1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Intel Keem Bay OCS AES Crypto Driver.
4 *
5 * Copyright (C) 2018-2020 Intel Corporation
6 */
7
8#include <linux/dma-mapping.h>
9#include <linux/interrupt.h>
10#include <linux/platform_device.h>
11#include <linux/slab.h>
12#include <linux/swab.h>
13
14#include <asm/byteorder.h>
15#include <asm/errno.h>
16
17#include <crypto/aes.h>
18#include <crypto/gcm.h>
19
20#include "ocs-aes.h"
21
22#define AES_COMMAND_OFFSET			0x0000
23#define AES_KEY_0_OFFSET			0x0004
24#define AES_KEY_1_OFFSET			0x0008
25#define AES_KEY_2_OFFSET			0x000C
26#define AES_KEY_3_OFFSET			0x0010
27#define AES_KEY_4_OFFSET			0x0014
28#define AES_KEY_5_OFFSET			0x0018
29#define AES_KEY_6_OFFSET			0x001C
30#define AES_KEY_7_OFFSET			0x0020
31#define AES_IV_0_OFFSET				0x0024
32#define AES_IV_1_OFFSET				0x0028
33#define AES_IV_2_OFFSET				0x002C
34#define AES_IV_3_OFFSET				0x0030
35#define AES_ACTIVE_OFFSET			0x0034
36#define AES_STATUS_OFFSET			0x0038
37#define AES_KEY_SIZE_OFFSET			0x0044
38#define AES_IER_OFFSET				0x0048
39#define AES_ISR_OFFSET				0x005C
40#define AES_MULTIPURPOSE1_0_OFFSET		0x0200
41#define AES_MULTIPURPOSE1_1_OFFSET		0x0204
42#define AES_MULTIPURPOSE1_2_OFFSET		0x0208
43#define AES_MULTIPURPOSE1_3_OFFSET		0x020C
44#define AES_MULTIPURPOSE2_0_OFFSET		0x0220
45#define AES_MULTIPURPOSE2_1_OFFSET		0x0224
46#define AES_MULTIPURPOSE2_2_OFFSET		0x0228
47#define AES_MULTIPURPOSE2_3_OFFSET		0x022C
48#define AES_BYTE_ORDER_CFG_OFFSET		0x02C0
49#define AES_TLEN_OFFSET				0x0300
50#define AES_T_MAC_0_OFFSET			0x0304
51#define AES_T_MAC_1_OFFSET			0x0308
52#define AES_T_MAC_2_OFFSET			0x030C
53#define AES_T_MAC_3_OFFSET			0x0310
54#define AES_PLEN_OFFSET				0x0314
55#define AES_A_DMA_SRC_ADDR_OFFSET		0x0400
56#define AES_A_DMA_DST_ADDR_OFFSET		0x0404
57#define AES_A_DMA_SRC_SIZE_OFFSET		0x0408
58#define AES_A_DMA_DST_SIZE_OFFSET		0x040C
59#define AES_A_DMA_DMA_MODE_OFFSET		0x0410
60#define AES_A_DMA_NEXT_SRC_DESCR_OFFSET		0x0418
61#define AES_A_DMA_NEXT_DST_DESCR_OFFSET		0x041C
62#define AES_A_DMA_WHILE_ACTIVE_MODE_OFFSET	0x0420
63#define AES_A_DMA_LOG_OFFSET			0x0424
64#define AES_A_DMA_STATUS_OFFSET			0x0428
65#define AES_A_DMA_PERF_CNTR_OFFSET		0x042C
66#define AES_A_DMA_MSI_ISR_OFFSET		0x0480
67#define AES_A_DMA_MSI_IER_OFFSET		0x0484
68#define AES_A_DMA_MSI_MASK_OFFSET		0x0488
69#define AES_A_DMA_INBUFFER_WRITE_FIFO_OFFSET	0x0600
70#define AES_A_DMA_OUTBUFFER_READ_FIFO_OFFSET	0x0700
71
72/*
73 * AES_A_DMA_DMA_MODE register.
74 * Default: 0x00000000.
75 * bit[31]	ACTIVE
76 *		This bit activates the DMA. When the DMA finishes, it resets
77 *		this bit to zero.
78 * bit[30:26]	Unused by this driver.
79 * bit[25]	SRC_LINK_LIST_EN
80 *		Source link list enable bit. When the linked list is terminated
81 *		this bit is reset by the DMA.
82 * bit[24]	DST_LINK_LIST_EN
83 *		Destination link list enable bit. When the linked list is
84 *		terminated this bit is reset by the DMA.
85 * bit[23:0]	Unused by this driver.
86 */
87#define AES_A_DMA_DMA_MODE_ACTIVE		BIT(31)
88#define AES_A_DMA_DMA_MODE_SRC_LINK_LIST_EN	BIT(25)
89#define AES_A_DMA_DMA_MODE_DST_LINK_LIST_EN	BIT(24)
90
91/*
92 * AES_ACTIVE register
93 * default 0x00000000
94 * bit[31:10]	Reserved
95 * bit[9]	LAST_ADATA
96 * bit[8]	LAST_GCX
97 * bit[7:2]	Reserved
98 * bit[1]	TERMINATION
99 * bit[0]	TRIGGER
100 */
101#define AES_ACTIVE_LAST_ADATA			BIT(9)
102#define AES_ACTIVE_LAST_CCM_GCM			BIT(8)
103#define AES_ACTIVE_TERMINATION			BIT(1)
104#define AES_ACTIVE_TRIGGER			BIT(0)
105
106#define AES_DISABLE_INT				0x00000000
107#define AES_DMA_CPD_ERR_INT			BIT(8)
108#define AES_DMA_OUTBUF_RD_ERR_INT		BIT(7)
109#define AES_DMA_OUTBUF_WR_ERR_INT		BIT(6)
110#define AES_DMA_INBUF_RD_ERR_INT		BIT(5)
111#define AES_DMA_INBUF_WR_ERR_INT		BIT(4)
112#define AES_DMA_BAD_COMP_INT			BIT(3)
113#define AES_DMA_SAI_INT				BIT(2)
114#define AES_DMA_SRC_DONE_INT			BIT(0)
115#define AES_COMPLETE_INT			BIT(1)
116
117#define AES_DMA_MSI_MASK_CLEAR			BIT(0)
118
119#define AES_128_BIT_KEY				0x00000000
120#define AES_256_BIT_KEY				BIT(0)
121
122#define AES_DEACTIVATE_PERF_CNTR		0x00000000
123#define AES_ACTIVATE_PERF_CNTR			BIT(0)
124
125#define AES_MAX_TAG_SIZE_U32			4
126
127#define OCS_LL_DMA_FLAG_TERMINATE		BIT(31)
128
129/*
130 * There is an inconsistency in the documentation. This is documented as a
131 * 11-bit value, but it is actually 10-bits.
132 */
133#define AES_DMA_STATUS_INPUT_BUFFER_OCCUPANCY_MASK	0x3FF
134
135/*
136 * During CCM decrypt, the OCS block needs to finish processing the ciphertext
137 * before the tag is written. For 128-bit mode this required delay is 28 OCS
138 * clock cycles. For 256-bit mode it is 36 OCS clock cycles.
139 */
140#define CCM_DECRYPT_DELAY_TAG_CLK_COUNT		36UL
141
142/*
143 * During CCM decrypt there must be a delay of at least 42 OCS clock cycles
144 * between setting the TRIGGER bit in AES_ACTIVE and setting the LAST_CCM_GCM
145 * bit in the same register (as stated in the OCS databook)
146 */
147#define CCM_DECRYPT_DELAY_LAST_GCX_CLK_COUNT	42UL
148
149/* See RFC3610 section 2.2 */
150#define L_PRIME_MIN (1)
151#define L_PRIME_MAX (7)
152/*
153 * CCM IV format from RFC 3610 section 2.3
154 *
155 *   Octet Number   Contents
156 *   ------------   ---------
157 *   0              Flags
158 *   1 ... 15-L     Nonce N
159 *   16-L ... 15    Counter i
160 *
161 * Flags = L' = L - 1
162 */
163#define L_PRIME_IDX		0
164#define COUNTER_START(lprime)	(16 - ((lprime) + 1))
165#define COUNTER_LEN(lprime)	((lprime) + 1)
166
167enum aes_counter_mode {
168	AES_CTR_M_NO_INC = 0,
169	AES_CTR_M_32_INC = 1,
170	AES_CTR_M_64_INC = 2,
171	AES_CTR_M_128_INC = 3,
172};
173
174/**
175 * struct ocs_dma_linked_list - OCS DMA linked list entry.
176 * @src_addr:   Source address of the data.
177 * @src_len:    Length of data to be fetched.
178 * @next:	Next dma_list to fetch.
179 * @ll_flags:   Flags (Freeze @ terminate) for the DMA engine.
180 */
181struct ocs_dma_linked_list {
182	u32 src_addr;
183	u32 src_len;
184	u32 next;
185	u32 ll_flags;
186} __packed;
187
188/*
189 * Set endianness of inputs and outputs
190 * AES_BYTE_ORDER_CFG
191 * default 0x00000000
192 * bit [10] - KEY_HI_LO_SWAP
193 * bit [9] - KEY_HI_SWAP_DWORDS_IN_OCTWORD
194 * bit [8] - KEY_HI_SWAP_BYTES_IN_DWORD
195 * bit [7] - KEY_LO_SWAP_DWORDS_IN_OCTWORD
196 * bit [6] - KEY_LO_SWAP_BYTES_IN_DWORD
197 * bit [5] - IV_SWAP_DWORDS_IN_OCTWORD
198 * bit [4] - IV_SWAP_BYTES_IN_DWORD
199 * bit [3] - DOUT_SWAP_DWORDS_IN_OCTWORD
200 * bit [2] - DOUT_SWAP_BYTES_IN_DWORD
201 * bit [1] - DOUT_SWAP_DWORDS_IN_OCTWORD
202 * bit [0] - DOUT_SWAP_BYTES_IN_DWORD
203 */
204static inline void aes_a_set_endianness(const struct ocs_aes_dev *aes_dev)
205{
206	iowrite32(0x7FF, aes_dev->base_reg + AES_BYTE_ORDER_CFG_OFFSET);
207}
208
209/* Trigger AES process start. */
210static inline void aes_a_op_trigger(const struct ocs_aes_dev *aes_dev)
211{
212	iowrite32(AES_ACTIVE_TRIGGER, aes_dev->base_reg + AES_ACTIVE_OFFSET);
213}
214
215/* Indicate last bulk of data. */
216static inline void aes_a_op_termination(const struct ocs_aes_dev *aes_dev)
217{
218	iowrite32(AES_ACTIVE_TERMINATION,
219		  aes_dev->base_reg + AES_ACTIVE_OFFSET);
220}
221
222/*
223 * Set LAST_CCM_GCM in AES_ACTIVE register and clear all other bits.
224 *
225 * Called when DMA is programmed to fetch the last batch of data.
226 * - For AES-CCM it is called for the last batch of Payload data and Ciphertext
227 *   data.
228 * - For AES-GCM, it is called for the last batch of Plaintext data and
229 *   Ciphertext data.
230 */
231static inline void aes_a_set_last_gcx(const struct ocs_aes_dev *aes_dev)
232{
233	iowrite32(AES_ACTIVE_LAST_CCM_GCM,
234		  aes_dev->base_reg + AES_ACTIVE_OFFSET);
235}
236
237/* Wait for LAST_CCM_GCM bit to be unset. */
238static inline void aes_a_wait_last_gcx(const struct ocs_aes_dev *aes_dev)
239{
240	u32 aes_active_reg;
241
242	do {
243		aes_active_reg = ioread32(aes_dev->base_reg +
244					  AES_ACTIVE_OFFSET);
245	} while (aes_active_reg & AES_ACTIVE_LAST_CCM_GCM);
246}
247
248/* Wait for 10 bits of input occupancy. */
249static void aes_a_dma_wait_input_buffer_occupancy(const struct ocs_aes_dev *aes_dev)
250{
251	u32 reg;
252
253	do {
254		reg = ioread32(aes_dev->base_reg + AES_A_DMA_STATUS_OFFSET);
255	} while (reg & AES_DMA_STATUS_INPUT_BUFFER_OCCUPANCY_MASK);
256}
257
258 /*
259  * Set LAST_CCM_GCM and LAST_ADATA bits in AES_ACTIVE register (and clear all
260  * other bits).
261  *
262  * Called when DMA is programmed to fetch the last batch of Associated Data
263  * (CCM case) or Additional Authenticated Data (GCM case).
264  */
265static inline void aes_a_set_last_gcx_and_adata(const struct ocs_aes_dev *aes_dev)
266{
267	iowrite32(AES_ACTIVE_LAST_ADATA | AES_ACTIVE_LAST_CCM_GCM,
268		  aes_dev->base_reg + AES_ACTIVE_OFFSET);
269}
270
271/* Set DMA src and dst transfer size to 0 */
272static inline void aes_a_dma_set_xfer_size_zero(const struct ocs_aes_dev *aes_dev)
273{
274	iowrite32(0, aes_dev->base_reg + AES_A_DMA_SRC_SIZE_OFFSET);
275	iowrite32(0, aes_dev->base_reg + AES_A_DMA_DST_SIZE_OFFSET);
276}
277
278/* Activate DMA for zero-byte transfer case. */
279static inline void aes_a_dma_active(const struct ocs_aes_dev *aes_dev)
280{
281	iowrite32(AES_A_DMA_DMA_MODE_ACTIVE,
282		  aes_dev->base_reg + AES_A_DMA_DMA_MODE_OFFSET);
283}
284
285/* Activate DMA and enable src linked list */
286static inline void aes_a_dma_active_src_ll_en(const struct ocs_aes_dev *aes_dev)
287{
288	iowrite32(AES_A_DMA_DMA_MODE_ACTIVE |
289		  AES_A_DMA_DMA_MODE_SRC_LINK_LIST_EN,
290		  aes_dev->base_reg + AES_A_DMA_DMA_MODE_OFFSET);
291}
292
293/* Activate DMA and enable dst linked list */
294static inline void aes_a_dma_active_dst_ll_en(const struct ocs_aes_dev *aes_dev)
295{
296	iowrite32(AES_A_DMA_DMA_MODE_ACTIVE |
297		  AES_A_DMA_DMA_MODE_DST_LINK_LIST_EN,
298		  aes_dev->base_reg + AES_A_DMA_DMA_MODE_OFFSET);
299}
300
301/* Activate DMA and enable src and dst linked lists */
302static inline void aes_a_dma_active_src_dst_ll_en(const struct ocs_aes_dev *aes_dev)
303{
304	iowrite32(AES_A_DMA_DMA_MODE_ACTIVE |
305		  AES_A_DMA_DMA_MODE_SRC_LINK_LIST_EN |
306		  AES_A_DMA_DMA_MODE_DST_LINK_LIST_EN,
307		  aes_dev->base_reg + AES_A_DMA_DMA_MODE_OFFSET);
308}
309
310/* Reset PERF_CNTR to 0 and activate it */
311static inline void aes_a_dma_reset_and_activate_perf_cntr(const struct ocs_aes_dev *aes_dev)
312{
313	iowrite32(0x00000000, aes_dev->base_reg + AES_A_DMA_PERF_CNTR_OFFSET);
314	iowrite32(AES_ACTIVATE_PERF_CNTR,
315		  aes_dev->base_reg + AES_A_DMA_WHILE_ACTIVE_MODE_OFFSET);
316}
317
318/* Wait until PERF_CNTR is > delay, then deactivate it */
319static inline void aes_a_dma_wait_and_deactivate_perf_cntr(const struct ocs_aes_dev *aes_dev,
320							   int delay)
321{
322	while (ioread32(aes_dev->base_reg + AES_A_DMA_PERF_CNTR_OFFSET) < delay)
323		;
324	iowrite32(AES_DEACTIVATE_PERF_CNTR,
325		  aes_dev->base_reg + AES_A_DMA_WHILE_ACTIVE_MODE_OFFSET);
326}
327
328/* Disable AES and DMA IRQ. */
329static void aes_irq_disable(struct ocs_aes_dev *aes_dev)
330{
331	u32 isr_val = 0;
332
333	/* Disable interrupts */
334	iowrite32(AES_DISABLE_INT,
335		  aes_dev->base_reg + AES_A_DMA_MSI_IER_OFFSET);
336	iowrite32(AES_DISABLE_INT, aes_dev->base_reg + AES_IER_OFFSET);
337
338	/* Clear any pending interrupt */
339	isr_val = ioread32(aes_dev->base_reg + AES_A_DMA_MSI_ISR_OFFSET);
340	if (isr_val)
341		iowrite32(isr_val,
342			  aes_dev->base_reg + AES_A_DMA_MSI_ISR_OFFSET);
343
344	isr_val = ioread32(aes_dev->base_reg + AES_A_DMA_MSI_MASK_OFFSET);
345	if (isr_val)
346		iowrite32(isr_val,
347			  aes_dev->base_reg + AES_A_DMA_MSI_MASK_OFFSET);
348
349	isr_val = ioread32(aes_dev->base_reg + AES_ISR_OFFSET);
350	if (isr_val)
351		iowrite32(isr_val, aes_dev->base_reg + AES_ISR_OFFSET);
352}
353
354/* Enable AES or DMA IRQ.  IRQ is disabled once fired. */
355static void aes_irq_enable(struct ocs_aes_dev *aes_dev, u8 irq)
356{
357	if (irq == AES_COMPLETE_INT) {
358		/* Ensure DMA error interrupts are enabled */
359		iowrite32(AES_DMA_CPD_ERR_INT |
360			  AES_DMA_OUTBUF_RD_ERR_INT |
361			  AES_DMA_OUTBUF_WR_ERR_INT |
362			  AES_DMA_INBUF_RD_ERR_INT |
363			  AES_DMA_INBUF_WR_ERR_INT |
364			  AES_DMA_BAD_COMP_INT |
365			  AES_DMA_SAI_INT,
366			  aes_dev->base_reg + AES_A_DMA_MSI_IER_OFFSET);
367		/*
368		 * AES_IER
369		 * default 0x00000000
370		 * bits [31:3] - reserved
371		 * bit [2] - EN_SKS_ERR
372		 * bit [1] - EN_AES_COMPLETE
373		 * bit [0] - reserved
374		 */
375		iowrite32(AES_COMPLETE_INT, aes_dev->base_reg + AES_IER_OFFSET);
376		return;
377	}
378	if (irq == AES_DMA_SRC_DONE_INT) {
379		/* Ensure AES interrupts are disabled */
380		iowrite32(AES_DISABLE_INT, aes_dev->base_reg + AES_IER_OFFSET);
381		/*
382		 * DMA_MSI_IER
383		 * default 0x00000000
384		 * bits [31:9] - reserved
385		 * bit [8] - CPD_ERR_INT_EN
386		 * bit [7] - OUTBUF_RD_ERR_INT_EN
387		 * bit [6] - OUTBUF_WR_ERR_INT_EN
388		 * bit [5] - INBUF_RD_ERR_INT_EN
389		 * bit [4] - INBUF_WR_ERR_INT_EN
390		 * bit [3] - BAD_COMP_INT_EN
391		 * bit [2] - SAI_INT_EN
392		 * bit [1] - DST_DONE_INT_EN
393		 * bit [0] - SRC_DONE_INT_EN
394		 */
395		iowrite32(AES_DMA_CPD_ERR_INT |
396			  AES_DMA_OUTBUF_RD_ERR_INT |
397			  AES_DMA_OUTBUF_WR_ERR_INT |
398			  AES_DMA_INBUF_RD_ERR_INT |
399			  AES_DMA_INBUF_WR_ERR_INT |
400			  AES_DMA_BAD_COMP_INT |
401			  AES_DMA_SAI_INT |
402			  AES_DMA_SRC_DONE_INT,
403			  aes_dev->base_reg + AES_A_DMA_MSI_IER_OFFSET);
404	}
405}
406
407/* Enable and wait for IRQ (either from OCS AES engine or DMA) */
408static int ocs_aes_irq_enable_and_wait(struct ocs_aes_dev *aes_dev, u8 irq)
409{
410	int rc;
411
412	reinit_completion(&aes_dev->irq_completion);
413	aes_irq_enable(aes_dev, irq);
414	rc = wait_for_completion_interruptible(&aes_dev->irq_completion);
415	if (rc)
416		return rc;
417
418	return aes_dev->dma_err_mask ? -EIO : 0;
419}
420
421/* Configure DMA to OCS, linked list mode */
422static inline void dma_to_ocs_aes_ll(struct ocs_aes_dev *aes_dev,
423				     dma_addr_t dma_list)
424{
425	iowrite32(0, aes_dev->base_reg + AES_A_DMA_SRC_SIZE_OFFSET);
426	iowrite32(dma_list,
427		  aes_dev->base_reg + AES_A_DMA_NEXT_SRC_DESCR_OFFSET);
428}
429
430/* Configure DMA from OCS, linked list mode */
431static inline void dma_from_ocs_aes_ll(struct ocs_aes_dev *aes_dev,
432				       dma_addr_t dma_list)
433{
434	iowrite32(0, aes_dev->base_reg + AES_A_DMA_DST_SIZE_OFFSET);
435	iowrite32(dma_list,
436		  aes_dev->base_reg + AES_A_DMA_NEXT_DST_DESCR_OFFSET);
437}
438
439irqreturn_t ocs_aes_irq_handler(int irq, void *dev_id)
440{
441	struct ocs_aes_dev *aes_dev = dev_id;
442	u32 aes_dma_isr;
443
444	/* Read DMA ISR status. */
445	aes_dma_isr = ioread32(aes_dev->base_reg + AES_A_DMA_MSI_ISR_OFFSET);
446
447	/* Disable and clear interrupts. */
448	aes_irq_disable(aes_dev);
449
450	/* Save DMA error status. */
451	aes_dev->dma_err_mask = aes_dma_isr &
452				(AES_DMA_CPD_ERR_INT |
453				 AES_DMA_OUTBUF_RD_ERR_INT |
454				 AES_DMA_OUTBUF_WR_ERR_INT |
455				 AES_DMA_INBUF_RD_ERR_INT |
456				 AES_DMA_INBUF_WR_ERR_INT |
457				 AES_DMA_BAD_COMP_INT |
458				 AES_DMA_SAI_INT);
459
460	/* Signal IRQ completion. */
461	complete(&aes_dev->irq_completion);
462
463	return IRQ_HANDLED;
464}
465
466/**
467 * ocs_aes_set_key() - Write key into OCS AES hardware.
468 * @aes_dev:	The OCS AES device to write the key to.
469 * @key_size:	The size of the key (in bytes).
470 * @key:	The key to write.
471 * @cipher:	The cipher the key is for.
472 *
473 * For AES @key_size must be either 16 or 32. For SM4 @key_size must be 16.
474 *
475 * Return:	0 on success, negative error code otherwise.
476 */
477int ocs_aes_set_key(struct ocs_aes_dev *aes_dev, u32 key_size, const u8 *key,
478		    enum ocs_cipher cipher)
479{
480	const u32 *key_u32;
481	u32 val;
482	int i;
483
484	/* OCS AES supports 128-bit and 256-bit keys only. */
485	if (cipher == OCS_AES && !(key_size == 32 || key_size == 16)) {
486		dev_err(aes_dev->dev,
487			"%d-bit keys not supported by AES cipher\n",
488			key_size * 8);
489		return -EINVAL;
490	}
491	/* OCS SM4 supports 128-bit keys only. */
492	if (cipher == OCS_SM4 && key_size != 16) {
493		dev_err(aes_dev->dev,
494			"%d-bit keys not supported for SM4 cipher\n",
495			key_size * 8);
496		return -EINVAL;
497	}
498
499	if (!key)
500		return -EINVAL;
501
502	key_u32 = (const u32 *)key;
503
504	/* Write key to AES_KEY[0-7] registers */
505	for (i = 0; i < (key_size / sizeof(u32)); i++) {
506		iowrite32(key_u32[i],
507			  aes_dev->base_reg + AES_KEY_0_OFFSET +
508			  (i * sizeof(u32)));
509	}
510	/*
511	 * Write key size
512	 * bits [31:1] - reserved
513	 * bit [0] - AES_KEY_SIZE
514	 *           0 - 128 bit key
515	 *           1 - 256 bit key
516	 */
517	val = (key_size == 16) ? AES_128_BIT_KEY : AES_256_BIT_KEY;
518	iowrite32(val, aes_dev->base_reg + AES_KEY_SIZE_OFFSET);
519
520	return 0;
521}
522
523/* Write AES_COMMAND */
524static inline void set_ocs_aes_command(struct ocs_aes_dev *aes_dev,
525				       enum ocs_cipher cipher,
526				       enum ocs_mode mode,
527				       enum ocs_instruction instruction)
528{
529	u32 val;
530
531	/* AES_COMMAND
532	 * default 0x000000CC
533	 * bit [14] - CIPHER_SELECT
534	 *            0 - AES
535	 *            1 - SM4
536	 * bits [11:8] - OCS_AES_MODE
537	 *               0000 - ECB
538	 *               0001 - CBC
539	 *               0010 - CTR
540	 *               0110 - CCM
541	 *               0111 - GCM
542	 *               1001 - CTS
543	 * bits [7:6] - AES_INSTRUCTION
544	 *              00 - ENCRYPT
545	 *              01 - DECRYPT
546	 *              10 - EXPAND
547	 *              11 - BYPASS
548	 * bits [3:2] - CTR_M_BITS
549	 *              00 - No increment
550	 *              01 - Least significant 32 bits are incremented
551	 *              10 - Least significant 64 bits are incremented
552	 *              11 - Full 128 bits are incremented
553	 */
554	val = (cipher << 14) | (mode << 8) | (instruction << 6) |
555	      (AES_CTR_M_128_INC << 2);
556	iowrite32(val, aes_dev->base_reg + AES_COMMAND_OFFSET);
557}
558
559static void ocs_aes_init(struct ocs_aes_dev *aes_dev,
560			 enum ocs_mode mode,
561			 enum ocs_cipher cipher,
562			 enum ocs_instruction instruction)
563{
564	/* Ensure interrupts are disabled and pending interrupts cleared. */
565	aes_irq_disable(aes_dev);
566
567	/* Set endianness recommended by data-sheet. */
568	aes_a_set_endianness(aes_dev);
569
570	/* Set AES_COMMAND register. */
571	set_ocs_aes_command(aes_dev, cipher, mode, instruction);
572}
573
574/*
575 * Write the byte length of the last AES/SM4 block of Payload data (without
576 * zero padding and without the length of the MAC) in register AES_PLEN.
577 */
578static inline void ocs_aes_write_last_data_blk_len(struct ocs_aes_dev *aes_dev,
579						   u32 size)
580{
581	u32 val;
582
583	if (size == 0) {
584		val = 0;
585		goto exit;
586	}
587
588	val = size % AES_BLOCK_SIZE;
589	if (val == 0)
590		val = AES_BLOCK_SIZE;
591
592exit:
593	iowrite32(val, aes_dev->base_reg + AES_PLEN_OFFSET);
594}
595
596/*
597 * Validate inputs according to mode.
598 * If OK return 0; else return -EINVAL.
599 */
600static int ocs_aes_validate_inputs(dma_addr_t src_dma_list, u32 src_size,
601				   const u8 *iv, u32 iv_size,
602				   dma_addr_t aad_dma_list, u32 aad_size,
603				   const u8 *tag, u32 tag_size,
604				   enum ocs_cipher cipher, enum ocs_mode mode,
605				   enum ocs_instruction instruction,
606				   dma_addr_t dst_dma_list)
607{
608	/* Ensure cipher, mode and instruction are valid. */
609	if (!(cipher == OCS_AES || cipher == OCS_SM4))
610		return -EINVAL;
611
612	if (mode != OCS_MODE_ECB && mode != OCS_MODE_CBC &&
613	    mode != OCS_MODE_CTR && mode != OCS_MODE_CCM &&
614	    mode != OCS_MODE_GCM && mode != OCS_MODE_CTS)
615		return -EINVAL;
616
617	if (instruction != OCS_ENCRYPT && instruction != OCS_DECRYPT &&
618	    instruction != OCS_EXPAND  && instruction != OCS_BYPASS)
619		return -EINVAL;
620
621	/*
622	 * When instruction is OCS_BYPASS, OCS simply copies data from source
623	 * to destination using DMA.
624	 *
625	 * AES mode is irrelevant, but both source and destination DMA
626	 * linked-list must be defined.
627	 */
628	if (instruction == OCS_BYPASS) {
629		if (src_dma_list == DMA_MAPPING_ERROR ||
630		    dst_dma_list == DMA_MAPPING_ERROR)
631			return -EINVAL;
632
633		return 0;
634	}
635
636	/*
637	 * For performance reasons switch based on mode to limit unnecessary
638	 * conditionals for each mode
639	 */
640	switch (mode) {
641	case OCS_MODE_ECB:
642		/* Ensure input length is multiple of block size */
643		if (src_size % AES_BLOCK_SIZE != 0)
644			return -EINVAL;
645
646		/* Ensure source and destination linked lists are created */
647		if (src_dma_list == DMA_MAPPING_ERROR ||
648		    dst_dma_list == DMA_MAPPING_ERROR)
649			return -EINVAL;
650
651		return 0;
652
653	case OCS_MODE_CBC:
654		/* Ensure input length is multiple of block size */
655		if (src_size % AES_BLOCK_SIZE != 0)
656			return -EINVAL;
657
658		/* Ensure source and destination linked lists are created */
659		if (src_dma_list == DMA_MAPPING_ERROR ||
660		    dst_dma_list == DMA_MAPPING_ERROR)
661			return -EINVAL;
662
663		/* Ensure IV is present and block size in length */
664		if (!iv || iv_size != AES_BLOCK_SIZE)
665			return -EINVAL;
666
667		return 0;
668
669	case OCS_MODE_CTR:
670		/* Ensure input length of 1 byte or greater */
671		if (src_size == 0)
672			return -EINVAL;
673
674		/* Ensure source and destination linked lists are created */
675		if (src_dma_list == DMA_MAPPING_ERROR ||
676		    dst_dma_list == DMA_MAPPING_ERROR)
677			return -EINVAL;
678
679		/* Ensure IV is present and block size in length */
680		if (!iv || iv_size != AES_BLOCK_SIZE)
681			return -EINVAL;
682
683		return 0;
684
685	case OCS_MODE_CTS:
686		/* Ensure input length >= block size */
687		if (src_size < AES_BLOCK_SIZE)
688			return -EINVAL;
689
690		/* Ensure source and destination linked lists are created */
691		if (src_dma_list == DMA_MAPPING_ERROR ||
692		    dst_dma_list == DMA_MAPPING_ERROR)
693			return -EINVAL;
694
695		/* Ensure IV is present and block size in length */
696		if (!iv || iv_size != AES_BLOCK_SIZE)
697			return -EINVAL;
698
699		return 0;
700
701	case OCS_MODE_GCM:
702		/* Ensure IV is present and GCM_AES_IV_SIZE in length */
703		if (!iv || iv_size != GCM_AES_IV_SIZE)
704			return -EINVAL;
705
706		/*
707		 * If input data present ensure source and destination linked
708		 * lists are created
709		 */
710		if (src_size && (src_dma_list == DMA_MAPPING_ERROR ||
711				 dst_dma_list == DMA_MAPPING_ERROR))
712			return -EINVAL;
713
714		/* If aad present ensure aad linked list is created */
715		if (aad_size && aad_dma_list == DMA_MAPPING_ERROR)
716			return -EINVAL;
717
718		/* Ensure tag destination is set */
719		if (!tag)
720			return -EINVAL;
721
722		/* Just ensure that tag_size doesn't cause overflows. */
723		if (tag_size > (AES_MAX_TAG_SIZE_U32 * sizeof(u32)))
724			return -EINVAL;
725
726		return 0;
727
728	case OCS_MODE_CCM:
729		/* Ensure IV is present and block size in length */
730		if (!iv || iv_size != AES_BLOCK_SIZE)
731			return -EINVAL;
732
733		/* 2 <= L <= 8, so 1 <= L' <= 7 */
734		if (iv[L_PRIME_IDX] < L_PRIME_MIN ||
735		    iv[L_PRIME_IDX] > L_PRIME_MAX)
736			return -EINVAL;
737
738		/* If aad present ensure aad linked list is created */
739		if (aad_size && aad_dma_list == DMA_MAPPING_ERROR)
740			return -EINVAL;
741
742		/* Just ensure that tag_size doesn't cause overflows. */
743		if (tag_size > (AES_MAX_TAG_SIZE_U32 * sizeof(u32)))
744			return -EINVAL;
745
746		if (instruction == OCS_DECRYPT) {
747			/*
748			 * If input data present ensure source and destination
749			 * linked lists are created
750			 */
751			if (src_size && (src_dma_list == DMA_MAPPING_ERROR ||
752					 dst_dma_list == DMA_MAPPING_ERROR))
753				return -EINVAL;
754
755			/* Ensure input tag is present */
756			if (!tag)
757				return -EINVAL;
758
759			return 0;
760		}
761
762		/* Instruction == OCS_ENCRYPT */
763
764		/*
765		 * Destination linked list always required (for tag even if no
766		 * input data)
767		 */
768		if (dst_dma_list == DMA_MAPPING_ERROR)
769			return -EINVAL;
770
771		/* If input data present ensure src linked list is created */
772		if (src_size && src_dma_list == DMA_MAPPING_ERROR)
773			return -EINVAL;
774
775		return 0;
776
777	default:
778		return -EINVAL;
779	}
780}
781
782/**
783 * ocs_aes_op() - Perform AES/SM4 operation.
784 * @aes_dev:		The OCS AES device to use.
785 * @mode:		The mode to use (ECB, CBC, CTR, or CTS).
786 * @cipher:		The cipher to use (AES or SM4).
787 * @instruction:	The instruction to perform (encrypt or decrypt).
788 * @dst_dma_list:	The OCS DMA list mapping output memory.
789 * @src_dma_list:	The OCS DMA list mapping input payload data.
790 * @src_size:		The amount of data mapped by @src_dma_list.
791 * @iv:			The IV vector.
792 * @iv_size:		The size (in bytes) of @iv.
793 *
794 * Return: 0 on success, negative error code otherwise.
795 */
796int ocs_aes_op(struct ocs_aes_dev *aes_dev,
797	       enum ocs_mode mode,
798	       enum ocs_cipher cipher,
799	       enum ocs_instruction instruction,
800	       dma_addr_t dst_dma_list,
801	       dma_addr_t src_dma_list,
802	       u32 src_size,
803	       u8 *iv,
804	       u32 iv_size)
805{
806	u32 *iv32;
807	int rc;
808
809	rc = ocs_aes_validate_inputs(src_dma_list, src_size, iv, iv_size, 0, 0,
810				     NULL, 0, cipher, mode, instruction,
811				     dst_dma_list);
812	if (rc)
813		return rc;
814	/*
815	 * ocs_aes_validate_inputs() is a generic check, now ensure mode is not
816	 * GCM or CCM.
817	 */
818	if (mode == OCS_MODE_GCM || mode == OCS_MODE_CCM)
819		return -EINVAL;
820
821	/* Cast IV to u32 array. */
822	iv32 = (u32 *)iv;
823
824	ocs_aes_init(aes_dev, mode, cipher, instruction);
825
826	if (mode == OCS_MODE_CTS) {
827		/* Write the byte length of the last data block to engine. */
828		ocs_aes_write_last_data_blk_len(aes_dev, src_size);
829	}
830
831	/* ECB is the only mode that doesn't use IV. */
832	if (mode != OCS_MODE_ECB) {
833		iowrite32(iv32[0], aes_dev->base_reg + AES_IV_0_OFFSET);
834		iowrite32(iv32[1], aes_dev->base_reg + AES_IV_1_OFFSET);
835		iowrite32(iv32[2], aes_dev->base_reg + AES_IV_2_OFFSET);
836		iowrite32(iv32[3], aes_dev->base_reg + AES_IV_3_OFFSET);
837	}
838
839	/* Set AES_ACTIVE.TRIGGER to start the operation. */
840	aes_a_op_trigger(aes_dev);
841
842	/* Configure and activate input / output DMA. */
843	dma_to_ocs_aes_ll(aes_dev, src_dma_list);
844	dma_from_ocs_aes_ll(aes_dev, dst_dma_list);
845	aes_a_dma_active_src_dst_ll_en(aes_dev);
846
847	if (mode == OCS_MODE_CTS) {
848		/*
849		 * For CTS mode, instruct engine to activate ciphertext
850		 * stealing if last block of data is incomplete.
851		 */
852		aes_a_set_last_gcx(aes_dev);
853	} else {
854		/* For all other modes, just write the 'termination' bit. */
855		aes_a_op_termination(aes_dev);
856	}
857
858	/* Wait for engine to complete processing. */
859	rc = ocs_aes_irq_enable_and_wait(aes_dev, AES_COMPLETE_INT);
860	if (rc)
861		return rc;
862
863	if (mode == OCS_MODE_CTR) {
864		/* Read back IV for streaming mode */
865		iv32[0] = ioread32(aes_dev->base_reg + AES_IV_0_OFFSET);
866		iv32[1] = ioread32(aes_dev->base_reg + AES_IV_1_OFFSET);
867		iv32[2] = ioread32(aes_dev->base_reg + AES_IV_2_OFFSET);
868		iv32[3] = ioread32(aes_dev->base_reg + AES_IV_3_OFFSET);
869	}
870
871	return 0;
872}
873
874/* Compute and write J0 to engine registers. */
875static void ocs_aes_gcm_write_j0(const struct ocs_aes_dev *aes_dev,
876				 const u8 *iv)
877{
878	const u32 *j0 = (u32 *)iv;
879
880	/*
881	 * IV must be 12 bytes; Other sizes not supported as Linux crypto API
882	 * does only expects/allows 12 byte IV for GCM
883	 */
884	iowrite32(0x00000001, aes_dev->base_reg + AES_IV_0_OFFSET);
885	iowrite32(__swab32(j0[2]), aes_dev->base_reg + AES_IV_1_OFFSET);
886	iowrite32(__swab32(j0[1]), aes_dev->base_reg + AES_IV_2_OFFSET);
887	iowrite32(__swab32(j0[0]), aes_dev->base_reg + AES_IV_3_OFFSET);
888}
889
890/* Read GCM tag from engine registers. */
891static inline void ocs_aes_gcm_read_tag(struct ocs_aes_dev *aes_dev,
892					u8 *tag, u32 tag_size)
893{
894	u32 tag_u32[AES_MAX_TAG_SIZE_U32];
895
896	/*
897	 * The Authentication Tag T is stored in Little Endian order in the
898	 * registers with the most significant bytes stored from AES_T_MAC[3]
899	 * downward.
900	 */
901	tag_u32[0] = __swab32(ioread32(aes_dev->base_reg + AES_T_MAC_3_OFFSET));
902	tag_u32[1] = __swab32(ioread32(aes_dev->base_reg + AES_T_MAC_2_OFFSET));
903	tag_u32[2] = __swab32(ioread32(aes_dev->base_reg + AES_T_MAC_1_OFFSET));
904	tag_u32[3] = __swab32(ioread32(aes_dev->base_reg + AES_T_MAC_0_OFFSET));
905
906	memcpy(tag, tag_u32, tag_size);
907}
908
909/**
910 * ocs_aes_gcm_op() - Perform GCM operation.
911 * @aes_dev:		The OCS AES device to use.
912 * @cipher:		The Cipher to use (AES or SM4).
913 * @instruction:	The instruction to perform (encrypt or decrypt).
914 * @dst_dma_list:	The OCS DMA list mapping output memory.
915 * @src_dma_list:	The OCS DMA list mapping input payload data.
916 * @src_size:		The amount of data mapped by @src_dma_list.
917 * @iv:			The input IV vector.
918 * @aad_dma_list:	The OCS DMA list mapping input AAD data.
919 * @aad_size:		The amount of data mapped by @aad_dma_list.
920 * @out_tag:		Where to store computed tag.
921 * @tag_size:		The size (in bytes) of @out_tag.
922 *
923 * Return: 0 on success, negative error code otherwise.
924 */
925int ocs_aes_gcm_op(struct ocs_aes_dev *aes_dev,
926		   enum ocs_cipher cipher,
927		   enum ocs_instruction instruction,
928		   dma_addr_t dst_dma_list,
929		   dma_addr_t src_dma_list,
930		   u32 src_size,
931		   const u8 *iv,
932		   dma_addr_t aad_dma_list,
933		   u32 aad_size,
934		   u8 *out_tag,
935		   u32 tag_size)
936{
937	u64 bit_len;
938	u32 val;
939	int rc;
940
941	rc = ocs_aes_validate_inputs(src_dma_list, src_size, iv,
942				     GCM_AES_IV_SIZE, aad_dma_list,
943				     aad_size, out_tag, tag_size, cipher,
944				     OCS_MODE_GCM, instruction,
945				     dst_dma_list);
946	if (rc)
947		return rc;
948
949	ocs_aes_init(aes_dev, OCS_MODE_GCM, cipher, instruction);
950
951	/* Compute and write J0 to OCS HW. */
952	ocs_aes_gcm_write_j0(aes_dev, iv);
953
954	/* Write out_tag byte length */
955	iowrite32(tag_size, aes_dev->base_reg + AES_TLEN_OFFSET);
956
957	/* Write the byte length of the last plaintext / ciphertext block. */
958	ocs_aes_write_last_data_blk_len(aes_dev, src_size);
959
960	/* Write ciphertext bit length */
961	bit_len = (u64)src_size * 8;
962	val = bit_len & 0xFFFFFFFF;
963	iowrite32(val, aes_dev->base_reg + AES_MULTIPURPOSE2_0_OFFSET);
964	val = bit_len >> 32;
965	iowrite32(val, aes_dev->base_reg + AES_MULTIPURPOSE2_1_OFFSET);
966
967	/* Write aad bit length */
968	bit_len = (u64)aad_size * 8;
969	val = bit_len & 0xFFFFFFFF;
970	iowrite32(val, aes_dev->base_reg + AES_MULTIPURPOSE2_2_OFFSET);
971	val = bit_len >> 32;
972	iowrite32(val, aes_dev->base_reg + AES_MULTIPURPOSE2_3_OFFSET);
973
974	/* Set AES_ACTIVE.TRIGGER to start the operation. */
975	aes_a_op_trigger(aes_dev);
976
977	/* Process AAD. */
978	if (aad_size) {
979		/* If aad present, configure DMA to feed it to the engine. */
980		dma_to_ocs_aes_ll(aes_dev, aad_dma_list);
981		aes_a_dma_active_src_ll_en(aes_dev);
982
983		/* Instructs engine to pad last block of aad, if needed. */
984		aes_a_set_last_gcx_and_adata(aes_dev);
985
986		/* Wait for DMA transfer to complete. */
987		rc = ocs_aes_irq_enable_and_wait(aes_dev, AES_DMA_SRC_DONE_INT);
988		if (rc)
989			return rc;
990	} else {
991		aes_a_set_last_gcx_and_adata(aes_dev);
992	}
993
994	/* Wait until adata (if present) has been processed. */
995	aes_a_wait_last_gcx(aes_dev);
996	aes_a_dma_wait_input_buffer_occupancy(aes_dev);
997
998	/* Now process payload. */
999	if (src_size) {
1000		/* Configure and activate DMA for both input and output data. */
1001		dma_to_ocs_aes_ll(aes_dev, src_dma_list);
1002		dma_from_ocs_aes_ll(aes_dev, dst_dma_list);
1003		aes_a_dma_active_src_dst_ll_en(aes_dev);
1004	} else {
1005		aes_a_dma_set_xfer_size_zero(aes_dev);
1006		aes_a_dma_active(aes_dev);
1007	}
1008
1009	/* Instruct AES/SMA4 engine payload processing is over. */
1010	aes_a_set_last_gcx(aes_dev);
1011
1012	/* Wait for OCS AES engine to complete processing. */
1013	rc = ocs_aes_irq_enable_and_wait(aes_dev, AES_COMPLETE_INT);
1014	if (rc)
1015		return rc;
1016
1017	ocs_aes_gcm_read_tag(aes_dev, out_tag, tag_size);
1018
1019	return 0;
1020}
1021
1022/* Write encrypted tag to AES/SM4 engine. */
1023static void ocs_aes_ccm_write_encrypted_tag(struct ocs_aes_dev *aes_dev,
1024					    const u8 *in_tag, u32 tag_size)
1025{
1026	int i;
1027
1028	/* Ensure DMA input buffer is empty */
1029	aes_a_dma_wait_input_buffer_occupancy(aes_dev);
1030
1031	/*
1032	 * During CCM decrypt, the OCS block needs to finish processing the
1033	 * ciphertext before the tag is written.  So delay needed after DMA has
1034	 * completed writing the ciphertext
1035	 */
1036	aes_a_dma_reset_and_activate_perf_cntr(aes_dev);
1037	aes_a_dma_wait_and_deactivate_perf_cntr(aes_dev,
1038						CCM_DECRYPT_DELAY_TAG_CLK_COUNT);
1039
1040	/* Write encrypted tag to AES/SM4 engine. */
1041	for (i = 0; i < tag_size; i++) {
1042		iowrite8(in_tag[i], aes_dev->base_reg +
1043				    AES_A_DMA_INBUFFER_WRITE_FIFO_OFFSET);
1044	}
1045}
1046
1047/*
1048 * Write B0 CCM block to OCS AES HW.
1049 *
1050 * Note: B0 format is documented in NIST Special Publication 800-38C
1051 * https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38c.pdf
1052 * (see Section A.2.1)
1053 */
1054static int ocs_aes_ccm_write_b0(const struct ocs_aes_dev *aes_dev,
1055				const u8 *iv, u32 adata_size, u32 tag_size,
1056				u32 cryptlen)
1057{
1058	u8 b0[16]; /* CCM B0 block is 16 bytes long. */
1059	int i, q;
1060
1061	/* Initialize B0 to 0. */
1062	memset(b0, 0, sizeof(b0));
1063
1064	/*
1065	 * B0[0] is the 'Flags Octet' and has the following structure:
1066	 *   bit 7: Reserved
1067	 *   bit 6: Adata flag
1068	 *   bit 5-3: t value encoded as (t-2)/2
1069	 *   bit 2-0: q value encoded as q - 1
1070	 */
1071	/* If there is AAD data, set the Adata flag. */
1072	if (adata_size)
1073		b0[0] |= BIT(6);
1074	/*
1075	 * t denotes the octet length of T.
1076	 * t can only be an element of { 4, 6, 8, 10, 12, 14, 16} and is
1077	 * encoded as (t - 2) / 2
1078	 */
1079	b0[0] |= (((tag_size - 2) / 2) & 0x7)  << 3;
1080	/*
1081	 * q is the octet length of Q.
1082	 * q can only be an element of {2, 3, 4, 5, 6, 7, 8} and is encoded as
1083	 * q - 1 == iv[0] & 0x7;
1084	 */
1085	b0[0] |= iv[0] & 0x7;
1086	/*
1087	 * Copy the Nonce N from IV to B0; N is located in iv[1]..iv[15 - q]
1088	 * and must be copied to b0[1]..b0[15-q].
1089	 * q == (iv[0] & 0x7) + 1
1090	 */
1091	q = (iv[0] & 0x7) + 1;
1092	for (i = 1; i <= 15 - q; i++)
1093		b0[i] = iv[i];
1094	/*
1095	 * The rest of B0 must contain Q, i.e., the message length.
1096	 * Q is encoded in q octets, in big-endian order, so to write it, we
1097	 * start from the end of B0 and we move backward.
1098	 */
1099	i = sizeof(b0) - 1;
1100	while (q) {
1101		b0[i] = cryptlen & 0xff;
1102		cryptlen >>= 8;
1103		i--;
1104		q--;
1105	}
1106	/*
1107	 * If cryptlen is not zero at this point, it means that its original
1108	 * value was too big.
1109	 */
1110	if (cryptlen)
1111		return -EOVERFLOW;
1112	/* Now write B0 to OCS AES input buffer. */
1113	for (i = 0; i < sizeof(b0); i++)
1114		iowrite8(b0[i], aes_dev->base_reg +
1115				AES_A_DMA_INBUFFER_WRITE_FIFO_OFFSET);
1116	return 0;
1117}
1118
1119/*
1120 * Write adata length to OCS AES HW.
1121 *
1122 * Note: adata len encoding is documented in NIST Special Publication 800-38C
1123 * https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38c.pdf
1124 * (see Section A.2.2)
1125 */
1126static void ocs_aes_ccm_write_adata_len(const struct ocs_aes_dev *aes_dev,
1127					u64 adata_len)
1128{
1129	u8 enc_a[10]; /* Maximum encoded size: 10 octets. */
1130	int i, len;
1131
1132	/*
1133	 * adata_len ('a') is encoded as follows:
1134	 * If 0 < a < 2^16 - 2^8    ==> 'a' encoded as [a]16, i.e., two octets
1135	 *				(big endian).
1136	 * If 2^16 - 2^8 ��� a < 2^32 ==> 'a' encoded as 0xff || 0xfe || [a]32,
1137	 *				i.e., six octets (big endian).
1138	 * If 2^32 ��� a < 2^64       ==> 'a' encoded as 0xff || 0xff || [a]64,
1139	 *				i.e., ten octets (big endian).
1140	 */
1141	if (adata_len < 65280) {
1142		len = 2;
1143		*(__be16 *)enc_a = cpu_to_be16(adata_len);
1144	} else if (adata_len <= 0xFFFFFFFF) {
1145		len = 6;
1146		*(__be16 *)enc_a = cpu_to_be16(0xfffe);
1147		*(__be32 *)&enc_a[2] = cpu_to_be32(adata_len);
1148	} else { /* adata_len >= 2^32 */
1149		len = 10;
1150		*(__be16 *)enc_a = cpu_to_be16(0xffff);
1151		*(__be64 *)&enc_a[2] = cpu_to_be64(adata_len);
1152	}
1153	for (i = 0; i < len; i++)
1154		iowrite8(enc_a[i],
1155			 aes_dev->base_reg +
1156			 AES_A_DMA_INBUFFER_WRITE_FIFO_OFFSET);
1157}
1158
1159static int ocs_aes_ccm_do_adata(struct ocs_aes_dev *aes_dev,
1160				dma_addr_t adata_dma_list, u32 adata_size)
1161{
1162	int rc;
1163
1164	if (!adata_size) {
1165		/* Since no aad the LAST_GCX bit can be set now */
1166		aes_a_set_last_gcx_and_adata(aes_dev);
1167		goto exit;
1168	}
1169
1170	/* Adata case. */
1171
1172	/*
1173	 * Form the encoding of the Associated data length and write it
1174	 * to the AES/SM4 input buffer.
1175	 */
1176	ocs_aes_ccm_write_adata_len(aes_dev, adata_size);
1177
1178	/* Configure the AES/SM4 DMA to fetch the Associated Data */
1179	dma_to_ocs_aes_ll(aes_dev, adata_dma_list);
1180
1181	/* Activate DMA to fetch Associated data. */
1182	aes_a_dma_active_src_ll_en(aes_dev);
1183
1184	/* Set LAST_GCX and LAST_ADATA in AES ACTIVE register. */
1185	aes_a_set_last_gcx_and_adata(aes_dev);
1186
1187	/* Wait for DMA transfer to complete. */
1188	rc = ocs_aes_irq_enable_and_wait(aes_dev, AES_DMA_SRC_DONE_INT);
1189	if (rc)
1190		return rc;
1191
1192exit:
1193	/* Wait until adata (if present) has been processed. */
1194	aes_a_wait_last_gcx(aes_dev);
1195	aes_a_dma_wait_input_buffer_occupancy(aes_dev);
1196
1197	return 0;
1198}
1199
1200static int ocs_aes_ccm_encrypt_do_payload(struct ocs_aes_dev *aes_dev,
1201					  dma_addr_t dst_dma_list,
1202					  dma_addr_t src_dma_list,
1203					  u32 src_size)
1204{
1205	if (src_size) {
1206		/*
1207		 * Configure and activate DMA for both input and output
1208		 * data.
1209		 */
1210		dma_to_ocs_aes_ll(aes_dev, src_dma_list);
1211		dma_from_ocs_aes_ll(aes_dev, dst_dma_list);
1212		aes_a_dma_active_src_dst_ll_en(aes_dev);
1213	} else {
1214		/* Configure and activate DMA for output data only. */
1215		dma_from_ocs_aes_ll(aes_dev, dst_dma_list);
1216		aes_a_dma_active_dst_ll_en(aes_dev);
1217	}
1218
1219	/*
1220	 * Set the LAST GCX bit in AES_ACTIVE Register to instruct
1221	 * AES/SM4 engine to pad the last block of data.
1222	 */
1223	aes_a_set_last_gcx(aes_dev);
1224
1225	/* We are done, wait for IRQ and return. */
1226	return ocs_aes_irq_enable_and_wait(aes_dev, AES_COMPLETE_INT);
1227}
1228
1229static int ocs_aes_ccm_decrypt_do_payload(struct ocs_aes_dev *aes_dev,
1230					  dma_addr_t dst_dma_list,
1231					  dma_addr_t src_dma_list,
1232					  u32 src_size)
1233{
1234	if (!src_size) {
1235		/* Let engine process 0-length input. */
1236		aes_a_dma_set_xfer_size_zero(aes_dev);
1237		aes_a_dma_active(aes_dev);
1238		aes_a_set_last_gcx(aes_dev);
1239
1240		return 0;
1241	}
1242
1243	/*
1244	 * Configure and activate DMA for both input and output
1245	 * data.
1246	 */
1247	dma_to_ocs_aes_ll(aes_dev, src_dma_list);
1248	dma_from_ocs_aes_ll(aes_dev, dst_dma_list);
1249	aes_a_dma_active_src_dst_ll_en(aes_dev);
1250	/*
1251	 * Set the LAST GCX bit in AES_ACTIVE Register; this allows the
1252	 * AES/SM4 engine to differentiate between encrypted data and
1253	 * encrypted MAC.
1254	 */
1255	aes_a_set_last_gcx(aes_dev);
1256	 /*
1257	  * Enable DMA DONE interrupt; once DMA transfer is over,
1258	  * interrupt handler will process the MAC/tag.
1259	  */
1260	return ocs_aes_irq_enable_and_wait(aes_dev, AES_DMA_SRC_DONE_INT);
1261}
1262
1263/*
1264 * Compare Tag to Yr.
1265 *
1266 * Only used at the end of CCM decrypt. If tag == yr, message authentication
1267 * has succeeded.
1268 */
1269static inline int ccm_compare_tag_to_yr(struct ocs_aes_dev *aes_dev,
1270					u8 tag_size_bytes)
1271{
1272	u32 tag[AES_MAX_TAG_SIZE_U32];
1273	u32 yr[AES_MAX_TAG_SIZE_U32];
1274	u8 i;
1275
1276	/* Read Tag and Yr from AES registers. */
1277	for (i = 0; i < AES_MAX_TAG_SIZE_U32; i++) {
1278		tag[i] = ioread32(aes_dev->base_reg +
1279				  AES_T_MAC_0_OFFSET + (i * sizeof(u32)));
1280		yr[i] = ioread32(aes_dev->base_reg +
1281				 AES_MULTIPURPOSE2_0_OFFSET +
1282				 (i * sizeof(u32)));
1283	}
1284
1285	return memcmp(tag, yr, tag_size_bytes) ? -EBADMSG : 0;
1286}
1287
1288/**
1289 * ocs_aes_ccm_op() - Perform CCM operation.
1290 * @aes_dev:		The OCS AES device to use.
1291 * @cipher:		The Cipher to use (AES or SM4).
1292 * @instruction:	The instruction to perform (encrypt or decrypt).
1293 * @dst_dma_list:	The OCS DMA list mapping output memory.
1294 * @src_dma_list:	The OCS DMA list mapping input payload data.
1295 * @src_size:		The amount of data mapped by @src_dma_list.
1296 * @iv:			The input IV vector.
1297 * @adata_dma_list:	The OCS DMA list mapping input A-data.
1298 * @adata_size:		The amount of data mapped by @adata_dma_list.
1299 * @in_tag:		Input tag.
1300 * @tag_size:		The size (in bytes) of @in_tag.
1301 *
1302 * Note: for encrypt the tag is appended to the ciphertext (in the memory
1303 *	 mapped by @dst_dma_list).
1304 *
1305 * Return: 0 on success, negative error code otherwise.
1306 */
1307int ocs_aes_ccm_op(struct ocs_aes_dev *aes_dev,
1308		   enum ocs_cipher cipher,
1309		   enum ocs_instruction instruction,
1310		   dma_addr_t dst_dma_list,
1311		   dma_addr_t src_dma_list,
1312		   u32 src_size,
1313		   u8 *iv,
1314		   dma_addr_t adata_dma_list,
1315		   u32 adata_size,
1316		   u8 *in_tag,
1317		   u32 tag_size)
1318{
1319	u32 *iv_32;
1320	u8 lprime;
1321	int rc;
1322
1323	rc = ocs_aes_validate_inputs(src_dma_list, src_size, iv,
1324				     AES_BLOCK_SIZE, adata_dma_list, adata_size,
1325				     in_tag, tag_size, cipher, OCS_MODE_CCM,
1326				     instruction, dst_dma_list);
1327	if (rc)
1328		return rc;
1329
1330	ocs_aes_init(aes_dev, OCS_MODE_CCM, cipher, instruction);
1331
1332	/*
1333	 * Note: rfc 3610 and NIST 800-38C require counter of zero to encrypt
1334	 * auth tag so ensure this is the case
1335	 */
1336	lprime = iv[L_PRIME_IDX];
1337	memset(&iv[COUNTER_START(lprime)], 0, COUNTER_LEN(lprime));
1338
1339	/*
1340	 * Nonce is already converted to ctr0 before being passed into this
1341	 * function as iv.
1342	 */
1343	iv_32 = (u32 *)iv;
1344	iowrite32(__swab32(iv_32[0]),
1345		  aes_dev->base_reg + AES_MULTIPURPOSE1_3_OFFSET);
1346	iowrite32(__swab32(iv_32[1]),
1347		  aes_dev->base_reg + AES_MULTIPURPOSE1_2_OFFSET);
1348	iowrite32(__swab32(iv_32[2]),
1349		  aes_dev->base_reg + AES_MULTIPURPOSE1_1_OFFSET);
1350	iowrite32(__swab32(iv_32[3]),
1351		  aes_dev->base_reg + AES_MULTIPURPOSE1_0_OFFSET);
1352
1353	/* Write MAC/tag length in register AES_TLEN */
1354	iowrite32(tag_size, aes_dev->base_reg + AES_TLEN_OFFSET);
1355	/*
1356	 * Write the byte length of the last AES/SM4 block of Payload data
1357	 * (without zero padding and without the length of the MAC) in register
1358	 * AES_PLEN.
1359	 */
1360	ocs_aes_write_last_data_blk_len(aes_dev, src_size);
1361
1362	/* Set AES_ACTIVE.TRIGGER to start the operation. */
1363	aes_a_op_trigger(aes_dev);
1364
1365	aes_a_dma_reset_and_activate_perf_cntr(aes_dev);
1366
1367	/* Form block B0 and write it to the AES/SM4 input buffer. */
1368	rc = ocs_aes_ccm_write_b0(aes_dev, iv, adata_size, tag_size, src_size);
1369	if (rc)
1370		return rc;
1371	/*
1372	 * Ensure there has been at least CCM_DECRYPT_DELAY_LAST_GCX_CLK_COUNT
1373	 * clock cycles since TRIGGER bit was set
1374	 */
1375	aes_a_dma_wait_and_deactivate_perf_cntr(aes_dev,
1376						CCM_DECRYPT_DELAY_LAST_GCX_CLK_COUNT);
1377
1378	/* Process Adata. */
1379	ocs_aes_ccm_do_adata(aes_dev, adata_dma_list, adata_size);
1380
1381	/* For Encrypt case we just process the payload and return. */
1382	if (instruction == OCS_ENCRYPT) {
1383		return ocs_aes_ccm_encrypt_do_payload(aes_dev, dst_dma_list,
1384						      src_dma_list, src_size);
1385	}
1386	/* For Decypt we need to process the payload and then the tag. */
1387	rc = ocs_aes_ccm_decrypt_do_payload(aes_dev, dst_dma_list,
1388					    src_dma_list, src_size);
1389	if (rc)
1390		return rc;
1391
1392	/* Process MAC/tag directly: feed tag to engine and wait for IRQ. */
1393	ocs_aes_ccm_write_encrypted_tag(aes_dev, in_tag, tag_size);
1394	rc = ocs_aes_irq_enable_and_wait(aes_dev, AES_COMPLETE_INT);
1395	if (rc)
1396		return rc;
1397
1398	return ccm_compare_tag_to_yr(aes_dev, tag_size);
1399}
1400
1401/**
1402 * ocs_create_linked_list_from_sg() - Create OCS DMA linked list from SG list.
1403 * @aes_dev:	  The OCS AES device the list will be created for.
1404 * @sg:		  The SG list OCS DMA linked list will be created from. When
1405 *		  passed to this function, @sg must have been already mapped
1406 *		  with dma_map_sg().
1407 * @sg_dma_count: The number of DMA-mapped entries in @sg. This must be the
1408 *		  value returned by dma_map_sg() when @sg was mapped.
1409 * @dll_desc:	  The OCS DMA dma_list to use to store information about the
1410 *		  created linked list.
1411 * @data_size:	  The size of the data (from the SG list) to be mapped into the
1412 *		  OCS DMA linked list.
1413 * @data_offset:  The offset (within the SG list) of the data to be mapped.
1414 *
1415 * Return:	0 on success, negative error code otherwise.
1416 */
1417int ocs_create_linked_list_from_sg(const struct ocs_aes_dev *aes_dev,
1418				   struct scatterlist *sg,
1419				   int sg_dma_count,
1420				   struct ocs_dll_desc *dll_desc,
1421				   size_t data_size, size_t data_offset)
1422{
1423	struct ocs_dma_linked_list *ll = NULL;
1424	struct scatterlist *sg_tmp;
1425	unsigned int tmp;
1426	int dma_nents;
1427	int i;
1428
1429	if (!dll_desc || !sg || !aes_dev)
1430		return -EINVAL;
1431
1432	/* Default values for when no ddl_desc is created. */
1433	dll_desc->vaddr = NULL;
1434	dll_desc->dma_addr = DMA_MAPPING_ERROR;
1435	dll_desc->size = 0;
1436
1437	if (data_size == 0)
1438		return 0;
1439
1440	/* Loop over sg_list until we reach entry at specified offset. */
1441	while (data_offset >= sg_dma_len(sg)) {
1442		data_offset -= sg_dma_len(sg);
1443		sg_dma_count--;
1444		sg = sg_next(sg);
1445		/* If we reach the end of the list, offset was invalid. */
1446		if (!sg || sg_dma_count == 0)
1447			return -EINVAL;
1448	}
1449
1450	/* Compute number of DMA-mapped SG entries to add into OCS DMA list. */
1451	dma_nents = 0;
1452	tmp = 0;
1453	sg_tmp = sg;
1454	while (tmp < data_offset + data_size) {
1455		/* If we reach the end of the list, data_size was invalid. */
1456		if (!sg_tmp)
1457			return -EINVAL;
1458		tmp += sg_dma_len(sg_tmp);
1459		dma_nents++;
1460		sg_tmp = sg_next(sg_tmp);
1461	}
1462	if (dma_nents > sg_dma_count)
1463		return -EINVAL;
1464
1465	/* Allocate the DMA list, one entry for each SG entry. */
1466	dll_desc->size = sizeof(struct ocs_dma_linked_list) * dma_nents;
1467	dll_desc->vaddr = dma_alloc_coherent(aes_dev->dev, dll_desc->size,
1468					     &dll_desc->dma_addr, GFP_KERNEL);
1469	if (!dll_desc->vaddr)
1470		return -ENOMEM;
1471
1472	/* Populate DMA linked list entries. */
1473	ll = dll_desc->vaddr;
1474	for (i = 0; i < dma_nents; i++, sg = sg_next(sg)) {
1475		ll[i].src_addr = sg_dma_address(sg) + data_offset;
1476		ll[i].src_len = (sg_dma_len(sg) - data_offset) < data_size ?
1477				(sg_dma_len(sg) - data_offset) : data_size;
1478		data_offset = 0;
1479		data_size -= ll[i].src_len;
1480		/* Current element points to the DMA address of the next one. */
1481		ll[i].next = dll_desc->dma_addr + (sizeof(*ll) * (i + 1));
1482		ll[i].ll_flags = 0;
1483	}
1484	/* Terminate last element. */
1485	ll[i - 1].next = 0;
1486	ll[i - 1].ll_flags = OCS_LL_DMA_FLAG_TERMINATE;
1487
1488	return 0;
1489}
1490