1// SPDX-License-Identifier: GPL-2.0
2/* Copyright(c) 2019 Intel Corporation. All rights rsvd. */
3#include <linux/init.h>
4#include <linux/kernel.h>
5#include <linux/module.h>
6#include <linux/pci.h>
7#include <linux/io-64-nonatomic-lo-hi.h>
8#include <linux/dmaengine.h>
9#include <linux/delay.h>
10#include <linux/iommu.h>
11#include <linux/sched/mm.h>
12#include <uapi/linux/idxd.h>
13#include "../dmaengine.h"
14#include "idxd.h"
15#include "registers.h"
16
17enum irq_work_type {
18	IRQ_WORK_NORMAL = 0,
19	IRQ_WORK_PROCESS_FAULT,
20};
21
22struct idxd_resubmit {
23	struct work_struct work;
24	struct idxd_desc *desc;
25};
26
27struct idxd_int_handle_revoke {
28	struct work_struct work;
29	struct idxd_device *idxd;
30};
31
32static void idxd_device_reinit(struct work_struct *work)
33{
34	struct idxd_device *idxd = container_of(work, struct idxd_device, work);
35	struct device *dev = &idxd->pdev->dev;
36	int rc, i;
37
38	idxd_device_reset(idxd);
39	rc = idxd_device_config(idxd);
40	if (rc < 0)
41		goto out;
42
43	rc = idxd_device_enable(idxd);
44	if (rc < 0)
45		goto out;
46
47	for (i = 0; i < idxd->max_wqs; i++) {
48		if (test_bit(i, idxd->wq_enable_map)) {
49			struct idxd_wq *wq = idxd->wqs[i];
50
51			rc = idxd_wq_enable(wq);
52			if (rc < 0) {
53				clear_bit(i, idxd->wq_enable_map);
54				dev_warn(dev, "Unable to re-enable wq %s\n",
55					 dev_name(wq_confdev(wq)));
56			}
57		}
58	}
59
60	return;
61
62 out:
63	idxd_device_clear_state(idxd);
64}
65
66/*
67 * The function sends a drain descriptor for the interrupt handle. The drain ensures
68 * all descriptors with this interrupt handle is flushed and the interrupt
69 * will allow the cleanup of the outstanding descriptors.
70 */
71static void idxd_int_handle_revoke_drain(struct idxd_irq_entry *ie)
72{
73	struct idxd_wq *wq = ie_to_wq(ie);
74	struct idxd_device *idxd = wq->idxd;
75	struct device *dev = &idxd->pdev->dev;
76	struct dsa_hw_desc desc = {};
77	void __iomem *portal;
78	int rc;
79
80	/* Issue a simple drain operation with interrupt but no completion record */
81	desc.flags = IDXD_OP_FLAG_RCI;
82	desc.opcode = DSA_OPCODE_DRAIN;
83	desc.priv = 1;
84
85	if (ie->pasid != IOMMU_PASID_INVALID)
86		desc.pasid = ie->pasid;
87	desc.int_handle = ie->int_handle;
88	portal = idxd_wq_portal_addr(wq);
89
90	/*
91	 * The wmb() makes sure that the descriptor is all there before we
92	 * issue.
93	 */
94	wmb();
95	if (wq_dedicated(wq)) {
96		iosubmit_cmds512(portal, &desc, 1);
97	} else {
98		rc = idxd_enqcmds(wq, portal, &desc);
99		/* This should not fail unless hardware failed. */
100		if (rc < 0)
101			dev_warn(dev, "Failed to submit drain desc on wq %d\n", wq->id);
102	}
103}
104
105static void idxd_abort_invalid_int_handle_descs(struct idxd_irq_entry *ie)
106{
107	LIST_HEAD(flist);
108	struct idxd_desc *d, *t;
109	struct llist_node *head;
110
111	spin_lock(&ie->list_lock);
112	head = llist_del_all(&ie->pending_llist);
113	if (head) {
114		llist_for_each_entry_safe(d, t, head, llnode)
115			list_add_tail(&d->list, &ie->work_list);
116	}
117
118	list_for_each_entry_safe(d, t, &ie->work_list, list) {
119		if (d->completion->status == DSA_COMP_INT_HANDLE_INVAL)
120			list_move_tail(&d->list, &flist);
121	}
122	spin_unlock(&ie->list_lock);
123
124	list_for_each_entry_safe(d, t, &flist, list) {
125		list_del(&d->list);
126		idxd_desc_complete(d, IDXD_COMPLETE_ABORT, true);
127	}
128}
129
130static void idxd_int_handle_revoke(struct work_struct *work)
131{
132	struct idxd_int_handle_revoke *revoke =
133		container_of(work, struct idxd_int_handle_revoke, work);
134	struct idxd_device *idxd = revoke->idxd;
135	struct pci_dev *pdev = idxd->pdev;
136	struct device *dev = &pdev->dev;
137	int i, new_handle, rc;
138
139	if (!idxd->request_int_handles) {
140		kfree(revoke);
141		dev_warn(dev, "Unexpected int handle refresh interrupt.\n");
142		return;
143	}
144
145	/*
146	 * The loop attempts to acquire new interrupt handle for all interrupt
147	 * vectors that supports a handle. If a new interrupt handle is acquired and the
148	 * wq is kernel type, the driver will kill the percpu_ref to pause all
149	 * ongoing descriptor submissions. The interrupt handle is then changed.
150	 * After change, the percpu_ref is revived and all the pending submissions
151	 * are woken to try again. A drain is sent to for the interrupt handle
152	 * at the end to make sure all invalid int handle descriptors are processed.
153	 */
154	for (i = 1; i < idxd->irq_cnt; i++) {
155		struct idxd_irq_entry *ie = idxd_get_ie(idxd, i);
156		struct idxd_wq *wq = ie_to_wq(ie);
157
158		if (ie->int_handle == INVALID_INT_HANDLE)
159			continue;
160
161		rc = idxd_device_request_int_handle(idxd, i, &new_handle, IDXD_IRQ_MSIX);
162		if (rc < 0) {
163			dev_warn(dev, "get int handle %d failed: %d\n", i, rc);
164			/*
165			 * Failed to acquire new interrupt handle. Kill the WQ
166			 * and release all the pending submitters. The submitters will
167			 * get error return code and handle appropriately.
168			 */
169			ie->int_handle = INVALID_INT_HANDLE;
170			idxd_wq_quiesce(wq);
171			idxd_abort_invalid_int_handle_descs(ie);
172			continue;
173		}
174
175		/* No change in interrupt handle, nothing needs to be done */
176		if (ie->int_handle == new_handle)
177			continue;
178
179		if (wq->state != IDXD_WQ_ENABLED || wq->type != IDXD_WQT_KERNEL) {
180			/*
181			 * All the MSIX interrupts are allocated at once during probe.
182			 * Therefore we need to update all interrupts even if the WQ
183			 * isn't supporting interrupt operations.
184			 */
185			ie->int_handle = new_handle;
186			continue;
187		}
188
189		mutex_lock(&wq->wq_lock);
190		reinit_completion(&wq->wq_resurrect);
191
192		/* Kill percpu_ref to pause additional descriptor submissions */
193		percpu_ref_kill(&wq->wq_active);
194
195		/* Wait for all submitters quiesce before we change interrupt handle */
196		wait_for_completion(&wq->wq_dead);
197
198		ie->int_handle = new_handle;
199
200		/* Revive percpu ref and wake up all the waiting submitters */
201		percpu_ref_reinit(&wq->wq_active);
202		complete_all(&wq->wq_resurrect);
203		mutex_unlock(&wq->wq_lock);
204
205		/*
206		 * The delay here is to wait for all possible MOVDIR64B that
207		 * are issued before percpu_ref_kill() has happened to have
208		 * reached the PCIe domain before the drain is issued. The driver
209		 * needs to ensure that the drain descriptor issued does not pass
210		 * all the other issued descriptors that contain the invalid
211		 * interrupt handle in order to ensure that the drain descriptor
212		 * interrupt will allow the cleanup of all the descriptors with
213		 * invalid interrupt handle.
214		 */
215		if (wq_dedicated(wq))
216			udelay(100);
217		idxd_int_handle_revoke_drain(ie);
218	}
219	kfree(revoke);
220}
221
222static void idxd_evl_fault_work(struct work_struct *work)
223{
224	struct idxd_evl_fault *fault = container_of(work, struct idxd_evl_fault, work);
225	struct idxd_wq *wq = fault->wq;
226	struct idxd_device *idxd = wq->idxd;
227	struct device *dev = &idxd->pdev->dev;
228	struct idxd_evl *evl = idxd->evl;
229	struct __evl_entry *entry_head = fault->entry;
230	void *cr = (void *)entry_head + idxd->data->evl_cr_off;
231	int cr_size = idxd->data->compl_size;
232	u8 *status = (u8 *)cr + idxd->data->cr_status_off;
233	u8 *result = (u8 *)cr + idxd->data->cr_result_off;
234	int copied, copy_size;
235	bool *bf;
236
237	switch (fault->status) {
238	case DSA_COMP_CRA_XLAT:
239		if (entry_head->batch && entry_head->first_err_in_batch)
240			evl->batch_fail[entry_head->batch_id] = false;
241
242		copy_size = cr_size;
243		idxd_user_counter_increment(wq, entry_head->pasid, COUNTER_FAULTS);
244		break;
245	case DSA_COMP_BATCH_EVL_ERR:
246		bf = &evl->batch_fail[entry_head->batch_id];
247
248		copy_size = entry_head->rcr || *bf ? cr_size : 0;
249		if (*bf) {
250			if (*status == DSA_COMP_SUCCESS)
251				*status = DSA_COMP_BATCH_FAIL;
252			*result = 1;
253			*bf = false;
254		}
255		idxd_user_counter_increment(wq, entry_head->pasid, COUNTER_FAULTS);
256		break;
257	case DSA_COMP_DRAIN_EVL:
258		copy_size = cr_size;
259		break;
260	default:
261		copy_size = 0;
262		dev_dbg_ratelimited(dev, "Unrecognized error code: %#x\n", fault->status);
263		break;
264	}
265
266	if (copy_size == 0)
267		return;
268
269	/*
270	 * Copy completion record to fault_addr in user address space
271	 * that is found by wq and PASID.
272	 */
273	copied = idxd_copy_cr(wq, entry_head->pasid, entry_head->fault_addr,
274			      cr, copy_size);
275	/*
276	 * The task that triggered the page fault is unknown currently
277	 * because multiple threads may share the user address
278	 * space or the task exits already before this fault.
279	 * So if the copy fails, SIGSEGV can not be sent to the task.
280	 * Just print an error for the failure. The user application
281	 * waiting for the completion record will time out on this
282	 * failure.
283	 */
284	switch (fault->status) {
285	case DSA_COMP_CRA_XLAT:
286		if (copied != copy_size) {
287			idxd_user_counter_increment(wq, entry_head->pasid, COUNTER_FAULT_FAILS);
288			dev_dbg_ratelimited(dev, "Failed to write to completion record: (%d:%d)\n",
289					    copy_size, copied);
290			if (entry_head->batch)
291				evl->batch_fail[entry_head->batch_id] = true;
292		}
293		break;
294	case DSA_COMP_BATCH_EVL_ERR:
295		if (copied != copy_size) {
296			idxd_user_counter_increment(wq, entry_head->pasid, COUNTER_FAULT_FAILS);
297			dev_dbg_ratelimited(dev, "Failed to write to batch completion record: (%d:%d)\n",
298					    copy_size, copied);
299		}
300		break;
301	case DSA_COMP_DRAIN_EVL:
302		if (copied != copy_size)
303			dev_dbg_ratelimited(dev, "Failed to write to drain completion record: (%d:%d)\n",
304					    copy_size, copied);
305		break;
306	}
307
308	kmem_cache_free(idxd->evl_cache, fault);
309}
310
311static void process_evl_entry(struct idxd_device *idxd,
312			      struct __evl_entry *entry_head, unsigned int index)
313{
314	struct device *dev = &idxd->pdev->dev;
315	struct idxd_evl *evl = idxd->evl;
316	u8 status;
317
318	if (test_bit(index, evl->bmap)) {
319		clear_bit(index, evl->bmap);
320	} else {
321		status = DSA_COMP_STATUS(entry_head->error);
322
323		if (status == DSA_COMP_CRA_XLAT || status == DSA_COMP_DRAIN_EVL ||
324		    status == DSA_COMP_BATCH_EVL_ERR) {
325			struct idxd_evl_fault *fault;
326			int ent_size = evl_ent_size(idxd);
327
328			if (entry_head->rci)
329				dev_dbg(dev, "Completion Int Req set, ignoring!\n");
330
331			if (!entry_head->rcr && status == DSA_COMP_DRAIN_EVL)
332				return;
333
334			fault = kmem_cache_alloc(idxd->evl_cache, GFP_ATOMIC);
335			if (fault) {
336				struct idxd_wq *wq = idxd->wqs[entry_head->wq_idx];
337
338				fault->wq = wq;
339				fault->status = status;
340				memcpy(&fault->entry, entry_head, ent_size);
341				INIT_WORK(&fault->work, idxd_evl_fault_work);
342				queue_work(wq->wq, &fault->work);
343			} else {
344				dev_warn(dev, "Failed to service fault work.\n");
345			}
346		} else {
347			dev_warn_ratelimited(dev, "Device error %#x operation: %#x fault addr: %#llx\n",
348					     status, entry_head->operation,
349					     entry_head->fault_addr);
350		}
351	}
352}
353
354static void process_evl_entries(struct idxd_device *idxd)
355{
356	union evl_status_reg evl_status;
357	unsigned int h, t;
358	struct idxd_evl *evl = idxd->evl;
359	struct __evl_entry *entry_head;
360	unsigned int ent_size = evl_ent_size(idxd);
361	u32 size;
362
363	evl_status.bits = 0;
364	evl_status.int_pending = 1;
365
366	spin_lock(&evl->lock);
367	/* Clear interrupt pending bit */
368	iowrite32(evl_status.bits_upper32,
369		  idxd->reg_base + IDXD_EVLSTATUS_OFFSET + sizeof(u32));
370	evl_status.bits = ioread64(idxd->reg_base + IDXD_EVLSTATUS_OFFSET);
371	t = evl_status.tail;
372	h = evl_status.head;
373	size = idxd->evl->size;
374
375	while (h != t) {
376		entry_head = (struct __evl_entry *)(evl->log + (h * ent_size));
377		process_evl_entry(idxd, entry_head, h);
378		h = (h + 1) % size;
379	}
380
381	evl_status.head = h;
382	iowrite32(evl_status.bits_lower32, idxd->reg_base + IDXD_EVLSTATUS_OFFSET);
383	spin_unlock(&evl->lock);
384}
385
386irqreturn_t idxd_misc_thread(int vec, void *data)
387{
388	struct idxd_irq_entry *irq_entry = data;
389	struct idxd_device *idxd = ie_to_idxd(irq_entry);
390	struct device *dev = &idxd->pdev->dev;
391	union gensts_reg gensts;
392	u32 val = 0;
393	int i;
394	bool err = false;
395	u32 cause;
396
397	cause = ioread32(idxd->reg_base + IDXD_INTCAUSE_OFFSET);
398	if (!cause)
399		return IRQ_NONE;
400
401	iowrite32(cause, idxd->reg_base + IDXD_INTCAUSE_OFFSET);
402
403	if (cause & IDXD_INTC_HALT_STATE)
404		goto halt;
405
406	if (cause & IDXD_INTC_ERR) {
407		spin_lock(&idxd->dev_lock);
408		for (i = 0; i < 4; i++)
409			idxd->sw_err.bits[i] = ioread64(idxd->reg_base +
410					IDXD_SWERR_OFFSET + i * sizeof(u64));
411
412		iowrite64(idxd->sw_err.bits[0] & IDXD_SWERR_ACK,
413			  idxd->reg_base + IDXD_SWERR_OFFSET);
414
415		if (idxd->sw_err.valid && idxd->sw_err.wq_idx_valid) {
416			int id = idxd->sw_err.wq_idx;
417			struct idxd_wq *wq = idxd->wqs[id];
418
419			if (wq->type == IDXD_WQT_USER)
420				wake_up_interruptible(&wq->err_queue);
421		} else {
422			int i;
423
424			for (i = 0; i < idxd->max_wqs; i++) {
425				struct idxd_wq *wq = idxd->wqs[i];
426
427				if (wq->type == IDXD_WQT_USER)
428					wake_up_interruptible(&wq->err_queue);
429			}
430		}
431
432		spin_unlock(&idxd->dev_lock);
433		val |= IDXD_INTC_ERR;
434
435		for (i = 0; i < 4; i++)
436			dev_warn_ratelimited(dev, "err[%d]: %#16.16llx\n",
437					     i, idxd->sw_err.bits[i]);
438		err = true;
439	}
440
441	if (cause & IDXD_INTC_INT_HANDLE_REVOKED) {
442		struct idxd_int_handle_revoke *revoke;
443
444		val |= IDXD_INTC_INT_HANDLE_REVOKED;
445
446		revoke = kzalloc(sizeof(*revoke), GFP_ATOMIC);
447		if (revoke) {
448			revoke->idxd = idxd;
449			INIT_WORK(&revoke->work, idxd_int_handle_revoke);
450			queue_work(idxd->wq, &revoke->work);
451
452		} else {
453			dev_err(dev, "Failed to allocate work for int handle revoke\n");
454			idxd_wqs_quiesce(idxd);
455		}
456	}
457
458	if (cause & IDXD_INTC_CMD) {
459		val |= IDXD_INTC_CMD;
460		complete(idxd->cmd_done);
461	}
462
463	if (cause & IDXD_INTC_OCCUPY) {
464		/* Driver does not utilize occupancy interrupt */
465		val |= IDXD_INTC_OCCUPY;
466	}
467
468	if (cause & IDXD_INTC_PERFMON_OVFL) {
469		val |= IDXD_INTC_PERFMON_OVFL;
470		perfmon_counter_overflow(idxd);
471	}
472
473	if (cause & IDXD_INTC_EVL) {
474		val |= IDXD_INTC_EVL;
475		process_evl_entries(idxd);
476	}
477
478	val ^= cause;
479	if (val)
480		dev_warn_once(dev, "Unexpected interrupt cause bits set: %#x\n",
481			      val);
482
483	if (!err)
484		goto out;
485
486halt:
487	gensts.bits = ioread32(idxd->reg_base + IDXD_GENSTATS_OFFSET);
488	if (gensts.state == IDXD_DEVICE_STATE_HALT) {
489		idxd->state = IDXD_DEV_HALTED;
490		if (gensts.reset_type == IDXD_DEVICE_RESET_SOFTWARE) {
491			/*
492			 * If we need a software reset, we will throw the work
493			 * on a system workqueue in order to allow interrupts
494			 * for the device command completions.
495			 */
496			INIT_WORK(&idxd->work, idxd_device_reinit);
497			queue_work(idxd->wq, &idxd->work);
498		} else {
499			idxd->state = IDXD_DEV_HALTED;
500			idxd_wqs_quiesce(idxd);
501			idxd_wqs_unmap_portal(idxd);
502			idxd_device_clear_state(idxd);
503			dev_err(&idxd->pdev->dev,
504				"idxd halted, need %s.\n",
505				gensts.reset_type == IDXD_DEVICE_RESET_FLR ?
506				"FLR" : "system reset");
507		}
508	}
509
510out:
511	return IRQ_HANDLED;
512}
513
514static void idxd_int_handle_resubmit_work(struct work_struct *work)
515{
516	struct idxd_resubmit *irw = container_of(work, struct idxd_resubmit, work);
517	struct idxd_desc *desc = irw->desc;
518	struct idxd_wq *wq = desc->wq;
519	int rc;
520
521	desc->completion->status = 0;
522	rc = idxd_submit_desc(wq, desc);
523	if (rc < 0) {
524		dev_dbg(&wq->idxd->pdev->dev, "Failed to resubmit desc %d to wq %d.\n",
525			desc->id, wq->id);
526		/*
527		 * If the error is not -EAGAIN, it means the submission failed due to wq
528		 * has been killed instead of ENQCMDS failure. Here the driver needs to
529		 * notify the submitter of the failure by reporting abort status.
530		 *
531		 * -EAGAIN comes from ENQCMDS failure. idxd_submit_desc() will handle the
532		 * abort.
533		 */
534		if (rc != -EAGAIN) {
535			desc->completion->status = IDXD_COMP_DESC_ABORT;
536			idxd_desc_complete(desc, IDXD_COMPLETE_ABORT, false);
537		}
538		idxd_free_desc(wq, desc);
539	}
540	kfree(irw);
541}
542
543bool idxd_queue_int_handle_resubmit(struct idxd_desc *desc)
544{
545	struct idxd_wq *wq = desc->wq;
546	struct idxd_device *idxd = wq->idxd;
547	struct idxd_resubmit *irw;
548
549	irw = kzalloc(sizeof(*irw), GFP_KERNEL);
550	if (!irw)
551		return false;
552
553	irw->desc = desc;
554	INIT_WORK(&irw->work, idxd_int_handle_resubmit_work);
555	queue_work(idxd->wq, &irw->work);
556	return true;
557}
558
559static void irq_process_pending_llist(struct idxd_irq_entry *irq_entry)
560{
561	struct idxd_desc *desc, *t;
562	struct llist_node *head;
563
564	head = llist_del_all(&irq_entry->pending_llist);
565	if (!head)
566		return;
567
568	llist_for_each_entry_safe(desc, t, head, llnode) {
569		u8 status = desc->completion->status & DSA_COMP_STATUS_MASK;
570
571		if (status) {
572			/*
573			 * Check against the original status as ABORT is software defined
574			 * and 0xff, which DSA_COMP_STATUS_MASK can mask out.
575			 */
576			if (unlikely(desc->completion->status == IDXD_COMP_DESC_ABORT)) {
577				idxd_desc_complete(desc, IDXD_COMPLETE_ABORT, true);
578				continue;
579			}
580
581			idxd_desc_complete(desc, IDXD_COMPLETE_NORMAL, true);
582		} else {
583			spin_lock(&irq_entry->list_lock);
584			list_add_tail(&desc->list,
585				      &irq_entry->work_list);
586			spin_unlock(&irq_entry->list_lock);
587		}
588	}
589}
590
591static void irq_process_work_list(struct idxd_irq_entry *irq_entry)
592{
593	LIST_HEAD(flist);
594	struct idxd_desc *desc, *n;
595
596	/*
597	 * This lock protects list corruption from access of list outside of the irq handler
598	 * thread.
599	 */
600	spin_lock(&irq_entry->list_lock);
601	if (list_empty(&irq_entry->work_list)) {
602		spin_unlock(&irq_entry->list_lock);
603		return;
604	}
605
606	list_for_each_entry_safe(desc, n, &irq_entry->work_list, list) {
607		if (desc->completion->status) {
608			list_move_tail(&desc->list, &flist);
609		}
610	}
611
612	spin_unlock(&irq_entry->list_lock);
613
614	list_for_each_entry(desc, &flist, list) {
615		/*
616		 * Check against the original status as ABORT is software defined
617		 * and 0xff, which DSA_COMP_STATUS_MASK can mask out.
618		 */
619		if (unlikely(desc->completion->status == IDXD_COMP_DESC_ABORT)) {
620			idxd_desc_complete(desc, IDXD_COMPLETE_ABORT, true);
621			continue;
622		}
623
624		idxd_desc_complete(desc, IDXD_COMPLETE_NORMAL, true);
625	}
626}
627
628irqreturn_t idxd_wq_thread(int irq, void *data)
629{
630	struct idxd_irq_entry *irq_entry = data;
631
632	/*
633	 * There are two lists we are processing. The pending_llist is where
634	 * submmiter adds all the submitted descriptor after sending it to
635	 * the workqueue. It's a lockless singly linked list. The work_list
636	 * is the common linux double linked list. We are in a scenario of
637	 * multiple producers and a single consumer. The producers are all
638	 * the kernel submitters of descriptors, and the consumer is the
639	 * kernel irq handler thread for the msix vector when using threaded
640	 * irq. To work with the restrictions of llist to remain lockless,
641	 * we are doing the following steps:
642	 * 1. Iterate through the work_list and process any completed
643	 *    descriptor. Delete the completed entries during iteration.
644	 * 2. llist_del_all() from the pending list.
645	 * 3. Iterate through the llist that was deleted from the pending list
646	 *    and process the completed entries.
647	 * 4. If the entry is still waiting on hardware, list_add_tail() to
648	 *    the work_list.
649	 */
650	irq_process_work_list(irq_entry);
651	irq_process_pending_llist(irq_entry);
652
653	return IRQ_HANDLED;
654}
655