1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (c) 2010-2014, The Linux Foundation. All rights reserved.
4 */
5
6#include <linux/device.h>
7#include <linux/dma-mapping.h>
8#include <linux/interrupt.h>
9#include <crypto/internal/hash.h>
10
11#include "common.h"
12#include "core.h"
13#include "sha.h"
14
15struct qce_sha_saved_state {
16	u8 pending_buf[QCE_SHA_MAX_BLOCKSIZE];
17	u8 partial_digest[QCE_SHA_MAX_DIGESTSIZE];
18	__be32 byte_count[2];
19	unsigned int pending_buflen;
20	unsigned int flags;
21	u64 count;
22	bool first_blk;
23};
24
25static LIST_HEAD(ahash_algs);
26
27static const u32 std_iv_sha1[SHA256_DIGEST_SIZE / sizeof(u32)] = {
28	SHA1_H0, SHA1_H1, SHA1_H2, SHA1_H3, SHA1_H4, 0, 0, 0
29};
30
31static const u32 std_iv_sha256[SHA256_DIGEST_SIZE / sizeof(u32)] = {
32	SHA256_H0, SHA256_H1, SHA256_H2, SHA256_H3,
33	SHA256_H4, SHA256_H5, SHA256_H6, SHA256_H7
34};
35
36static void qce_ahash_done(void *data)
37{
38	struct crypto_async_request *async_req = data;
39	struct ahash_request *req = ahash_request_cast(async_req);
40	struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
41	struct qce_sha_reqctx *rctx = ahash_request_ctx_dma(req);
42	struct qce_alg_template *tmpl = to_ahash_tmpl(async_req->tfm);
43	struct qce_device *qce = tmpl->qce;
44	struct qce_result_dump *result = qce->dma.result_buf;
45	unsigned int digestsize = crypto_ahash_digestsize(ahash);
46	int error;
47	u32 status;
48
49	error = qce_dma_terminate_all(&qce->dma);
50	if (error)
51		dev_dbg(qce->dev, "ahash dma termination error (%d)\n", error);
52
53	dma_unmap_sg(qce->dev, req->src, rctx->src_nents, DMA_TO_DEVICE);
54	dma_unmap_sg(qce->dev, &rctx->result_sg, 1, DMA_FROM_DEVICE);
55
56	memcpy(rctx->digest, result->auth_iv, digestsize);
57	if (req->result && rctx->last_blk)
58		memcpy(req->result, result->auth_iv, digestsize);
59
60	rctx->byte_count[0] = cpu_to_be32(result->auth_byte_count[0]);
61	rctx->byte_count[1] = cpu_to_be32(result->auth_byte_count[1]);
62
63	error = qce_check_status(qce, &status);
64	if (error < 0)
65		dev_dbg(qce->dev, "ahash operation error (%x)\n", status);
66
67	req->src = rctx->src_orig;
68	req->nbytes = rctx->nbytes_orig;
69	rctx->last_blk = false;
70	rctx->first_blk = false;
71
72	qce->async_req_done(tmpl->qce, error);
73}
74
75static int qce_ahash_async_req_handle(struct crypto_async_request *async_req)
76{
77	struct ahash_request *req = ahash_request_cast(async_req);
78	struct qce_sha_reqctx *rctx = ahash_request_ctx_dma(req);
79	struct qce_sha_ctx *ctx = crypto_tfm_ctx(async_req->tfm);
80	struct qce_alg_template *tmpl = to_ahash_tmpl(async_req->tfm);
81	struct qce_device *qce = tmpl->qce;
82	unsigned long flags = rctx->flags;
83	int ret;
84
85	if (IS_SHA_HMAC(flags)) {
86		rctx->authkey = ctx->authkey;
87		rctx->authklen = QCE_SHA_HMAC_KEY_SIZE;
88	} else if (IS_CMAC(flags)) {
89		rctx->authkey = ctx->authkey;
90		rctx->authklen = AES_KEYSIZE_128;
91	}
92
93	rctx->src_nents = sg_nents_for_len(req->src, req->nbytes);
94	if (rctx->src_nents < 0) {
95		dev_err(qce->dev, "Invalid numbers of src SG.\n");
96		return rctx->src_nents;
97	}
98
99	ret = dma_map_sg(qce->dev, req->src, rctx->src_nents, DMA_TO_DEVICE);
100	if (!ret)
101		return -EIO;
102
103	sg_init_one(&rctx->result_sg, qce->dma.result_buf, QCE_RESULT_BUF_SZ);
104
105	ret = dma_map_sg(qce->dev, &rctx->result_sg, 1, DMA_FROM_DEVICE);
106	if (!ret) {
107		ret = -EIO;
108		goto error_unmap_src;
109	}
110
111	ret = qce_dma_prep_sgs(&qce->dma, req->src, rctx->src_nents,
112			       &rctx->result_sg, 1, qce_ahash_done, async_req);
113	if (ret)
114		goto error_unmap_dst;
115
116	qce_dma_issue_pending(&qce->dma);
117
118	ret = qce_start(async_req, tmpl->crypto_alg_type);
119	if (ret)
120		goto error_terminate;
121
122	return 0;
123
124error_terminate:
125	qce_dma_terminate_all(&qce->dma);
126error_unmap_dst:
127	dma_unmap_sg(qce->dev, &rctx->result_sg, 1, DMA_FROM_DEVICE);
128error_unmap_src:
129	dma_unmap_sg(qce->dev, req->src, rctx->src_nents, DMA_TO_DEVICE);
130	return ret;
131}
132
133static int qce_ahash_init(struct ahash_request *req)
134{
135	struct qce_sha_reqctx *rctx = ahash_request_ctx_dma(req);
136	struct qce_alg_template *tmpl = to_ahash_tmpl(req->base.tfm);
137	const u32 *std_iv = tmpl->std_iv;
138
139	memset(rctx, 0, sizeof(*rctx));
140	rctx->first_blk = true;
141	rctx->last_blk = false;
142	rctx->flags = tmpl->alg_flags;
143	memcpy(rctx->digest, std_iv, sizeof(rctx->digest));
144
145	return 0;
146}
147
148static int qce_ahash_export(struct ahash_request *req, void *out)
149{
150	struct qce_sha_reqctx *rctx = ahash_request_ctx_dma(req);
151	struct qce_sha_saved_state *export_state = out;
152
153	memcpy(export_state->pending_buf, rctx->buf, rctx->buflen);
154	memcpy(export_state->partial_digest, rctx->digest, sizeof(rctx->digest));
155	export_state->byte_count[0] = rctx->byte_count[0];
156	export_state->byte_count[1] = rctx->byte_count[1];
157	export_state->pending_buflen = rctx->buflen;
158	export_state->count = rctx->count;
159	export_state->first_blk = rctx->first_blk;
160	export_state->flags = rctx->flags;
161
162	return 0;
163}
164
165static int qce_ahash_import(struct ahash_request *req, const void *in)
166{
167	struct qce_sha_reqctx *rctx = ahash_request_ctx_dma(req);
168	const struct qce_sha_saved_state *import_state = in;
169
170	memset(rctx, 0, sizeof(*rctx));
171	rctx->count = import_state->count;
172	rctx->buflen = import_state->pending_buflen;
173	rctx->first_blk = import_state->first_blk;
174	rctx->flags = import_state->flags;
175	rctx->byte_count[0] = import_state->byte_count[0];
176	rctx->byte_count[1] = import_state->byte_count[1];
177	memcpy(rctx->buf, import_state->pending_buf, rctx->buflen);
178	memcpy(rctx->digest, import_state->partial_digest, sizeof(rctx->digest));
179
180	return 0;
181}
182
183static int qce_ahash_update(struct ahash_request *req)
184{
185	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
186	struct qce_sha_reqctx *rctx = ahash_request_ctx_dma(req);
187	struct qce_alg_template *tmpl = to_ahash_tmpl(req->base.tfm);
188	struct qce_device *qce = tmpl->qce;
189	struct scatterlist *sg_last, *sg;
190	unsigned int total, len;
191	unsigned int hash_later;
192	unsigned int nbytes;
193	unsigned int blocksize;
194
195	blocksize = crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
196	rctx->count += req->nbytes;
197
198	/* check for buffer from previous updates and append it */
199	total = req->nbytes + rctx->buflen;
200
201	if (total <= blocksize) {
202		scatterwalk_map_and_copy(rctx->buf + rctx->buflen, req->src,
203					 0, req->nbytes, 0);
204		rctx->buflen += req->nbytes;
205		return 0;
206	}
207
208	/* save the original req structure fields */
209	rctx->src_orig = req->src;
210	rctx->nbytes_orig = req->nbytes;
211
212	/*
213	 * if we have data from previous update copy them on buffer. The old
214	 * data will be combined with current request bytes.
215	 */
216	if (rctx->buflen)
217		memcpy(rctx->tmpbuf, rctx->buf, rctx->buflen);
218
219	/* calculate how many bytes will be hashed later */
220	hash_later = total % blocksize;
221
222	/*
223	 * At this point, there is more than one block size of data.  If
224	 * the available data to transfer is exactly a multiple of block
225	 * size, save the last block to be transferred in qce_ahash_final
226	 * (with the last block bit set) if this is indeed the end of data
227	 * stream. If not this saved block will be transferred as part of
228	 * next update. If this block is not held back and if this is
229	 * indeed the end of data stream, the digest obtained will be wrong
230	 * since qce_ahash_final will see that rctx->buflen is 0 and return
231	 * doing nothing which in turn means that a digest will not be
232	 * copied to the destination result buffer.  qce_ahash_final cannot
233	 * be made to alter this behavior and allowed to proceed if
234	 * rctx->buflen is 0 because the crypto engine BAM does not allow
235	 * for zero length transfers.
236	 */
237	if (!hash_later)
238		hash_later = blocksize;
239
240	if (hash_later) {
241		unsigned int src_offset = req->nbytes - hash_later;
242		scatterwalk_map_and_copy(rctx->buf, req->src, src_offset,
243					 hash_later, 0);
244	}
245
246	/* here nbytes is multiple of blocksize */
247	nbytes = total - hash_later;
248
249	len = rctx->buflen;
250	sg = sg_last = req->src;
251
252	while (len < nbytes && sg) {
253		if (len + sg_dma_len(sg) > nbytes)
254			break;
255		len += sg_dma_len(sg);
256		sg_last = sg;
257		sg = sg_next(sg);
258	}
259
260	if (!sg_last)
261		return -EINVAL;
262
263	if (rctx->buflen) {
264		sg_init_table(rctx->sg, 2);
265		sg_set_buf(rctx->sg, rctx->tmpbuf, rctx->buflen);
266		sg_chain(rctx->sg, 2, req->src);
267		req->src = rctx->sg;
268	}
269
270	req->nbytes = nbytes;
271	rctx->buflen = hash_later;
272
273	return qce->async_req_enqueue(tmpl->qce, &req->base);
274}
275
276static int qce_ahash_final(struct ahash_request *req)
277{
278	struct qce_sha_reqctx *rctx = ahash_request_ctx_dma(req);
279	struct qce_alg_template *tmpl = to_ahash_tmpl(req->base.tfm);
280	struct qce_device *qce = tmpl->qce;
281
282	if (!rctx->buflen) {
283		if (tmpl->hash_zero)
284			memcpy(req->result, tmpl->hash_zero,
285					tmpl->alg.ahash.halg.digestsize);
286		return 0;
287	}
288
289	rctx->last_blk = true;
290
291	rctx->src_orig = req->src;
292	rctx->nbytes_orig = req->nbytes;
293
294	memcpy(rctx->tmpbuf, rctx->buf, rctx->buflen);
295	sg_init_one(rctx->sg, rctx->tmpbuf, rctx->buflen);
296
297	req->src = rctx->sg;
298	req->nbytes = rctx->buflen;
299
300	return qce->async_req_enqueue(tmpl->qce, &req->base);
301}
302
303static int qce_ahash_digest(struct ahash_request *req)
304{
305	struct qce_sha_reqctx *rctx = ahash_request_ctx_dma(req);
306	struct qce_alg_template *tmpl = to_ahash_tmpl(req->base.tfm);
307	struct qce_device *qce = tmpl->qce;
308	int ret;
309
310	ret = qce_ahash_init(req);
311	if (ret)
312		return ret;
313
314	rctx->src_orig = req->src;
315	rctx->nbytes_orig = req->nbytes;
316	rctx->first_blk = true;
317	rctx->last_blk = true;
318
319	if (!rctx->nbytes_orig) {
320		if (tmpl->hash_zero)
321			memcpy(req->result, tmpl->hash_zero,
322					tmpl->alg.ahash.halg.digestsize);
323		return 0;
324	}
325
326	return qce->async_req_enqueue(tmpl->qce, &req->base);
327}
328
329static int qce_ahash_hmac_setkey(struct crypto_ahash *tfm, const u8 *key,
330				 unsigned int keylen)
331{
332	unsigned int digestsize = crypto_ahash_digestsize(tfm);
333	struct qce_sha_ctx *ctx = crypto_tfm_ctx(&tfm->base);
334	struct crypto_wait wait;
335	struct ahash_request *req;
336	struct scatterlist sg;
337	unsigned int blocksize;
338	struct crypto_ahash *ahash_tfm;
339	u8 *buf;
340	int ret;
341	const char *alg_name;
342
343	blocksize = crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
344	memset(ctx->authkey, 0, sizeof(ctx->authkey));
345
346	if (keylen <= blocksize) {
347		memcpy(ctx->authkey, key, keylen);
348		return 0;
349	}
350
351	if (digestsize == SHA1_DIGEST_SIZE)
352		alg_name = "sha1-qce";
353	else if (digestsize == SHA256_DIGEST_SIZE)
354		alg_name = "sha256-qce";
355	else
356		return -EINVAL;
357
358	ahash_tfm = crypto_alloc_ahash(alg_name, 0, 0);
359	if (IS_ERR(ahash_tfm))
360		return PTR_ERR(ahash_tfm);
361
362	req = ahash_request_alloc(ahash_tfm, GFP_KERNEL);
363	if (!req) {
364		ret = -ENOMEM;
365		goto err_free_ahash;
366	}
367
368	crypto_init_wait(&wait);
369	ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
370				   crypto_req_done, &wait);
371	crypto_ahash_clear_flags(ahash_tfm, ~0);
372
373	buf = kzalloc(keylen + QCE_MAX_ALIGN_SIZE, GFP_KERNEL);
374	if (!buf) {
375		ret = -ENOMEM;
376		goto err_free_req;
377	}
378
379	memcpy(buf, key, keylen);
380	sg_init_one(&sg, buf, keylen);
381	ahash_request_set_crypt(req, &sg, ctx->authkey, keylen);
382
383	ret = crypto_wait_req(crypto_ahash_digest(req), &wait);
384
385	kfree(buf);
386err_free_req:
387	ahash_request_free(req);
388err_free_ahash:
389	crypto_free_ahash(ahash_tfm);
390	return ret;
391}
392
393static int qce_ahash_cra_init(struct crypto_tfm *tfm)
394{
395	struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
396	struct qce_sha_ctx *ctx = crypto_tfm_ctx(tfm);
397
398	crypto_ahash_set_reqsize_dma(ahash, sizeof(struct qce_sha_reqctx));
399	memset(ctx, 0, sizeof(*ctx));
400	return 0;
401}
402
403struct qce_ahash_def {
404	unsigned long flags;
405	const char *name;
406	const char *drv_name;
407	unsigned int digestsize;
408	unsigned int blocksize;
409	unsigned int statesize;
410	const u32 *std_iv;
411};
412
413static const struct qce_ahash_def ahash_def[] = {
414	{
415		.flags		= QCE_HASH_SHA1,
416		.name		= "sha1",
417		.drv_name	= "sha1-qce",
418		.digestsize	= SHA1_DIGEST_SIZE,
419		.blocksize	= SHA1_BLOCK_SIZE,
420		.statesize	= sizeof(struct qce_sha_saved_state),
421		.std_iv		= std_iv_sha1,
422	},
423	{
424		.flags		= QCE_HASH_SHA256,
425		.name		= "sha256",
426		.drv_name	= "sha256-qce",
427		.digestsize	= SHA256_DIGEST_SIZE,
428		.blocksize	= SHA256_BLOCK_SIZE,
429		.statesize	= sizeof(struct qce_sha_saved_state),
430		.std_iv		= std_iv_sha256,
431	},
432	{
433		.flags		= QCE_HASH_SHA1_HMAC,
434		.name		= "hmac(sha1)",
435		.drv_name	= "hmac-sha1-qce",
436		.digestsize	= SHA1_DIGEST_SIZE,
437		.blocksize	= SHA1_BLOCK_SIZE,
438		.statesize	= sizeof(struct qce_sha_saved_state),
439		.std_iv		= std_iv_sha1,
440	},
441	{
442		.flags		= QCE_HASH_SHA256_HMAC,
443		.name		= "hmac(sha256)",
444		.drv_name	= "hmac-sha256-qce",
445		.digestsize	= SHA256_DIGEST_SIZE,
446		.blocksize	= SHA256_BLOCK_SIZE,
447		.statesize	= sizeof(struct qce_sha_saved_state),
448		.std_iv		= std_iv_sha256,
449	},
450};
451
452static int qce_ahash_register_one(const struct qce_ahash_def *def,
453				  struct qce_device *qce)
454{
455	struct qce_alg_template *tmpl;
456	struct ahash_alg *alg;
457	struct crypto_alg *base;
458	int ret;
459
460	tmpl = kzalloc(sizeof(*tmpl), GFP_KERNEL);
461	if (!tmpl)
462		return -ENOMEM;
463
464	tmpl->std_iv = def->std_iv;
465
466	alg = &tmpl->alg.ahash;
467	alg->init = qce_ahash_init;
468	alg->update = qce_ahash_update;
469	alg->final = qce_ahash_final;
470	alg->digest = qce_ahash_digest;
471	alg->export = qce_ahash_export;
472	alg->import = qce_ahash_import;
473	if (IS_SHA_HMAC(def->flags))
474		alg->setkey = qce_ahash_hmac_setkey;
475	alg->halg.digestsize = def->digestsize;
476	alg->halg.statesize = def->statesize;
477
478	if (IS_SHA1(def->flags))
479		tmpl->hash_zero = sha1_zero_message_hash;
480	else if (IS_SHA256(def->flags))
481		tmpl->hash_zero = sha256_zero_message_hash;
482
483	base = &alg->halg.base;
484	base->cra_blocksize = def->blocksize;
485	base->cra_priority = 300;
486	base->cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY;
487	base->cra_ctxsize = sizeof(struct qce_sha_ctx);
488	base->cra_alignmask = 0;
489	base->cra_module = THIS_MODULE;
490	base->cra_init = qce_ahash_cra_init;
491
492	snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "%s", def->name);
493	snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
494		 def->drv_name);
495
496	INIT_LIST_HEAD(&tmpl->entry);
497	tmpl->crypto_alg_type = CRYPTO_ALG_TYPE_AHASH;
498	tmpl->alg_flags = def->flags;
499	tmpl->qce = qce;
500
501	ret = crypto_register_ahash(alg);
502	if (ret) {
503		dev_err(qce->dev, "%s registration failed\n", base->cra_name);
504		kfree(tmpl);
505		return ret;
506	}
507
508	list_add_tail(&tmpl->entry, &ahash_algs);
509	dev_dbg(qce->dev, "%s is registered\n", base->cra_name);
510	return 0;
511}
512
513static void qce_ahash_unregister(struct qce_device *qce)
514{
515	struct qce_alg_template *tmpl, *n;
516
517	list_for_each_entry_safe(tmpl, n, &ahash_algs, entry) {
518		crypto_unregister_ahash(&tmpl->alg.ahash);
519		list_del(&tmpl->entry);
520		kfree(tmpl);
521	}
522}
523
524static int qce_ahash_register(struct qce_device *qce)
525{
526	int ret, i;
527
528	for (i = 0; i < ARRAY_SIZE(ahash_def); i++) {
529		ret = qce_ahash_register_one(&ahash_def[i], qce);
530		if (ret)
531			goto err;
532	}
533
534	return 0;
535err:
536	qce_ahash_unregister(qce);
537	return ret;
538}
539
540const struct qce_algo_ops ahash_ops = {
541	.type = CRYPTO_ALG_TYPE_AHASH,
542	.register_algs = qce_ahash_register,
543	.unregister_algs = qce_ahash_unregister,
544	.async_req_handle = qce_ahash_async_req_handle,
545};
546