1// SPDX-License-Identifier: GPL-2.0+
2//
3// drivers/dma/imx-sdma.c
4//
5// This file contains a driver for the Freescale Smart DMA engine
6//
7// Copyright 2010 Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>
8//
9// Based on code from Freescale:
10//
11// Copyright 2004-2009 Freescale Semiconductor, Inc. All Rights Reserved.
12
13#include <linux/init.h>
14#include <linux/iopoll.h>
15#include <linux/module.h>
16#include <linux/types.h>
17#include <linux/bitfield.h>
18#include <linux/bitops.h>
19#include <linux/mm.h>
20#include <linux/interrupt.h>
21#include <linux/clk.h>
22#include <linux/delay.h>
23#include <linux/sched.h>
24#include <linux/semaphore.h>
25#include <linux/spinlock.h>
26#include <linux/device.h>
27#include <linux/dma-mapping.h>
28#include <linux/firmware.h>
29#include <linux/slab.h>
30#include <linux/platform_device.h>
31#include <linux/dmaengine.h>
32#include <linux/of.h>
33#include <linux/of_address.h>
34#include <linux/of_dma.h>
35#include <linux/workqueue.h>
36
37#include <asm/irq.h>
38#include <linux/dma/imx-dma.h>
39#include <linux/regmap.h>
40#include <linux/mfd/syscon.h>
41#include <linux/mfd/syscon/imx6q-iomuxc-gpr.h>
42
43#include "dmaengine.h"
44#include "virt-dma.h"
45
46/* SDMA registers */
47#define SDMA_H_C0PTR		0x000
48#define SDMA_H_INTR		0x004
49#define SDMA_H_STATSTOP		0x008
50#define SDMA_H_START		0x00c
51#define SDMA_H_EVTOVR		0x010
52#define SDMA_H_DSPOVR		0x014
53#define SDMA_H_HOSTOVR		0x018
54#define SDMA_H_EVTPEND		0x01c
55#define SDMA_H_DSPENBL		0x020
56#define SDMA_H_RESET		0x024
57#define SDMA_H_EVTERR		0x028
58#define SDMA_H_INTRMSK		0x02c
59#define SDMA_H_PSW		0x030
60#define SDMA_H_EVTERRDBG	0x034
61#define SDMA_H_CONFIG		0x038
62#define SDMA_ONCE_ENB		0x040
63#define SDMA_ONCE_DATA		0x044
64#define SDMA_ONCE_INSTR		0x048
65#define SDMA_ONCE_STAT		0x04c
66#define SDMA_ONCE_CMD		0x050
67#define SDMA_EVT_MIRROR		0x054
68#define SDMA_ILLINSTADDR	0x058
69#define SDMA_CHN0ADDR		0x05c
70#define SDMA_ONCE_RTB		0x060
71#define SDMA_XTRIG_CONF1	0x070
72#define SDMA_XTRIG_CONF2	0x074
73#define SDMA_CHNENBL0_IMX35	0x200
74#define SDMA_CHNENBL0_IMX31	0x080
75#define SDMA_CHNPRI_0		0x100
76#define SDMA_DONE0_CONFIG	0x1000
77
78/*
79 * Buffer descriptor status values.
80 */
81#define BD_DONE  0x01
82#define BD_WRAP  0x02
83#define BD_CONT  0x04
84#define BD_INTR  0x08
85#define BD_RROR  0x10
86#define BD_LAST  0x20
87#define BD_EXTD  0x80
88
89/*
90 * Data Node descriptor status values.
91 */
92#define DND_END_OF_FRAME  0x80
93#define DND_END_OF_XFER   0x40
94#define DND_DONE          0x20
95#define DND_UNUSED        0x01
96
97/*
98 * IPCV2 descriptor status values.
99 */
100#define BD_IPCV2_END_OF_FRAME  0x40
101
102#define IPCV2_MAX_NODES        50
103/*
104 * Error bit set in the CCB status field by the SDMA,
105 * in setbd routine, in case of a transfer error
106 */
107#define DATA_ERROR  0x10000000
108
109/*
110 * Buffer descriptor commands.
111 */
112#define C0_ADDR             0x01
113#define C0_LOAD             0x02
114#define C0_DUMP             0x03
115#define C0_SETCTX           0x07
116#define C0_GETCTX           0x03
117#define C0_SETDM            0x01
118#define C0_SETPM            0x04
119#define C0_GETDM            0x02
120#define C0_GETPM            0x08
121/*
122 * Change endianness indicator in the BD command field
123 */
124#define CHANGE_ENDIANNESS   0x80
125
126/*
127 *  p_2_p watermark_level description
128 *	Bits		Name			Description
129 *	0-7		Lower WML		Lower watermark level
130 *	8		PS			1: Pad Swallowing
131 *						0: No Pad Swallowing
132 *	9		PA			1: Pad Adding
133 *						0: No Pad Adding
134 *	10		SPDIF			If this bit is set both source
135 *						and destination are on SPBA
136 *	11		Source Bit(SP)		1: Source on SPBA
137 *						0: Source on AIPS
138 *	12		Destination Bit(DP)	1: Destination on SPBA
139 *						0: Destination on AIPS
140 *	13-15		---------		MUST BE 0
141 *	16-23		Higher WML		HWML
142 *	24-27		N			Total number of samples after
143 *						which Pad adding/Swallowing
144 *						must be done. It must be odd.
145 *	28		Lower WML Event(LWE)	SDMA events reg to check for
146 *						LWML event mask
147 *						0: LWE in EVENTS register
148 *						1: LWE in EVENTS2 register
149 *	29		Higher WML Event(HWE)	SDMA events reg to check for
150 *						HWML event mask
151 *						0: HWE in EVENTS register
152 *						1: HWE in EVENTS2 register
153 *	30		---------		MUST BE 0
154 *	31		CONT			1: Amount of samples to be
155 *						transferred is unknown and
156 *						script will keep on
157 *						transferring samples as long as
158 *						both events are detected and
159 *						script must be manually stopped
160 *						by the application
161 *						0: The amount of samples to be
162 *						transferred is equal to the
163 *						count field of mode word
164 */
165#define SDMA_WATERMARK_LEVEL_LWML	0xFF
166#define SDMA_WATERMARK_LEVEL_PS		BIT(8)
167#define SDMA_WATERMARK_LEVEL_PA		BIT(9)
168#define SDMA_WATERMARK_LEVEL_SPDIF	BIT(10)
169#define SDMA_WATERMARK_LEVEL_SP		BIT(11)
170#define SDMA_WATERMARK_LEVEL_DP		BIT(12)
171#define SDMA_WATERMARK_LEVEL_HWML	(0xFF << 16)
172#define SDMA_WATERMARK_LEVEL_LWE	BIT(28)
173#define SDMA_WATERMARK_LEVEL_HWE	BIT(29)
174#define SDMA_WATERMARK_LEVEL_CONT	BIT(31)
175
176#define SDMA_DMA_BUSWIDTHS	(BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
177				 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
178				 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
179
180#define SDMA_DMA_DIRECTIONS	(BIT(DMA_DEV_TO_MEM) | \
181				 BIT(DMA_MEM_TO_DEV) | \
182				 BIT(DMA_DEV_TO_DEV))
183
184#define SDMA_WATERMARK_LEVEL_N_FIFOS	GENMASK(15, 12)
185#define SDMA_WATERMARK_LEVEL_OFF_FIFOS  GENMASK(19, 16)
186#define SDMA_WATERMARK_LEVEL_WORDS_PER_FIFO   GENMASK(31, 28)
187#define SDMA_WATERMARK_LEVEL_SW_DONE	BIT(23)
188
189#define SDMA_DONE0_CONFIG_DONE_SEL	BIT(7)
190#define SDMA_DONE0_CONFIG_DONE_DIS	BIT(6)
191
192/*
193 * struct sdma_script_start_addrs - SDMA script start pointers
194 *
195 * start addresses of the different functions in the physical
196 * address space of the SDMA engine.
197 */
198struct sdma_script_start_addrs {
199	s32 ap_2_ap_addr;
200	s32 ap_2_bp_addr;
201	s32 ap_2_ap_fixed_addr;
202	s32 bp_2_ap_addr;
203	s32 loopback_on_dsp_side_addr;
204	s32 mcu_interrupt_only_addr;
205	s32 firi_2_per_addr;
206	s32 firi_2_mcu_addr;
207	s32 per_2_firi_addr;
208	s32 mcu_2_firi_addr;
209	s32 uart_2_per_addr;
210	s32 uart_2_mcu_addr;
211	s32 per_2_app_addr;
212	s32 mcu_2_app_addr;
213	s32 per_2_per_addr;
214	s32 uartsh_2_per_addr;
215	s32 uartsh_2_mcu_addr;
216	s32 per_2_shp_addr;
217	s32 mcu_2_shp_addr;
218	s32 ata_2_mcu_addr;
219	s32 mcu_2_ata_addr;
220	s32 app_2_per_addr;
221	s32 app_2_mcu_addr;
222	s32 shp_2_per_addr;
223	s32 shp_2_mcu_addr;
224	s32 mshc_2_mcu_addr;
225	s32 mcu_2_mshc_addr;
226	s32 spdif_2_mcu_addr;
227	s32 mcu_2_spdif_addr;
228	s32 asrc_2_mcu_addr;
229	s32 ext_mem_2_ipu_addr;
230	s32 descrambler_addr;
231	s32 dptc_dvfs_addr;
232	s32 utra_addr;
233	s32 ram_code_start_addr;
234	/* End of v1 array */
235	s32 mcu_2_ssish_addr;
236	s32 ssish_2_mcu_addr;
237	s32 hdmi_dma_addr;
238	/* End of v2 array */
239	s32 zcanfd_2_mcu_addr;
240	s32 zqspi_2_mcu_addr;
241	s32 mcu_2_ecspi_addr;
242	s32 mcu_2_sai_addr;
243	s32 sai_2_mcu_addr;
244	s32 uart_2_mcu_rom_addr;
245	s32 uartsh_2_mcu_rom_addr;
246	/* End of v3 array */
247	s32 mcu_2_zqspi_addr;
248	/* End of v4 array */
249};
250
251/*
252 * Mode/Count of data node descriptors - IPCv2
253 */
254struct sdma_mode_count {
255#define SDMA_BD_MAX_CNT	0xffff
256	u32 count   : 16; /* size of the buffer pointed by this BD */
257	u32 status  :  8; /* E,R,I,C,W,D status bits stored here */
258	u32 command :  8; /* command mostly used for channel 0 */
259};
260
261/*
262 * Buffer descriptor
263 */
264struct sdma_buffer_descriptor {
265	struct sdma_mode_count  mode;
266	u32 buffer_addr;	/* address of the buffer described */
267	u32 ext_buffer_addr;	/* extended buffer address */
268} __attribute__ ((packed));
269
270/**
271 * struct sdma_channel_control - Channel control Block
272 *
273 * @current_bd_ptr:	current buffer descriptor processed
274 * @base_bd_ptr:	first element of buffer descriptor array
275 * @unused:		padding. The SDMA engine expects an array of 128 byte
276 *			control blocks
277 */
278struct sdma_channel_control {
279	u32 current_bd_ptr;
280	u32 base_bd_ptr;
281	u32 unused[2];
282} __attribute__ ((packed));
283
284/**
285 * struct sdma_state_registers - SDMA context for a channel
286 *
287 * @pc:		program counter
288 * @unused1:	unused
289 * @t:		test bit: status of arithmetic & test instruction
290 * @rpc:	return program counter
291 * @unused0:	unused
292 * @sf:		source fault while loading data
293 * @spc:	loop start program counter
294 * @unused2:	unused
295 * @df:		destination fault while storing data
296 * @epc:	loop end program counter
297 * @lm:		loop mode
298 */
299struct sdma_state_registers {
300	u32 pc     :14;
301	u32 unused1: 1;
302	u32 t      : 1;
303	u32 rpc    :14;
304	u32 unused0: 1;
305	u32 sf     : 1;
306	u32 spc    :14;
307	u32 unused2: 1;
308	u32 df     : 1;
309	u32 epc    :14;
310	u32 lm     : 2;
311} __attribute__ ((packed));
312
313/**
314 * struct sdma_context_data - sdma context specific to a channel
315 *
316 * @channel_state:	channel state bits
317 * @gReg:		general registers
318 * @mda:		burst dma destination address register
319 * @msa:		burst dma source address register
320 * @ms:			burst dma status register
321 * @md:			burst dma data register
322 * @pda:		peripheral dma destination address register
323 * @psa:		peripheral dma source address register
324 * @ps:			peripheral dma status register
325 * @pd:			peripheral dma data register
326 * @ca:			CRC polynomial register
327 * @cs:			CRC accumulator register
328 * @dda:		dedicated core destination address register
329 * @dsa:		dedicated core source address register
330 * @ds:			dedicated core status register
331 * @dd:			dedicated core data register
332 * @scratch0:		1st word of dedicated ram for context switch
333 * @scratch1:		2nd word of dedicated ram for context switch
334 * @scratch2:		3rd word of dedicated ram for context switch
335 * @scratch3:		4th word of dedicated ram for context switch
336 * @scratch4:		5th word of dedicated ram for context switch
337 * @scratch5:		6th word of dedicated ram for context switch
338 * @scratch6:		7th word of dedicated ram for context switch
339 * @scratch7:		8th word of dedicated ram for context switch
340 */
341struct sdma_context_data {
342	struct sdma_state_registers  channel_state;
343	u32  gReg[8];
344	u32  mda;
345	u32  msa;
346	u32  ms;
347	u32  md;
348	u32  pda;
349	u32  psa;
350	u32  ps;
351	u32  pd;
352	u32  ca;
353	u32  cs;
354	u32  dda;
355	u32  dsa;
356	u32  ds;
357	u32  dd;
358	u32  scratch0;
359	u32  scratch1;
360	u32  scratch2;
361	u32  scratch3;
362	u32  scratch4;
363	u32  scratch5;
364	u32  scratch6;
365	u32  scratch7;
366} __attribute__ ((packed));
367
368
369struct sdma_engine;
370
371/**
372 * struct sdma_desc - descriptor structor for one transfer
373 * @vd:			descriptor for virt dma
374 * @num_bd:		number of descriptors currently handling
375 * @bd_phys:		physical address of bd
376 * @buf_tail:		ID of the buffer that was processed
377 * @buf_ptail:		ID of the previous buffer that was processed
378 * @period_len:		period length, used in cyclic.
379 * @chn_real_count:	the real count updated from bd->mode.count
380 * @chn_count:		the transfer count set
381 * @sdmac:		sdma_channel pointer
382 * @bd:			pointer of allocate bd
383 */
384struct sdma_desc {
385	struct virt_dma_desc	vd;
386	unsigned int		num_bd;
387	dma_addr_t		bd_phys;
388	unsigned int		buf_tail;
389	unsigned int		buf_ptail;
390	unsigned int		period_len;
391	unsigned int		chn_real_count;
392	unsigned int		chn_count;
393	struct sdma_channel	*sdmac;
394	struct sdma_buffer_descriptor *bd;
395};
396
397/**
398 * struct sdma_channel - housekeeping for a SDMA channel
399 *
400 * @vc:			virt_dma base structure
401 * @desc:		sdma description including vd and other special member
402 * @sdma:		pointer to the SDMA engine for this channel
403 * @channel:		the channel number, matches dmaengine chan_id + 1
404 * @direction:		transfer type. Needed for setting SDMA script
405 * @slave_config:	Slave configuration
406 * @peripheral_type:	Peripheral type. Needed for setting SDMA script
407 * @event_id0:		aka dma request line
408 * @event_id1:		for channels that use 2 events
409 * @word_size:		peripheral access size
410 * @pc_from_device:	script address for those device_2_memory
411 * @pc_to_device:	script address for those memory_2_device
412 * @device_to_device:	script address for those device_2_device
413 * @pc_to_pc:		script address for those memory_2_memory
414 * @flags:		loop mode or not
415 * @per_address:	peripheral source or destination address in common case
416 *                      destination address in p_2_p case
417 * @per_address2:	peripheral source address in p_2_p case
418 * @event_mask:		event mask used in p_2_p script
419 * @watermark_level:	value for gReg[7], some script will extend it from
420 *			basic watermark such as p_2_p
421 * @shp_addr:		value for gReg[6]
422 * @per_addr:		value for gReg[2]
423 * @status:		status of dma channel
424 * @data:		specific sdma interface structure
425 * @terminate_worker:	used to call back into terminate work function
426 * @terminated:		terminated list
427 * @is_ram_script:	flag for script in ram
428 * @n_fifos_src:	number of source device fifos
429 * @n_fifos_dst:	number of destination device fifos
430 * @sw_done:		software done flag
431 * @stride_fifos_src:	stride for source device FIFOs
432 * @stride_fifos_dst:	stride for destination device FIFOs
433 * @words_per_fifo:	copy number of words one time for one FIFO
434 */
435struct sdma_channel {
436	struct virt_dma_chan		vc;
437	struct sdma_desc		*desc;
438	struct sdma_engine		*sdma;
439	unsigned int			channel;
440	enum dma_transfer_direction		direction;
441	struct dma_slave_config		slave_config;
442	enum sdma_peripheral_type	peripheral_type;
443	unsigned int			event_id0;
444	unsigned int			event_id1;
445	enum dma_slave_buswidth		word_size;
446	unsigned int			pc_from_device, pc_to_device;
447	unsigned int			device_to_device;
448	unsigned int                    pc_to_pc;
449	unsigned long			flags;
450	dma_addr_t			per_address, per_address2;
451	unsigned long			event_mask[2];
452	unsigned long			watermark_level;
453	u32				shp_addr, per_addr;
454	enum dma_status			status;
455	struct imx_dma_data		data;
456	struct work_struct		terminate_worker;
457	struct list_head                terminated;
458	bool				is_ram_script;
459	unsigned int			n_fifos_src;
460	unsigned int			n_fifos_dst;
461	unsigned int			stride_fifos_src;
462	unsigned int			stride_fifos_dst;
463	unsigned int			words_per_fifo;
464	bool				sw_done;
465};
466
467#define IMX_DMA_SG_LOOP		BIT(0)
468
469#define MAX_DMA_CHANNELS 32
470#define MXC_SDMA_DEFAULT_PRIORITY 1
471#define MXC_SDMA_MIN_PRIORITY 1
472#define MXC_SDMA_MAX_PRIORITY 7
473
474#define SDMA_FIRMWARE_MAGIC 0x414d4453
475
476/**
477 * struct sdma_firmware_header - Layout of the firmware image
478 *
479 * @magic:		"SDMA"
480 * @version_major:	increased whenever layout of struct
481 *			sdma_script_start_addrs changes.
482 * @version_minor:	firmware minor version (for binary compatible changes)
483 * @script_addrs_start:	offset of struct sdma_script_start_addrs in this image
484 * @num_script_addrs:	Number of script addresses in this image
485 * @ram_code_start:	offset of SDMA ram image in this firmware image
486 * @ram_code_size:	size of SDMA ram image
487 */
488struct sdma_firmware_header {
489	u32	magic;
490	u32	version_major;
491	u32	version_minor;
492	u32	script_addrs_start;
493	u32	num_script_addrs;
494	u32	ram_code_start;
495	u32	ram_code_size;
496};
497
498struct sdma_driver_data {
499	int chnenbl0;
500	int num_events;
501	struct sdma_script_start_addrs	*script_addrs;
502	bool check_ratio;
503	/*
504	 * ecspi ERR009165 fixed should be done in sdma script
505	 * and it has been fixed in soc from i.mx6ul.
506	 * please get more information from the below link:
507	 * https://www.nxp.com/docs/en/errata/IMX6DQCE.pdf
508	 */
509	bool ecspi_fixed;
510};
511
512struct sdma_engine {
513	struct device			*dev;
514	struct sdma_channel		channel[MAX_DMA_CHANNELS];
515	struct sdma_channel_control	*channel_control;
516	void __iomem			*regs;
517	struct sdma_context_data	*context;
518	dma_addr_t			context_phys;
519	struct dma_device		dma_device;
520	struct clk			*clk_ipg;
521	struct clk			*clk_ahb;
522	spinlock_t			channel_0_lock;
523	u32				script_number;
524	struct sdma_script_start_addrs	*script_addrs;
525	const struct sdma_driver_data	*drvdata;
526	u32				spba_start_addr;
527	u32				spba_end_addr;
528	unsigned int			irq;
529	dma_addr_t			bd0_phys;
530	struct sdma_buffer_descriptor	*bd0;
531	/* clock ratio for AHB:SDMA core. 1:1 is 1, 2:1 is 0*/
532	bool				clk_ratio;
533	bool                            fw_loaded;
534};
535
536static int sdma_config_write(struct dma_chan *chan,
537		       struct dma_slave_config *dmaengine_cfg,
538		       enum dma_transfer_direction direction);
539
540static struct sdma_driver_data sdma_imx31 = {
541	.chnenbl0 = SDMA_CHNENBL0_IMX31,
542	.num_events = 32,
543};
544
545static struct sdma_script_start_addrs sdma_script_imx25 = {
546	.ap_2_ap_addr = 729,
547	.uart_2_mcu_addr = 904,
548	.per_2_app_addr = 1255,
549	.mcu_2_app_addr = 834,
550	.uartsh_2_mcu_addr = 1120,
551	.per_2_shp_addr = 1329,
552	.mcu_2_shp_addr = 1048,
553	.ata_2_mcu_addr = 1560,
554	.mcu_2_ata_addr = 1479,
555	.app_2_per_addr = 1189,
556	.app_2_mcu_addr = 770,
557	.shp_2_per_addr = 1407,
558	.shp_2_mcu_addr = 979,
559};
560
561static struct sdma_driver_data sdma_imx25 = {
562	.chnenbl0 = SDMA_CHNENBL0_IMX35,
563	.num_events = 48,
564	.script_addrs = &sdma_script_imx25,
565};
566
567static struct sdma_driver_data sdma_imx35 = {
568	.chnenbl0 = SDMA_CHNENBL0_IMX35,
569	.num_events = 48,
570};
571
572static struct sdma_script_start_addrs sdma_script_imx51 = {
573	.ap_2_ap_addr = 642,
574	.uart_2_mcu_addr = 817,
575	.mcu_2_app_addr = 747,
576	.mcu_2_shp_addr = 961,
577	.ata_2_mcu_addr = 1473,
578	.mcu_2_ata_addr = 1392,
579	.app_2_per_addr = 1033,
580	.app_2_mcu_addr = 683,
581	.shp_2_per_addr = 1251,
582	.shp_2_mcu_addr = 892,
583};
584
585static struct sdma_driver_data sdma_imx51 = {
586	.chnenbl0 = SDMA_CHNENBL0_IMX35,
587	.num_events = 48,
588	.script_addrs = &sdma_script_imx51,
589};
590
591static struct sdma_script_start_addrs sdma_script_imx53 = {
592	.ap_2_ap_addr = 642,
593	.app_2_mcu_addr = 683,
594	.mcu_2_app_addr = 747,
595	.uart_2_mcu_addr = 817,
596	.shp_2_mcu_addr = 891,
597	.mcu_2_shp_addr = 960,
598	.uartsh_2_mcu_addr = 1032,
599	.spdif_2_mcu_addr = 1100,
600	.mcu_2_spdif_addr = 1134,
601	.firi_2_mcu_addr = 1193,
602	.mcu_2_firi_addr = 1290,
603};
604
605static struct sdma_driver_data sdma_imx53 = {
606	.chnenbl0 = SDMA_CHNENBL0_IMX35,
607	.num_events = 48,
608	.script_addrs = &sdma_script_imx53,
609};
610
611static struct sdma_script_start_addrs sdma_script_imx6q = {
612	.ap_2_ap_addr = 642,
613	.uart_2_mcu_addr = 817,
614	.mcu_2_app_addr = 747,
615	.per_2_per_addr = 6331,
616	.uartsh_2_mcu_addr = 1032,
617	.mcu_2_shp_addr = 960,
618	.app_2_mcu_addr = 683,
619	.shp_2_mcu_addr = 891,
620	.spdif_2_mcu_addr = 1100,
621	.mcu_2_spdif_addr = 1134,
622};
623
624static struct sdma_driver_data sdma_imx6q = {
625	.chnenbl0 = SDMA_CHNENBL0_IMX35,
626	.num_events = 48,
627	.script_addrs = &sdma_script_imx6q,
628};
629
630static struct sdma_driver_data sdma_imx6ul = {
631	.chnenbl0 = SDMA_CHNENBL0_IMX35,
632	.num_events = 48,
633	.script_addrs = &sdma_script_imx6q,
634	.ecspi_fixed = true,
635};
636
637static struct sdma_script_start_addrs sdma_script_imx7d = {
638	.ap_2_ap_addr = 644,
639	.uart_2_mcu_addr = 819,
640	.mcu_2_app_addr = 749,
641	.uartsh_2_mcu_addr = 1034,
642	.mcu_2_shp_addr = 962,
643	.app_2_mcu_addr = 685,
644	.shp_2_mcu_addr = 893,
645	.spdif_2_mcu_addr = 1102,
646	.mcu_2_spdif_addr = 1136,
647};
648
649static struct sdma_driver_data sdma_imx7d = {
650	.chnenbl0 = SDMA_CHNENBL0_IMX35,
651	.num_events = 48,
652	.script_addrs = &sdma_script_imx7d,
653};
654
655static struct sdma_driver_data sdma_imx8mq = {
656	.chnenbl0 = SDMA_CHNENBL0_IMX35,
657	.num_events = 48,
658	.script_addrs = &sdma_script_imx7d,
659	.check_ratio = 1,
660};
661
662static const struct of_device_id sdma_dt_ids[] = {
663	{ .compatible = "fsl,imx6q-sdma", .data = &sdma_imx6q, },
664	{ .compatible = "fsl,imx53-sdma", .data = &sdma_imx53, },
665	{ .compatible = "fsl,imx51-sdma", .data = &sdma_imx51, },
666	{ .compatible = "fsl,imx35-sdma", .data = &sdma_imx35, },
667	{ .compatible = "fsl,imx31-sdma", .data = &sdma_imx31, },
668	{ .compatible = "fsl,imx25-sdma", .data = &sdma_imx25, },
669	{ .compatible = "fsl,imx7d-sdma", .data = &sdma_imx7d, },
670	{ .compatible = "fsl,imx6ul-sdma", .data = &sdma_imx6ul, },
671	{ .compatible = "fsl,imx8mq-sdma", .data = &sdma_imx8mq, },
672	{ /* sentinel */ }
673};
674MODULE_DEVICE_TABLE(of, sdma_dt_ids);
675
676#define SDMA_H_CONFIG_DSPDMA	BIT(12) /* indicates if the DSPDMA is used */
677#define SDMA_H_CONFIG_RTD_PINS	BIT(11) /* indicates if Real-Time Debug pins are enabled */
678#define SDMA_H_CONFIG_ACR	BIT(4)  /* indicates if AHB freq /core freq = 2 or 1 */
679#define SDMA_H_CONFIG_CSM	(3)       /* indicates which context switch mode is selected*/
680
681static inline u32 chnenbl_ofs(struct sdma_engine *sdma, unsigned int event)
682{
683	u32 chnenbl0 = sdma->drvdata->chnenbl0;
684	return chnenbl0 + event * 4;
685}
686
687static int sdma_config_ownership(struct sdma_channel *sdmac,
688		bool event_override, bool mcu_override, bool dsp_override)
689{
690	struct sdma_engine *sdma = sdmac->sdma;
691	int channel = sdmac->channel;
692	unsigned long evt, mcu, dsp;
693
694	if (event_override && mcu_override && dsp_override)
695		return -EINVAL;
696
697	evt = readl_relaxed(sdma->regs + SDMA_H_EVTOVR);
698	mcu = readl_relaxed(sdma->regs + SDMA_H_HOSTOVR);
699	dsp = readl_relaxed(sdma->regs + SDMA_H_DSPOVR);
700
701	if (dsp_override)
702		__clear_bit(channel, &dsp);
703	else
704		__set_bit(channel, &dsp);
705
706	if (event_override)
707		__clear_bit(channel, &evt);
708	else
709		__set_bit(channel, &evt);
710
711	if (mcu_override)
712		__clear_bit(channel, &mcu);
713	else
714		__set_bit(channel, &mcu);
715
716	writel_relaxed(evt, sdma->regs + SDMA_H_EVTOVR);
717	writel_relaxed(mcu, sdma->regs + SDMA_H_HOSTOVR);
718	writel_relaxed(dsp, sdma->regs + SDMA_H_DSPOVR);
719
720	return 0;
721}
722
723static int is_sdma_channel_enabled(struct sdma_engine *sdma, int channel)
724{
725	return !!(readl(sdma->regs + SDMA_H_STATSTOP) & BIT(channel));
726}
727
728static void sdma_enable_channel(struct sdma_engine *sdma, int channel)
729{
730	writel(BIT(channel), sdma->regs + SDMA_H_START);
731}
732
733/*
734 * sdma_run_channel0 - run a channel and wait till it's done
735 */
736static int sdma_run_channel0(struct sdma_engine *sdma)
737{
738	int ret;
739	u32 reg;
740
741	sdma_enable_channel(sdma, 0);
742
743	ret = readl_relaxed_poll_timeout_atomic(sdma->regs + SDMA_H_STATSTOP,
744						reg, !(reg & 1), 1, 500);
745	if (ret)
746		dev_err(sdma->dev, "Timeout waiting for CH0 ready\n");
747
748	/* Set bits of CONFIG register with dynamic context switching */
749	reg = readl(sdma->regs + SDMA_H_CONFIG);
750	if ((reg & SDMA_H_CONFIG_CSM) == 0) {
751		reg |= SDMA_H_CONFIG_CSM;
752		writel_relaxed(reg, sdma->regs + SDMA_H_CONFIG);
753	}
754
755	return ret;
756}
757
758static int sdma_load_script(struct sdma_engine *sdma, void *buf, int size,
759		u32 address)
760{
761	struct sdma_buffer_descriptor *bd0 = sdma->bd0;
762	void *buf_virt;
763	dma_addr_t buf_phys;
764	int ret;
765	unsigned long flags;
766
767	buf_virt = dma_alloc_coherent(sdma->dev, size, &buf_phys, GFP_KERNEL);
768	if (!buf_virt)
769		return -ENOMEM;
770
771	spin_lock_irqsave(&sdma->channel_0_lock, flags);
772
773	bd0->mode.command = C0_SETPM;
774	bd0->mode.status = BD_DONE | BD_WRAP | BD_EXTD;
775	bd0->mode.count = size / 2;
776	bd0->buffer_addr = buf_phys;
777	bd0->ext_buffer_addr = address;
778
779	memcpy(buf_virt, buf, size);
780
781	ret = sdma_run_channel0(sdma);
782
783	spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
784
785	dma_free_coherent(sdma->dev, size, buf_virt, buf_phys);
786
787	return ret;
788}
789
790static void sdma_event_enable(struct sdma_channel *sdmac, unsigned int event)
791{
792	struct sdma_engine *sdma = sdmac->sdma;
793	int channel = sdmac->channel;
794	unsigned long val;
795	u32 chnenbl = chnenbl_ofs(sdma, event);
796
797	val = readl_relaxed(sdma->regs + chnenbl);
798	__set_bit(channel, &val);
799	writel_relaxed(val, sdma->regs + chnenbl);
800
801	/* Set SDMA_DONEx_CONFIG is sw_done enabled */
802	if (sdmac->sw_done) {
803		val = readl_relaxed(sdma->regs + SDMA_DONE0_CONFIG);
804		val |= SDMA_DONE0_CONFIG_DONE_SEL;
805		val &= ~SDMA_DONE0_CONFIG_DONE_DIS;
806		writel_relaxed(val, sdma->regs + SDMA_DONE0_CONFIG);
807	}
808}
809
810static void sdma_event_disable(struct sdma_channel *sdmac, unsigned int event)
811{
812	struct sdma_engine *sdma = sdmac->sdma;
813	int channel = sdmac->channel;
814	u32 chnenbl = chnenbl_ofs(sdma, event);
815	unsigned long val;
816
817	val = readl_relaxed(sdma->regs + chnenbl);
818	__clear_bit(channel, &val);
819	writel_relaxed(val, sdma->regs + chnenbl);
820}
821
822static struct sdma_desc *to_sdma_desc(struct dma_async_tx_descriptor *t)
823{
824	return container_of(t, struct sdma_desc, vd.tx);
825}
826
827static void sdma_start_desc(struct sdma_channel *sdmac)
828{
829	struct virt_dma_desc *vd = vchan_next_desc(&sdmac->vc);
830	struct sdma_desc *desc;
831	struct sdma_engine *sdma = sdmac->sdma;
832	int channel = sdmac->channel;
833
834	if (!vd) {
835		sdmac->desc = NULL;
836		return;
837	}
838	sdmac->desc = desc = to_sdma_desc(&vd->tx);
839
840	list_del(&vd->node);
841
842	sdma->channel_control[channel].base_bd_ptr = desc->bd_phys;
843	sdma->channel_control[channel].current_bd_ptr = desc->bd_phys;
844	sdma_enable_channel(sdma, sdmac->channel);
845}
846
847static void sdma_update_channel_loop(struct sdma_channel *sdmac)
848{
849	struct sdma_buffer_descriptor *bd;
850	int error = 0;
851	enum dma_status	old_status = sdmac->status;
852
853	/*
854	 * loop mode. Iterate over descriptors, re-setup them and
855	 * call callback function.
856	 */
857	while (sdmac->desc) {
858		struct sdma_desc *desc = sdmac->desc;
859
860		bd = &desc->bd[desc->buf_tail];
861
862		if (bd->mode.status & BD_DONE)
863			break;
864
865		if (bd->mode.status & BD_RROR) {
866			bd->mode.status &= ~BD_RROR;
867			sdmac->status = DMA_ERROR;
868			error = -EIO;
869		}
870
871	       /*
872		* We use bd->mode.count to calculate the residue, since contains
873		* the number of bytes present in the current buffer descriptor.
874		*/
875
876		desc->chn_real_count = bd->mode.count;
877		bd->mode.count = desc->period_len;
878		desc->buf_ptail = desc->buf_tail;
879		desc->buf_tail = (desc->buf_tail + 1) % desc->num_bd;
880
881		/*
882		 * The callback is called from the interrupt context in order
883		 * to reduce latency and to avoid the risk of altering the
884		 * SDMA transaction status by the time the client tasklet is
885		 * executed.
886		 */
887		spin_unlock(&sdmac->vc.lock);
888		dmaengine_desc_get_callback_invoke(&desc->vd.tx, NULL);
889		spin_lock(&sdmac->vc.lock);
890
891		/* Assign buffer ownership to SDMA */
892		bd->mode.status |= BD_DONE;
893
894		if (error)
895			sdmac->status = old_status;
896	}
897
898	/*
899	 * SDMA stops cyclic channel when DMA request triggers a channel and no SDMA
900	 * owned buffer is available (i.e. BD_DONE was set too late).
901	 */
902	if (sdmac->desc && !is_sdma_channel_enabled(sdmac->sdma, sdmac->channel)) {
903		dev_warn(sdmac->sdma->dev, "restart cyclic channel %d\n", sdmac->channel);
904		sdma_enable_channel(sdmac->sdma, sdmac->channel);
905	}
906}
907
908static void mxc_sdma_handle_channel_normal(struct sdma_channel *data)
909{
910	struct sdma_channel *sdmac = (struct sdma_channel *) data;
911	struct sdma_buffer_descriptor *bd;
912	int i, error = 0;
913
914	sdmac->desc->chn_real_count = 0;
915	/*
916	 * non loop mode. Iterate over all descriptors, collect
917	 * errors and call callback function
918	 */
919	for (i = 0; i < sdmac->desc->num_bd; i++) {
920		bd = &sdmac->desc->bd[i];
921
922		if (bd->mode.status & (BD_DONE | BD_RROR))
923			error = -EIO;
924		sdmac->desc->chn_real_count += bd->mode.count;
925	}
926
927	if (error)
928		sdmac->status = DMA_ERROR;
929	else
930		sdmac->status = DMA_COMPLETE;
931}
932
933static irqreturn_t sdma_int_handler(int irq, void *dev_id)
934{
935	struct sdma_engine *sdma = dev_id;
936	unsigned long stat;
937
938	stat = readl_relaxed(sdma->regs + SDMA_H_INTR);
939	writel_relaxed(stat, sdma->regs + SDMA_H_INTR);
940	/* channel 0 is special and not handled here, see run_channel0() */
941	stat &= ~1;
942
943	while (stat) {
944		int channel = fls(stat) - 1;
945		struct sdma_channel *sdmac = &sdma->channel[channel];
946		struct sdma_desc *desc;
947
948		spin_lock(&sdmac->vc.lock);
949		desc = sdmac->desc;
950		if (desc) {
951			if (sdmac->flags & IMX_DMA_SG_LOOP) {
952				if (sdmac->peripheral_type != IMX_DMATYPE_HDMI)
953					sdma_update_channel_loop(sdmac);
954				else
955					vchan_cyclic_callback(&desc->vd);
956			} else {
957				mxc_sdma_handle_channel_normal(sdmac);
958				vchan_cookie_complete(&desc->vd);
959				sdma_start_desc(sdmac);
960			}
961		}
962
963		spin_unlock(&sdmac->vc.lock);
964		__clear_bit(channel, &stat);
965	}
966
967	return IRQ_HANDLED;
968}
969
970/*
971 * sets the pc of SDMA script according to the peripheral type
972 */
973static int sdma_get_pc(struct sdma_channel *sdmac,
974		enum sdma_peripheral_type peripheral_type)
975{
976	struct sdma_engine *sdma = sdmac->sdma;
977	int per_2_emi = 0, emi_2_per = 0;
978	/*
979	 * These are needed once we start to support transfers between
980	 * two peripherals or memory-to-memory transfers
981	 */
982	int per_2_per = 0, emi_2_emi = 0;
983
984	sdmac->pc_from_device = 0;
985	sdmac->pc_to_device = 0;
986	sdmac->device_to_device = 0;
987	sdmac->pc_to_pc = 0;
988	sdmac->is_ram_script = false;
989
990	switch (peripheral_type) {
991	case IMX_DMATYPE_MEMORY:
992		emi_2_emi = sdma->script_addrs->ap_2_ap_addr;
993		break;
994	case IMX_DMATYPE_DSP:
995		emi_2_per = sdma->script_addrs->bp_2_ap_addr;
996		per_2_emi = sdma->script_addrs->ap_2_bp_addr;
997		break;
998	case IMX_DMATYPE_FIRI:
999		per_2_emi = sdma->script_addrs->firi_2_mcu_addr;
1000		emi_2_per = sdma->script_addrs->mcu_2_firi_addr;
1001		break;
1002	case IMX_DMATYPE_UART:
1003		per_2_emi = sdma->script_addrs->uart_2_mcu_addr;
1004		emi_2_per = sdma->script_addrs->mcu_2_app_addr;
1005		break;
1006	case IMX_DMATYPE_UART_SP:
1007		per_2_emi = sdma->script_addrs->uartsh_2_mcu_addr;
1008		emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
1009		break;
1010	case IMX_DMATYPE_ATA:
1011		per_2_emi = sdma->script_addrs->ata_2_mcu_addr;
1012		emi_2_per = sdma->script_addrs->mcu_2_ata_addr;
1013		break;
1014	case IMX_DMATYPE_CSPI:
1015		per_2_emi = sdma->script_addrs->app_2_mcu_addr;
1016
1017		/* Use rom script mcu_2_app if ERR009165 fixed */
1018		if (sdmac->sdma->drvdata->ecspi_fixed) {
1019			emi_2_per = sdma->script_addrs->mcu_2_app_addr;
1020		} else {
1021			emi_2_per = sdma->script_addrs->mcu_2_ecspi_addr;
1022			sdmac->is_ram_script = true;
1023		}
1024
1025		break;
1026	case IMX_DMATYPE_EXT:
1027	case IMX_DMATYPE_SSI:
1028	case IMX_DMATYPE_SAI:
1029		per_2_emi = sdma->script_addrs->app_2_mcu_addr;
1030		emi_2_per = sdma->script_addrs->mcu_2_app_addr;
1031		break;
1032	case IMX_DMATYPE_SSI_DUAL:
1033		per_2_emi = sdma->script_addrs->ssish_2_mcu_addr;
1034		emi_2_per = sdma->script_addrs->mcu_2_ssish_addr;
1035		sdmac->is_ram_script = true;
1036		break;
1037	case IMX_DMATYPE_SSI_SP:
1038	case IMX_DMATYPE_MMC:
1039	case IMX_DMATYPE_SDHC:
1040	case IMX_DMATYPE_CSPI_SP:
1041	case IMX_DMATYPE_ESAI:
1042	case IMX_DMATYPE_MSHC_SP:
1043		per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
1044		emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
1045		break;
1046	case IMX_DMATYPE_ASRC:
1047		per_2_emi = sdma->script_addrs->asrc_2_mcu_addr;
1048		emi_2_per = sdma->script_addrs->asrc_2_mcu_addr;
1049		per_2_per = sdma->script_addrs->per_2_per_addr;
1050		sdmac->is_ram_script = true;
1051		break;
1052	case IMX_DMATYPE_ASRC_SP:
1053		per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
1054		emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
1055		per_2_per = sdma->script_addrs->per_2_per_addr;
1056		break;
1057	case IMX_DMATYPE_MSHC:
1058		per_2_emi = sdma->script_addrs->mshc_2_mcu_addr;
1059		emi_2_per = sdma->script_addrs->mcu_2_mshc_addr;
1060		break;
1061	case IMX_DMATYPE_CCM:
1062		per_2_emi = sdma->script_addrs->dptc_dvfs_addr;
1063		break;
1064	case IMX_DMATYPE_SPDIF:
1065		per_2_emi = sdma->script_addrs->spdif_2_mcu_addr;
1066		emi_2_per = sdma->script_addrs->mcu_2_spdif_addr;
1067		break;
1068	case IMX_DMATYPE_IPU_MEMORY:
1069		emi_2_per = sdma->script_addrs->ext_mem_2_ipu_addr;
1070		break;
1071	case IMX_DMATYPE_MULTI_SAI:
1072		per_2_emi = sdma->script_addrs->sai_2_mcu_addr;
1073		emi_2_per = sdma->script_addrs->mcu_2_sai_addr;
1074		break;
1075	case IMX_DMATYPE_HDMI:
1076		emi_2_per = sdma->script_addrs->hdmi_dma_addr;
1077		sdmac->is_ram_script = true;
1078		break;
1079	default:
1080		dev_err(sdma->dev, "Unsupported transfer type %d\n",
1081			peripheral_type);
1082		return -EINVAL;
1083	}
1084
1085	sdmac->pc_from_device = per_2_emi;
1086	sdmac->pc_to_device = emi_2_per;
1087	sdmac->device_to_device = per_2_per;
1088	sdmac->pc_to_pc = emi_2_emi;
1089
1090	return 0;
1091}
1092
1093static int sdma_load_context(struct sdma_channel *sdmac)
1094{
1095	struct sdma_engine *sdma = sdmac->sdma;
1096	int channel = sdmac->channel;
1097	int load_address;
1098	struct sdma_context_data *context = sdma->context;
1099	struct sdma_buffer_descriptor *bd0 = sdma->bd0;
1100	int ret;
1101	unsigned long flags;
1102
1103	if (sdmac->direction == DMA_DEV_TO_MEM)
1104		load_address = sdmac->pc_from_device;
1105	else if (sdmac->direction == DMA_DEV_TO_DEV)
1106		load_address = sdmac->device_to_device;
1107	else if (sdmac->direction == DMA_MEM_TO_MEM)
1108		load_address = sdmac->pc_to_pc;
1109	else
1110		load_address = sdmac->pc_to_device;
1111
1112	if (load_address < 0)
1113		return load_address;
1114
1115	dev_dbg(sdma->dev, "load_address = %d\n", load_address);
1116	dev_dbg(sdma->dev, "wml = 0x%08x\n", (u32)sdmac->watermark_level);
1117	dev_dbg(sdma->dev, "shp_addr = 0x%08x\n", sdmac->shp_addr);
1118	dev_dbg(sdma->dev, "per_addr = 0x%08x\n", sdmac->per_addr);
1119	dev_dbg(sdma->dev, "event_mask0 = 0x%08x\n", (u32)sdmac->event_mask[0]);
1120	dev_dbg(sdma->dev, "event_mask1 = 0x%08x\n", (u32)sdmac->event_mask[1]);
1121
1122	spin_lock_irqsave(&sdma->channel_0_lock, flags);
1123
1124	memset(context, 0, sizeof(*context));
1125	context->channel_state.pc = load_address;
1126
1127	/* Send by context the event mask,base address for peripheral
1128	 * and watermark level
1129	 */
1130	if (sdmac->peripheral_type == IMX_DMATYPE_HDMI) {
1131		context->gReg[4] = sdmac->per_addr;
1132		context->gReg[6] = sdmac->shp_addr;
1133	} else {
1134		context->gReg[0] = sdmac->event_mask[1];
1135		context->gReg[1] = sdmac->event_mask[0];
1136		context->gReg[2] = sdmac->per_addr;
1137		context->gReg[6] = sdmac->shp_addr;
1138		context->gReg[7] = sdmac->watermark_level;
1139	}
1140
1141	bd0->mode.command = C0_SETDM;
1142	bd0->mode.status = BD_DONE | BD_WRAP | BD_EXTD;
1143	bd0->mode.count = sizeof(*context) / 4;
1144	bd0->buffer_addr = sdma->context_phys;
1145	bd0->ext_buffer_addr = 2048 + (sizeof(*context) / 4) * channel;
1146	ret = sdma_run_channel0(sdma);
1147
1148	spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
1149
1150	return ret;
1151}
1152
1153static struct sdma_channel *to_sdma_chan(struct dma_chan *chan)
1154{
1155	return container_of(chan, struct sdma_channel, vc.chan);
1156}
1157
1158static int sdma_disable_channel(struct dma_chan *chan)
1159{
1160	struct sdma_channel *sdmac = to_sdma_chan(chan);
1161	struct sdma_engine *sdma = sdmac->sdma;
1162	int channel = sdmac->channel;
1163
1164	writel_relaxed(BIT(channel), sdma->regs + SDMA_H_STATSTOP);
1165	sdmac->status = DMA_ERROR;
1166
1167	return 0;
1168}
1169static void sdma_channel_terminate_work(struct work_struct *work)
1170{
1171	struct sdma_channel *sdmac = container_of(work, struct sdma_channel,
1172						  terminate_worker);
1173	/*
1174	 * According to NXP R&D team a delay of one BD SDMA cost time
1175	 * (maximum is 1ms) should be added after disable of the channel
1176	 * bit, to ensure SDMA core has really been stopped after SDMA
1177	 * clients call .device_terminate_all.
1178	 */
1179	usleep_range(1000, 2000);
1180
1181	vchan_dma_desc_free_list(&sdmac->vc, &sdmac->terminated);
1182}
1183
1184static int sdma_terminate_all(struct dma_chan *chan)
1185{
1186	struct sdma_channel *sdmac = to_sdma_chan(chan);
1187	unsigned long flags;
1188
1189	spin_lock_irqsave(&sdmac->vc.lock, flags);
1190
1191	sdma_disable_channel(chan);
1192
1193	if (sdmac->desc) {
1194		vchan_terminate_vdesc(&sdmac->desc->vd);
1195		/*
1196		 * move out current descriptor into terminated list so that
1197		 * it could be free in sdma_channel_terminate_work alone
1198		 * later without potential involving next descriptor raised
1199		 * up before the last descriptor terminated.
1200		 */
1201		vchan_get_all_descriptors(&sdmac->vc, &sdmac->terminated);
1202		sdmac->desc = NULL;
1203		schedule_work(&sdmac->terminate_worker);
1204	}
1205
1206	spin_unlock_irqrestore(&sdmac->vc.lock, flags);
1207
1208	return 0;
1209}
1210
1211static void sdma_channel_synchronize(struct dma_chan *chan)
1212{
1213	struct sdma_channel *sdmac = to_sdma_chan(chan);
1214
1215	vchan_synchronize(&sdmac->vc);
1216
1217	flush_work(&sdmac->terminate_worker);
1218}
1219
1220static void sdma_set_watermarklevel_for_p2p(struct sdma_channel *sdmac)
1221{
1222	struct sdma_engine *sdma = sdmac->sdma;
1223
1224	int lwml = sdmac->watermark_level & SDMA_WATERMARK_LEVEL_LWML;
1225	int hwml = (sdmac->watermark_level & SDMA_WATERMARK_LEVEL_HWML) >> 16;
1226
1227	set_bit(sdmac->event_id0 % 32, &sdmac->event_mask[1]);
1228	set_bit(sdmac->event_id1 % 32, &sdmac->event_mask[0]);
1229
1230	if (sdmac->event_id0 > 31)
1231		sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_LWE;
1232
1233	if (sdmac->event_id1 > 31)
1234		sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_HWE;
1235
1236	/*
1237	 * If LWML(src_maxburst) > HWML(dst_maxburst), we need
1238	 * swap LWML and HWML of INFO(A.3.2.5.1), also need swap
1239	 * r0(event_mask[1]) and r1(event_mask[0]).
1240	 */
1241	if (lwml > hwml) {
1242		sdmac->watermark_level &= ~(SDMA_WATERMARK_LEVEL_LWML |
1243						SDMA_WATERMARK_LEVEL_HWML);
1244		sdmac->watermark_level |= hwml;
1245		sdmac->watermark_level |= lwml << 16;
1246		swap(sdmac->event_mask[0], sdmac->event_mask[1]);
1247	}
1248
1249	if (sdmac->per_address2 >= sdma->spba_start_addr &&
1250			sdmac->per_address2 <= sdma->spba_end_addr)
1251		sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_SP;
1252
1253	if (sdmac->per_address >= sdma->spba_start_addr &&
1254			sdmac->per_address <= sdma->spba_end_addr)
1255		sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_DP;
1256
1257	sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_CONT;
1258}
1259
1260static void sdma_set_watermarklevel_for_sais(struct sdma_channel *sdmac)
1261{
1262	unsigned int n_fifos;
1263	unsigned int stride_fifos;
1264	unsigned int words_per_fifo;
1265
1266	if (sdmac->sw_done)
1267		sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_SW_DONE;
1268
1269	if (sdmac->direction == DMA_DEV_TO_MEM) {
1270		n_fifos = sdmac->n_fifos_src;
1271		stride_fifos = sdmac->stride_fifos_src;
1272	} else {
1273		n_fifos = sdmac->n_fifos_dst;
1274		stride_fifos = sdmac->stride_fifos_dst;
1275	}
1276
1277	words_per_fifo = sdmac->words_per_fifo;
1278
1279	sdmac->watermark_level |=
1280			FIELD_PREP(SDMA_WATERMARK_LEVEL_N_FIFOS, n_fifos);
1281	sdmac->watermark_level |=
1282			FIELD_PREP(SDMA_WATERMARK_LEVEL_OFF_FIFOS, stride_fifos);
1283	if (words_per_fifo)
1284		sdmac->watermark_level |=
1285			FIELD_PREP(SDMA_WATERMARK_LEVEL_WORDS_PER_FIFO, (words_per_fifo - 1));
1286}
1287
1288static int sdma_config_channel(struct dma_chan *chan)
1289{
1290	struct sdma_channel *sdmac = to_sdma_chan(chan);
1291	int ret;
1292
1293	sdma_disable_channel(chan);
1294
1295	sdmac->event_mask[0] = 0;
1296	sdmac->event_mask[1] = 0;
1297	sdmac->shp_addr = 0;
1298	sdmac->per_addr = 0;
1299
1300	switch (sdmac->peripheral_type) {
1301	case IMX_DMATYPE_DSP:
1302		sdma_config_ownership(sdmac, false, true, true);
1303		break;
1304	case IMX_DMATYPE_MEMORY:
1305		sdma_config_ownership(sdmac, false, true, false);
1306		break;
1307	default:
1308		sdma_config_ownership(sdmac, true, true, false);
1309		break;
1310	}
1311
1312	ret = sdma_get_pc(sdmac, sdmac->peripheral_type);
1313	if (ret)
1314		return ret;
1315
1316	if ((sdmac->peripheral_type != IMX_DMATYPE_MEMORY) &&
1317			(sdmac->peripheral_type != IMX_DMATYPE_DSP)) {
1318		/* Handle multiple event channels differently */
1319		if (sdmac->event_id1) {
1320			if (sdmac->peripheral_type == IMX_DMATYPE_ASRC_SP ||
1321			    sdmac->peripheral_type == IMX_DMATYPE_ASRC)
1322				sdma_set_watermarklevel_for_p2p(sdmac);
1323		} else {
1324			if (sdmac->peripheral_type ==
1325					IMX_DMATYPE_MULTI_SAI)
1326				sdma_set_watermarklevel_for_sais(sdmac);
1327
1328			__set_bit(sdmac->event_id0, sdmac->event_mask);
1329		}
1330
1331		/* Address */
1332		sdmac->shp_addr = sdmac->per_address;
1333		sdmac->per_addr = sdmac->per_address2;
1334	} else {
1335		sdmac->watermark_level = 0; /* FIXME: M3_BASE_ADDRESS */
1336	}
1337
1338	return 0;
1339}
1340
1341static int sdma_set_channel_priority(struct sdma_channel *sdmac,
1342				     unsigned int priority)
1343{
1344	struct sdma_engine *sdma = sdmac->sdma;
1345	int channel = sdmac->channel;
1346
1347	if (priority < MXC_SDMA_MIN_PRIORITY
1348	    || priority > MXC_SDMA_MAX_PRIORITY) {
1349		return -EINVAL;
1350	}
1351
1352	writel_relaxed(priority, sdma->regs + SDMA_CHNPRI_0 + 4 * channel);
1353
1354	return 0;
1355}
1356
1357static int sdma_request_channel0(struct sdma_engine *sdma)
1358{
1359	int ret = -EBUSY;
1360
1361	sdma->bd0 = dma_alloc_coherent(sdma->dev, PAGE_SIZE, &sdma->bd0_phys,
1362				       GFP_NOWAIT);
1363	if (!sdma->bd0) {
1364		ret = -ENOMEM;
1365		goto out;
1366	}
1367
1368	sdma->channel_control[0].base_bd_ptr = sdma->bd0_phys;
1369	sdma->channel_control[0].current_bd_ptr = sdma->bd0_phys;
1370
1371	sdma_set_channel_priority(&sdma->channel[0], MXC_SDMA_DEFAULT_PRIORITY);
1372	return 0;
1373out:
1374
1375	return ret;
1376}
1377
1378
1379static int sdma_alloc_bd(struct sdma_desc *desc)
1380{
1381	u32 bd_size = desc->num_bd * sizeof(struct sdma_buffer_descriptor);
1382	int ret = 0;
1383
1384	desc->bd = dma_alloc_coherent(desc->sdmac->sdma->dev, bd_size,
1385				      &desc->bd_phys, GFP_NOWAIT);
1386	if (!desc->bd) {
1387		ret = -ENOMEM;
1388		goto out;
1389	}
1390out:
1391	return ret;
1392}
1393
1394static void sdma_free_bd(struct sdma_desc *desc)
1395{
1396	u32 bd_size = desc->num_bd * sizeof(struct sdma_buffer_descriptor);
1397
1398	dma_free_coherent(desc->sdmac->sdma->dev, bd_size, desc->bd,
1399			  desc->bd_phys);
1400}
1401
1402static void sdma_desc_free(struct virt_dma_desc *vd)
1403{
1404	struct sdma_desc *desc = container_of(vd, struct sdma_desc, vd);
1405
1406	sdma_free_bd(desc);
1407	kfree(desc);
1408}
1409
1410static int sdma_alloc_chan_resources(struct dma_chan *chan)
1411{
1412	struct sdma_channel *sdmac = to_sdma_chan(chan);
1413	struct imx_dma_data *data = chan->private;
1414	struct imx_dma_data mem_data;
1415	int prio, ret;
1416
1417	/*
1418	 * MEMCPY may never setup chan->private by filter function such as
1419	 * dmatest, thus create 'struct imx_dma_data mem_data' for this case.
1420	 * Please note in any other slave case, you have to setup chan->private
1421	 * with 'struct imx_dma_data' in your own filter function if you want to
1422	 * request dma channel by dma_request_channel() rather than
1423	 * dma_request_slave_channel(). Othwise, 'MEMCPY in case?' will appear
1424	 * to warn you to correct your filter function.
1425	 */
1426	if (!data) {
1427		dev_dbg(sdmac->sdma->dev, "MEMCPY in case?\n");
1428		mem_data.priority = 2;
1429		mem_data.peripheral_type = IMX_DMATYPE_MEMORY;
1430		mem_data.dma_request = 0;
1431		mem_data.dma_request2 = 0;
1432		data = &mem_data;
1433
1434		ret = sdma_get_pc(sdmac, IMX_DMATYPE_MEMORY);
1435		if (ret)
1436			return ret;
1437	}
1438
1439	switch (data->priority) {
1440	case DMA_PRIO_HIGH:
1441		prio = 3;
1442		break;
1443	case DMA_PRIO_MEDIUM:
1444		prio = 2;
1445		break;
1446	case DMA_PRIO_LOW:
1447	default:
1448		prio = 1;
1449		break;
1450	}
1451
1452	sdmac->peripheral_type = data->peripheral_type;
1453	sdmac->event_id0 = data->dma_request;
1454	sdmac->event_id1 = data->dma_request2;
1455
1456	ret = clk_enable(sdmac->sdma->clk_ipg);
1457	if (ret)
1458		return ret;
1459	ret = clk_enable(sdmac->sdma->clk_ahb);
1460	if (ret)
1461		goto disable_clk_ipg;
1462
1463	ret = sdma_set_channel_priority(sdmac, prio);
1464	if (ret)
1465		goto disable_clk_ahb;
1466
1467	return 0;
1468
1469disable_clk_ahb:
1470	clk_disable(sdmac->sdma->clk_ahb);
1471disable_clk_ipg:
1472	clk_disable(sdmac->sdma->clk_ipg);
1473	return ret;
1474}
1475
1476static void sdma_free_chan_resources(struct dma_chan *chan)
1477{
1478	struct sdma_channel *sdmac = to_sdma_chan(chan);
1479	struct sdma_engine *sdma = sdmac->sdma;
1480
1481	sdma_terminate_all(chan);
1482
1483	sdma_channel_synchronize(chan);
1484
1485	sdma_event_disable(sdmac, sdmac->event_id0);
1486	if (sdmac->event_id1)
1487		sdma_event_disable(sdmac, sdmac->event_id1);
1488
1489	sdmac->event_id0 = 0;
1490	sdmac->event_id1 = 0;
1491
1492	sdma_set_channel_priority(sdmac, 0);
1493
1494	clk_disable(sdma->clk_ipg);
1495	clk_disable(sdma->clk_ahb);
1496}
1497
1498static struct sdma_desc *sdma_transfer_init(struct sdma_channel *sdmac,
1499				enum dma_transfer_direction direction, u32 bds)
1500{
1501	struct sdma_desc *desc;
1502
1503	if (!sdmac->sdma->fw_loaded && sdmac->is_ram_script) {
1504		dev_warn_once(sdmac->sdma->dev, "sdma firmware not ready!\n");
1505		goto err_out;
1506	}
1507
1508	desc = kzalloc((sizeof(*desc)), GFP_NOWAIT);
1509	if (!desc)
1510		goto err_out;
1511
1512	sdmac->status = DMA_IN_PROGRESS;
1513	sdmac->direction = direction;
1514	sdmac->flags = 0;
1515
1516	desc->chn_count = 0;
1517	desc->chn_real_count = 0;
1518	desc->buf_tail = 0;
1519	desc->buf_ptail = 0;
1520	desc->sdmac = sdmac;
1521	desc->num_bd = bds;
1522
1523	if (bds && sdma_alloc_bd(desc))
1524		goto err_desc_out;
1525
1526	/* No slave_config called in MEMCPY case, so do here */
1527	if (direction == DMA_MEM_TO_MEM)
1528		sdma_config_ownership(sdmac, false, true, false);
1529
1530	if (sdma_load_context(sdmac))
1531		goto err_bd_out;
1532
1533	return desc;
1534
1535err_bd_out:
1536	sdma_free_bd(desc);
1537err_desc_out:
1538	kfree(desc);
1539err_out:
1540	return NULL;
1541}
1542
1543static struct dma_async_tx_descriptor *sdma_prep_memcpy(
1544		struct dma_chan *chan, dma_addr_t dma_dst,
1545		dma_addr_t dma_src, size_t len, unsigned long flags)
1546{
1547	struct sdma_channel *sdmac = to_sdma_chan(chan);
1548	struct sdma_engine *sdma = sdmac->sdma;
1549	int channel = sdmac->channel;
1550	size_t count;
1551	int i = 0, param;
1552	struct sdma_buffer_descriptor *bd;
1553	struct sdma_desc *desc;
1554
1555	if (!chan || !len)
1556		return NULL;
1557
1558	dev_dbg(sdma->dev, "memcpy: %pad->%pad, len=%zu, channel=%d.\n",
1559		&dma_src, &dma_dst, len, channel);
1560
1561	desc = sdma_transfer_init(sdmac, DMA_MEM_TO_MEM,
1562					len / SDMA_BD_MAX_CNT + 1);
1563	if (!desc)
1564		return NULL;
1565
1566	do {
1567		count = min_t(size_t, len, SDMA_BD_MAX_CNT);
1568		bd = &desc->bd[i];
1569		bd->buffer_addr = dma_src;
1570		bd->ext_buffer_addr = dma_dst;
1571		bd->mode.count = count;
1572		desc->chn_count += count;
1573		bd->mode.command = 0;
1574
1575		dma_src += count;
1576		dma_dst += count;
1577		len -= count;
1578		i++;
1579
1580		param = BD_DONE | BD_EXTD | BD_CONT;
1581		/* last bd */
1582		if (!len) {
1583			param |= BD_INTR;
1584			param |= BD_LAST;
1585			param &= ~BD_CONT;
1586		}
1587
1588		dev_dbg(sdma->dev, "entry %d: count: %zd dma: 0x%x %s%s\n",
1589				i, count, bd->buffer_addr,
1590				param & BD_WRAP ? "wrap" : "",
1591				param & BD_INTR ? " intr" : "");
1592
1593		bd->mode.status = param;
1594	} while (len);
1595
1596	return vchan_tx_prep(&sdmac->vc, &desc->vd, flags);
1597}
1598
1599static struct dma_async_tx_descriptor *sdma_prep_slave_sg(
1600		struct dma_chan *chan, struct scatterlist *sgl,
1601		unsigned int sg_len, enum dma_transfer_direction direction,
1602		unsigned long flags, void *context)
1603{
1604	struct sdma_channel *sdmac = to_sdma_chan(chan);
1605	struct sdma_engine *sdma = sdmac->sdma;
1606	int i, count;
1607	int channel = sdmac->channel;
1608	struct scatterlist *sg;
1609	struct sdma_desc *desc;
1610
1611	sdma_config_write(chan, &sdmac->slave_config, direction);
1612
1613	desc = sdma_transfer_init(sdmac, direction, sg_len);
1614	if (!desc)
1615		goto err_out;
1616
1617	dev_dbg(sdma->dev, "setting up %d entries for channel %d.\n",
1618			sg_len, channel);
1619
1620	for_each_sg(sgl, sg, sg_len, i) {
1621		struct sdma_buffer_descriptor *bd = &desc->bd[i];
1622		int param;
1623
1624		bd->buffer_addr = sg->dma_address;
1625
1626		count = sg_dma_len(sg);
1627
1628		if (count > SDMA_BD_MAX_CNT) {
1629			dev_err(sdma->dev, "SDMA channel %d: maximum bytes for sg entry exceeded: %d > %d\n",
1630					channel, count, SDMA_BD_MAX_CNT);
1631			goto err_bd_out;
1632		}
1633
1634		bd->mode.count = count;
1635		desc->chn_count += count;
1636
1637		if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES)
1638			goto err_bd_out;
1639
1640		switch (sdmac->word_size) {
1641		case DMA_SLAVE_BUSWIDTH_4_BYTES:
1642			bd->mode.command = 0;
1643			if (count & 3 || sg->dma_address & 3)
1644				goto err_bd_out;
1645			break;
1646		case DMA_SLAVE_BUSWIDTH_2_BYTES:
1647			bd->mode.command = 2;
1648			if (count & 1 || sg->dma_address & 1)
1649				goto err_bd_out;
1650			break;
1651		case DMA_SLAVE_BUSWIDTH_1_BYTE:
1652			bd->mode.command = 1;
1653			break;
1654		default:
1655			goto err_bd_out;
1656		}
1657
1658		param = BD_DONE | BD_EXTD | BD_CONT;
1659
1660		if (i + 1 == sg_len) {
1661			param |= BD_INTR;
1662			param |= BD_LAST;
1663			param &= ~BD_CONT;
1664		}
1665
1666		dev_dbg(sdma->dev, "entry %d: count: %d dma: %#llx %s%s\n",
1667				i, count, (u64)sg->dma_address,
1668				param & BD_WRAP ? "wrap" : "",
1669				param & BD_INTR ? " intr" : "");
1670
1671		bd->mode.status = param;
1672	}
1673
1674	return vchan_tx_prep(&sdmac->vc, &desc->vd, flags);
1675err_bd_out:
1676	sdma_free_bd(desc);
1677	kfree(desc);
1678err_out:
1679	sdmac->status = DMA_ERROR;
1680	return NULL;
1681}
1682
1683static struct dma_async_tx_descriptor *sdma_prep_dma_cyclic(
1684		struct dma_chan *chan, dma_addr_t dma_addr, size_t buf_len,
1685		size_t period_len, enum dma_transfer_direction direction,
1686		unsigned long flags)
1687{
1688	struct sdma_channel *sdmac = to_sdma_chan(chan);
1689	struct sdma_engine *sdma = sdmac->sdma;
1690	int num_periods = 0;
1691	int channel = sdmac->channel;
1692	int i = 0, buf = 0;
1693	struct sdma_desc *desc;
1694
1695	dev_dbg(sdma->dev, "%s channel: %d\n", __func__, channel);
1696
1697	if (sdmac->peripheral_type != IMX_DMATYPE_HDMI)
1698		num_periods = buf_len / period_len;
1699
1700	sdma_config_write(chan, &sdmac->slave_config, direction);
1701
1702	desc = sdma_transfer_init(sdmac, direction, num_periods);
1703	if (!desc)
1704		goto err_out;
1705
1706	desc->period_len = period_len;
1707
1708	sdmac->flags |= IMX_DMA_SG_LOOP;
1709
1710	if (period_len > SDMA_BD_MAX_CNT) {
1711		dev_err(sdma->dev, "SDMA channel %d: maximum period size exceeded: %zu > %d\n",
1712				channel, period_len, SDMA_BD_MAX_CNT);
1713		goto err_bd_out;
1714	}
1715
1716	if (sdmac->peripheral_type == IMX_DMATYPE_HDMI)
1717		return vchan_tx_prep(&sdmac->vc, &desc->vd, flags);
1718
1719	while (buf < buf_len) {
1720		struct sdma_buffer_descriptor *bd = &desc->bd[i];
1721		int param;
1722
1723		bd->buffer_addr = dma_addr;
1724
1725		bd->mode.count = period_len;
1726
1727		if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES)
1728			goto err_bd_out;
1729		if (sdmac->word_size == DMA_SLAVE_BUSWIDTH_4_BYTES)
1730			bd->mode.command = 0;
1731		else
1732			bd->mode.command = sdmac->word_size;
1733
1734		param = BD_DONE | BD_EXTD | BD_CONT | BD_INTR;
1735		if (i + 1 == num_periods)
1736			param |= BD_WRAP;
1737
1738		dev_dbg(sdma->dev, "entry %d: count: %zu dma: %#llx %s%s\n",
1739				i, period_len, (u64)dma_addr,
1740				param & BD_WRAP ? "wrap" : "",
1741				param & BD_INTR ? " intr" : "");
1742
1743		bd->mode.status = param;
1744
1745		dma_addr += period_len;
1746		buf += period_len;
1747
1748		i++;
1749	}
1750
1751	return vchan_tx_prep(&sdmac->vc, &desc->vd, flags);
1752err_bd_out:
1753	sdma_free_bd(desc);
1754	kfree(desc);
1755err_out:
1756	sdmac->status = DMA_ERROR;
1757	return NULL;
1758}
1759
1760static int sdma_config_write(struct dma_chan *chan,
1761		       struct dma_slave_config *dmaengine_cfg,
1762		       enum dma_transfer_direction direction)
1763{
1764	struct sdma_channel *sdmac = to_sdma_chan(chan);
1765
1766	if (direction == DMA_DEV_TO_MEM) {
1767		sdmac->per_address = dmaengine_cfg->src_addr;
1768		sdmac->watermark_level = dmaengine_cfg->src_maxburst *
1769			dmaengine_cfg->src_addr_width;
1770		sdmac->word_size = dmaengine_cfg->src_addr_width;
1771	} else if (direction == DMA_DEV_TO_DEV) {
1772		sdmac->per_address2 = dmaengine_cfg->src_addr;
1773		sdmac->per_address = dmaengine_cfg->dst_addr;
1774		sdmac->watermark_level = dmaengine_cfg->src_maxburst &
1775			SDMA_WATERMARK_LEVEL_LWML;
1776		sdmac->watermark_level |= (dmaengine_cfg->dst_maxburst << 16) &
1777			SDMA_WATERMARK_LEVEL_HWML;
1778		sdmac->word_size = dmaengine_cfg->dst_addr_width;
1779	} else if (sdmac->peripheral_type == IMX_DMATYPE_HDMI) {
1780		sdmac->per_address = dmaengine_cfg->dst_addr;
1781		sdmac->per_address2 = dmaengine_cfg->src_addr;
1782		sdmac->watermark_level = 0;
1783	} else {
1784		sdmac->per_address = dmaengine_cfg->dst_addr;
1785		sdmac->watermark_level = dmaengine_cfg->dst_maxburst *
1786			dmaengine_cfg->dst_addr_width;
1787		sdmac->word_size = dmaengine_cfg->dst_addr_width;
1788	}
1789	sdmac->direction = direction;
1790	return sdma_config_channel(chan);
1791}
1792
1793static int sdma_config(struct dma_chan *chan,
1794		       struct dma_slave_config *dmaengine_cfg)
1795{
1796	struct sdma_channel *sdmac = to_sdma_chan(chan);
1797	struct sdma_engine *sdma = sdmac->sdma;
1798
1799	memcpy(&sdmac->slave_config, dmaengine_cfg, sizeof(*dmaengine_cfg));
1800
1801	if (dmaengine_cfg->peripheral_config) {
1802		struct sdma_peripheral_config *sdmacfg = dmaengine_cfg->peripheral_config;
1803		if (dmaengine_cfg->peripheral_size != sizeof(struct sdma_peripheral_config)) {
1804			dev_err(sdma->dev, "Invalid peripheral size %zu, expected %zu\n",
1805				dmaengine_cfg->peripheral_size,
1806				sizeof(struct sdma_peripheral_config));
1807			return -EINVAL;
1808		}
1809		sdmac->n_fifos_src = sdmacfg->n_fifos_src;
1810		sdmac->n_fifos_dst = sdmacfg->n_fifos_dst;
1811		sdmac->stride_fifos_src = sdmacfg->stride_fifos_src;
1812		sdmac->stride_fifos_dst = sdmacfg->stride_fifos_dst;
1813		sdmac->words_per_fifo = sdmacfg->words_per_fifo;
1814		sdmac->sw_done = sdmacfg->sw_done;
1815	}
1816
1817	/* Set ENBLn earlier to make sure dma request triggered after that */
1818	if (sdmac->event_id0 >= sdmac->sdma->drvdata->num_events)
1819		return -EINVAL;
1820	sdma_event_enable(sdmac, sdmac->event_id0);
1821
1822	if (sdmac->event_id1) {
1823		if (sdmac->event_id1 >= sdmac->sdma->drvdata->num_events)
1824			return -EINVAL;
1825		sdma_event_enable(sdmac, sdmac->event_id1);
1826	}
1827
1828	return 0;
1829}
1830
1831static enum dma_status sdma_tx_status(struct dma_chan *chan,
1832				      dma_cookie_t cookie,
1833				      struct dma_tx_state *txstate)
1834{
1835	struct sdma_channel *sdmac = to_sdma_chan(chan);
1836	struct sdma_desc *desc = NULL;
1837	u32 residue;
1838	struct virt_dma_desc *vd;
1839	enum dma_status ret;
1840	unsigned long flags;
1841
1842	ret = dma_cookie_status(chan, cookie, txstate);
1843	if (ret == DMA_COMPLETE || !txstate)
1844		return ret;
1845
1846	spin_lock_irqsave(&sdmac->vc.lock, flags);
1847
1848	vd = vchan_find_desc(&sdmac->vc, cookie);
1849	if (vd)
1850		desc = to_sdma_desc(&vd->tx);
1851	else if (sdmac->desc && sdmac->desc->vd.tx.cookie == cookie)
1852		desc = sdmac->desc;
1853
1854	if (desc) {
1855		if (sdmac->flags & IMX_DMA_SG_LOOP)
1856			residue = (desc->num_bd - desc->buf_ptail) *
1857				desc->period_len - desc->chn_real_count;
1858		else
1859			residue = desc->chn_count - desc->chn_real_count;
1860	} else {
1861		residue = 0;
1862	}
1863
1864	spin_unlock_irqrestore(&sdmac->vc.lock, flags);
1865
1866	dma_set_tx_state(txstate, chan->completed_cookie, chan->cookie,
1867			 residue);
1868
1869	return sdmac->status;
1870}
1871
1872static void sdma_issue_pending(struct dma_chan *chan)
1873{
1874	struct sdma_channel *sdmac = to_sdma_chan(chan);
1875	unsigned long flags;
1876
1877	spin_lock_irqsave(&sdmac->vc.lock, flags);
1878	if (vchan_issue_pending(&sdmac->vc) && !sdmac->desc)
1879		sdma_start_desc(sdmac);
1880	spin_unlock_irqrestore(&sdmac->vc.lock, flags);
1881}
1882
1883#define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1	34
1884#define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2	38
1885#define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3	45
1886#define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V4	46
1887
1888static void sdma_add_scripts(struct sdma_engine *sdma,
1889			     const struct sdma_script_start_addrs *addr)
1890{
1891	s32 *addr_arr = (u32 *)addr;
1892	s32 *saddr_arr = (u32 *)sdma->script_addrs;
1893	int i;
1894
1895	/* use the default firmware in ROM if missing external firmware */
1896	if (!sdma->script_number)
1897		sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1;
1898
1899	if (sdma->script_number > sizeof(struct sdma_script_start_addrs)
1900				  / sizeof(s32)) {
1901		dev_err(sdma->dev,
1902			"SDMA script number %d not match with firmware.\n",
1903			sdma->script_number);
1904		return;
1905	}
1906
1907	for (i = 0; i < sdma->script_number; i++)
1908		if (addr_arr[i] > 0)
1909			saddr_arr[i] = addr_arr[i];
1910
1911	/*
1912	 * For compatibility with NXP internal legacy kernel before 4.19 which
1913	 * is based on uart ram script and mainline kernel based on uart rom
1914	 * script, both uart ram/rom scripts are present in newer sdma
1915	 * firmware. Use the rom versions if they are present (V3 or newer).
1916	 */
1917	if (sdma->script_number >= SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3) {
1918		if (addr->uart_2_mcu_rom_addr)
1919			sdma->script_addrs->uart_2_mcu_addr = addr->uart_2_mcu_rom_addr;
1920		if (addr->uartsh_2_mcu_rom_addr)
1921			sdma->script_addrs->uartsh_2_mcu_addr = addr->uartsh_2_mcu_rom_addr;
1922	}
1923}
1924
1925static void sdma_load_firmware(const struct firmware *fw, void *context)
1926{
1927	struct sdma_engine *sdma = context;
1928	const struct sdma_firmware_header *header;
1929	const struct sdma_script_start_addrs *addr;
1930	unsigned short *ram_code;
1931
1932	if (!fw) {
1933		dev_info(sdma->dev, "external firmware not found, using ROM firmware\n");
1934		/* In this case we just use the ROM firmware. */
1935		return;
1936	}
1937
1938	if (fw->size < sizeof(*header))
1939		goto err_firmware;
1940
1941	header = (struct sdma_firmware_header *)fw->data;
1942
1943	if (header->magic != SDMA_FIRMWARE_MAGIC)
1944		goto err_firmware;
1945	if (header->ram_code_start + header->ram_code_size > fw->size)
1946		goto err_firmware;
1947	switch (header->version_major) {
1948	case 1:
1949		sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1;
1950		break;
1951	case 2:
1952		sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2;
1953		break;
1954	case 3:
1955		sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3;
1956		break;
1957	case 4:
1958		sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V4;
1959		break;
1960	default:
1961		dev_err(sdma->dev, "unknown firmware version\n");
1962		goto err_firmware;
1963	}
1964
1965	addr = (void *)header + header->script_addrs_start;
1966	ram_code = (void *)header + header->ram_code_start;
1967
1968	clk_enable(sdma->clk_ipg);
1969	clk_enable(sdma->clk_ahb);
1970	/* download the RAM image for SDMA */
1971	sdma_load_script(sdma, ram_code,
1972			 header->ram_code_size,
1973			 addr->ram_code_start_addr);
1974	clk_disable(sdma->clk_ipg);
1975	clk_disable(sdma->clk_ahb);
1976
1977	sdma_add_scripts(sdma, addr);
1978
1979	sdma->fw_loaded = true;
1980
1981	dev_info(sdma->dev, "loaded firmware %d.%d\n",
1982		 header->version_major,
1983		 header->version_minor);
1984
1985err_firmware:
1986	release_firmware(fw);
1987}
1988
1989#define EVENT_REMAP_CELLS 3
1990
1991static int sdma_event_remap(struct sdma_engine *sdma)
1992{
1993	struct device_node *np = sdma->dev->of_node;
1994	struct device_node *gpr_np = of_parse_phandle(np, "gpr", 0);
1995	struct property *event_remap;
1996	struct regmap *gpr;
1997	char propname[] = "fsl,sdma-event-remap";
1998	u32 reg, val, shift, num_map, i;
1999	int ret = 0;
2000
2001	if (IS_ERR(np) || !gpr_np)
2002		goto out;
2003
2004	event_remap = of_find_property(np, propname, NULL);
2005	num_map = event_remap ? (event_remap->length / sizeof(u32)) : 0;
2006	if (!num_map) {
2007		dev_dbg(sdma->dev, "no event needs to be remapped\n");
2008		goto out;
2009	} else if (num_map % EVENT_REMAP_CELLS) {
2010		dev_err(sdma->dev, "the property %s must modulo %d\n",
2011				propname, EVENT_REMAP_CELLS);
2012		ret = -EINVAL;
2013		goto out;
2014	}
2015
2016	gpr = syscon_node_to_regmap(gpr_np);
2017	if (IS_ERR(gpr)) {
2018		dev_err(sdma->dev, "failed to get gpr regmap\n");
2019		ret = PTR_ERR(gpr);
2020		goto out;
2021	}
2022
2023	for (i = 0; i < num_map; i += EVENT_REMAP_CELLS) {
2024		ret = of_property_read_u32_index(np, propname, i, &reg);
2025		if (ret) {
2026			dev_err(sdma->dev, "failed to read property %s index %d\n",
2027					propname, i);
2028			goto out;
2029		}
2030
2031		ret = of_property_read_u32_index(np, propname, i + 1, &shift);
2032		if (ret) {
2033			dev_err(sdma->dev, "failed to read property %s index %d\n",
2034					propname, i + 1);
2035			goto out;
2036		}
2037
2038		ret = of_property_read_u32_index(np, propname, i + 2, &val);
2039		if (ret) {
2040			dev_err(sdma->dev, "failed to read property %s index %d\n",
2041					propname, i + 2);
2042			goto out;
2043		}
2044
2045		regmap_update_bits(gpr, reg, BIT(shift), val << shift);
2046	}
2047
2048out:
2049	if (gpr_np)
2050		of_node_put(gpr_np);
2051
2052	return ret;
2053}
2054
2055static int sdma_get_firmware(struct sdma_engine *sdma,
2056		const char *fw_name)
2057{
2058	int ret;
2059
2060	ret = request_firmware_nowait(THIS_MODULE,
2061			FW_ACTION_UEVENT, fw_name, sdma->dev,
2062			GFP_KERNEL, sdma, sdma_load_firmware);
2063
2064	return ret;
2065}
2066
2067static int sdma_init(struct sdma_engine *sdma)
2068{
2069	int i, ret;
2070	dma_addr_t ccb_phys;
2071
2072	ret = clk_enable(sdma->clk_ipg);
2073	if (ret)
2074		return ret;
2075	ret = clk_enable(sdma->clk_ahb);
2076	if (ret)
2077		goto disable_clk_ipg;
2078
2079	if (sdma->drvdata->check_ratio &&
2080	    (clk_get_rate(sdma->clk_ahb) == clk_get_rate(sdma->clk_ipg)))
2081		sdma->clk_ratio = 1;
2082
2083	/* Be sure SDMA has not started yet */
2084	writel_relaxed(0, sdma->regs + SDMA_H_C0PTR);
2085
2086	sdma->channel_control = dma_alloc_coherent(sdma->dev,
2087			MAX_DMA_CHANNELS * sizeof(struct sdma_channel_control) +
2088			sizeof(struct sdma_context_data),
2089			&ccb_phys, GFP_KERNEL);
2090
2091	if (!sdma->channel_control) {
2092		ret = -ENOMEM;
2093		goto err_dma_alloc;
2094	}
2095
2096	sdma->context = (void *)sdma->channel_control +
2097		MAX_DMA_CHANNELS * sizeof(struct sdma_channel_control);
2098	sdma->context_phys = ccb_phys +
2099		MAX_DMA_CHANNELS * sizeof(struct sdma_channel_control);
2100
2101	/* disable all channels */
2102	for (i = 0; i < sdma->drvdata->num_events; i++)
2103		writel_relaxed(0, sdma->regs + chnenbl_ofs(sdma, i));
2104
2105	/* All channels have priority 0 */
2106	for (i = 0; i < MAX_DMA_CHANNELS; i++)
2107		writel_relaxed(0, sdma->regs + SDMA_CHNPRI_0 + i * 4);
2108
2109	ret = sdma_request_channel0(sdma);
2110	if (ret)
2111		goto err_dma_alloc;
2112
2113	sdma_config_ownership(&sdma->channel[0], false, true, false);
2114
2115	/* Set Command Channel (Channel Zero) */
2116	writel_relaxed(0x4050, sdma->regs + SDMA_CHN0ADDR);
2117
2118	/* Set bits of CONFIG register but with static context switching */
2119	if (sdma->clk_ratio)
2120		writel_relaxed(SDMA_H_CONFIG_ACR, sdma->regs + SDMA_H_CONFIG);
2121	else
2122		writel_relaxed(0, sdma->regs + SDMA_H_CONFIG);
2123
2124	writel_relaxed(ccb_phys, sdma->regs + SDMA_H_C0PTR);
2125
2126	/* Initializes channel's priorities */
2127	sdma_set_channel_priority(&sdma->channel[0], 7);
2128
2129	clk_disable(sdma->clk_ipg);
2130	clk_disable(sdma->clk_ahb);
2131
2132	return 0;
2133
2134err_dma_alloc:
2135	clk_disable(sdma->clk_ahb);
2136disable_clk_ipg:
2137	clk_disable(sdma->clk_ipg);
2138	dev_err(sdma->dev, "initialisation failed with %d\n", ret);
2139	return ret;
2140}
2141
2142static bool sdma_filter_fn(struct dma_chan *chan, void *fn_param)
2143{
2144	struct sdma_channel *sdmac = to_sdma_chan(chan);
2145	struct imx_dma_data *data = fn_param;
2146
2147	if (!imx_dma_is_general_purpose(chan))
2148		return false;
2149
2150	sdmac->data = *data;
2151	chan->private = &sdmac->data;
2152
2153	return true;
2154}
2155
2156static struct dma_chan *sdma_xlate(struct of_phandle_args *dma_spec,
2157				   struct of_dma *ofdma)
2158{
2159	struct sdma_engine *sdma = ofdma->of_dma_data;
2160	dma_cap_mask_t mask = sdma->dma_device.cap_mask;
2161	struct imx_dma_data data;
2162
2163	if (dma_spec->args_count != 3)
2164		return NULL;
2165
2166	data.dma_request = dma_spec->args[0];
2167	data.peripheral_type = dma_spec->args[1];
2168	data.priority = dma_spec->args[2];
2169	/*
2170	 * init dma_request2 to zero, which is not used by the dts.
2171	 * For P2P, dma_request2 is init from dma_request_channel(),
2172	 * chan->private will point to the imx_dma_data, and in
2173	 * device_alloc_chan_resources(), imx_dma_data.dma_request2 will
2174	 * be set to sdmac->event_id1.
2175	 */
2176	data.dma_request2 = 0;
2177
2178	return __dma_request_channel(&mask, sdma_filter_fn, &data,
2179				     ofdma->of_node);
2180}
2181
2182static int sdma_probe(struct platform_device *pdev)
2183{
2184	struct device_node *np = pdev->dev.of_node;
2185	struct device_node *spba_bus;
2186	const char *fw_name;
2187	int ret;
2188	int irq;
2189	struct resource spba_res;
2190	int i;
2191	struct sdma_engine *sdma;
2192	s32 *saddr_arr;
2193
2194	ret = dma_coerce_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
2195	if (ret)
2196		return ret;
2197
2198	sdma = devm_kzalloc(&pdev->dev, sizeof(*sdma), GFP_KERNEL);
2199	if (!sdma)
2200		return -ENOMEM;
2201
2202	spin_lock_init(&sdma->channel_0_lock);
2203
2204	sdma->dev = &pdev->dev;
2205	sdma->drvdata = of_device_get_match_data(sdma->dev);
2206
2207	irq = platform_get_irq(pdev, 0);
2208	if (irq < 0)
2209		return irq;
2210
2211	sdma->regs = devm_platform_ioremap_resource(pdev, 0);
2212	if (IS_ERR(sdma->regs))
2213		return PTR_ERR(sdma->regs);
2214
2215	sdma->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
2216	if (IS_ERR(sdma->clk_ipg))
2217		return PTR_ERR(sdma->clk_ipg);
2218
2219	sdma->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
2220	if (IS_ERR(sdma->clk_ahb))
2221		return PTR_ERR(sdma->clk_ahb);
2222
2223	ret = clk_prepare(sdma->clk_ipg);
2224	if (ret)
2225		return ret;
2226
2227	ret = clk_prepare(sdma->clk_ahb);
2228	if (ret)
2229		goto err_clk;
2230
2231	ret = devm_request_irq(&pdev->dev, irq, sdma_int_handler, 0,
2232				dev_name(&pdev->dev), sdma);
2233	if (ret)
2234		goto err_irq;
2235
2236	sdma->irq = irq;
2237
2238	sdma->script_addrs = kzalloc(sizeof(*sdma->script_addrs), GFP_KERNEL);
2239	if (!sdma->script_addrs) {
2240		ret = -ENOMEM;
2241		goto err_irq;
2242	}
2243
2244	/* initially no scripts available */
2245	saddr_arr = (s32 *)sdma->script_addrs;
2246	for (i = 0; i < sizeof(*sdma->script_addrs) / sizeof(s32); i++)
2247		saddr_arr[i] = -EINVAL;
2248
2249	dma_cap_set(DMA_SLAVE, sdma->dma_device.cap_mask);
2250	dma_cap_set(DMA_CYCLIC, sdma->dma_device.cap_mask);
2251	dma_cap_set(DMA_MEMCPY, sdma->dma_device.cap_mask);
2252	dma_cap_set(DMA_PRIVATE, sdma->dma_device.cap_mask);
2253
2254	INIT_LIST_HEAD(&sdma->dma_device.channels);
2255	/* Initialize channel parameters */
2256	for (i = 0; i < MAX_DMA_CHANNELS; i++) {
2257		struct sdma_channel *sdmac = &sdma->channel[i];
2258
2259		sdmac->sdma = sdma;
2260
2261		sdmac->channel = i;
2262		sdmac->vc.desc_free = sdma_desc_free;
2263		INIT_LIST_HEAD(&sdmac->terminated);
2264		INIT_WORK(&sdmac->terminate_worker,
2265				sdma_channel_terminate_work);
2266		/*
2267		 * Add the channel to the DMAC list. Do not add channel 0 though
2268		 * because we need it internally in the SDMA driver. This also means
2269		 * that channel 0 in dmaengine counting matches sdma channel 1.
2270		 */
2271		if (i)
2272			vchan_init(&sdmac->vc, &sdma->dma_device);
2273	}
2274
2275	ret = sdma_init(sdma);
2276	if (ret)
2277		goto err_init;
2278
2279	ret = sdma_event_remap(sdma);
2280	if (ret)
2281		goto err_init;
2282
2283	if (sdma->drvdata->script_addrs)
2284		sdma_add_scripts(sdma, sdma->drvdata->script_addrs);
2285
2286	sdma->dma_device.dev = &pdev->dev;
2287
2288	sdma->dma_device.device_alloc_chan_resources = sdma_alloc_chan_resources;
2289	sdma->dma_device.device_free_chan_resources = sdma_free_chan_resources;
2290	sdma->dma_device.device_tx_status = sdma_tx_status;
2291	sdma->dma_device.device_prep_slave_sg = sdma_prep_slave_sg;
2292	sdma->dma_device.device_prep_dma_cyclic = sdma_prep_dma_cyclic;
2293	sdma->dma_device.device_config = sdma_config;
2294	sdma->dma_device.device_terminate_all = sdma_terminate_all;
2295	sdma->dma_device.device_synchronize = sdma_channel_synchronize;
2296	sdma->dma_device.src_addr_widths = SDMA_DMA_BUSWIDTHS;
2297	sdma->dma_device.dst_addr_widths = SDMA_DMA_BUSWIDTHS;
2298	sdma->dma_device.directions = SDMA_DMA_DIRECTIONS;
2299	sdma->dma_device.residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT;
2300	sdma->dma_device.device_prep_dma_memcpy = sdma_prep_memcpy;
2301	sdma->dma_device.device_issue_pending = sdma_issue_pending;
2302	sdma->dma_device.copy_align = 2;
2303	dma_set_max_seg_size(sdma->dma_device.dev, SDMA_BD_MAX_CNT);
2304
2305	platform_set_drvdata(pdev, sdma);
2306
2307	ret = dma_async_device_register(&sdma->dma_device);
2308	if (ret) {
2309		dev_err(&pdev->dev, "unable to register\n");
2310		goto err_init;
2311	}
2312
2313	if (np) {
2314		ret = of_dma_controller_register(np, sdma_xlate, sdma);
2315		if (ret) {
2316			dev_err(&pdev->dev, "failed to register controller\n");
2317			goto err_register;
2318		}
2319
2320		spba_bus = of_find_compatible_node(NULL, NULL, "fsl,spba-bus");
2321		ret = of_address_to_resource(spba_bus, 0, &spba_res);
2322		if (!ret) {
2323			sdma->spba_start_addr = spba_res.start;
2324			sdma->spba_end_addr = spba_res.end;
2325		}
2326		of_node_put(spba_bus);
2327	}
2328
2329	/*
2330	 * Because that device tree does not encode ROM script address,
2331	 * the RAM script in firmware is mandatory for device tree
2332	 * probe, otherwise it fails.
2333	 */
2334	ret = of_property_read_string(np, "fsl,sdma-ram-script-name",
2335				      &fw_name);
2336	if (ret) {
2337		dev_warn(&pdev->dev, "failed to get firmware name\n");
2338	} else {
2339		ret = sdma_get_firmware(sdma, fw_name);
2340		if (ret)
2341			dev_warn(&pdev->dev, "failed to get firmware from device tree\n");
2342	}
2343
2344	return 0;
2345
2346err_register:
2347	dma_async_device_unregister(&sdma->dma_device);
2348err_init:
2349	kfree(sdma->script_addrs);
2350err_irq:
2351	clk_unprepare(sdma->clk_ahb);
2352err_clk:
2353	clk_unprepare(sdma->clk_ipg);
2354	return ret;
2355}
2356
2357static void sdma_remove(struct platform_device *pdev)
2358{
2359	struct sdma_engine *sdma = platform_get_drvdata(pdev);
2360	int i;
2361
2362	devm_free_irq(&pdev->dev, sdma->irq, sdma);
2363	dma_async_device_unregister(&sdma->dma_device);
2364	kfree(sdma->script_addrs);
2365	clk_unprepare(sdma->clk_ahb);
2366	clk_unprepare(sdma->clk_ipg);
2367	/* Kill the tasklet */
2368	for (i = 0; i < MAX_DMA_CHANNELS; i++) {
2369		struct sdma_channel *sdmac = &sdma->channel[i];
2370
2371		tasklet_kill(&sdmac->vc.task);
2372		sdma_free_chan_resources(&sdmac->vc.chan);
2373	}
2374
2375	platform_set_drvdata(pdev, NULL);
2376}
2377
2378static struct platform_driver sdma_driver = {
2379	.driver		= {
2380		.name	= "imx-sdma",
2381		.of_match_table = sdma_dt_ids,
2382	},
2383	.remove_new	= sdma_remove,
2384	.probe		= sdma_probe,
2385};
2386
2387module_platform_driver(sdma_driver);
2388
2389MODULE_AUTHOR("Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>");
2390MODULE_DESCRIPTION("i.MX SDMA driver");
2391#if IS_ENABLED(CONFIG_SOC_IMX6Q)
2392MODULE_FIRMWARE("imx/sdma/sdma-imx6q.bin");
2393#endif
2394#if IS_ENABLED(CONFIG_SOC_IMX7D) || IS_ENABLED(CONFIG_SOC_IMX8M)
2395MODULE_FIRMWARE("imx/sdma/sdma-imx7d.bin");
2396#endif
2397MODULE_LICENSE("GPL");
2398