1// SPDX-License-Identifier: GPL-2.0
2/*
3 * CAAM/SEC 4.x QI transport/backend driver
4 * Queue Interface backend functionality
5 *
6 * Copyright 2013-2016 Freescale Semiconductor, Inc.
7 * Copyright 2016-2017, 2019-2020 NXP
8 */
9
10#include <linux/cpumask.h>
11#include <linux/device.h>
12#include <linux/dma-mapping.h>
13#include <linux/kernel.h>
14#include <linux/kthread.h>
15#include <linux/netdevice.h>
16#include <linux/platform_device.h>
17#include <linux/slab.h>
18#include <linux/string.h>
19#include <soc/fsl/qman.h>
20
21#include "debugfs.h"
22#include "regs.h"
23#include "qi.h"
24#include "desc.h"
25#include "intern.h"
26#include "desc_constr.h"
27
28#define PREHDR_RSLS_SHIFT	31
29#define PREHDR_ABS		BIT(25)
30
31/*
32 * Use a reasonable backlog of frames (per CPU) as congestion threshold,
33 * so that resources used by the in-flight buffers do not become a memory hog.
34 */
35#define MAX_RSP_FQ_BACKLOG_PER_CPU	256
36
37#define CAAM_QI_ENQUEUE_RETRIES	10000
38
39#define CAAM_NAPI_WEIGHT	63
40
41/*
42 * caam_napi - struct holding CAAM NAPI-related params
43 * @irqtask: IRQ task for QI backend
44 * @p: QMan portal
45 */
46struct caam_napi {
47	struct napi_struct irqtask;
48	struct qman_portal *p;
49};
50
51/*
52 * caam_qi_pcpu_priv - percpu private data structure to main list of pending
53 *                     responses expected on each cpu.
54 * @caam_napi: CAAM NAPI params
55 * @net_dev: netdev used by NAPI
56 * @rsp_fq: response FQ from CAAM
57 */
58struct caam_qi_pcpu_priv {
59	struct caam_napi caam_napi;
60	struct net_device net_dev;
61	struct qman_fq *rsp_fq;
62} ____cacheline_aligned;
63
64static DEFINE_PER_CPU(struct caam_qi_pcpu_priv, pcpu_qipriv);
65static DEFINE_PER_CPU(int, last_cpu);
66
67/*
68 * caam_qi_priv - CAAM QI backend private params
69 * @cgr: QMan congestion group
70 */
71struct caam_qi_priv {
72	struct qman_cgr cgr;
73};
74
75static struct caam_qi_priv qipriv ____cacheline_aligned;
76
77/*
78 * This is written by only one core - the one that initialized the CGR - and
79 * read by multiple cores (all the others).
80 */
81bool caam_congested __read_mostly;
82EXPORT_SYMBOL(caam_congested);
83
84/*
85 * This is a cache of buffers, from which the users of CAAM QI driver
86 * can allocate short (CAAM_QI_MEMCACHE_SIZE) buffers. It's faster than
87 * doing malloc on the hotpath.
88 * NOTE: A more elegant solution would be to have some headroom in the frames
89 *       being processed. This could be added by the dpaa-ethernet driver.
90 *       This would pose a problem for userspace application processing which
91 *       cannot know of this limitation. So for now, this will work.
92 * NOTE: The memcache is SMP-safe. No need to handle spinlocks in-here
93 */
94static struct kmem_cache *qi_cache;
95
96static void *caam_iova_to_virt(struct iommu_domain *domain,
97			       dma_addr_t iova_addr)
98{
99	phys_addr_t phys_addr;
100
101	phys_addr = domain ? iommu_iova_to_phys(domain, iova_addr) : iova_addr;
102
103	return phys_to_virt(phys_addr);
104}
105
106int caam_qi_enqueue(struct device *qidev, struct caam_drv_req *req)
107{
108	struct qm_fd fd;
109	dma_addr_t addr;
110	int ret;
111	int num_retries = 0;
112
113	qm_fd_clear_fd(&fd);
114	qm_fd_set_compound(&fd, qm_sg_entry_get_len(&req->fd_sgt[1]));
115
116	addr = dma_map_single(qidev, req->fd_sgt, sizeof(req->fd_sgt),
117			      DMA_BIDIRECTIONAL);
118	if (dma_mapping_error(qidev, addr)) {
119		dev_err(qidev, "DMA mapping error for QI enqueue request\n");
120		return -EIO;
121	}
122	qm_fd_addr_set64(&fd, addr);
123
124	do {
125		ret = qman_enqueue(req->drv_ctx->req_fq, &fd);
126		if (likely(!ret)) {
127			refcount_inc(&req->drv_ctx->refcnt);
128			return 0;
129		}
130
131		if (ret != -EBUSY)
132			break;
133		num_retries++;
134	} while (num_retries < CAAM_QI_ENQUEUE_RETRIES);
135
136	dev_err(qidev, "qman_enqueue failed: %d\n", ret);
137
138	return ret;
139}
140EXPORT_SYMBOL(caam_qi_enqueue);
141
142static void caam_fq_ern_cb(struct qman_portal *qm, struct qman_fq *fq,
143			   const union qm_mr_entry *msg)
144{
145	const struct qm_fd *fd;
146	struct caam_drv_req *drv_req;
147	struct device *qidev = &(raw_cpu_ptr(&pcpu_qipriv)->net_dev.dev);
148	struct caam_drv_private *priv = dev_get_drvdata(qidev);
149
150	fd = &msg->ern.fd;
151
152	drv_req = caam_iova_to_virt(priv->domain, qm_fd_addr_get64(fd));
153	if (!drv_req) {
154		dev_err(qidev,
155			"Can't find original request for CAAM response\n");
156		return;
157	}
158
159	refcount_dec(&drv_req->drv_ctx->refcnt);
160
161	if (qm_fd_get_format(fd) != qm_fd_compound) {
162		dev_err(qidev, "Non-compound FD from CAAM\n");
163		return;
164	}
165
166	dma_unmap_single(drv_req->drv_ctx->qidev, qm_fd_addr(fd),
167			 sizeof(drv_req->fd_sgt), DMA_BIDIRECTIONAL);
168
169	if (fd->status)
170		drv_req->cbk(drv_req, be32_to_cpu(fd->status));
171	else
172		drv_req->cbk(drv_req, JRSTA_SSRC_QI);
173}
174
175static struct qman_fq *create_caam_req_fq(struct device *qidev,
176					  struct qman_fq *rsp_fq,
177					  dma_addr_t hwdesc,
178					  int fq_sched_flag)
179{
180	int ret;
181	struct qman_fq *req_fq;
182	struct qm_mcc_initfq opts;
183
184	req_fq = kzalloc(sizeof(*req_fq), GFP_ATOMIC);
185	if (!req_fq)
186		return ERR_PTR(-ENOMEM);
187
188	req_fq->cb.ern = caam_fq_ern_cb;
189	req_fq->cb.fqs = NULL;
190
191	ret = qman_create_fq(0, QMAN_FQ_FLAG_DYNAMIC_FQID |
192				QMAN_FQ_FLAG_TO_DCPORTAL, req_fq);
193	if (ret) {
194		dev_err(qidev, "Failed to create session req FQ\n");
195		goto create_req_fq_fail;
196	}
197
198	memset(&opts, 0, sizeof(opts));
199	opts.we_mask = cpu_to_be16(QM_INITFQ_WE_FQCTRL | QM_INITFQ_WE_DESTWQ |
200				   QM_INITFQ_WE_CONTEXTB |
201				   QM_INITFQ_WE_CONTEXTA | QM_INITFQ_WE_CGID);
202	opts.fqd.fq_ctrl = cpu_to_be16(QM_FQCTRL_CPCSTASH | QM_FQCTRL_CGE);
203	qm_fqd_set_destwq(&opts.fqd, qm_channel_caam, 2);
204	opts.fqd.context_b = cpu_to_be32(qman_fq_fqid(rsp_fq));
205	qm_fqd_context_a_set64(&opts.fqd, hwdesc);
206	opts.fqd.cgid = qipriv.cgr.cgrid;
207
208	ret = qman_init_fq(req_fq, fq_sched_flag, &opts);
209	if (ret) {
210		dev_err(qidev, "Failed to init session req FQ\n");
211		goto init_req_fq_fail;
212	}
213
214	dev_dbg(qidev, "Allocated request FQ %u for CPU %u\n", req_fq->fqid,
215		smp_processor_id());
216	return req_fq;
217
218init_req_fq_fail:
219	qman_destroy_fq(req_fq);
220create_req_fq_fail:
221	kfree(req_fq);
222	return ERR_PTR(ret);
223}
224
225static int empty_retired_fq(struct device *qidev, struct qman_fq *fq)
226{
227	int ret;
228
229	ret = qman_volatile_dequeue(fq, QMAN_VOLATILE_FLAG_WAIT_INT |
230				    QMAN_VOLATILE_FLAG_FINISH,
231				    QM_VDQCR_PRECEDENCE_VDQCR |
232				    QM_VDQCR_NUMFRAMES_TILLEMPTY);
233	if (ret) {
234		dev_err(qidev, "Volatile dequeue fail for FQ: %u\n", fq->fqid);
235		return ret;
236	}
237
238	do {
239		struct qman_portal *p;
240
241		p = qman_get_affine_portal(smp_processor_id());
242		qman_p_poll_dqrr(p, 16);
243	} while (fq->flags & QMAN_FQ_STATE_NE);
244
245	return 0;
246}
247
248static int kill_fq(struct device *qidev, struct qman_fq *fq)
249{
250	u32 flags;
251	int ret;
252
253	ret = qman_retire_fq(fq, &flags);
254	if (ret < 0) {
255		dev_err(qidev, "qman_retire_fq failed: %d\n", ret);
256		return ret;
257	}
258
259	if (!ret)
260		goto empty_fq;
261
262	/* Async FQ retirement condition */
263	if (ret == 1) {
264		/* Retry till FQ gets in retired state */
265		do {
266			msleep(20);
267		} while (fq->state != qman_fq_state_retired);
268
269		WARN_ON(fq->flags & QMAN_FQ_STATE_BLOCKOOS);
270		WARN_ON(fq->flags & QMAN_FQ_STATE_ORL);
271	}
272
273empty_fq:
274	if (fq->flags & QMAN_FQ_STATE_NE) {
275		ret = empty_retired_fq(qidev, fq);
276		if (ret) {
277			dev_err(qidev, "empty_retired_fq fail for FQ: %u\n",
278				fq->fqid);
279			return ret;
280		}
281	}
282
283	ret = qman_oos_fq(fq);
284	if (ret)
285		dev_err(qidev, "OOS of FQID: %u failed\n", fq->fqid);
286
287	qman_destroy_fq(fq);
288	kfree(fq);
289
290	return ret;
291}
292
293static int empty_caam_fq(struct qman_fq *fq, struct caam_drv_ctx *drv_ctx)
294{
295	int ret;
296	int retries = 10;
297	struct qm_mcr_queryfq_np np;
298
299	/* Wait till the older CAAM FQ get empty */
300	do {
301		ret = qman_query_fq_np(fq, &np);
302		if (ret)
303			return ret;
304
305		if (!qm_mcr_np_get(&np, frm_cnt))
306			break;
307
308		msleep(20);
309	} while (1);
310
311	/* Wait until pending jobs from this FQ are processed by CAAM */
312	do {
313		if (refcount_read(&drv_ctx->refcnt) == 1)
314			break;
315
316		msleep(20);
317	} while (--retries);
318
319	if (!retries)
320		dev_warn_once(drv_ctx->qidev, "%d frames from FQID %u still pending in CAAM\n",
321			      refcount_read(&drv_ctx->refcnt), fq->fqid);
322
323	return 0;
324}
325
326int caam_drv_ctx_update(struct caam_drv_ctx *drv_ctx, u32 *sh_desc)
327{
328	int ret;
329	u32 num_words;
330	struct qman_fq *new_fq, *old_fq;
331	struct device *qidev = drv_ctx->qidev;
332
333	num_words = desc_len(sh_desc);
334	if (num_words > MAX_SDLEN) {
335		dev_err(qidev, "Invalid descriptor len: %d words\n", num_words);
336		return -EINVAL;
337	}
338
339	/* Note down older req FQ */
340	old_fq = drv_ctx->req_fq;
341
342	/* Create a new req FQ in parked state */
343	new_fq = create_caam_req_fq(drv_ctx->qidev, drv_ctx->rsp_fq,
344				    drv_ctx->context_a, 0);
345	if (IS_ERR(new_fq)) {
346		dev_err(qidev, "FQ allocation for shdesc update failed\n");
347		return PTR_ERR(new_fq);
348	}
349
350	/* Hook up new FQ to context so that new requests keep queuing */
351	drv_ctx->req_fq = new_fq;
352
353	/* Empty and remove the older FQ */
354	ret = empty_caam_fq(old_fq, drv_ctx);
355	if (ret) {
356		dev_err(qidev, "Old CAAM FQ empty failed: %d\n", ret);
357
358		/* We can revert to older FQ */
359		drv_ctx->req_fq = old_fq;
360
361		if (kill_fq(qidev, new_fq))
362			dev_warn(qidev, "New CAAM FQ kill failed\n");
363
364		return ret;
365	}
366
367	/*
368	 * Re-initialise pre-header. Set RSLS and SDLEN.
369	 * Update the shared descriptor for driver context.
370	 */
371	drv_ctx->prehdr[0] = cpu_to_caam32((1 << PREHDR_RSLS_SHIFT) |
372					   num_words);
373	drv_ctx->prehdr[1] = cpu_to_caam32(PREHDR_ABS);
374	memcpy(drv_ctx->sh_desc, sh_desc, desc_bytes(sh_desc));
375	dma_sync_single_for_device(qidev, drv_ctx->context_a,
376				   sizeof(drv_ctx->sh_desc) +
377				   sizeof(drv_ctx->prehdr),
378				   DMA_BIDIRECTIONAL);
379
380	/* Put the new FQ in scheduled state */
381	ret = qman_schedule_fq(new_fq);
382	if (ret) {
383		dev_err(qidev, "Fail to sched new CAAM FQ, ecode = %d\n", ret);
384
385		/*
386		 * We can kill new FQ and revert to old FQ.
387		 * Since the desc is already modified, it is success case
388		 */
389
390		drv_ctx->req_fq = old_fq;
391
392		if (kill_fq(qidev, new_fq))
393			dev_warn(qidev, "New CAAM FQ kill failed\n");
394	} else if (kill_fq(qidev, old_fq)) {
395		dev_warn(qidev, "Old CAAM FQ kill failed\n");
396	}
397
398	return 0;
399}
400EXPORT_SYMBOL(caam_drv_ctx_update);
401
402struct caam_drv_ctx *caam_drv_ctx_init(struct device *qidev,
403				       int *cpu,
404				       u32 *sh_desc)
405{
406	size_t size;
407	u32 num_words;
408	dma_addr_t hwdesc;
409	struct caam_drv_ctx *drv_ctx;
410	const cpumask_t *cpus = qman_affine_cpus();
411
412	num_words = desc_len(sh_desc);
413	if (num_words > MAX_SDLEN) {
414		dev_err(qidev, "Invalid descriptor len: %d words\n",
415			num_words);
416		return ERR_PTR(-EINVAL);
417	}
418
419	drv_ctx = kzalloc(sizeof(*drv_ctx), GFP_ATOMIC);
420	if (!drv_ctx)
421		return ERR_PTR(-ENOMEM);
422
423	/*
424	 * Initialise pre-header - set RSLS and SDLEN - and shared descriptor
425	 * and dma-map them.
426	 */
427	drv_ctx->prehdr[0] = cpu_to_caam32((1 << PREHDR_RSLS_SHIFT) |
428					   num_words);
429	drv_ctx->prehdr[1] = cpu_to_caam32(PREHDR_ABS);
430	memcpy(drv_ctx->sh_desc, sh_desc, desc_bytes(sh_desc));
431	size = sizeof(drv_ctx->prehdr) + sizeof(drv_ctx->sh_desc);
432	hwdesc = dma_map_single(qidev, drv_ctx->prehdr, size,
433				DMA_BIDIRECTIONAL);
434	if (dma_mapping_error(qidev, hwdesc)) {
435		dev_err(qidev, "DMA map error for preheader + shdesc\n");
436		kfree(drv_ctx);
437		return ERR_PTR(-ENOMEM);
438	}
439	drv_ctx->context_a = hwdesc;
440
441	/* If given CPU does not own the portal, choose another one that does */
442	if (!cpumask_test_cpu(*cpu, cpus)) {
443		int *pcpu = &get_cpu_var(last_cpu);
444
445		*pcpu = cpumask_next(*pcpu, cpus);
446		if (*pcpu >= nr_cpu_ids)
447			*pcpu = cpumask_first(cpus);
448		*cpu = *pcpu;
449
450		put_cpu_var(last_cpu);
451	}
452	drv_ctx->cpu = *cpu;
453
454	/* Find response FQ hooked with this CPU */
455	drv_ctx->rsp_fq = per_cpu(pcpu_qipriv.rsp_fq, drv_ctx->cpu);
456
457	/* Attach request FQ */
458	drv_ctx->req_fq = create_caam_req_fq(qidev, drv_ctx->rsp_fq, hwdesc,
459					     QMAN_INITFQ_FLAG_SCHED);
460	if (IS_ERR(drv_ctx->req_fq)) {
461		dev_err(qidev, "create_caam_req_fq failed\n");
462		dma_unmap_single(qidev, hwdesc, size, DMA_BIDIRECTIONAL);
463		kfree(drv_ctx);
464		return ERR_PTR(-ENOMEM);
465	}
466
467	/* init reference counter used to track references to request FQ */
468	refcount_set(&drv_ctx->refcnt, 1);
469
470	drv_ctx->qidev = qidev;
471	return drv_ctx;
472}
473EXPORT_SYMBOL(caam_drv_ctx_init);
474
475void *qi_cache_alloc(gfp_t flags)
476{
477	return kmem_cache_alloc(qi_cache, flags);
478}
479EXPORT_SYMBOL(qi_cache_alloc);
480
481void qi_cache_free(void *obj)
482{
483	kmem_cache_free(qi_cache, obj);
484}
485EXPORT_SYMBOL(qi_cache_free);
486
487static int caam_qi_poll(struct napi_struct *napi, int budget)
488{
489	struct caam_napi *np = container_of(napi, struct caam_napi, irqtask);
490
491	int cleaned = qman_p_poll_dqrr(np->p, budget);
492
493	if (cleaned < budget) {
494		napi_complete(napi);
495		qman_p_irqsource_add(np->p, QM_PIRQ_DQRI);
496	}
497
498	return cleaned;
499}
500
501void caam_drv_ctx_rel(struct caam_drv_ctx *drv_ctx)
502{
503	if (IS_ERR_OR_NULL(drv_ctx))
504		return;
505
506	/* Remove request FQ */
507	if (kill_fq(drv_ctx->qidev, drv_ctx->req_fq))
508		dev_err(drv_ctx->qidev, "Crypto session req FQ kill failed\n");
509
510	dma_unmap_single(drv_ctx->qidev, drv_ctx->context_a,
511			 sizeof(drv_ctx->sh_desc) + sizeof(drv_ctx->prehdr),
512			 DMA_BIDIRECTIONAL);
513	kfree(drv_ctx);
514}
515EXPORT_SYMBOL(caam_drv_ctx_rel);
516
517static void caam_qi_shutdown(void *data)
518{
519	int i;
520	struct device *qidev = data;
521	struct caam_qi_priv *priv = &qipriv;
522	const cpumask_t *cpus = qman_affine_cpus();
523
524	for_each_cpu(i, cpus) {
525		struct napi_struct *irqtask;
526
527		irqtask = &per_cpu_ptr(&pcpu_qipriv.caam_napi, i)->irqtask;
528		napi_disable(irqtask);
529		netif_napi_del(irqtask);
530
531		if (kill_fq(qidev, per_cpu(pcpu_qipriv.rsp_fq, i)))
532			dev_err(qidev, "Rsp FQ kill failed, cpu: %d\n", i);
533	}
534
535	qman_delete_cgr_safe(&priv->cgr);
536	qman_release_cgrid(priv->cgr.cgrid);
537
538	kmem_cache_destroy(qi_cache);
539}
540
541static void cgr_cb(struct qman_portal *qm, struct qman_cgr *cgr, int congested)
542{
543	caam_congested = congested;
544
545	if (congested) {
546		caam_debugfs_qi_congested();
547
548		pr_debug_ratelimited("CAAM entered congestion\n");
549
550	} else {
551		pr_debug_ratelimited("CAAM exited congestion\n");
552	}
553}
554
555static int caam_qi_napi_schedule(struct qman_portal *p, struct caam_napi *np,
556				 bool sched_napi)
557{
558	if (sched_napi) {
559		/* Disable QMan IRQ source and invoke NAPI */
560		qman_p_irqsource_remove(p, QM_PIRQ_DQRI);
561		np->p = p;
562		napi_schedule(&np->irqtask);
563		return 1;
564	}
565	return 0;
566}
567
568static enum qman_cb_dqrr_result caam_rsp_fq_dqrr_cb(struct qman_portal *p,
569						    struct qman_fq *rsp_fq,
570						    const struct qm_dqrr_entry *dqrr,
571						    bool sched_napi)
572{
573	struct caam_napi *caam_napi = raw_cpu_ptr(&pcpu_qipriv.caam_napi);
574	struct caam_drv_req *drv_req;
575	const struct qm_fd *fd;
576	struct device *qidev = &(raw_cpu_ptr(&pcpu_qipriv)->net_dev.dev);
577	struct caam_drv_private *priv = dev_get_drvdata(qidev);
578	u32 status;
579
580	if (caam_qi_napi_schedule(p, caam_napi, sched_napi))
581		return qman_cb_dqrr_stop;
582
583	fd = &dqrr->fd;
584
585	drv_req = caam_iova_to_virt(priv->domain, qm_fd_addr_get64(fd));
586	if (unlikely(!drv_req)) {
587		dev_err(qidev,
588			"Can't find original request for caam response\n");
589		return qman_cb_dqrr_consume;
590	}
591
592	refcount_dec(&drv_req->drv_ctx->refcnt);
593
594	status = be32_to_cpu(fd->status);
595	if (unlikely(status)) {
596		u32 ssrc = status & JRSTA_SSRC_MASK;
597		u8 err_id = status & JRSTA_CCBERR_ERRID_MASK;
598
599		if (ssrc != JRSTA_SSRC_CCB_ERROR ||
600		    err_id != JRSTA_CCBERR_ERRID_ICVCHK)
601			dev_err_ratelimited(qidev,
602					    "Error: %#x in CAAM response FD\n",
603					    status);
604	}
605
606	if (unlikely(qm_fd_get_format(fd) != qm_fd_compound)) {
607		dev_err(qidev, "Non-compound FD from CAAM\n");
608		return qman_cb_dqrr_consume;
609	}
610
611	dma_unmap_single(drv_req->drv_ctx->qidev, qm_fd_addr(fd),
612			 sizeof(drv_req->fd_sgt), DMA_BIDIRECTIONAL);
613
614	drv_req->cbk(drv_req, status);
615	return qman_cb_dqrr_consume;
616}
617
618static int alloc_rsp_fq_cpu(struct device *qidev, unsigned int cpu)
619{
620	struct qm_mcc_initfq opts;
621	struct qman_fq *fq;
622	int ret;
623
624	fq = kzalloc(sizeof(*fq), GFP_KERNEL);
625	if (!fq)
626		return -ENOMEM;
627
628	fq->cb.dqrr = caam_rsp_fq_dqrr_cb;
629
630	ret = qman_create_fq(0, QMAN_FQ_FLAG_NO_ENQUEUE |
631			     QMAN_FQ_FLAG_DYNAMIC_FQID, fq);
632	if (ret) {
633		dev_err(qidev, "Rsp FQ create failed\n");
634		kfree(fq);
635		return -ENODEV;
636	}
637
638	memset(&opts, 0, sizeof(opts));
639	opts.we_mask = cpu_to_be16(QM_INITFQ_WE_FQCTRL | QM_INITFQ_WE_DESTWQ |
640				   QM_INITFQ_WE_CONTEXTB |
641				   QM_INITFQ_WE_CONTEXTA | QM_INITFQ_WE_CGID);
642	opts.fqd.fq_ctrl = cpu_to_be16(QM_FQCTRL_CTXASTASHING |
643				       QM_FQCTRL_CPCSTASH | QM_FQCTRL_CGE);
644	qm_fqd_set_destwq(&opts.fqd, qman_affine_channel(cpu), 3);
645	opts.fqd.cgid = qipriv.cgr.cgrid;
646	opts.fqd.context_a.stashing.exclusive =	QM_STASHING_EXCL_CTX |
647						QM_STASHING_EXCL_DATA;
648	qm_fqd_set_stashing(&opts.fqd, 0, 1, 1);
649
650	ret = qman_init_fq(fq, QMAN_INITFQ_FLAG_SCHED, &opts);
651	if (ret) {
652		dev_err(qidev, "Rsp FQ init failed\n");
653		kfree(fq);
654		return -ENODEV;
655	}
656
657	per_cpu(pcpu_qipriv.rsp_fq, cpu) = fq;
658
659	dev_dbg(qidev, "Allocated response FQ %u for CPU %u", fq->fqid, cpu);
660	return 0;
661}
662
663static int init_cgr(struct device *qidev)
664{
665	int ret;
666	struct qm_mcc_initcgr opts;
667	const u64 val = (u64)cpumask_weight(qman_affine_cpus()) *
668			MAX_RSP_FQ_BACKLOG_PER_CPU;
669
670	ret = qman_alloc_cgrid(&qipriv.cgr.cgrid);
671	if (ret) {
672		dev_err(qidev, "CGR alloc failed for rsp FQs: %d\n", ret);
673		return ret;
674	}
675
676	qipriv.cgr.cb = cgr_cb;
677	memset(&opts, 0, sizeof(opts));
678	opts.we_mask = cpu_to_be16(QM_CGR_WE_CSCN_EN | QM_CGR_WE_CS_THRES |
679				   QM_CGR_WE_MODE);
680	opts.cgr.cscn_en = QM_CGR_EN;
681	opts.cgr.mode = QMAN_CGR_MODE_FRAME;
682	qm_cgr_cs_thres_set64(&opts.cgr.cs_thres, val, 1);
683
684	ret = qman_create_cgr(&qipriv.cgr, QMAN_CGR_FLAG_USE_INIT, &opts);
685	if (ret) {
686		dev_err(qidev, "Error %d creating CAAM CGRID: %u\n", ret,
687			qipriv.cgr.cgrid);
688		return ret;
689	}
690
691	dev_dbg(qidev, "Congestion threshold set to %llu\n", val);
692	return 0;
693}
694
695static int alloc_rsp_fqs(struct device *qidev)
696{
697	int ret, i;
698	const cpumask_t *cpus = qman_affine_cpus();
699
700	/*Now create response FQs*/
701	for_each_cpu(i, cpus) {
702		ret = alloc_rsp_fq_cpu(qidev, i);
703		if (ret) {
704			dev_err(qidev, "CAAM rsp FQ alloc failed, cpu: %u", i);
705			return ret;
706		}
707	}
708
709	return 0;
710}
711
712static void free_rsp_fqs(void)
713{
714	int i;
715	const cpumask_t *cpus = qman_affine_cpus();
716
717	for_each_cpu(i, cpus)
718		kfree(per_cpu(pcpu_qipriv.rsp_fq, i));
719}
720
721int caam_qi_init(struct platform_device *caam_pdev)
722{
723	int err, i;
724	struct device *ctrldev = &caam_pdev->dev, *qidev;
725	struct caam_drv_private *ctrlpriv;
726	const cpumask_t *cpus = qman_affine_cpus();
727
728	ctrlpriv = dev_get_drvdata(ctrldev);
729	qidev = ctrldev;
730
731	/* Initialize the congestion detection */
732	err = init_cgr(qidev);
733	if (err) {
734		dev_err(qidev, "CGR initialization failed: %d\n", err);
735		return err;
736	}
737
738	/* Initialise response FQs */
739	err = alloc_rsp_fqs(qidev);
740	if (err) {
741		dev_err(qidev, "Can't allocate CAAM response FQs: %d\n", err);
742		free_rsp_fqs();
743		return err;
744	}
745
746	/*
747	 * Enable the NAPI contexts on each of the core which has an affine
748	 * portal.
749	 */
750	for_each_cpu(i, cpus) {
751		struct caam_qi_pcpu_priv *priv = per_cpu_ptr(&pcpu_qipriv, i);
752		struct caam_napi *caam_napi = &priv->caam_napi;
753		struct napi_struct *irqtask = &caam_napi->irqtask;
754		struct net_device *net_dev = &priv->net_dev;
755
756		net_dev->dev = *qidev;
757		INIT_LIST_HEAD(&net_dev->napi_list);
758
759		netif_napi_add_tx_weight(net_dev, irqtask, caam_qi_poll,
760					 CAAM_NAPI_WEIGHT);
761
762		napi_enable(irqtask);
763	}
764
765	qi_cache = kmem_cache_create("caamqicache", CAAM_QI_MEMCACHE_SIZE,
766				     dma_get_cache_alignment(), 0, NULL);
767	if (!qi_cache) {
768		dev_err(qidev, "Can't allocate CAAM cache\n");
769		free_rsp_fqs();
770		return -ENOMEM;
771	}
772
773	caam_debugfs_qi_init(ctrlpriv);
774
775	err = devm_add_action_or_reset(qidev, caam_qi_shutdown, ctrlpriv);
776	if (err)
777		return err;
778
779	dev_info(qidev, "Linux CAAM Queue I/F driver initialised\n");
780	return 0;
781}
782