1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * A devfreq driver for NVIDIA Tegra SoCs
4 *
5 * Copyright (c) 2014 NVIDIA CORPORATION. All rights reserved.
6 * Copyright (C) 2014 Google, Inc
7 */
8
9#include <linux/clk.h>
10#include <linux/cpufreq.h>
11#include <linux/devfreq.h>
12#include <linux/interrupt.h>
13#include <linux/io.h>
14#include <linux/irq.h>
15#include <linux/module.h>
16#include <linux/of.h>
17#include <linux/platform_device.h>
18#include <linux/pm_opp.h>
19#include <linux/reset.h>
20#include <linux/workqueue.h>
21
22#include <soc/tegra/fuse.h>
23
24#include "governor.h"
25
26#define ACTMON_GLB_STATUS					0x0
27#define ACTMON_GLB_PERIOD_CTRL					0x4
28
29#define ACTMON_DEV_CTRL						0x0
30#define ACTMON_DEV_CTRL_K_VAL_SHIFT				10
31#define ACTMON_DEV_CTRL_ENB_PERIODIC				BIT(18)
32#define ACTMON_DEV_CTRL_AVG_BELOW_WMARK_EN			BIT(20)
33#define ACTMON_DEV_CTRL_AVG_ABOVE_WMARK_EN			BIT(21)
34#define ACTMON_DEV_CTRL_CONSECUTIVE_BELOW_WMARK_NUM_SHIFT	23
35#define ACTMON_DEV_CTRL_CONSECUTIVE_ABOVE_WMARK_NUM_SHIFT	26
36#define ACTMON_DEV_CTRL_CONSECUTIVE_BELOW_WMARK_EN		BIT(29)
37#define ACTMON_DEV_CTRL_CONSECUTIVE_ABOVE_WMARK_EN		BIT(30)
38#define ACTMON_DEV_CTRL_ENB					BIT(31)
39
40#define ACTMON_DEV_CTRL_STOP					0x00000000
41
42#define ACTMON_DEV_UPPER_WMARK					0x4
43#define ACTMON_DEV_LOWER_WMARK					0x8
44#define ACTMON_DEV_INIT_AVG					0xc
45#define ACTMON_DEV_AVG_UPPER_WMARK				0x10
46#define ACTMON_DEV_AVG_LOWER_WMARK				0x14
47#define ACTMON_DEV_COUNT_WEIGHT					0x18
48#define ACTMON_DEV_AVG_COUNT					0x20
49#define ACTMON_DEV_INTR_STATUS					0x24
50
51#define ACTMON_INTR_STATUS_CLEAR				0xffffffff
52
53#define ACTMON_DEV_INTR_CONSECUTIVE_UPPER			BIT(31)
54#define ACTMON_DEV_INTR_CONSECUTIVE_LOWER			BIT(30)
55
56#define ACTMON_ABOVE_WMARK_WINDOW				1
57#define ACTMON_BELOW_WMARK_WINDOW				3
58#define ACTMON_BOOST_FREQ_STEP					16000
59
60/*
61 * ACTMON_AVERAGE_WINDOW_LOG2: default value for @DEV_CTRL_K_VAL, which
62 * translates to 2 ^ (K_VAL + 1). ex: 2 ^ (6 + 1) = 128
63 */
64#define ACTMON_AVERAGE_WINDOW_LOG2			6
65#define ACTMON_SAMPLING_PERIOD				12 /* ms */
66#define ACTMON_DEFAULT_AVG_BAND				6  /* 1/10 of % */
67
68#define KHZ							1000
69
70#define KHZ_MAX						(ULONG_MAX / KHZ)
71
72/* Assume that the bus is saturated if the utilization is 25% */
73#define BUS_SATURATION_RATIO					25
74
75/**
76 * struct tegra_devfreq_device_config - configuration specific to an ACTMON
77 * device
78 *
79 * Coefficients and thresholds are percentages unless otherwise noted
80 */
81struct tegra_devfreq_device_config {
82	u32		offset;
83	u32		irq_mask;
84
85	/* Factors applied to boost_freq every consecutive watermark breach */
86	unsigned int	boost_up_coeff;
87	unsigned int	boost_down_coeff;
88
89	/* Define the watermark bounds when applied to the current avg */
90	unsigned int	boost_up_threshold;
91	unsigned int	boost_down_threshold;
92
93	/*
94	 * Threshold of activity (cycles translated to kHz) below which the
95	 * CPU frequency isn't to be taken into account. This is to avoid
96	 * increasing the EMC frequency when the CPU is very busy but not
97	 * accessing the bus often.
98	 */
99	u32		avg_dependency_threshold;
100};
101
102enum tegra_actmon_device {
103	MCALL = 0,
104	MCCPU,
105};
106
107static const struct tegra_devfreq_device_config tegra124_device_configs[] = {
108	{
109		/* MCALL: All memory accesses (including from the CPUs) */
110		.offset = 0x1c0,
111		.irq_mask = 1 << 26,
112		.boost_up_coeff = 200,
113		.boost_down_coeff = 50,
114		.boost_up_threshold = 60,
115		.boost_down_threshold = 40,
116	},
117	{
118		/* MCCPU: memory accesses from the CPUs */
119		.offset = 0x200,
120		.irq_mask = 1 << 25,
121		.boost_up_coeff = 800,
122		.boost_down_coeff = 40,
123		.boost_up_threshold = 27,
124		.boost_down_threshold = 10,
125		.avg_dependency_threshold = 16000, /* 16MHz in kHz units */
126	},
127};
128
129static const struct tegra_devfreq_device_config tegra30_device_configs[] = {
130	{
131		/* MCALL: All memory accesses (including from the CPUs) */
132		.offset = 0x1c0,
133		.irq_mask = 1 << 26,
134		.boost_up_coeff = 200,
135		.boost_down_coeff = 50,
136		.boost_up_threshold = 20,
137		.boost_down_threshold = 10,
138	},
139	{
140		/* MCCPU: memory accesses from the CPUs */
141		.offset = 0x200,
142		.irq_mask = 1 << 25,
143		.boost_up_coeff = 800,
144		.boost_down_coeff = 40,
145		.boost_up_threshold = 27,
146		.boost_down_threshold = 10,
147		.avg_dependency_threshold = 16000, /* 16MHz in kHz units */
148	},
149};
150
151/**
152 * struct tegra_devfreq_device - state specific to an ACTMON device
153 *
154 * Frequencies are in kHz.
155 */
156struct tegra_devfreq_device {
157	const struct tegra_devfreq_device_config *config;
158	void __iomem *regs;
159
160	/* Average event count sampled in the last interrupt */
161	u32 avg_count;
162
163	/*
164	 * Extra frequency to increase the target by due to consecutive
165	 * watermark breaches.
166	 */
167	unsigned long boost_freq;
168
169	/* Optimal frequency calculated from the stats for this device */
170	unsigned long target_freq;
171};
172
173struct tegra_devfreq_soc_data {
174	const struct tegra_devfreq_device_config *configs;
175	/* Weight value for count measurements */
176	unsigned int count_weight;
177};
178
179struct tegra_devfreq {
180	struct devfreq		*devfreq;
181
182	struct reset_control	*reset;
183	struct clk		*clock;
184	void __iomem		*regs;
185
186	struct clk		*emc_clock;
187	unsigned long		max_freq;
188	unsigned long		cur_freq;
189	struct notifier_block	clk_rate_change_nb;
190
191	struct delayed_work	cpufreq_update_work;
192	struct notifier_block	cpu_rate_change_nb;
193
194	struct tegra_devfreq_device devices[2];
195
196	unsigned int		irq;
197
198	bool			started;
199
200	const struct tegra_devfreq_soc_data *soc;
201};
202
203struct tegra_actmon_emc_ratio {
204	unsigned long cpu_freq;
205	unsigned long emc_freq;
206};
207
208static const struct tegra_actmon_emc_ratio actmon_emc_ratios[] = {
209	{ 1400000,    KHZ_MAX },
210	{ 1200000,    750000 },
211	{ 1100000,    600000 },
212	{ 1000000,    500000 },
213	{  800000,    375000 },
214	{  500000,    200000 },
215	{  250000,    100000 },
216};
217
218static u32 actmon_readl(struct tegra_devfreq *tegra, u32 offset)
219{
220	return readl_relaxed(tegra->regs + offset);
221}
222
223static void actmon_writel(struct tegra_devfreq *tegra, u32 val, u32 offset)
224{
225	writel_relaxed(val, tegra->regs + offset);
226}
227
228static u32 device_readl(struct tegra_devfreq_device *dev, u32 offset)
229{
230	return readl_relaxed(dev->regs + offset);
231}
232
233static void device_writel(struct tegra_devfreq_device *dev, u32 val,
234			  u32 offset)
235{
236	writel_relaxed(val, dev->regs + offset);
237}
238
239static unsigned long do_percent(unsigned long long val, unsigned int pct)
240{
241	val = val * pct;
242	do_div(val, 100);
243
244	/*
245	 * High freq + high boosting percent + large polling interval are
246	 * resulting in integer overflow when watermarks are calculated.
247	 */
248	return min_t(u64, val, U32_MAX);
249}
250
251static void tegra_devfreq_update_avg_wmark(struct tegra_devfreq *tegra,
252					   struct tegra_devfreq_device *dev)
253{
254	u32 avg_band_freq = tegra->max_freq * ACTMON_DEFAULT_AVG_BAND / KHZ;
255	u32 band = avg_band_freq * tegra->devfreq->profile->polling_ms;
256	u32 avg;
257
258	avg = min(dev->avg_count, U32_MAX - band);
259	device_writel(dev, avg + band, ACTMON_DEV_AVG_UPPER_WMARK);
260
261	avg = max(dev->avg_count, band);
262	device_writel(dev, avg - band, ACTMON_DEV_AVG_LOWER_WMARK);
263}
264
265static void tegra_devfreq_update_wmark(struct tegra_devfreq *tegra,
266				       struct tegra_devfreq_device *dev)
267{
268	u32 val = tegra->cur_freq * tegra->devfreq->profile->polling_ms;
269
270	device_writel(dev, do_percent(val, dev->config->boost_up_threshold),
271		      ACTMON_DEV_UPPER_WMARK);
272
273	device_writel(dev, do_percent(val, dev->config->boost_down_threshold),
274		      ACTMON_DEV_LOWER_WMARK);
275}
276
277static void actmon_isr_device(struct tegra_devfreq *tegra,
278			      struct tegra_devfreq_device *dev)
279{
280	u32 intr_status, dev_ctrl;
281
282	dev->avg_count = device_readl(dev, ACTMON_DEV_AVG_COUNT);
283	tegra_devfreq_update_avg_wmark(tegra, dev);
284
285	intr_status = device_readl(dev, ACTMON_DEV_INTR_STATUS);
286	dev_ctrl = device_readl(dev, ACTMON_DEV_CTRL);
287
288	if (intr_status & ACTMON_DEV_INTR_CONSECUTIVE_UPPER) {
289		/*
290		 * new_boost = min(old_boost * up_coef + step, max_freq)
291		 */
292		dev->boost_freq = do_percent(dev->boost_freq,
293					     dev->config->boost_up_coeff);
294		dev->boost_freq += ACTMON_BOOST_FREQ_STEP;
295
296		dev_ctrl |= ACTMON_DEV_CTRL_CONSECUTIVE_BELOW_WMARK_EN;
297
298		if (dev->boost_freq >= tegra->max_freq) {
299			dev_ctrl &= ~ACTMON_DEV_CTRL_CONSECUTIVE_ABOVE_WMARK_EN;
300			dev->boost_freq = tegra->max_freq;
301		}
302	} else if (intr_status & ACTMON_DEV_INTR_CONSECUTIVE_LOWER) {
303		/*
304		 * new_boost = old_boost * down_coef
305		 * or 0 if (old_boost * down_coef < step / 2)
306		 */
307		dev->boost_freq = do_percent(dev->boost_freq,
308					     dev->config->boost_down_coeff);
309
310		dev_ctrl |= ACTMON_DEV_CTRL_CONSECUTIVE_ABOVE_WMARK_EN;
311
312		if (dev->boost_freq < (ACTMON_BOOST_FREQ_STEP >> 1)) {
313			dev_ctrl &= ~ACTMON_DEV_CTRL_CONSECUTIVE_BELOW_WMARK_EN;
314			dev->boost_freq = 0;
315		}
316	}
317
318	device_writel(dev, dev_ctrl, ACTMON_DEV_CTRL);
319
320	device_writel(dev, ACTMON_INTR_STATUS_CLEAR, ACTMON_DEV_INTR_STATUS);
321}
322
323static unsigned long actmon_cpu_to_emc_rate(struct tegra_devfreq *tegra,
324					    unsigned long cpu_freq)
325{
326	unsigned int i;
327	const struct tegra_actmon_emc_ratio *ratio = actmon_emc_ratios;
328
329	for (i = 0; i < ARRAY_SIZE(actmon_emc_ratios); i++, ratio++) {
330		if (cpu_freq >= ratio->cpu_freq) {
331			if (ratio->emc_freq >= tegra->max_freq)
332				return tegra->max_freq;
333			else
334				return ratio->emc_freq;
335		}
336	}
337
338	return 0;
339}
340
341static unsigned long actmon_device_target_freq(struct tegra_devfreq *tegra,
342					       struct tegra_devfreq_device *dev)
343{
344	unsigned int avg_sustain_coef;
345	unsigned long target_freq;
346
347	target_freq = dev->avg_count / tegra->devfreq->profile->polling_ms;
348	avg_sustain_coef = 100 * 100 / dev->config->boost_up_threshold;
349	target_freq = do_percent(target_freq, avg_sustain_coef);
350
351	return target_freq;
352}
353
354static void actmon_update_target(struct tegra_devfreq *tegra,
355				 struct tegra_devfreq_device *dev)
356{
357	unsigned long cpu_freq = 0;
358	unsigned long static_cpu_emc_freq = 0;
359
360	dev->target_freq = actmon_device_target_freq(tegra, dev);
361
362	if (dev->config->avg_dependency_threshold &&
363	    dev->config->avg_dependency_threshold <= dev->target_freq) {
364		cpu_freq = cpufreq_quick_get(0);
365		static_cpu_emc_freq = actmon_cpu_to_emc_rate(tegra, cpu_freq);
366
367		dev->target_freq += dev->boost_freq;
368		dev->target_freq = max(dev->target_freq, static_cpu_emc_freq);
369	} else {
370		dev->target_freq += dev->boost_freq;
371	}
372}
373
374static irqreturn_t actmon_thread_isr(int irq, void *data)
375{
376	struct tegra_devfreq *tegra = data;
377	bool handled = false;
378	unsigned int i;
379	u32 val;
380
381	mutex_lock(&tegra->devfreq->lock);
382
383	val = actmon_readl(tegra, ACTMON_GLB_STATUS);
384	for (i = 0; i < ARRAY_SIZE(tegra->devices); i++) {
385		if (val & tegra->devices[i].config->irq_mask) {
386			actmon_isr_device(tegra, tegra->devices + i);
387			handled = true;
388		}
389	}
390
391	if (handled)
392		update_devfreq(tegra->devfreq);
393
394	mutex_unlock(&tegra->devfreq->lock);
395
396	return handled ? IRQ_HANDLED : IRQ_NONE;
397}
398
399static int tegra_actmon_clk_notify_cb(struct notifier_block *nb,
400				      unsigned long action, void *ptr)
401{
402	struct clk_notifier_data *data = ptr;
403	struct tegra_devfreq *tegra;
404	struct tegra_devfreq_device *dev;
405	unsigned int i;
406
407	if (action != POST_RATE_CHANGE)
408		return NOTIFY_OK;
409
410	tegra = container_of(nb, struct tegra_devfreq, clk_rate_change_nb);
411
412	tegra->cur_freq = data->new_rate / KHZ;
413
414	for (i = 0; i < ARRAY_SIZE(tegra->devices); i++) {
415		dev = &tegra->devices[i];
416
417		tegra_devfreq_update_wmark(tegra, dev);
418	}
419
420	return NOTIFY_OK;
421}
422
423static void tegra_actmon_delayed_update(struct work_struct *work)
424{
425	struct tegra_devfreq *tegra = container_of(work, struct tegra_devfreq,
426						   cpufreq_update_work.work);
427
428	mutex_lock(&tegra->devfreq->lock);
429	update_devfreq(tegra->devfreq);
430	mutex_unlock(&tegra->devfreq->lock);
431}
432
433static unsigned long
434tegra_actmon_cpufreq_contribution(struct tegra_devfreq *tegra,
435				  unsigned int cpu_freq)
436{
437	struct tegra_devfreq_device *actmon_dev = &tegra->devices[MCCPU];
438	unsigned long static_cpu_emc_freq, dev_freq;
439
440	dev_freq = actmon_device_target_freq(tegra, actmon_dev);
441
442	/* check whether CPU's freq is taken into account at all */
443	if (dev_freq < actmon_dev->config->avg_dependency_threshold)
444		return 0;
445
446	static_cpu_emc_freq = actmon_cpu_to_emc_rate(tegra, cpu_freq);
447
448	if (dev_freq + actmon_dev->boost_freq >= static_cpu_emc_freq)
449		return 0;
450
451	return static_cpu_emc_freq;
452}
453
454static int tegra_actmon_cpu_notify_cb(struct notifier_block *nb,
455				      unsigned long action, void *ptr)
456{
457	struct cpufreq_freqs *freqs = ptr;
458	struct tegra_devfreq *tegra;
459	unsigned long old, new, delay;
460
461	if (action != CPUFREQ_POSTCHANGE)
462		return NOTIFY_OK;
463
464	tegra = container_of(nb, struct tegra_devfreq, cpu_rate_change_nb);
465
466	/*
467	 * Quickly check whether CPU frequency should be taken into account
468	 * at all, without blocking CPUFreq's core.
469	 */
470	if (mutex_trylock(&tegra->devfreq->lock)) {
471		old = tegra_actmon_cpufreq_contribution(tegra, freqs->old);
472		new = tegra_actmon_cpufreq_contribution(tegra, freqs->new);
473		mutex_unlock(&tegra->devfreq->lock);
474
475		/*
476		 * If CPU's frequency shouldn't be taken into account at
477		 * the moment, then there is no need to update the devfreq's
478		 * state because ISR will re-check CPU's frequency on the
479		 * next interrupt.
480		 */
481		if (old == new)
482			return NOTIFY_OK;
483	}
484
485	/*
486	 * CPUFreq driver should support CPUFREQ_ASYNC_NOTIFICATION in order
487	 * to allow asynchronous notifications. This means we can't block
488	 * here for too long, otherwise CPUFreq's core will complain with a
489	 * warning splat.
490	 */
491	delay = msecs_to_jiffies(ACTMON_SAMPLING_PERIOD);
492	schedule_delayed_work(&tegra->cpufreq_update_work, delay);
493
494	return NOTIFY_OK;
495}
496
497static void tegra_actmon_configure_device(struct tegra_devfreq *tegra,
498					  struct tegra_devfreq_device *dev)
499{
500	u32 val = 0;
501
502	/* reset boosting on governor's restart */
503	dev->boost_freq = 0;
504
505	dev->target_freq = tegra->cur_freq;
506
507	dev->avg_count = tegra->cur_freq * tegra->devfreq->profile->polling_ms;
508	device_writel(dev, dev->avg_count, ACTMON_DEV_INIT_AVG);
509
510	tegra_devfreq_update_avg_wmark(tegra, dev);
511	tegra_devfreq_update_wmark(tegra, dev);
512
513	device_writel(dev, tegra->soc->count_weight, ACTMON_DEV_COUNT_WEIGHT);
514	device_writel(dev, ACTMON_INTR_STATUS_CLEAR, ACTMON_DEV_INTR_STATUS);
515
516	val |= ACTMON_DEV_CTRL_ENB_PERIODIC;
517	val |= (ACTMON_AVERAGE_WINDOW_LOG2 - 1)
518		<< ACTMON_DEV_CTRL_K_VAL_SHIFT;
519	val |= (ACTMON_BELOW_WMARK_WINDOW - 1)
520		<< ACTMON_DEV_CTRL_CONSECUTIVE_BELOW_WMARK_NUM_SHIFT;
521	val |= (ACTMON_ABOVE_WMARK_WINDOW - 1)
522		<< ACTMON_DEV_CTRL_CONSECUTIVE_ABOVE_WMARK_NUM_SHIFT;
523	val |= ACTMON_DEV_CTRL_AVG_ABOVE_WMARK_EN;
524	val |= ACTMON_DEV_CTRL_AVG_BELOW_WMARK_EN;
525	val |= ACTMON_DEV_CTRL_CONSECUTIVE_ABOVE_WMARK_EN;
526	val |= ACTMON_DEV_CTRL_ENB;
527
528	device_writel(dev, val, ACTMON_DEV_CTRL);
529}
530
531static void tegra_actmon_stop_devices(struct tegra_devfreq *tegra)
532{
533	struct tegra_devfreq_device *dev = tegra->devices;
534	unsigned int i;
535
536	for (i = 0; i < ARRAY_SIZE(tegra->devices); i++, dev++) {
537		device_writel(dev, ACTMON_DEV_CTRL_STOP, ACTMON_DEV_CTRL);
538		device_writel(dev, ACTMON_INTR_STATUS_CLEAR,
539			      ACTMON_DEV_INTR_STATUS);
540	}
541}
542
543static int tegra_actmon_resume(struct tegra_devfreq *tegra)
544{
545	unsigned int i;
546	int err;
547
548	if (!tegra->devfreq->profile->polling_ms || !tegra->started)
549		return 0;
550
551	actmon_writel(tegra, tegra->devfreq->profile->polling_ms - 1,
552		      ACTMON_GLB_PERIOD_CTRL);
553
554	/*
555	 * CLK notifications are needed in order to reconfigure the upper
556	 * consecutive watermark in accordance to the actual clock rate
557	 * to avoid unnecessary upper interrupts.
558	 */
559	err = clk_notifier_register(tegra->emc_clock,
560				    &tegra->clk_rate_change_nb);
561	if (err) {
562		dev_err(tegra->devfreq->dev.parent,
563			"Failed to register rate change notifier\n");
564		return err;
565	}
566
567	tegra->cur_freq = clk_get_rate(tegra->emc_clock) / KHZ;
568
569	for (i = 0; i < ARRAY_SIZE(tegra->devices); i++)
570		tegra_actmon_configure_device(tegra, &tegra->devices[i]);
571
572	/*
573	 * We are estimating CPU's memory bandwidth requirement based on
574	 * amount of memory accesses and system's load, judging by CPU's
575	 * frequency. We also don't want to receive events about CPU's
576	 * frequency transaction when governor is stopped, hence notifier
577	 * is registered dynamically.
578	 */
579	err = cpufreq_register_notifier(&tegra->cpu_rate_change_nb,
580					CPUFREQ_TRANSITION_NOTIFIER);
581	if (err) {
582		dev_err(tegra->devfreq->dev.parent,
583			"Failed to register rate change notifier: %d\n", err);
584		goto err_stop;
585	}
586
587	enable_irq(tegra->irq);
588
589	return 0;
590
591err_stop:
592	tegra_actmon_stop_devices(tegra);
593
594	clk_notifier_unregister(tegra->emc_clock, &tegra->clk_rate_change_nb);
595
596	return err;
597}
598
599static int tegra_actmon_start(struct tegra_devfreq *tegra)
600{
601	int ret = 0;
602
603	if (!tegra->started) {
604		tegra->started = true;
605
606		ret = tegra_actmon_resume(tegra);
607		if (ret)
608			tegra->started = false;
609	}
610
611	return ret;
612}
613
614static void tegra_actmon_pause(struct tegra_devfreq *tegra)
615{
616	if (!tegra->devfreq->profile->polling_ms || !tegra->started)
617		return;
618
619	disable_irq(tegra->irq);
620
621	cpufreq_unregister_notifier(&tegra->cpu_rate_change_nb,
622				    CPUFREQ_TRANSITION_NOTIFIER);
623
624	cancel_delayed_work_sync(&tegra->cpufreq_update_work);
625
626	tegra_actmon_stop_devices(tegra);
627
628	clk_notifier_unregister(tegra->emc_clock, &tegra->clk_rate_change_nb);
629}
630
631static void tegra_actmon_stop(struct tegra_devfreq *tegra)
632{
633	tegra_actmon_pause(tegra);
634	tegra->started = false;
635}
636
637static int tegra_devfreq_target(struct device *dev, unsigned long *freq,
638				u32 flags)
639{
640	struct dev_pm_opp *opp;
641	int ret;
642
643	opp = devfreq_recommended_opp(dev, freq, flags);
644	if (IS_ERR(opp)) {
645		dev_err(dev, "Failed to find opp for %lu Hz\n", *freq);
646		return PTR_ERR(opp);
647	}
648
649	ret = dev_pm_opp_set_opp(dev, opp);
650	dev_pm_opp_put(opp);
651
652	return ret;
653}
654
655static int tegra_devfreq_get_dev_status(struct device *dev,
656					struct devfreq_dev_status *stat)
657{
658	struct tegra_devfreq *tegra = dev_get_drvdata(dev);
659	struct tegra_devfreq_device *actmon_dev;
660	unsigned long cur_freq;
661
662	cur_freq = READ_ONCE(tegra->cur_freq);
663
664	/* To be used by the tegra governor */
665	stat->private_data = tegra;
666
667	/* The below are to be used by the other governors */
668	stat->current_frequency = cur_freq * KHZ;
669
670	actmon_dev = &tegra->devices[MCALL];
671
672	/* Number of cycles spent on memory access */
673	stat->busy_time = device_readl(actmon_dev, ACTMON_DEV_AVG_COUNT);
674
675	/* The bus can be considered to be saturated way before 100% */
676	stat->busy_time *= 100 / BUS_SATURATION_RATIO;
677
678	/* Number of cycles in a sampling period */
679	stat->total_time = tegra->devfreq->profile->polling_ms * cur_freq;
680
681	stat->busy_time = min(stat->busy_time, stat->total_time);
682
683	return 0;
684}
685
686static struct devfreq_dev_profile tegra_devfreq_profile = {
687	.polling_ms	= ACTMON_SAMPLING_PERIOD,
688	.target		= tegra_devfreq_target,
689	.get_dev_status	= tegra_devfreq_get_dev_status,
690	.is_cooling_device = true,
691};
692
693static int tegra_governor_get_target(struct devfreq *devfreq,
694				     unsigned long *freq)
695{
696	struct devfreq_dev_status *stat;
697	struct tegra_devfreq *tegra;
698	struct tegra_devfreq_device *dev;
699	unsigned long target_freq = 0;
700	unsigned int i;
701	int err;
702
703	err = devfreq_update_stats(devfreq);
704	if (err)
705		return err;
706
707	stat = &devfreq->last_status;
708
709	tegra = stat->private_data;
710
711	for (i = 0; i < ARRAY_SIZE(tegra->devices); i++) {
712		dev = &tegra->devices[i];
713
714		actmon_update_target(tegra, dev);
715
716		target_freq = max(target_freq, dev->target_freq);
717	}
718
719	/*
720	 * tegra-devfreq driver operates with KHz units, while OPP table
721	 * entries use Hz units. Hence we need to convert the units for the
722	 * devfreq core.
723	 */
724	*freq = target_freq * KHZ;
725
726	return 0;
727}
728
729static int tegra_governor_event_handler(struct devfreq *devfreq,
730					unsigned int event, void *data)
731{
732	struct tegra_devfreq *tegra = dev_get_drvdata(devfreq->dev.parent);
733	unsigned int *new_delay = data;
734	int ret = 0;
735
736	/*
737	 * Couple devfreq-device with the governor early because it is
738	 * needed at the moment of governor's start (used by ISR).
739	 */
740	tegra->devfreq = devfreq;
741
742	switch (event) {
743	case DEVFREQ_GOV_START:
744		devfreq_monitor_start(devfreq);
745		ret = tegra_actmon_start(tegra);
746		break;
747
748	case DEVFREQ_GOV_STOP:
749		tegra_actmon_stop(tegra);
750		devfreq_monitor_stop(devfreq);
751		break;
752
753	case DEVFREQ_GOV_UPDATE_INTERVAL:
754		/*
755		 * ACTMON hardware supports up to 256 milliseconds for the
756		 * sampling period.
757		 */
758		if (*new_delay > 256) {
759			ret = -EINVAL;
760			break;
761		}
762
763		tegra_actmon_pause(tegra);
764		devfreq_update_interval(devfreq, new_delay);
765		ret = tegra_actmon_resume(tegra);
766		break;
767
768	case DEVFREQ_GOV_SUSPEND:
769		tegra_actmon_stop(tegra);
770		devfreq_monitor_suspend(devfreq);
771		break;
772
773	case DEVFREQ_GOV_RESUME:
774		devfreq_monitor_resume(devfreq);
775		ret = tegra_actmon_start(tegra);
776		break;
777	}
778
779	return ret;
780}
781
782static struct devfreq_governor tegra_devfreq_governor = {
783	.name = "tegra_actmon",
784	.attrs = DEVFREQ_GOV_ATTR_POLLING_INTERVAL,
785	.flags = DEVFREQ_GOV_FLAG_IMMUTABLE
786		| DEVFREQ_GOV_FLAG_IRQ_DRIVEN,
787	.get_target_freq = tegra_governor_get_target,
788	.event_handler = tegra_governor_event_handler,
789};
790
791static void devm_tegra_devfreq_deinit_hw(void *data)
792{
793	struct tegra_devfreq *tegra = data;
794
795	reset_control_reset(tegra->reset);
796	clk_disable_unprepare(tegra->clock);
797}
798
799static int devm_tegra_devfreq_init_hw(struct device *dev,
800				      struct tegra_devfreq *tegra)
801{
802	int err;
803
804	err = clk_prepare_enable(tegra->clock);
805	if (err) {
806		dev_err(dev, "Failed to prepare and enable ACTMON clock\n");
807		return err;
808	}
809
810	err = devm_add_action_or_reset(dev, devm_tegra_devfreq_deinit_hw,
811				       tegra);
812	if (err)
813		return err;
814
815	err = reset_control_reset(tegra->reset);
816	if (err) {
817		dev_err(dev, "Failed to reset hardware: %d\n", err);
818		return err;
819	}
820
821	return err;
822}
823
824static int tegra_devfreq_config_clks_nop(struct device *dev,
825					 struct opp_table *opp_table,
826					 struct dev_pm_opp *opp, void *data,
827					 bool scaling_down)
828{
829	/* We want to skip clk configuration via dev_pm_opp_set_opp() */
830	return 0;
831}
832
833static int tegra_devfreq_probe(struct platform_device *pdev)
834{
835	u32 hw_version = BIT(tegra_sku_info.soc_speedo_id);
836	struct tegra_devfreq_device *dev;
837	struct tegra_devfreq *tegra;
838	struct devfreq *devfreq;
839	unsigned int i;
840	long rate;
841	int err;
842	const char *clk_names[] = { "actmon", NULL };
843	struct dev_pm_opp_config config = {
844		.supported_hw = &hw_version,
845		.supported_hw_count = 1,
846		.clk_names = clk_names,
847		.config_clks = tegra_devfreq_config_clks_nop,
848	};
849
850	tegra = devm_kzalloc(&pdev->dev, sizeof(*tegra), GFP_KERNEL);
851	if (!tegra)
852		return -ENOMEM;
853
854	tegra->soc = of_device_get_match_data(&pdev->dev);
855
856	tegra->regs = devm_platform_ioremap_resource(pdev, 0);
857	if (IS_ERR(tegra->regs))
858		return PTR_ERR(tegra->regs);
859
860	tegra->reset = devm_reset_control_get(&pdev->dev, "actmon");
861	if (IS_ERR(tegra->reset)) {
862		dev_err(&pdev->dev, "Failed to get reset\n");
863		return PTR_ERR(tegra->reset);
864	}
865
866	tegra->clock = devm_clk_get(&pdev->dev, "actmon");
867	if (IS_ERR(tegra->clock)) {
868		dev_err(&pdev->dev, "Failed to get actmon clock\n");
869		return PTR_ERR(tegra->clock);
870	}
871
872	tegra->emc_clock = devm_clk_get(&pdev->dev, "emc");
873	if (IS_ERR(tegra->emc_clock))
874		return dev_err_probe(&pdev->dev, PTR_ERR(tegra->emc_clock),
875				     "Failed to get emc clock\n");
876
877	err = platform_get_irq(pdev, 0);
878	if (err < 0)
879		return err;
880
881	tegra->irq = err;
882
883	irq_set_status_flags(tegra->irq, IRQ_NOAUTOEN);
884
885	err = devm_request_threaded_irq(&pdev->dev, tegra->irq, NULL,
886					actmon_thread_isr, IRQF_ONESHOT,
887					"tegra-devfreq", tegra);
888	if (err) {
889		dev_err(&pdev->dev, "Interrupt request failed: %d\n", err);
890		return err;
891	}
892
893	err = devm_pm_opp_set_config(&pdev->dev, &config);
894	if (err) {
895		dev_err(&pdev->dev, "Failed to set OPP config: %d\n", err);
896		return err;
897	}
898
899	err = devm_pm_opp_of_add_table_indexed(&pdev->dev, 0);
900	if (err) {
901		dev_err(&pdev->dev, "Failed to add OPP table: %d\n", err);
902		return err;
903	}
904
905	err = devm_tegra_devfreq_init_hw(&pdev->dev, tegra);
906	if (err)
907		return err;
908
909	rate = clk_round_rate(tegra->emc_clock, ULONG_MAX);
910	if (rate <= 0) {
911		dev_err(&pdev->dev, "Failed to round clock rate: %ld\n", rate);
912		return rate ?: -EINVAL;
913	}
914
915	tegra->max_freq = rate / KHZ;
916
917	for (i = 0; i < ARRAY_SIZE(tegra->devices); i++) {
918		dev = tegra->devices + i;
919		dev->config = tegra->soc->configs + i;
920		dev->regs = tegra->regs + dev->config->offset;
921	}
922
923	platform_set_drvdata(pdev, tegra);
924
925	tegra->clk_rate_change_nb.notifier_call = tegra_actmon_clk_notify_cb;
926	tegra->cpu_rate_change_nb.notifier_call = tegra_actmon_cpu_notify_cb;
927
928	INIT_DELAYED_WORK(&tegra->cpufreq_update_work,
929			  tegra_actmon_delayed_update);
930
931	err = devm_devfreq_add_governor(&pdev->dev, &tegra_devfreq_governor);
932	if (err) {
933		dev_err(&pdev->dev, "Failed to add governor: %d\n", err);
934		return err;
935	}
936
937	tegra_devfreq_profile.initial_freq = clk_get_rate(tegra->emc_clock);
938
939	devfreq = devm_devfreq_add_device(&pdev->dev, &tegra_devfreq_profile,
940					  "tegra_actmon", NULL);
941	if (IS_ERR(devfreq)) {
942		dev_err(&pdev->dev, "Failed to add device: %pe\n", devfreq);
943		return PTR_ERR(devfreq);
944	}
945
946	return 0;
947}
948
949static const struct tegra_devfreq_soc_data tegra124_soc = {
950	.configs = tegra124_device_configs,
951
952	/*
953	 * Activity counter is incremented every 256 memory transactions,
954	 * and each transaction takes 4 EMC clocks.
955	 */
956	.count_weight = 4 * 256,
957};
958
959static const struct tegra_devfreq_soc_data tegra30_soc = {
960	.configs = tegra30_device_configs,
961	.count_weight = 2 * 256,
962};
963
964static const struct of_device_id tegra_devfreq_of_match[] = {
965	{ .compatible = "nvidia,tegra30-actmon",  .data = &tegra30_soc, },
966	{ .compatible = "nvidia,tegra124-actmon", .data = &tegra124_soc, },
967	{ },
968};
969
970MODULE_DEVICE_TABLE(of, tegra_devfreq_of_match);
971
972static struct platform_driver tegra_devfreq_driver = {
973	.probe	= tegra_devfreq_probe,
974	.driver = {
975		.name = "tegra-devfreq",
976		.of_match_table = tegra_devfreq_of_match,
977	},
978};
979module_platform_driver(tegra_devfreq_driver);
980
981MODULE_LICENSE("GPL v2");
982MODULE_DESCRIPTION("Tegra devfreq driver");
983MODULE_AUTHOR("Tomeu Vizoso <tomeu.vizoso@collabora.com>");
984