alloc_coherent(&ofdev->dev,
4078					adev->pool_size, &adev->dma_desc_pool,
4079					GFP_KERNEL);
4080	if (adev->dma_desc_pool_virt == NULL) {
4081		dev_err(&ofdev->dev, "failed to allocate %d bytes of coherent "
4082			"memory for hardware descriptors\n",
4083			adev->pool_size);
4084		initcode = PPC_ADMA_INIT_COHERENT;
4085		ret = -ENOMEM;
4086		goto err_dma_alloc;
4087	}
4088	dev_dbg(&ofdev->dev, "allocated descriptor pool virt 0x%p phys 0x%llx\n",
4089		adev->dma_desc_pool_virt, (u64)adev->dma_desc_pool);
4090
4091	regs = ioremap(res.start, resource_size(&res));
4092	if (!regs) {
4093		dev_err(&ofdev->dev, "failed to ioremap regs!\n");
4094		ret = -ENOMEM;
4095		goto err_regs_alloc;
4096	}
4097
4098	if (adev->id == PPC440SPE_XOR_ID) {
4099		adev->xor_reg = regs;
4100		/* Reset XOR */
4101		iowrite32be(XOR_CRSR_XASR_BIT, &adev->xor_reg->crsr);
4102		iowrite32be(XOR_CRSR_64BA_BIT, &adev->xor_reg->crrr);
4103	} else {
4104		size_t fifo_size = (adev->id == PPC440SPE_DMA0_ID) ?
4105				   DMA0_FIFO_SIZE : DMA1_FIFO_SIZE;
4106		adev->dma_reg = regs;
4107		/* DMAx_FIFO_SIZE is defined in bytes,
4108		 * <fsiz> - is defined in number of CDB pointers (8byte).
4109		 * DMA FIFO Length = CSlength + CPlength, where
4110		 * CSlength = CPlength = (fsiz + 1) * 8.
4111		 */
4112		iowrite32(DMA_FIFO_ENABLE | ((fifo_size >> 3) - 2),
4113			  &adev->dma_reg->fsiz);
4114		/* Configure DMA engine */
4115		iowrite32(DMA_CFG_DXEPR_HP | DMA_CFG_DFMPP_HP | DMA_CFG_FALGN,
4116			  &adev->dma_reg->cfg);
4117		/* Clear Status */
4118		iowrite32(~0, &adev->dma_reg->dsts);
4119	}
4120
4121	adev->dev = &ofdev->dev;
4122	adev->common.dev = &ofdev->dev;
4123	INIT_LIST_HEAD(&adev->common.channels);
4124	platform_set_drvdata(ofdev, adev);
4125
4126	/* create a channel */
4127	chan = kzalloc(sizeof(*chan), GFP_KERNEL);
4128	if (!chan) {
4129		initcode = PPC_ADMA_INIT_CHANNEL;
4130		ret = -ENOMEM;
4131		goto err_chan_alloc;
4132	}
4133
4134	spin_lock_init(&chan->lock);
4135	INIT_LIST_HEAD(&chan->chain);
4136	INIT_LIST_HEAD(&chan->all_slots);
4137	chan->device = adev;
4138	chan->common.device = &adev->common;
4139	dma_cookie_init(&chan->common);
4140	list_add_tail(&chan->common.device_node, &adev->common.channels);
4141	tasklet_setup(&chan->irq_tasklet, ppc440spe_adma_tasklet);
4142
4143	/* allocate and map helper pages for async validation or
4144	 * async_mult/async_sum_product operations on DMA0/1.
4145	 */
4146	if (adev->id != PPC440SPE_XOR_ID) {
4147		chan->pdest_page = alloc_page(GFP_KERNEL);
4148		chan->qdest_page = alloc_page(GFP_KERNEL);
4149		if (!chan->pdest_page ||
4150		    !chan->qdest_page) {
4151			if (chan->pdest_page)
4152				__free_page(chan->pdest_page);
4153			if (chan->qdest_page)
4154				__free_page(chan->qdest_page);
4155			ret = -ENOMEM;
4156			goto err_page_alloc;
4157		}
4158		chan->pdest = dma_map_page(&ofdev->dev, chan->pdest_page, 0,
4159					   PAGE_SIZE, DMA_BIDIRECTIONAL);
4160		chan->qdest = dma_map_page(&ofdev->dev, chan->qdest_page, 0,
4161					   PAGE_SIZE, DMA_BIDIRECTIONAL);
4162	}
4163
4164	ref = kmalloc(sizeof(*ref), GFP_KERNEL);
4165	if (ref) {
4166		ref->chan = &chan->common;
4167		INIT_LIST_HEAD(&ref->node);
4168		list_add_tail(&ref->node, &ppc440spe_adma_chan_list);
4169	} else {
4170		dev_err(&ofdev->dev, "failed to allocate channel reference!\n");
4171		ret = -ENOMEM;
4172		goto err_ref_alloc;
4173	}
4174
4175	ret = ppc440spe_adma_setup_irqs(adev, chan, &initcode);
4176	if (ret)
4177		goto err_irq;
4178
4179	ppc440spe_adma_init_capabilities(adev);
4180
4181	ret = dma_async_device_register(&adev->common);
4182	if (ret) {
4183		initcode = PPC_ADMA_INIT_REGISTER;
4184		dev_err(&ofdev->dev, "failed to register dma device\n");
4185		goto err_dev_reg;
4186	}
4187
4188	goto out;
4189
4190err_dev_reg:
4191	ppc440spe_adma_release_irqs(adev, chan);
4192err_irq:
4193	list_for_each_entry_safe(ref, _ref, &ppc440spe_adma_chan_list, node) {
4194		if (chan == to_ppc440spe_adma_chan(ref->chan)) {
4195			list_del(&ref->node);
4196			kfree(ref);
4197		}
4198	}
4199err_ref_alloc:
4200	if (adev->id != PPC440SPE_XOR_ID) {
4201		dma_unmap_page(&ofdev->dev, chan->pdest,
4202			       PAGE_SIZE, DMA_BIDIRECTIONAL);
4203		dma_unmap_page(&ofdev->dev, chan->qdest,
4204			       PAGE_SIZE, DMA_BIDIRECTIONAL);
4205		__free_page(chan->pdest_page);
4206		__free_page(chan->qdest_page);
4207	}
4208err_page_alloc:
4209	kfree(chan);
4210err_chan_alloc:
4211	if (adev->id == PPC440SPE_XOR_ID)
4212		iounmap(adev->xor_reg);
4213	else
4214		iounmap(adev->dma_reg);
4215err_regs_alloc:
4216	dma_free_coherent(adev->dev, adev->pool_size,
4217			  adev->dma_desc_pool_virt,
4218			  adev->dma_desc_pool);
4219err_dma_alloc:
4220	kfree(adev);
4221err_adev_alloc:
4222	release_mem_region(res.start, resource_size(&res));
4223out:
4224	if (id < PPC440SPE_ADMA_ENGINES_NUM)
4225		ppc440spe_adma_devices[id] = initcode;
4226
4227	return ret;
4228}
4229
4230/**
4231 * ppc440spe_adma_remove - remove the asynch device
4232 */
4233static void ppc440spe_adma_remove(struct platform_device *ofdev)
4234{
4235	struct ppc440spe_adma_device *adev = platform_get_drvdata(ofdev);
4236	struct device_node *np = ofdev->dev.of_node;
4237	struct resource res;
4238	struct dma_chan *chan, *_chan;
4239	struct ppc_dma_chan_ref *ref, *_ref;
4240	struct ppc440spe_adma_chan *ppc440spe_chan;
4241
4242	if (adev->id < PPC440SPE_ADMA_ENGINES_NUM)
4243		ppc440spe_adma_devices[adev->id] = -1;
4244
4245	dma_async_device_unregister(&adev->common);
4246
4247	list_for_each_entry_safe(chan, _chan, &adev->common.channels,
4248				 device_node) {
4249		ppc440spe_chan = to_ppc440spe_adma_chan(chan);
4250		ppc440spe_adma_release_irqs(adev, ppc440spe_chan);
4251		tasklet_kill(&ppc440spe_chan->irq_tasklet);
4252		if (adev->id != PPC440SPE_XOR_ID) {
4253			dma_unmap_page(&ofdev->dev, ppc440spe_chan->pdest,
4254					PAGE_SIZE, DMA_BIDIRECTIONAL);
4255			dma_unmap_page(&ofdev->dev, ppc440spe_chan->qdest,
4256					PAGE_SIZE, DMA_BIDIRECTIONAL);
4257			__free_page(ppc440spe_chan->pdest_page);
4258			__free_page(ppc440spe_chan->qdest_page);
4259		}
4260		list_for_each_entry_safe(ref, _ref, &ppc440spe_adma_chan_list,
4261					 node) {
4262			if (ppc440spe_chan ==
4263			    to_ppc440spe_adma_chan(ref->chan)) {
4264				list_del(&ref->node);
4265				kfree(ref);
4266			}
4267		}
4268		list_del(&chan->device_node);
4269		kfree(ppc440spe_chan);
4270	}
4271
4272	dma_free_coherent(adev->dev, adev->pool_size,
4273			  adev->dma_desc_pool_virt, adev->dma_desc_pool);
4274	if (adev->id == PPC440SPE_XOR_ID)
4275		iounmap(adev->xor_reg);
4276	else
4277		iounmap(adev->dma_reg);
4278	of_address_to_resource(np, 0, &res);
4279	release_mem_region(res.start, resource_size(&res));
4280	kfree(adev);
4281}
4282
4283/*
4284 * /sys driver interface to enable h/w RAID-6 capabilities
4285 * Files created in e.g. /sys/devices/plb.0/400100100.dma0/driver/
4286 * directory are "devices", "enable" and "poly".
4287 * "devices" shows available engines.
4288 * "enable" is used to enable RAID-6 capabilities or to check
4289 * whether these has been activated.
4290 * "poly" allows setting/checking used polynomial (for PPC440SPe only).
4291 */
4292
4293static ssize_t devices_show(struct device_driver *dev, char *buf)
4294{
4295	ssize_t size = 0;
4296	int i;
4297
4298	for (i = 0; i < PPC440SPE_ADMA_ENGINES_NUM; i++) {
4299		if (ppc440spe_adma_devices[i] == -1)
4300			continue;
4301		size += sysfs_emit_at(buf, size, "PPC440SP(E)-ADMA.%d: %s\n",
4302				     i, ppc_adma_errors[ppc440spe_adma_devices[i]]);
4303	}
4304	return size;
4305}
4306static DRIVER_ATTR_RO(devices);
4307
4308static ssize_t enable_show(struct device_driver *dev, char *buf)
4309{
4310	return sysfs_emit(buf, "PPC440SP(e) RAID-6 capabilities are %sABLED.\n",
4311			  ppc440spe_r6_enabled ? "EN" : "DIS");
4312}
4313
4314static ssize_t enable_store(struct device_driver *dev, const char *buf,
4315			    size_t count)
4316{
4317	unsigned long val;
4318	int err;
4319
4320	if (!count || count > 11)
4321		return -EINVAL;
4322
4323	if (!ppc440spe_r6_tchan)
4324		return -EFAULT;
4325
4326	/* Write a key */
4327	err = kstrtoul(buf, 16, &val);
4328	if (err)
4329		return err;
4330
4331	dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_XORBA, val);
4332	isync();
4333
4334	/* Verify whether it really works now */
4335	if (ppc440spe_test_raid6(ppc440spe_r6_tchan) == 0) {
4336		pr_info("PPC440SP(e) RAID-6 has been activated "
4337			"successfully\n");
4338		ppc440spe_r6_enabled = 1;
4339	} else {
4340		pr_info("PPC440SP(e) RAID-6 hasn't been activated!"
4341			" Error key ?\n");
4342		ppc440spe_r6_enabled = 0;
4343	}
4344	return count;
4345}
4346static DRIVER_ATTR_RW(enable);
4347
4348static ssize_t poly_show(struct device_driver *dev, char *buf)
4349{
4350	ssize_t size = 0;
4351	u32 reg;
4352
4353#ifdef CONFIG_440SP
4354	/* 440SP has fixed polynomial */
4355	reg = 0x4d;
4356#else
4357	reg = dcr_read(ppc440spe_mq_dcr_host, DCRN_MQ0_CFBHL);
4358	reg >>= MQ0_CFBHL_POLY;
4359	reg &= 0xFF;
4360#endif
4361
4362	size = sysfs_emit(buf, "PPC440SP(e) RAID-6 driver "
4363			"uses 0x1%02x polynomial.\n", reg);
4364	return size;
4365}
4366
4367static ssize_t poly_store(struct device_driver *dev, const char *buf,
4368			  size_t count)
4369{
4370	unsigned long reg, val;
4371	int err;
4372#ifdef CONFIG_440SP
4373	/* 440SP uses default 0x14D polynomial only */
4374	return -EINVAL;
4375#endif
4376
4377	if (!count || count > 6)
4378		return -EINVAL;
4379
4380	/* e.g., 0x14D or 0x11D */
4381	err = kstrtoul(buf, 16, &val);
4382	if (err)
4383		return err;
4384
4385	if (val & ~0x1FF)
4386		return -EINVAL;
4387
4388	val &= 0xFF;
4389	reg = dcr_read(ppc440spe_mq_dcr_host, DCRN_MQ0_CFBHL);
4390	reg &= ~(0xFF << MQ0_CFBHL_POLY);
4391	reg |= val << MQ0_CFBHL_POLY;
4392	dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_CFBHL, reg);
4393
4394	return count;
4395}
4396static DRIVER_ATTR_RW(poly);
4397
4398/*
4399 * Common initialisation for RAID engines; allocate memory for
4400 * DMAx FIFOs, perform configuration common for all DMA engines.
4401 * Further DMA engine specific configuration is done at probe time.
4402 */
4403static int ppc440spe_configure_raid_devices(void)
4404{
4405	struct device_node *np;
4406	struct resource i2o_res;
4407	struct i2o_regs __iomem *i2o_reg;
4408	dcr_host_t i2o_dcr_host;
4409	unsigned int dcr_base, dcr_len;
4410	int i, ret;
4411
4412	np = of_find_compatible_node(NULL, NULL, "ibm,i2o-440spe");
4413	if (!np) {
4414		pr_err("%s: can't find I2O device tree node\n",
4415			__func__);
4416		return -ENODEV;
4417	}
4418
4419	if (of_address_to_resource(np, 0, &i2o_res)) {
4420		of_node_put(np);
4421		return -EINVAL;
4422	}
4423
4424	i2o_reg = of_iomap(np, 0);
4425	if (!i2o_reg) {
4426		pr_err("%s: failed to map I2O registers\n", __func__);
4427		of_node_put(np);
4428		return -EINVAL;
4429	}
4430
4431	/* Get I2O DCRs base */
4432	dcr_base = dcr_resource_start(np, 0);
4433	dcr_len = dcr_resource_len(np, 0);
4434	if (!dcr_base && !dcr_len) {
4435		pr_err("%pOF: can't get DCR registers base/len!\n", np);
4436		of_node_put(np);
4437		iounmap(i2o_reg);
4438		return -ENODEV;
4439	}
4440
4441	i2o_dcr_host = dcr_map(np, dcr_base, dcr_len);
4442	if (!DCR_MAP_OK(i2o_dcr_host)) {
4443		pr_err("%pOF: failed to map DCRs!\n", np);
4444		of_node_put(np);
4445		iounmap(i2o_reg);
4446		return -ENODEV;
4447	}
4448	of_node_put(np);
4449
4450	/* Provide memory regions for DMA's FIFOs: I2O, DMA0 and DMA1 share
4451	 * the base address of FIFO memory space.
4452	 * Actually we need twice more physical memory than programmed in the
4453	 * <fsiz> register (because there are two FIFOs for each DMA: CP and CS)
4454	 */
4455	ppc440spe_dma_fifo_buf = kmalloc((DMA0_FIFO_SIZE + DMA1_FIFO_SIZE) << 1,
4456					 GFP_KERNEL);
4457	if (!ppc440spe_dma_fifo_buf) {
4458		pr_err("%s: DMA FIFO buffer allocation failed.\n", __func__);
4459		iounmap(i2o_reg);
4460		dcr_unmap(i2o_dcr_host, dcr_len);
4461		return -ENOMEM;
4462	}
4463
4464	/*
4465	 * Configure h/w
4466	 */
4467	/* Reset I2O/DMA */
4468	mtdcri(SDR0, DCRN_SDR0_SRST, DCRN_SDR0_SRST_I2ODMA);
4469	mtdcri(SDR0, DCRN_SDR0_SRST, 0);
4470
4471	/* Setup the base address of mmaped registers */
4472	dcr_write(i2o_dcr_host, DCRN_I2O0_IBAH, (u32)(i2o_res.start >> 32));
4473	dcr_write(i2o_dcr_host, DCRN_I2O0_IBAL, (u32)(i2o_res.start) |
4474						I2O_REG_ENABLE);
4475	dcr_unmap(i2o_dcr_host, dcr_len);
4476
4477	/* Setup FIFO memory space base address */
4478	iowrite32(0, &i2o_reg->ifbah);
4479	iowrite32(((u32)__pa(ppc440spe_dma_fifo_buf)), &i2o_reg->ifbal);
4480
4481	/* set zero FIFO size for I2O, so the whole
4482	 * ppc440spe_dma_fifo_buf is used by DMAs.
4483	 * DMAx_FIFOs will be configured while probe.
4484	 */
4485	iowrite32(0, &i2o_reg->ifsiz);
4486	iounmap(i2o_reg);
4487
4488	/* To prepare WXOR/RXOR functionality we need access to
4489	 * Memory Queue Module DCRs (finally it will be enabled
4490	 * via /sys interface of the ppc440spe ADMA driver).
4491	 */
4492	np = of_find_compatible_node(NULL, NULL, "ibm,mq-440spe");
4493	if (!np) {
4494		pr_err("%s: can't find MQ device tree node\n",
4495			__func__);
4496		ret = -ENODEV;
4497		goto out_free;
4498	}
4499
4500	/* Get MQ DCRs base */
4501	dcr_base = dcr_resource_start(np, 0);
4502	dcr_len = dcr_resource_len(np, 0);
4503	if (!dcr_base && !dcr_len) {
4504		pr_err("%pOF: can't get DCR registers base/len!\n", np);
4505		ret = -ENODEV;
4506		goto out_mq;
4507	}
4508
4509	ppc440spe_mq_dcr_host = dcr_map(np, dcr_base, dcr_len);
4510	if (!DCR_MAP_OK(ppc440spe_mq_dcr_host)) {
4511		pr_err("%pOF: failed to map DCRs!\n", np);
4512		ret = -ENODEV;
4513		goto out_mq;
4514	}
4515	of_node_put(np);
4516	ppc440spe_mq_dcr_len = dcr_len;
4517
4518	/* Set HB alias */
4519	dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_BAUH, DMA_CUED_XOR_HB);
4520
4521	/* Set:
4522	 * - LL transaction passing limit to 1;
4523	 * - Memory controller cycle limit to 1;
4524	 * - Galois Polynomial to 0x14d (default)
4525	 */
4526	dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_CFBHL,
4527		  (1 << MQ0_CFBHL_TPLM) | (1 << MQ0_CFBHL_HBCL) |
4528		  (PPC440SPE_DEFAULT_POLY << MQ0_CFBHL_POLY));
4529
4530	atomic_set(&ppc440spe_adma_err_irq_ref, 0);
4531	for (i = 0; i < PPC440SPE_ADMA_ENGINES_NUM; i++)
4532		ppc440spe_adma_devices[i] = -1;
4533
4534	return 0;
4535
4536out_mq:
4537	of_node_put(np);
4538out_free:
4539	kfree(ppc440spe_dma_fifo_buf);
4540	return ret;
4541}
4542
4543static const struct of_device_id ppc440spe_adma_of_match[] = {
4544	{ .compatible	= "ibm,dma-440spe", },
4545	{ .compatible	= "amcc,xor-accelerator", },
4546	{},
4547};
4548MODULE_DEVICE_TABLE(of, ppc440spe_adma_of_match);
4549
4550static struct platform_driver ppc440spe_adma_driver = {
4551	.probe = ppc440spe_adma_probe,
4552	.remove_new = ppc440spe_adma_remove,
4553	.driver = {
4554		.name = "PPC440SP(E)-ADMA",
4555		.of_match_table = ppc440spe_adma_of_match,
4556	},
4557};
4558
4559static __init int ppc440spe_adma_init(void)
4560{
4561	int ret;
4562
4563	ret = ppc440spe_configure_raid_devices();
4564	if (ret)
4565		return ret;
4566
4567	ret = platform_driver_register(&ppc440spe_adma_driver);
4568	if (ret) {
4569		pr_err("%s: failed to register platform driver\n",
4570			__func__);
4571		goto out_reg;
4572	}
4573
4574	/* Initialization status */
4575	ret = driver_create_file(&ppc440spe_adma_driver.driver,
4576				 &driver_attr_devices);
4577	if (ret)
4578		goto out_dev;
4579
4580	/* RAID-6 h/w enable entry */
4581	ret = driver_create_file(&ppc440spe_adma_driver.driver,
4582				 &driver_attr_enable);
4583	if (ret)
4584		goto out_en;
4585
4586	/* GF polynomial to use */
4587	ret = driver_create_file(&ppc440spe_adma_driver.driver,
4588				 &driver_attr_poly);
4589	if (!ret)
4590		return ret;
4591
4592	driver_remove_file(&ppc440spe_adma_driver.driver,
4593			   &driver_attr_enable);
4594out_en:
4595	driver_remove_file(&ppc440spe_adma_driver.driver,
4596			   &driver_attr_devices);
4597out_dev:
4598	/* User will not be able to enable h/w RAID-6 */
4599	pr_err("%s: failed to create RAID-6 driver interface\n",
4600		__func__);
4601	platform_driver_unregister(&ppc440spe_adma_driver);
4602out_reg:
4603	dcr_unmap(ppc440spe_mq_dcr_host, ppc440spe_mq_dcr_len);
4604	kfree(ppc440spe_dma_fifo_buf);
4605	return ret;
4606}
4607
4608static void __exit ppc440spe_adma_exit(void)
4609{
4610	driver_remove_file(&ppc440spe_adma_driver.driver,
4611			   &driver_attr_poly);
4612	driver_remove_file(&ppc440spe_adma_driver.driver,
4613			   &driver_attr_enable);
4614	driver_remove_file(&ppc440spe_adma_driver.driver,
4615			   &driver_attr_devices);
4616	platform_driver_unregister(&ppc440spe_adma_driver);
4617	dcr_unmap(ppc440spe_mq_dcr_host, ppc440spe_mq_dcr_len);
4618	kfree(ppc440spe_dma_fifo_buf);
4619}
4620
4621arch_initcall(ppc440spe_adma_init);
4622module_exit(ppc440spe_adma_exit);
4623
4624MODULE_AUTHOR("Yuri Tikhonov <yur@emcraft.com>");
4625MODULE_DESCRIPTION("PPC440SPE ADMA Engine Driver");
4626MODULE_LICENSE("GPL");
4627