1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright 2016 Broadcom
4 */
5
6#include <linux/err.h>
7#include <linux/module.h>
8#include <linux/init.h>
9#include <linux/errno.h>
10#include <linux/kernel.h>
11#include <linux/interrupt.h>
12#include <linux/platform_device.h>
13#include <linux/scatterlist.h>
14#include <linux/crypto.h>
15#include <linux/kthread.h>
16#include <linux/rtnetlink.h>
17#include <linux/sched.h>
18#include <linux/of.h>
19#include <linux/io.h>
20#include <linux/bitops.h>
21
22#include <crypto/algapi.h>
23#include <crypto/aead.h>
24#include <crypto/internal/aead.h>
25#include <crypto/aes.h>
26#include <crypto/internal/des.h>
27#include <crypto/hmac.h>
28#include <crypto/md5.h>
29#include <crypto/authenc.h>
30#include <crypto/skcipher.h>
31#include <crypto/hash.h>
32#include <crypto/sha1.h>
33#include <crypto/sha2.h>
34#include <crypto/sha3.h>
35
36#include "util.h"
37#include "cipher.h"
38#include "spu.h"
39#include "spum.h"
40#include "spu2.h"
41
42/* ================= Device Structure ================== */
43
44struct bcm_device_private iproc_priv;
45
46/* ==================== Parameters ===================== */
47
48int flow_debug_logging;
49module_param(flow_debug_logging, int, 0644);
50MODULE_PARM_DESC(flow_debug_logging, "Enable Flow Debug Logging");
51
52int packet_debug_logging;
53module_param(packet_debug_logging, int, 0644);
54MODULE_PARM_DESC(packet_debug_logging, "Enable Packet Debug Logging");
55
56int debug_logging_sleep;
57module_param(debug_logging_sleep, int, 0644);
58MODULE_PARM_DESC(debug_logging_sleep, "Packet Debug Logging Sleep");
59
60/*
61 * The value of these module parameters is used to set the priority for each
62 * algo type when this driver registers algos with the kernel crypto API.
63 * To use a priority other than the default, set the priority in the insmod or
64 * modprobe. Changing the module priority after init time has no effect.
65 *
66 * The default priorities are chosen to be lower (less preferred) than ARMv8 CE
67 * algos, but more preferred than generic software algos.
68 */
69static int cipher_pri = 150;
70module_param(cipher_pri, int, 0644);
71MODULE_PARM_DESC(cipher_pri, "Priority for cipher algos");
72
73static int hash_pri = 100;
74module_param(hash_pri, int, 0644);
75MODULE_PARM_DESC(hash_pri, "Priority for hash algos");
76
77static int aead_pri = 150;
78module_param(aead_pri, int, 0644);
79MODULE_PARM_DESC(aead_pri, "Priority for AEAD algos");
80
81/* A type 3 BCM header, expected to precede the SPU header for SPU-M.
82 * Bits 3 and 4 in the first byte encode the channel number (the dma ringset).
83 * 0x60 - ring 0
84 * 0x68 - ring 1
85 * 0x70 - ring 2
86 * 0x78 - ring 3
87 */
88static char BCMHEADER[] = { 0x60, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x28 };
89/*
90 * Some SPU hw does not use BCM header on SPU messages. So BCM_HDR_LEN
91 * is set dynamically after reading SPU type from device tree.
92 */
93#define BCM_HDR_LEN  iproc_priv.bcm_hdr_len
94
95/* min and max time to sleep before retrying when mbox queue is full. usec */
96#define MBOX_SLEEP_MIN  800
97#define MBOX_SLEEP_MAX 1000
98
99/**
100 * select_channel() - Select a SPU channel to handle a crypto request. Selects
101 * channel in round robin order.
102 *
103 * Return:  channel index
104 */
105static u8 select_channel(void)
106{
107	u8 chan_idx = atomic_inc_return(&iproc_priv.next_chan);
108
109	return chan_idx % iproc_priv.spu.num_chan;
110}
111
112/**
113 * spu_skcipher_rx_sg_create() - Build up the scatterlist of buffers used to
114 * receive a SPU response message for an skcipher request. Includes buffers to
115 * catch SPU message headers and the response data.
116 * @mssg:	mailbox message containing the receive sg
117 * @rctx:	crypto request context
118 * @rx_frag_num: number of scatterlist elements required to hold the
119 *		SPU response message
120 * @chunksize:	Number of bytes of response data expected
121 * @stat_pad_len: Number of bytes required to pad the STAT field to
122 *		a 4-byte boundary
123 *
124 * The scatterlist that gets allocated here is freed in spu_chunk_cleanup()
125 * when the request completes, whether the request is handled successfully or
126 * there is an error.
127 *
128 * Returns:
129 *   0 if successful
130 *   < 0 if an error
131 */
132static int
133spu_skcipher_rx_sg_create(struct brcm_message *mssg,
134			    struct iproc_reqctx_s *rctx,
135			    u8 rx_frag_num,
136			    unsigned int chunksize, u32 stat_pad_len)
137{
138	struct spu_hw *spu = &iproc_priv.spu;
139	struct scatterlist *sg;	/* used to build sgs in mbox message */
140	struct iproc_ctx_s *ctx = rctx->ctx;
141	u32 datalen;		/* Number of bytes of response data expected */
142
143	mssg->spu.dst = kcalloc(rx_frag_num, sizeof(struct scatterlist),
144				rctx->gfp);
145	if (!mssg->spu.dst)
146		return -ENOMEM;
147
148	sg = mssg->spu.dst;
149	sg_init_table(sg, rx_frag_num);
150	/* Space for SPU message header */
151	sg_set_buf(sg++, rctx->msg_buf.spu_resp_hdr, ctx->spu_resp_hdr_len);
152
153	/* If XTS tweak in payload, add buffer to receive encrypted tweak */
154	if ((ctx->cipher.mode == CIPHER_MODE_XTS) &&
155	    spu->spu_xts_tweak_in_payload())
156		sg_set_buf(sg++, rctx->msg_buf.c.supdt_tweak,
157			   SPU_XTS_TWEAK_SIZE);
158
159	/* Copy in each dst sg entry from request, up to chunksize */
160	datalen = spu_msg_sg_add(&sg, &rctx->dst_sg, &rctx->dst_skip,
161				 rctx->dst_nents, chunksize);
162	if (datalen < chunksize) {
163		pr_err("%s(): failed to copy dst sg to mbox msg. chunksize %u, datalen %u",
164		       __func__, chunksize, datalen);
165		return -EFAULT;
166	}
167
168	if (stat_pad_len)
169		sg_set_buf(sg++, rctx->msg_buf.rx_stat_pad, stat_pad_len);
170
171	memset(rctx->msg_buf.rx_stat, 0, SPU_RX_STATUS_LEN);
172	sg_set_buf(sg, rctx->msg_buf.rx_stat, spu->spu_rx_status_len());
173
174	return 0;
175}
176
177/**
178 * spu_skcipher_tx_sg_create() - Build up the scatterlist of buffers used to
179 * send a SPU request message for an skcipher request. Includes SPU message
180 * headers and the request data.
181 * @mssg:	mailbox message containing the transmit sg
182 * @rctx:	crypto request context
183 * @tx_frag_num: number of scatterlist elements required to construct the
184 *		SPU request message
185 * @chunksize:	Number of bytes of request data
186 * @pad_len:	Number of pad bytes
187 *
188 * The scatterlist that gets allocated here is freed in spu_chunk_cleanup()
189 * when the request completes, whether the request is handled successfully or
190 * there is an error.
191 *
192 * Returns:
193 *   0 if successful
194 *   < 0 if an error
195 */
196static int
197spu_skcipher_tx_sg_create(struct brcm_message *mssg,
198			    struct iproc_reqctx_s *rctx,
199			    u8 tx_frag_num, unsigned int chunksize, u32 pad_len)
200{
201	struct spu_hw *spu = &iproc_priv.spu;
202	struct scatterlist *sg;	/* used to build sgs in mbox message */
203	struct iproc_ctx_s *ctx = rctx->ctx;
204	u32 datalen;		/* Number of bytes of response data expected */
205	u32 stat_len;
206
207	mssg->spu.src = kcalloc(tx_frag_num, sizeof(struct scatterlist),
208				rctx->gfp);
209	if (unlikely(!mssg->spu.src))
210		return -ENOMEM;
211
212	sg = mssg->spu.src;
213	sg_init_table(sg, tx_frag_num);
214
215	sg_set_buf(sg++, rctx->msg_buf.bcm_spu_req_hdr,
216		   BCM_HDR_LEN + ctx->spu_req_hdr_len);
217
218	/* if XTS tweak in payload, copy from IV (where crypto API puts it) */
219	if ((ctx->cipher.mode == CIPHER_MODE_XTS) &&
220	    spu->spu_xts_tweak_in_payload())
221		sg_set_buf(sg++, rctx->msg_buf.iv_ctr, SPU_XTS_TWEAK_SIZE);
222
223	/* Copy in each src sg entry from request, up to chunksize */
224	datalen = spu_msg_sg_add(&sg, &rctx->src_sg, &rctx->src_skip,
225				 rctx->src_nents, chunksize);
226	if (unlikely(datalen < chunksize)) {
227		pr_err("%s(): failed to copy src sg to mbox msg",
228		       __func__);
229		return -EFAULT;
230	}
231
232	if (pad_len)
233		sg_set_buf(sg++, rctx->msg_buf.spu_req_pad, pad_len);
234
235	stat_len = spu->spu_tx_status_len();
236	if (stat_len) {
237		memset(rctx->msg_buf.tx_stat, 0, stat_len);
238		sg_set_buf(sg, rctx->msg_buf.tx_stat, stat_len);
239	}
240	return 0;
241}
242
243static int mailbox_send_message(struct brcm_message *mssg, u32 flags,
244				u8 chan_idx)
245{
246	int err;
247	int retry_cnt = 0;
248	struct device *dev = &(iproc_priv.pdev->dev);
249
250	err = mbox_send_message(iproc_priv.mbox[chan_idx], mssg);
251	if (flags & CRYPTO_TFM_REQ_MAY_SLEEP) {
252		while ((err == -ENOBUFS) && (retry_cnt < SPU_MB_RETRY_MAX)) {
253			/*
254			 * Mailbox queue is full. Since MAY_SLEEP is set, assume
255			 * not in atomic context and we can wait and try again.
256			 */
257			retry_cnt++;
258			usleep_range(MBOX_SLEEP_MIN, MBOX_SLEEP_MAX);
259			err = mbox_send_message(iproc_priv.mbox[chan_idx],
260						mssg);
261			atomic_inc(&iproc_priv.mb_no_spc);
262		}
263	}
264	if (err < 0) {
265		atomic_inc(&iproc_priv.mb_send_fail);
266		return err;
267	}
268
269	/* Check error returned by mailbox controller */
270	err = mssg->error;
271	if (unlikely(err < 0)) {
272		dev_err(dev, "message error %d", err);
273		/* Signal txdone for mailbox channel */
274	}
275
276	/* Signal txdone for mailbox channel */
277	mbox_client_txdone(iproc_priv.mbox[chan_idx], err);
278	return err;
279}
280
281/**
282 * handle_skcipher_req() - Submit as much of a block cipher request as fits in
283 * a single SPU request message, starting at the current position in the request
284 * data.
285 * @rctx:	Crypto request context
286 *
287 * This may be called on the crypto API thread, or, when a request is so large
288 * it must be broken into multiple SPU messages, on the thread used to invoke
289 * the response callback. When requests are broken into multiple SPU
290 * messages, we assume subsequent messages depend on previous results, and
291 * thus always wait for previous results before submitting the next message.
292 * Because requests are submitted in lock step like this, there is no need
293 * to synchronize access to request data structures.
294 *
295 * Return: -EINPROGRESS: request has been accepted and result will be returned
296 *			 asynchronously
297 *         Any other value indicates an error
298 */
299static int handle_skcipher_req(struct iproc_reqctx_s *rctx)
300{
301	struct spu_hw *spu = &iproc_priv.spu;
302	struct crypto_async_request *areq = rctx->parent;
303	struct skcipher_request *req =
304	    container_of(areq, struct skcipher_request, base);
305	struct iproc_ctx_s *ctx = rctx->ctx;
306	struct spu_cipher_parms cipher_parms;
307	int err;
308	unsigned int chunksize;	/* Num bytes of request to submit */
309	int remaining;	/* Bytes of request still to process */
310	int chunk_start;	/* Beginning of data for current SPU msg */
311
312	/* IV or ctr value to use in this SPU msg */
313	u8 local_iv_ctr[MAX_IV_SIZE];
314	u32 stat_pad_len;	/* num bytes to align status field */
315	u32 pad_len;		/* total length of all padding */
316	struct brcm_message *mssg;	/* mailbox message */
317
318	/* number of entries in src and dst sg in mailbox message. */
319	u8 rx_frag_num = 2;	/* response header and STATUS */
320	u8 tx_frag_num = 1;	/* request header */
321
322	flow_log("%s\n", __func__);
323
324	cipher_parms.alg = ctx->cipher.alg;
325	cipher_parms.mode = ctx->cipher.mode;
326	cipher_parms.type = ctx->cipher_type;
327	cipher_parms.key_len = ctx->enckeylen;
328	cipher_parms.key_buf = ctx->enckey;
329	cipher_parms.iv_buf = local_iv_ctr;
330	cipher_parms.iv_len = rctx->iv_ctr_len;
331
332	mssg = &rctx->mb_mssg;
333	chunk_start = rctx->src_sent;
334	remaining = rctx->total_todo - chunk_start;
335
336	/* determine the chunk we are breaking off and update the indexes */
337	if ((ctx->max_payload != SPU_MAX_PAYLOAD_INF) &&
338	    (remaining > ctx->max_payload))
339		chunksize = ctx->max_payload;
340	else
341		chunksize = remaining;
342
343	rctx->src_sent += chunksize;
344	rctx->total_sent = rctx->src_sent;
345
346	/* Count number of sg entries to be included in this request */
347	rctx->src_nents = spu_sg_count(rctx->src_sg, rctx->src_skip, chunksize);
348	rctx->dst_nents = spu_sg_count(rctx->dst_sg, rctx->dst_skip, chunksize);
349
350	if ((ctx->cipher.mode == CIPHER_MODE_CBC) &&
351	    rctx->is_encrypt && chunk_start)
352		/*
353		 * Encrypting non-first first chunk. Copy last block of
354		 * previous result to IV for this chunk.
355		 */
356		sg_copy_part_to_buf(req->dst, rctx->msg_buf.iv_ctr,
357				    rctx->iv_ctr_len,
358				    chunk_start - rctx->iv_ctr_len);
359
360	if (rctx->iv_ctr_len) {
361		/* get our local copy of the iv */
362		__builtin_memcpy(local_iv_ctr, rctx->msg_buf.iv_ctr,
363				 rctx->iv_ctr_len);
364
365		/* generate the next IV if possible */
366		if ((ctx->cipher.mode == CIPHER_MODE_CBC) &&
367		    !rctx->is_encrypt) {
368			/*
369			 * CBC Decrypt: next IV is the last ciphertext block in
370			 * this chunk
371			 */
372			sg_copy_part_to_buf(req->src, rctx->msg_buf.iv_ctr,
373					    rctx->iv_ctr_len,
374					    rctx->src_sent - rctx->iv_ctr_len);
375		} else if (ctx->cipher.mode == CIPHER_MODE_CTR) {
376			/*
377			 * The SPU hardware increments the counter once for
378			 * each AES block of 16 bytes. So update the counter
379			 * for the next chunk, if there is one. Note that for
380			 * this chunk, the counter has already been copied to
381			 * local_iv_ctr. We can assume a block size of 16,
382			 * because we only support CTR mode for AES, not for
383			 * any other cipher alg.
384			 */
385			add_to_ctr(rctx->msg_buf.iv_ctr, chunksize >> 4);
386		}
387	}
388
389	if (ctx->max_payload == SPU_MAX_PAYLOAD_INF)
390		flow_log("max_payload infinite\n");
391	else
392		flow_log("max_payload %u\n", ctx->max_payload);
393
394	flow_log("sent:%u start:%u remains:%u size:%u\n",
395		 rctx->src_sent, chunk_start, remaining, chunksize);
396
397	/* Copy SPU header template created at setkey time */
398	memcpy(rctx->msg_buf.bcm_spu_req_hdr, ctx->bcm_spu_req_hdr,
399	       sizeof(rctx->msg_buf.bcm_spu_req_hdr));
400
401	spu->spu_cipher_req_finish(rctx->msg_buf.bcm_spu_req_hdr + BCM_HDR_LEN,
402				   ctx->spu_req_hdr_len, !(rctx->is_encrypt),
403				   &cipher_parms, chunksize);
404
405	atomic64_add(chunksize, &iproc_priv.bytes_out);
406
407	stat_pad_len = spu->spu_wordalign_padlen(chunksize);
408	if (stat_pad_len)
409		rx_frag_num++;
410	pad_len = stat_pad_len;
411	if (pad_len) {
412		tx_frag_num++;
413		spu->spu_request_pad(rctx->msg_buf.spu_req_pad, 0,
414				     0, ctx->auth.alg, ctx->auth.mode,
415				     rctx->total_sent, stat_pad_len);
416	}
417
418	spu->spu_dump_msg_hdr(rctx->msg_buf.bcm_spu_req_hdr + BCM_HDR_LEN,
419			      ctx->spu_req_hdr_len);
420	packet_log("payload:\n");
421	dump_sg(rctx->src_sg, rctx->src_skip, chunksize);
422	packet_dump("   pad: ", rctx->msg_buf.spu_req_pad, pad_len);
423
424	/*
425	 * Build mailbox message containing SPU request msg and rx buffers
426	 * to catch response message
427	 */
428	memset(mssg, 0, sizeof(*mssg));
429	mssg->type = BRCM_MESSAGE_SPU;
430	mssg->ctx = rctx;	/* Will be returned in response */
431
432	/* Create rx scatterlist to catch result */
433	rx_frag_num += rctx->dst_nents;
434
435	if ((ctx->cipher.mode == CIPHER_MODE_XTS) &&
436	    spu->spu_xts_tweak_in_payload())
437		rx_frag_num++;	/* extra sg to insert tweak */
438
439	err = spu_skcipher_rx_sg_create(mssg, rctx, rx_frag_num, chunksize,
440					  stat_pad_len);
441	if (err)
442		return err;
443
444	/* Create tx scatterlist containing SPU request message */
445	tx_frag_num += rctx->src_nents;
446	if (spu->spu_tx_status_len())
447		tx_frag_num++;
448
449	if ((ctx->cipher.mode == CIPHER_MODE_XTS) &&
450	    spu->spu_xts_tweak_in_payload())
451		tx_frag_num++;	/* extra sg to insert tweak */
452
453	err = spu_skcipher_tx_sg_create(mssg, rctx, tx_frag_num, chunksize,
454					  pad_len);
455	if (err)
456		return err;
457
458	err = mailbox_send_message(mssg, req->base.flags, rctx->chan_idx);
459	if (unlikely(err < 0))
460		return err;
461
462	return -EINPROGRESS;
463}
464
465/**
466 * handle_skcipher_resp() - Process a block cipher SPU response. Updates the
467 * total received count for the request and updates global stats.
468 * @rctx:	Crypto request context
469 */
470static void handle_skcipher_resp(struct iproc_reqctx_s *rctx)
471{
472	struct spu_hw *spu = &iproc_priv.spu;
473	struct crypto_async_request *areq = rctx->parent;
474	struct skcipher_request *req = skcipher_request_cast(areq);
475	struct iproc_ctx_s *ctx = rctx->ctx;
476	u32 payload_len;
477
478	/* See how much data was returned */
479	payload_len = spu->spu_payload_length(rctx->msg_buf.spu_resp_hdr);
480
481	/*
482	 * In XTS mode, the first SPU_XTS_TWEAK_SIZE bytes may be the
483	 * encrypted tweak ("i") value; we don't count those.
484	 */
485	if ((ctx->cipher.mode == CIPHER_MODE_XTS) &&
486	    spu->spu_xts_tweak_in_payload() &&
487	    (payload_len >= SPU_XTS_TWEAK_SIZE))
488		payload_len -= SPU_XTS_TWEAK_SIZE;
489
490	atomic64_add(payload_len, &iproc_priv.bytes_in);
491
492	flow_log("%s() offset: %u, bd_len: %u BD:\n",
493		 __func__, rctx->total_received, payload_len);
494
495	dump_sg(req->dst, rctx->total_received, payload_len);
496
497	rctx->total_received += payload_len;
498	if (rctx->total_received == rctx->total_todo) {
499		atomic_inc(&iproc_priv.op_counts[SPU_OP_CIPHER]);
500		atomic_inc(
501		   &iproc_priv.cipher_cnt[ctx->cipher.alg][ctx->cipher.mode]);
502	}
503}
504
505/**
506 * spu_ahash_rx_sg_create() - Build up the scatterlist of buffers used to
507 * receive a SPU response message for an ahash request.
508 * @mssg:	mailbox message containing the receive sg
509 * @rctx:	crypto request context
510 * @rx_frag_num: number of scatterlist elements required to hold the
511 *		SPU response message
512 * @digestsize: length of hash digest, in bytes
513 * @stat_pad_len: Number of bytes required to pad the STAT field to
514 *		a 4-byte boundary
515 *
516 * The scatterlist that gets allocated here is freed in spu_chunk_cleanup()
517 * when the request completes, whether the request is handled successfully or
518 * there is an error.
519 *
520 * Return:
521 *   0 if successful
522 *   < 0 if an error
523 */
524static int
525spu_ahash_rx_sg_create(struct brcm_message *mssg,
526		       struct iproc_reqctx_s *rctx,
527		       u8 rx_frag_num, unsigned int digestsize,
528		       u32 stat_pad_len)
529{
530	struct spu_hw *spu = &iproc_priv.spu;
531	struct scatterlist *sg;	/* used to build sgs in mbox message */
532	struct iproc_ctx_s *ctx = rctx->ctx;
533
534	mssg->spu.dst = kcalloc(rx_frag_num, sizeof(struct scatterlist),
535				rctx->gfp);
536	if (!mssg->spu.dst)
537		return -ENOMEM;
538
539	sg = mssg->spu.dst;
540	sg_init_table(sg, rx_frag_num);
541	/* Space for SPU message header */
542	sg_set_buf(sg++, rctx->msg_buf.spu_resp_hdr, ctx->spu_resp_hdr_len);
543
544	/* Space for digest */
545	sg_set_buf(sg++, rctx->msg_buf.digest, digestsize);
546
547	if (stat_pad_len)
548		sg_set_buf(sg++, rctx->msg_buf.rx_stat_pad, stat_pad_len);
549
550	memset(rctx->msg_buf.rx_stat, 0, SPU_RX_STATUS_LEN);
551	sg_set_buf(sg, rctx->msg_buf.rx_stat, spu->spu_rx_status_len());
552	return 0;
553}
554
555/**
556 * spu_ahash_tx_sg_create() -  Build up the scatterlist of buffers used to send
557 * a SPU request message for an ahash request. Includes SPU message headers and
558 * the request data.
559 * @mssg:	mailbox message containing the transmit sg
560 * @rctx:	crypto request context
561 * @tx_frag_num: number of scatterlist elements required to construct the
562 *		SPU request message
563 * @spu_hdr_len: length in bytes of SPU message header
564 * @hash_carry_len: Number of bytes of data carried over from previous req
565 * @new_data_len: Number of bytes of new request data
566 * @pad_len:	Number of pad bytes
567 *
568 * The scatterlist that gets allocated here is freed in spu_chunk_cleanup()
569 * when the request completes, whether the request is handled successfully or
570 * there is an error.
571 *
572 * Return:
573 *   0 if successful
574 *   < 0 if an error
575 */
576static int
577spu_ahash_tx_sg_create(struct brcm_message *mssg,
578		       struct iproc_reqctx_s *rctx,
579		       u8 tx_frag_num,
580		       u32 spu_hdr_len,
581		       unsigned int hash_carry_len,
582		       unsigned int new_data_len, u32 pad_len)
583{
584	struct spu_hw *spu = &iproc_priv.spu;
585	struct scatterlist *sg;	/* used to build sgs in mbox message */
586	u32 datalen;		/* Number of bytes of response data expected */
587	u32 stat_len;
588
589	mssg->spu.src = kcalloc(tx_frag_num, sizeof(struct scatterlist),
590				rctx->gfp);
591	if (!mssg->spu.src)
592		return -ENOMEM;
593
594	sg = mssg->spu.src;
595	sg_init_table(sg, tx_frag_num);
596
597	sg_set_buf(sg++, rctx->msg_buf.bcm_spu_req_hdr,
598		   BCM_HDR_LEN + spu_hdr_len);
599
600	if (hash_carry_len)
601		sg_set_buf(sg++, rctx->hash_carry, hash_carry_len);
602
603	if (new_data_len) {
604		/* Copy in each src sg entry from request, up to chunksize */
605		datalen = spu_msg_sg_add(&sg, &rctx->src_sg, &rctx->src_skip,
606					 rctx->src_nents, new_data_len);
607		if (datalen < new_data_len) {
608			pr_err("%s(): failed to copy src sg to mbox msg",
609			       __func__);
610			return -EFAULT;
611		}
612	}
613
614	if (pad_len)
615		sg_set_buf(sg++, rctx->msg_buf.spu_req_pad, pad_len);
616
617	stat_len = spu->spu_tx_status_len();
618	if (stat_len) {
619		memset(rctx->msg_buf.tx_stat, 0, stat_len);
620		sg_set_buf(sg, rctx->msg_buf.tx_stat, stat_len);
621	}
622
623	return 0;
624}
625
626/**
627 * handle_ahash_req() - Process an asynchronous hash request from the crypto
628 * API.
629 * @rctx:  Crypto request context
630 *
631 * Builds a SPU request message embedded in a mailbox message and submits the
632 * mailbox message on a selected mailbox channel. The SPU request message is
633 * constructed as a scatterlist, including entries from the crypto API's
634 * src scatterlist to avoid copying the data to be hashed. This function is
635 * called either on the thread from the crypto API, or, in the case that the
636 * crypto API request is too large to fit in a single SPU request message,
637 * on the thread that invokes the receive callback with a response message.
638 * Because some operations require the response from one chunk before the next
639 * chunk can be submitted, we always wait for the response for the previous
640 * chunk before submitting the next chunk. Because requests are submitted in
641 * lock step like this, there is no need to synchronize access to request data
642 * structures.
643 *
644 * Return:
645 *   -EINPROGRESS: request has been submitted to SPU and response will be
646 *		   returned asynchronously
647 *   -EAGAIN:      non-final request included a small amount of data, which for
648 *		   efficiency we did not submit to the SPU, but instead stored
649 *		   to be submitted to the SPU with the next part of the request
650 *   other:        an error code
651 */
652static int handle_ahash_req(struct iproc_reqctx_s *rctx)
653{
654	struct spu_hw *spu = &iproc_priv.spu;
655	struct crypto_async_request *areq = rctx->parent;
656	struct ahash_request *req = ahash_request_cast(areq);
657	struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
658	struct crypto_tfm *tfm = crypto_ahash_tfm(ahash);
659	unsigned int blocksize = crypto_tfm_alg_blocksize(tfm);
660	struct iproc_ctx_s *ctx = rctx->ctx;
661
662	/* number of bytes still to be hashed in this req */
663	unsigned int nbytes_to_hash = 0;
664	int err;
665	unsigned int chunksize = 0;	/* length of hash carry + new data */
666	/*
667	 * length of new data, not from hash carry, to be submitted in
668	 * this hw request
669	 */
670	unsigned int new_data_len;
671
672	unsigned int __maybe_unused chunk_start = 0;
673	u32 db_size;	 /* Length of data field, incl gcm and hash padding */
674	int pad_len = 0; /* total pad len, including gcm, hash, stat padding */
675	u32 data_pad_len = 0;	/* length of GCM/CCM padding */
676	u32 stat_pad_len = 0;	/* length of padding to align STATUS word */
677	struct brcm_message *mssg;	/* mailbox message */
678	struct spu_request_opts req_opts;
679	struct spu_cipher_parms cipher_parms;
680	struct spu_hash_parms hash_parms;
681	struct spu_aead_parms aead_parms;
682	unsigned int local_nbuf;
683	u32 spu_hdr_len;
684	unsigned int digestsize;
685	u16 rem = 0;
686
687	/*
688	 * number of entries in src and dst sg. Always includes SPU msg header.
689	 * rx always includes a buffer to catch digest and STATUS.
690	 */
691	u8 rx_frag_num = 3;
692	u8 tx_frag_num = 1;
693
694	flow_log("total_todo %u, total_sent %u\n",
695		 rctx->total_todo, rctx->total_sent);
696
697	memset(&req_opts, 0, sizeof(req_opts));
698	memset(&cipher_parms, 0, sizeof(cipher_parms));
699	memset(&hash_parms, 0, sizeof(hash_parms));
700	memset(&aead_parms, 0, sizeof(aead_parms));
701
702	req_opts.bd_suppress = true;
703	hash_parms.alg = ctx->auth.alg;
704	hash_parms.mode = ctx->auth.mode;
705	hash_parms.type = HASH_TYPE_NONE;
706	hash_parms.key_buf = (u8 *)ctx->authkey;
707	hash_parms.key_len = ctx->authkeylen;
708
709	/*
710	 * For hash algorithms below assignment looks bit odd but
711	 * it's needed for AES-XCBC and AES-CMAC hash algorithms
712	 * to differentiate between 128, 192, 256 bit key values.
713	 * Based on the key values, hash algorithm is selected.
714	 * For example for 128 bit key, hash algorithm is AES-128.
715	 */
716	cipher_parms.type = ctx->cipher_type;
717
718	mssg = &rctx->mb_mssg;
719	chunk_start = rctx->src_sent;
720
721	/*
722	 * Compute the amount remaining to hash. This may include data
723	 * carried over from previous requests.
724	 */
725	nbytes_to_hash = rctx->total_todo - rctx->total_sent;
726	chunksize = nbytes_to_hash;
727	if ((ctx->max_payload != SPU_MAX_PAYLOAD_INF) &&
728	    (chunksize > ctx->max_payload))
729		chunksize = ctx->max_payload;
730
731	/*
732	 * If this is not a final request and the request data is not a multiple
733	 * of a full block, then simply park the extra data and prefix it to the
734	 * data for the next request.
735	 */
736	if (!rctx->is_final) {
737		u8 *dest = rctx->hash_carry + rctx->hash_carry_len;
738		u16 new_len;  /* len of data to add to hash carry */
739
740		rem = chunksize % blocksize;   /* remainder */
741		if (rem) {
742			/* chunksize not a multiple of blocksize */
743			chunksize -= rem;
744			if (chunksize == 0) {
745				/* Don't have a full block to submit to hw */
746				new_len = rem - rctx->hash_carry_len;
747				sg_copy_part_to_buf(req->src, dest, new_len,
748						    rctx->src_sent);
749				rctx->hash_carry_len = rem;
750				flow_log("Exiting with hash carry len: %u\n",
751					 rctx->hash_carry_len);
752				packet_dump("  buf: ",
753					    rctx->hash_carry,
754					    rctx->hash_carry_len);
755				return -EAGAIN;
756			}
757		}
758	}
759
760	/* if we have hash carry, then prefix it to the data in this request */
761	local_nbuf = rctx->hash_carry_len;
762	rctx->hash_carry_len = 0;
763	if (local_nbuf)
764		tx_frag_num++;
765	new_data_len = chunksize - local_nbuf;
766
767	/* Count number of sg entries to be used in this request */
768	rctx->src_nents = spu_sg_count(rctx->src_sg, rctx->src_skip,
769				       new_data_len);
770
771	/* AES hashing keeps key size in type field, so need to copy it here */
772	if (hash_parms.alg == HASH_ALG_AES)
773		hash_parms.type = (enum hash_type)cipher_parms.type;
774	else
775		hash_parms.type = spu->spu_hash_type(rctx->total_sent);
776
777	digestsize = spu->spu_digest_size(ctx->digestsize, ctx->auth.alg,
778					  hash_parms.type);
779	hash_parms.digestsize =	digestsize;
780
781	/* update the indexes */
782	rctx->total_sent += chunksize;
783	/* if you sent a prebuf then that wasn't from this req->src */
784	rctx->src_sent += new_data_len;
785
786	if ((rctx->total_sent == rctx->total_todo) && rctx->is_final)
787		hash_parms.pad_len = spu->spu_hash_pad_len(hash_parms.alg,
788							   hash_parms.mode,
789							   chunksize,
790							   blocksize);
791
792	/*
793	 * If a non-first chunk, then include the digest returned from the
794	 * previous chunk so that hw can add to it (except for AES types).
795	 */
796	if ((hash_parms.type == HASH_TYPE_UPDT) &&
797	    (hash_parms.alg != HASH_ALG_AES)) {
798		hash_parms.key_buf = rctx->incr_hash;
799		hash_parms.key_len = digestsize;
800	}
801
802	atomic64_add(chunksize, &iproc_priv.bytes_out);
803
804	flow_log("%s() final: %u nbuf: %u ",
805		 __func__, rctx->is_final, local_nbuf);
806
807	if (ctx->max_payload == SPU_MAX_PAYLOAD_INF)
808		flow_log("max_payload infinite\n");
809	else
810		flow_log("max_payload %u\n", ctx->max_payload);
811
812	flow_log("chunk_start: %u chunk_size: %u\n", chunk_start, chunksize);
813
814	/* Prepend SPU header with type 3 BCM header */
815	memcpy(rctx->msg_buf.bcm_spu_req_hdr, BCMHEADER, BCM_HDR_LEN);
816
817	hash_parms.prebuf_len = local_nbuf;
818	spu_hdr_len = spu->spu_create_request(rctx->msg_buf.bcm_spu_req_hdr +
819					      BCM_HDR_LEN,
820					      &req_opts, &cipher_parms,
821					      &hash_parms, &aead_parms,
822					      new_data_len);
823
824	if (spu_hdr_len == 0) {
825		pr_err("Failed to create SPU request header\n");
826		return -EFAULT;
827	}
828
829	/*
830	 * Determine total length of padding required. Put all padding in one
831	 * buffer.
832	 */
833	data_pad_len = spu->spu_gcm_ccm_pad_len(ctx->cipher.mode, chunksize);
834	db_size = spu_real_db_size(0, 0, local_nbuf, new_data_len,
835				   0, 0, hash_parms.pad_len);
836	if (spu->spu_tx_status_len())
837		stat_pad_len = spu->spu_wordalign_padlen(db_size);
838	if (stat_pad_len)
839		rx_frag_num++;
840	pad_len = hash_parms.pad_len + data_pad_len + stat_pad_len;
841	if (pad_len) {
842		tx_frag_num++;
843		spu->spu_request_pad(rctx->msg_buf.spu_req_pad, data_pad_len,
844				     hash_parms.pad_len, ctx->auth.alg,
845				     ctx->auth.mode, rctx->total_sent,
846				     stat_pad_len);
847	}
848
849	spu->spu_dump_msg_hdr(rctx->msg_buf.bcm_spu_req_hdr + BCM_HDR_LEN,
850			      spu_hdr_len);
851	packet_dump("    prebuf: ", rctx->hash_carry, local_nbuf);
852	flow_log("Data:\n");
853	dump_sg(rctx->src_sg, rctx->src_skip, new_data_len);
854	packet_dump("   pad: ", rctx->msg_buf.spu_req_pad, pad_len);
855
856	/*
857	 * Build mailbox message containing SPU request msg and rx buffers
858	 * to catch response message
859	 */
860	memset(mssg, 0, sizeof(*mssg));
861	mssg->type = BRCM_MESSAGE_SPU;
862	mssg->ctx = rctx;	/* Will be returned in response */
863
864	/* Create rx scatterlist to catch result */
865	err = spu_ahash_rx_sg_create(mssg, rctx, rx_frag_num, digestsize,
866				     stat_pad_len);
867	if (err)
868		return err;
869
870	/* Create tx scatterlist containing SPU request message */
871	tx_frag_num += rctx->src_nents;
872	if (spu->spu_tx_status_len())
873		tx_frag_num++;
874	err = spu_ahash_tx_sg_create(mssg, rctx, tx_frag_num, spu_hdr_len,
875				     local_nbuf, new_data_len, pad_len);
876	if (err)
877		return err;
878
879	err = mailbox_send_message(mssg, req->base.flags, rctx->chan_idx);
880	if (unlikely(err < 0))
881		return err;
882
883	return -EINPROGRESS;
884}
885
886/**
887 * spu_hmac_outer_hash() - Request synchonous software compute of the outer hash
888 * for an HMAC request.
889 * @req:  The HMAC request from the crypto API
890 * @ctx:  The session context
891 *
892 * Return: 0 if synchronous hash operation successful
893 *         -EINVAL if the hash algo is unrecognized
894 *         any other value indicates an error
895 */
896static int spu_hmac_outer_hash(struct ahash_request *req,
897			       struct iproc_ctx_s *ctx)
898{
899	struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
900	unsigned int blocksize =
901		crypto_tfm_alg_blocksize(crypto_ahash_tfm(ahash));
902	int rc;
903
904	switch (ctx->auth.alg) {
905	case HASH_ALG_MD5:
906		rc = do_shash("md5", req->result, ctx->opad, blocksize,
907			      req->result, ctx->digestsize, NULL, 0);
908		break;
909	case HASH_ALG_SHA1:
910		rc = do_shash("sha1", req->result, ctx->opad, blocksize,
911			      req->result, ctx->digestsize, NULL, 0);
912		break;
913	case HASH_ALG_SHA224:
914		rc = do_shash("sha224", req->result, ctx->opad, blocksize,
915			      req->result, ctx->digestsize, NULL, 0);
916		break;
917	case HASH_ALG_SHA256:
918		rc = do_shash("sha256", req->result, ctx->opad, blocksize,
919			      req->result, ctx->digestsize, NULL, 0);
920		break;
921	case HASH_ALG_SHA384:
922		rc = do_shash("sha384", req->result, ctx->opad, blocksize,
923			      req->result, ctx->digestsize, NULL, 0);
924		break;
925	case HASH_ALG_SHA512:
926		rc = do_shash("sha512", req->result, ctx->opad, blocksize,
927			      req->result, ctx->digestsize, NULL, 0);
928		break;
929	default:
930		pr_err("%s() Error : unknown hmac type\n", __func__);
931		rc = -EINVAL;
932	}
933	return rc;
934}
935
936/**
937 * ahash_req_done() - Process a hash result from the SPU hardware.
938 * @rctx: Crypto request context
939 *
940 * Return: 0 if successful
941 *         < 0 if an error
942 */
943static int ahash_req_done(struct iproc_reqctx_s *rctx)
944{
945	struct spu_hw *spu = &iproc_priv.spu;
946	struct crypto_async_request *areq = rctx->parent;
947	struct ahash_request *req = ahash_request_cast(areq);
948	struct iproc_ctx_s *ctx = rctx->ctx;
949	int err;
950
951	memcpy(req->result, rctx->msg_buf.digest, ctx->digestsize);
952
953	if (spu->spu_type == SPU_TYPE_SPUM) {
954		/* byte swap the output from the UPDT function to network byte
955		 * order
956		 */
957		if (ctx->auth.alg == HASH_ALG_MD5) {
958			__swab32s((u32 *)req->result);
959			__swab32s(((u32 *)req->result) + 1);
960			__swab32s(((u32 *)req->result) + 2);
961			__swab32s(((u32 *)req->result) + 3);
962			__swab32s(((u32 *)req->result) + 4);
963		}
964	}
965
966	flow_dump("  digest ", req->result, ctx->digestsize);
967
968	/* if this an HMAC then do the outer hash */
969	if (rctx->is_sw_hmac) {
970		err = spu_hmac_outer_hash(req, ctx);
971		if (err < 0)
972			return err;
973		flow_dump("  hmac: ", req->result, ctx->digestsize);
974	}
975
976	if (rctx->is_sw_hmac || ctx->auth.mode == HASH_MODE_HMAC) {
977		atomic_inc(&iproc_priv.op_counts[SPU_OP_HMAC]);
978		atomic_inc(&iproc_priv.hmac_cnt[ctx->auth.alg]);
979	} else {
980		atomic_inc(&iproc_priv.op_counts[SPU_OP_HASH]);
981		atomic_inc(&iproc_priv.hash_cnt[ctx->auth.alg]);
982	}
983
984	return 0;
985}
986
987/**
988 * handle_ahash_resp() - Process a SPU response message for a hash request.
989 * Checks if the entire crypto API request has been processed, and if so,
990 * invokes post processing on the result.
991 * @rctx: Crypto request context
992 */
993static void handle_ahash_resp(struct iproc_reqctx_s *rctx)
994{
995	struct iproc_ctx_s *ctx = rctx->ctx;
996	struct crypto_async_request *areq = rctx->parent;
997	struct ahash_request *req = ahash_request_cast(areq);
998	struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
999	unsigned int blocksize =
1000		crypto_tfm_alg_blocksize(crypto_ahash_tfm(ahash));
1001	/*
1002	 * Save hash to use as input to next op if incremental. Might be copying
1003	 * too much, but that's easier than figuring out actual digest size here
1004	 */
1005	memcpy(rctx->incr_hash, rctx->msg_buf.digest, MAX_DIGEST_SIZE);
1006
1007	flow_log("%s() blocksize:%u digestsize:%u\n",
1008		 __func__, blocksize, ctx->digestsize);
1009
1010	atomic64_add(ctx->digestsize, &iproc_priv.bytes_in);
1011
1012	if (rctx->is_final && (rctx->total_sent == rctx->total_todo))
1013		ahash_req_done(rctx);
1014}
1015
1016/**
1017 * spu_aead_rx_sg_create() - Build up the scatterlist of buffers used to receive
1018 * a SPU response message for an AEAD request. Includes buffers to catch SPU
1019 * message headers and the response data.
1020 * @mssg:	mailbox message containing the receive sg
1021 * @req:	Crypto API request
1022 * @rctx:	crypto request context
1023 * @rx_frag_num: number of scatterlist elements required to hold the
1024 *		SPU response message
1025 * @assoc_len:	Length of associated data included in the crypto request
1026 * @ret_iv_len: Length of IV returned in response
1027 * @resp_len:	Number of bytes of response data expected to be written to
1028 *              dst buffer from crypto API
1029 * @digestsize: Length of hash digest, in bytes
1030 * @stat_pad_len: Number of bytes required to pad the STAT field to
1031 *		a 4-byte boundary
1032 *
1033 * The scatterlist that gets allocated here is freed in spu_chunk_cleanup()
1034 * when the request completes, whether the request is handled successfully or
1035 * there is an error.
1036 *
1037 * Returns:
1038 *   0 if successful
1039 *   < 0 if an error
1040 */
1041static int spu_aead_rx_sg_create(struct brcm_message *mssg,
1042				 struct aead_request *req,
1043				 struct iproc_reqctx_s *rctx,
1044				 u8 rx_frag_num,
1045				 unsigned int assoc_len,
1046				 u32 ret_iv_len, unsigned int resp_len,
1047				 unsigned int digestsize, u32 stat_pad_len)
1048{
1049	struct spu_hw *spu = &iproc_priv.spu;
1050	struct scatterlist *sg;	/* used to build sgs in mbox message */
1051	struct iproc_ctx_s *ctx = rctx->ctx;
1052	u32 datalen;		/* Number of bytes of response data expected */
1053	u32 assoc_buf_len;
1054	u8 data_padlen = 0;
1055
1056	if (ctx->is_rfc4543) {
1057		/* RFC4543: only pad after data, not after AAD */
1058		data_padlen = spu->spu_gcm_ccm_pad_len(ctx->cipher.mode,
1059							  assoc_len + resp_len);
1060		assoc_buf_len = assoc_len;
1061	} else {
1062		data_padlen = spu->spu_gcm_ccm_pad_len(ctx->cipher.mode,
1063							  resp_len);
1064		assoc_buf_len = spu->spu_assoc_resp_len(ctx->cipher.mode,
1065						assoc_len, ret_iv_len,
1066						rctx->is_encrypt);
1067	}
1068
1069	if (ctx->cipher.mode == CIPHER_MODE_CCM)
1070		/* ICV (after data) must be in the next 32-bit word for CCM */
1071		data_padlen += spu->spu_wordalign_padlen(assoc_buf_len +
1072							 resp_len +
1073							 data_padlen);
1074
1075	if (data_padlen)
1076		/* have to catch gcm pad in separate buffer */
1077		rx_frag_num++;
1078
1079	mssg->spu.dst = kcalloc(rx_frag_num, sizeof(struct scatterlist),
1080				rctx->gfp);
1081	if (!mssg->spu.dst)
1082		return -ENOMEM;
1083
1084	sg = mssg->spu.dst;
1085	sg_init_table(sg, rx_frag_num);
1086
1087	/* Space for SPU message header */
1088	sg_set_buf(sg++, rctx->msg_buf.spu_resp_hdr, ctx->spu_resp_hdr_len);
1089
1090	if (assoc_buf_len) {
1091		/*
1092		 * Don't write directly to req->dst, because SPU may pad the
1093		 * assoc data in the response
1094		 */
1095		memset(rctx->msg_buf.a.resp_aad, 0, assoc_buf_len);
1096		sg_set_buf(sg++, rctx->msg_buf.a.resp_aad, assoc_buf_len);
1097	}
1098
1099	if (resp_len) {
1100		/*
1101		 * Copy in each dst sg entry from request, up to chunksize.
1102		 * dst sg catches just the data. digest caught in separate buf.
1103		 */
1104		datalen = spu_msg_sg_add(&sg, &rctx->dst_sg, &rctx->dst_skip,
1105					 rctx->dst_nents, resp_len);
1106		if (datalen < (resp_len)) {
1107			pr_err("%s(): failed to copy dst sg to mbox msg. expected len %u, datalen %u",
1108			       __func__, resp_len, datalen);
1109			return -EFAULT;
1110		}
1111	}
1112
1113	/* If GCM/CCM data is padded, catch padding in separate buffer */
1114	if (data_padlen) {
1115		memset(rctx->msg_buf.a.gcmpad, 0, data_padlen);
1116		sg_set_buf(sg++, rctx->msg_buf.a.gcmpad, data_padlen);
1117	}
1118
1119	/* Always catch ICV in separate buffer */
1120	sg_set_buf(sg++, rctx->msg_buf.digest, digestsize);
1121
1122	flow_log("stat_pad_len %u\n", stat_pad_len);
1123	if (stat_pad_len) {
1124		memset(rctx->msg_buf.rx_stat_pad, 0, stat_pad_len);
1125		sg_set_buf(sg++, rctx->msg_buf.rx_stat_pad, stat_pad_len);
1126	}
1127
1128	memset(rctx->msg_buf.rx_stat, 0, SPU_RX_STATUS_LEN);
1129	sg_set_buf(sg, rctx->msg_buf.rx_stat, spu->spu_rx_status_len());
1130
1131	return 0;
1132}
1133
1134/**
1135 * spu_aead_tx_sg_create() - Build up the scatterlist of buffers used to send a
1136 * SPU request message for an AEAD request. Includes SPU message headers and the
1137 * request data.
1138 * @mssg:	mailbox message containing the transmit sg
1139 * @rctx:	crypto request context
1140 * @tx_frag_num: number of scatterlist elements required to construct the
1141 *		SPU request message
1142 * @spu_hdr_len: length of SPU message header in bytes
1143 * @assoc:	crypto API associated data scatterlist
1144 * @assoc_len:	length of associated data
1145 * @assoc_nents: number of scatterlist entries containing assoc data
1146 * @aead_iv_len: length of AEAD IV, if included
1147 * @chunksize:	Number of bytes of request data
1148 * @aad_pad_len: Number of bytes of padding at end of AAD. For GCM/CCM.
1149 * @pad_len:	Number of pad bytes
1150 * @incl_icv:	If true, write separate ICV buffer after data and
1151 *              any padding
1152 *
1153 * The scatterlist that gets allocated here is freed in spu_chunk_cleanup()
1154 * when the request completes, whether the request is handled successfully or
1155 * there is an error.
1156 *
1157 * Return:
1158 *   0 if successful
1159 *   < 0 if an error
1160 */
1161static int spu_aead_tx_sg_create(struct brcm_message *mssg,
1162				 struct iproc_reqctx_s *rctx,
1163				 u8 tx_frag_num,
1164				 u32 spu_hdr_len,
1165				 struct scatterlist *assoc,
1166				 unsigned int assoc_len,
1167				 int assoc_nents,
1168				 unsigned int aead_iv_len,
1169				 unsigned int chunksize,
1170				 u32 aad_pad_len, u32 pad_len, bool incl_icv)
1171{
1172	struct spu_hw *spu = &iproc_priv.spu;
1173	struct scatterlist *sg;	/* used to build sgs in mbox message */
1174	struct scatterlist *assoc_sg = assoc;
1175	struct iproc_ctx_s *ctx = rctx->ctx;
1176	u32 datalen;		/* Number of bytes of data to write */
1177	u32 written;		/* Number of bytes of data written */
1178	u32 assoc_offset = 0;
1179	u32 stat_len;
1180
1181	mssg->spu.src = kcalloc(tx_frag_num, sizeof(struct scatterlist),
1182				rctx->gfp);
1183	if (!mssg->spu.src)
1184		return -ENOMEM;
1185
1186	sg = mssg->spu.src;
1187	sg_init_table(sg, tx_frag_num);
1188
1189	sg_set_buf(sg++, rctx->msg_buf.bcm_spu_req_hdr,
1190		   BCM_HDR_LEN + spu_hdr_len);
1191
1192	if (assoc_len) {
1193		/* Copy in each associated data sg entry from request */
1194		written = spu_msg_sg_add(&sg, &assoc_sg, &assoc_offset,
1195					 assoc_nents, assoc_len);
1196		if (written < assoc_len) {
1197			pr_err("%s(): failed to copy assoc sg to mbox msg",
1198			       __func__);
1199			return -EFAULT;
1200		}
1201	}
1202
1203	if (aead_iv_len)
1204		sg_set_buf(sg++, rctx->msg_buf.iv_ctr, aead_iv_len);
1205
1206	if (aad_pad_len) {
1207		memset(rctx->msg_buf.a.req_aad_pad, 0, aad_pad_len);
1208		sg_set_buf(sg++, rctx->msg_buf.a.req_aad_pad, aad_pad_len);
1209	}
1210
1211	datalen = chunksize;
1212	if ((chunksize > ctx->digestsize) && incl_icv)
1213		datalen -= ctx->digestsize;
1214	if (datalen) {
1215		/* For aead, a single msg should consume the entire src sg */
1216		written = spu_msg_sg_add(&sg, &rctx->src_sg, &rctx->src_skip,
1217					 rctx->src_nents, datalen);
1218		if (written < datalen) {
1219			pr_err("%s(): failed to copy src sg to mbox msg",
1220			       __func__);
1221			return -EFAULT;
1222		}
1223	}
1224
1225	if (pad_len) {
1226		memset(rctx->msg_buf.spu_req_pad, 0, pad_len);
1227		sg_set_buf(sg++, rctx->msg_buf.spu_req_pad, pad_len);
1228	}
1229
1230	if (incl_icv)
1231		sg_set_buf(sg++, rctx->msg_buf.digest, ctx->digestsize);
1232
1233	stat_len = spu->spu_tx_status_len();
1234	if (stat_len) {
1235		memset(rctx->msg_buf.tx_stat, 0, stat_len);
1236		sg_set_buf(sg, rctx->msg_buf.tx_stat, stat_len);
1237	}
1238	return 0;
1239}
1240
1241/**
1242 * handle_aead_req() - Submit a SPU request message for the next chunk of the
1243 * current AEAD request.
1244 * @rctx:  Crypto request context
1245 *
1246 * Unlike other operation types, we assume the length of the request fits in
1247 * a single SPU request message. aead_enqueue() makes sure this is true.
1248 * Comments for other op types regarding threads applies here as well.
1249 *
1250 * Unlike incremental hash ops, where the spu returns the entire hash for
1251 * truncated algs like sha-224, the SPU returns just the truncated hash in
1252 * response to aead requests. So digestsize is always ctx->digestsize here.
1253 *
1254 * Return: -EINPROGRESS: crypto request has been accepted and result will be
1255 *			 returned asynchronously
1256 *         Any other value indicates an error
1257 */
1258static int handle_aead_req(struct iproc_reqctx_s *rctx)
1259{
1260	struct spu_hw *spu = &iproc_priv.spu;
1261	struct crypto_async_request *areq = rctx->parent;
1262	struct aead_request *req = container_of(areq,
1263						struct aead_request, base);
1264	struct iproc_ctx_s *ctx = rctx->ctx;
1265	int err;
1266	unsigned int chunksize;
1267	unsigned int resp_len;
1268	u32 spu_hdr_len;
1269	u32 db_size;
1270	u32 stat_pad_len;
1271	u32 pad_len;
1272	struct brcm_message *mssg;	/* mailbox message */
1273	struct spu_request_opts req_opts;
1274	struct spu_cipher_parms cipher_parms;
1275	struct spu_hash_parms hash_parms;
1276	struct spu_aead_parms aead_parms;
1277	int assoc_nents = 0;
1278	bool incl_icv = false;
1279	unsigned int digestsize = ctx->digestsize;
1280
1281	/* number of entries in src and dst sg. Always includes SPU msg header.
1282	 */
1283	u8 rx_frag_num = 2;	/* and STATUS */
1284	u8 tx_frag_num = 1;
1285
1286	/* doing the whole thing at once */
1287	chunksize = rctx->total_todo;
1288
1289	flow_log("%s: chunksize %u\n", __func__, chunksize);
1290
1291	memset(&req_opts, 0, sizeof(req_opts));
1292	memset(&hash_parms, 0, sizeof(hash_parms));
1293	memset(&aead_parms, 0, sizeof(aead_parms));
1294
1295	req_opts.is_inbound = !(rctx->is_encrypt);
1296	req_opts.auth_first = ctx->auth_first;
1297	req_opts.is_aead = true;
1298	req_opts.is_esp = ctx->is_esp;
1299
1300	cipher_parms.alg = ctx->cipher.alg;
1301	cipher_parms.mode = ctx->cipher.mode;
1302	cipher_parms.type = ctx->cipher_type;
1303	cipher_parms.key_buf = ctx->enckey;
1304	cipher_parms.key_len = ctx->enckeylen;
1305	cipher_parms.iv_buf = rctx->msg_buf.iv_ctr;
1306	cipher_parms.iv_len = rctx->iv_ctr_len;
1307
1308	hash_parms.alg = ctx->auth.alg;
1309	hash_parms.mode = ctx->auth.mode;
1310	hash_parms.type = HASH_TYPE_NONE;
1311	hash_parms.key_buf = (u8 *)ctx->authkey;
1312	hash_parms.key_len = ctx->authkeylen;
1313	hash_parms.digestsize = digestsize;
1314
1315	if ((ctx->auth.alg == HASH_ALG_SHA224) &&
1316	    (ctx->authkeylen < SHA224_DIGEST_SIZE))
1317		hash_parms.key_len = SHA224_DIGEST_SIZE;
1318
1319	aead_parms.assoc_size = req->assoclen;
1320	if (ctx->is_esp && !ctx->is_rfc4543) {
1321		/*
1322		 * 8-byte IV is included assoc data in request. SPU2
1323		 * expects AAD to include just SPI and seqno. So
1324		 * subtract off the IV len.
1325		 */
1326		aead_parms.assoc_size -= GCM_RFC4106_IV_SIZE;
1327
1328		if (rctx->is_encrypt) {
1329			aead_parms.return_iv = true;
1330			aead_parms.ret_iv_len = GCM_RFC4106_IV_SIZE;
1331			aead_parms.ret_iv_off = GCM_ESP_SALT_SIZE;
1332		}
1333	} else {
1334		aead_parms.ret_iv_len = 0;
1335	}
1336
1337	/*
1338	 * Count number of sg entries from the crypto API request that are to
1339	 * be included in this mailbox message. For dst sg, don't count space
1340	 * for digest. Digest gets caught in a separate buffer and copied back
1341	 * to dst sg when processing response.
1342	 */
1343	rctx->src_nents = spu_sg_count(rctx->src_sg, rctx->src_skip, chunksize);
1344	rctx->dst_nents = spu_sg_count(rctx->dst_sg, rctx->dst_skip, chunksize);
1345	if (aead_parms.assoc_size)
1346		assoc_nents = spu_sg_count(rctx->assoc, 0,
1347					   aead_parms.assoc_size);
1348
1349	mssg = &rctx->mb_mssg;
1350
1351	rctx->total_sent = chunksize;
1352	rctx->src_sent = chunksize;
1353	if (spu->spu_assoc_resp_len(ctx->cipher.mode,
1354				    aead_parms.assoc_size,
1355				    aead_parms.ret_iv_len,
1356				    rctx->is_encrypt))
1357		rx_frag_num++;
1358
1359	aead_parms.iv_len = spu->spu_aead_ivlen(ctx->cipher.mode,
1360						rctx->iv_ctr_len);
1361
1362	if (ctx->auth.alg == HASH_ALG_AES)
1363		hash_parms.type = (enum hash_type)ctx->cipher_type;
1364
1365	/* General case AAD padding (CCM and RFC4543 special cases below) */
1366	aead_parms.aad_pad_len = spu->spu_gcm_ccm_pad_len(ctx->cipher.mode,
1367						 aead_parms.assoc_size);
1368
1369	/* General case data padding (CCM decrypt special case below) */
1370	aead_parms.data_pad_len = spu->spu_gcm_ccm_pad_len(ctx->cipher.mode,
1371							   chunksize);
1372
1373	if (ctx->cipher.mode == CIPHER_MODE_CCM) {
1374		/*
1375		 * for CCM, AAD len + 2 (rather than AAD len) needs to be
1376		 * 128-bit aligned
1377		 */
1378		aead_parms.aad_pad_len = spu->spu_gcm_ccm_pad_len(
1379					 ctx->cipher.mode,
1380					 aead_parms.assoc_size + 2);
1381
1382		/*
1383		 * And when decrypting CCM, need to pad without including
1384		 * size of ICV which is tacked on to end of chunk
1385		 */
1386		if (!rctx->is_encrypt)
1387			aead_parms.data_pad_len =
1388				spu->spu_gcm_ccm_pad_len(ctx->cipher.mode,
1389							chunksize - digestsize);
1390
1391		/* CCM also requires software to rewrite portions of IV: */
1392		spu->spu_ccm_update_iv(digestsize, &cipher_parms, req->assoclen,
1393				       chunksize, rctx->is_encrypt,
1394				       ctx->is_esp);
1395	}
1396
1397	if (ctx->is_rfc4543) {
1398		/*
1399		 * RFC4543: data is included in AAD, so don't pad after AAD
1400		 * and pad data based on both AAD + data size
1401		 */
1402		aead_parms.aad_pad_len = 0;
1403		if (!rctx->is_encrypt)
1404			aead_parms.data_pad_len = spu->spu_gcm_ccm_pad_len(
1405					ctx->cipher.mode,
1406					aead_parms.assoc_size + chunksize -
1407					digestsize);
1408		else
1409			aead_parms.data_pad_len = spu->spu_gcm_ccm_pad_len(
1410					ctx->cipher.mode,
1411					aead_parms.assoc_size + chunksize);
1412
1413		req_opts.is_rfc4543 = true;
1414	}
1415
1416	if (spu_req_incl_icv(ctx->cipher.mode, rctx->is_encrypt)) {
1417		incl_icv = true;
1418		tx_frag_num++;
1419		/* Copy ICV from end of src scatterlist to digest buf */
1420		sg_copy_part_to_buf(req->src, rctx->msg_buf.digest, digestsize,
1421				    req->assoclen + rctx->total_sent -
1422				    digestsize);
1423	}
1424
1425	atomic64_add(chunksize, &iproc_priv.bytes_out);
1426
1427	flow_log("%s()-sent chunksize:%u\n", __func__, chunksize);
1428
1429	/* Prepend SPU header with type 3 BCM header */
1430	memcpy(rctx->msg_buf.bcm_spu_req_hdr, BCMHEADER, BCM_HDR_LEN);
1431
1432	spu_hdr_len = spu->spu_create_request(rctx->msg_buf.bcm_spu_req_hdr +
1433					      BCM_HDR_LEN, &req_opts,
1434					      &cipher_parms, &hash_parms,
1435					      &aead_parms, chunksize);
1436
1437	/* Determine total length of padding. Put all padding in one buffer. */
1438	db_size = spu_real_db_size(aead_parms.assoc_size, aead_parms.iv_len, 0,
1439				   chunksize, aead_parms.aad_pad_len,
1440				   aead_parms.data_pad_len, 0);
1441
1442	stat_pad_len = spu->spu_wordalign_padlen(db_size);
1443
1444	if (stat_pad_len)
1445		rx_frag_num++;
1446	pad_len = aead_parms.data_pad_len + stat_pad_len;
1447	if (pad_len) {
1448		tx_frag_num++;
1449		spu->spu_request_pad(rctx->msg_buf.spu_req_pad,
1450				     aead_parms.data_pad_len, 0,
1451				     ctx->auth.alg, ctx->auth.mode,
1452				     rctx->total_sent, stat_pad_len);
1453	}
1454
1455	spu->spu_dump_msg_hdr(rctx->msg_buf.bcm_spu_req_hdr + BCM_HDR_LEN,
1456			      spu_hdr_len);
1457	dump_sg(rctx->assoc, 0, aead_parms.assoc_size);
1458	packet_dump("    aead iv: ", rctx->msg_buf.iv_ctr, aead_parms.iv_len);
1459	packet_log("BD:\n");
1460	dump_sg(rctx->src_sg, rctx->src_skip, chunksize);
1461	packet_dump("   pad: ", rctx->msg_buf.spu_req_pad, pad_len);
1462
1463	/*
1464	 * Build mailbox message containing SPU request msg and rx buffers
1465	 * to catch response message
1466	 */
1467	memset(mssg, 0, sizeof(*mssg));
1468	mssg->type = BRCM_MESSAGE_SPU;
1469	mssg->ctx = rctx;	/* Will be returned in response */
1470
1471	/* Create rx scatterlist to catch result */
1472	rx_frag_num += rctx->dst_nents;
1473	resp_len = chunksize;
1474
1475	/*
1476	 * Always catch ICV in separate buffer. Have to for GCM/CCM because of
1477	 * padding. Have to for SHA-224 and other truncated SHAs because SPU
1478	 * sends entire digest back.
1479	 */
1480	rx_frag_num++;
1481
1482	if (((ctx->cipher.mode == CIPHER_MODE_GCM) ||
1483	     (ctx->cipher.mode == CIPHER_MODE_CCM)) && !rctx->is_encrypt) {
1484		/*
1485		 * Input is ciphertxt plus ICV, but ICV not incl
1486		 * in output.
1487		 */
1488		resp_len -= ctx->digestsize;
1489		if (resp_len == 0)
1490			/* no rx frags to catch output data */
1491			rx_frag_num -= rctx->dst_nents;
1492	}
1493
1494	err = spu_aead_rx_sg_create(mssg, req, rctx, rx_frag_num,
1495				    aead_parms.assoc_size,
1496				    aead_parms.ret_iv_len, resp_len, digestsize,
1497				    stat_pad_len);
1498	if (err)
1499		return err;
1500
1501	/* Create tx scatterlist containing SPU request message */
1502	tx_frag_num += rctx->src_nents;
1503	tx_frag_num += assoc_nents;
1504	if (aead_parms.aad_pad_len)
1505		tx_frag_num++;
1506	if (aead_parms.iv_len)
1507		tx_frag_num++;
1508	if (spu->spu_tx_status_len())
1509		tx_frag_num++;
1510	err = spu_aead_tx_sg_create(mssg, rctx, tx_frag_num, spu_hdr_len,
1511				    rctx->assoc, aead_parms.assoc_size,
1512				    assoc_nents, aead_parms.iv_len, chunksize,
1513				    aead_parms.aad_pad_len, pad_len, incl_icv);
1514	if (err)
1515		return err;
1516
1517	err = mailbox_send_message(mssg, req->base.flags, rctx->chan_idx);
1518	if (unlikely(err < 0))
1519		return err;
1520
1521	return -EINPROGRESS;
1522}
1523
1524/**
1525 * handle_aead_resp() - Process a SPU response message for an AEAD request.
1526 * @rctx:  Crypto request context
1527 */
1528static void handle_aead_resp(struct iproc_reqctx_s *rctx)
1529{
1530	struct spu_hw *spu = &iproc_priv.spu;
1531	struct crypto_async_request *areq = rctx->parent;
1532	struct aead_request *req = container_of(areq,
1533						struct aead_request, base);
1534	struct iproc_ctx_s *ctx = rctx->ctx;
1535	u32 payload_len;
1536	unsigned int icv_offset;
1537	u32 result_len;
1538
1539	/* See how much data was returned */
1540	payload_len = spu->spu_payload_length(rctx->msg_buf.spu_resp_hdr);
1541	flow_log("payload_len %u\n", payload_len);
1542
1543	/* only count payload */
1544	atomic64_add(payload_len, &iproc_priv.bytes_in);
1545
1546	if (req->assoclen)
1547		packet_dump("  assoc_data ", rctx->msg_buf.a.resp_aad,
1548			    req->assoclen);
1549
1550	/*
1551	 * Copy the ICV back to the destination
1552	 * buffer. In decrypt case, SPU gives us back the digest, but crypto
1553	 * API doesn't expect ICV in dst buffer.
1554	 */
1555	result_len = req->cryptlen;
1556	if (rctx->is_encrypt) {
1557		icv_offset = req->assoclen + rctx->total_sent;
1558		packet_dump("  ICV: ", rctx->msg_buf.digest, ctx->digestsize);
1559		flow_log("copying ICV to dst sg at offset %u\n", icv_offset);
1560		sg_copy_part_from_buf(req->dst, rctx->msg_buf.digest,
1561				      ctx->digestsize, icv_offset);
1562		result_len += ctx->digestsize;
1563	}
1564
1565	packet_log("response data:  ");
1566	dump_sg(req->dst, req->assoclen, result_len);
1567
1568	atomic_inc(&iproc_priv.op_counts[SPU_OP_AEAD]);
1569	if (ctx->cipher.alg == CIPHER_ALG_AES) {
1570		if (ctx->cipher.mode == CIPHER_MODE_CCM)
1571			atomic_inc(&iproc_priv.aead_cnt[AES_CCM]);
1572		else if (ctx->cipher.mode == CIPHER_MODE_GCM)
1573			atomic_inc(&iproc_priv.aead_cnt[AES_GCM]);
1574		else
1575			atomic_inc(&iproc_priv.aead_cnt[AUTHENC]);
1576	} else {
1577		atomic_inc(&iproc_priv.aead_cnt[AUTHENC]);
1578	}
1579}
1580
1581/**
1582 * spu_chunk_cleanup() - Do cleanup after processing one chunk of a request
1583 * @rctx:  request context
1584 *
1585 * Mailbox scatterlists are allocated for each chunk. So free them after
1586 * processing each chunk.
1587 */
1588static void spu_chunk_cleanup(struct iproc_reqctx_s *rctx)
1589{
1590	/* mailbox message used to tx request */
1591	struct brcm_message *mssg = &rctx->mb_mssg;
1592
1593	kfree(mssg->spu.src);
1594	kfree(mssg->spu.dst);
1595	memset(mssg, 0, sizeof(struct brcm_message));
1596}
1597
1598/**
1599 * finish_req() - Used to invoke the complete callback from the requester when
1600 * a request has been handled asynchronously.
1601 * @rctx:  Request context
1602 * @err:   Indicates whether the request was successful or not
1603 *
1604 * Ensures that cleanup has been done for request
1605 */
1606static void finish_req(struct iproc_reqctx_s *rctx, int err)
1607{
1608	struct crypto_async_request *areq = rctx->parent;
1609
1610	flow_log("%s() err:%d\n\n", __func__, err);
1611
1612	/* No harm done if already called */
1613	spu_chunk_cleanup(rctx);
1614
1615	if (areq)
1616		crypto_request_complete(areq, err);
1617}
1618
1619/**
1620 * spu_rx_callback() - Callback from mailbox framework with a SPU response.
1621 * @cl:		mailbox client structure for SPU driver
1622 * @msg:	mailbox message containing SPU response
1623 */
1624static void spu_rx_callback(struct mbox_client *cl, void *msg)
1625{
1626	struct spu_hw *spu = &iproc_priv.spu;
1627	struct brcm_message *mssg = msg;
1628	struct iproc_reqctx_s *rctx;
1629	int err;
1630
1631	rctx = mssg->ctx;
1632	if (unlikely(!rctx)) {
1633		/* This is fatal */
1634		pr_err("%s(): no request context", __func__);
1635		err = -EFAULT;
1636		goto cb_finish;
1637	}
1638
1639	/* process the SPU status */
1640	err = spu->spu_status_process(rctx->msg_buf.rx_stat);
1641	if (err != 0) {
1642		if (err == SPU_INVALID_ICV)
1643			atomic_inc(&iproc_priv.bad_icv);
1644		err = -EBADMSG;
1645		goto cb_finish;
1646	}
1647
1648	/* Process the SPU response message */
1649	switch (rctx->ctx->alg->type) {
1650	case CRYPTO_ALG_TYPE_SKCIPHER:
1651		handle_skcipher_resp(rctx);
1652		break;
1653	case CRYPTO_ALG_TYPE_AHASH:
1654		handle_ahash_resp(rctx);
1655		break;
1656	case CRYPTO_ALG_TYPE_AEAD:
1657		handle_aead_resp(rctx);
1658		break;
1659	default:
1660		err = -EINVAL;
1661		goto cb_finish;
1662	}
1663
1664	/*
1665	 * If this response does not complete the request, then send the next
1666	 * request chunk.
1667	 */
1668	if (rctx->total_sent < rctx->total_todo) {
1669		/* Deallocate anything specific to previous chunk */
1670		spu_chunk_cleanup(rctx);
1671
1672		switch (rctx->ctx->alg->type) {
1673		case CRYPTO_ALG_TYPE_SKCIPHER:
1674			err = handle_skcipher_req(rctx);
1675			break;
1676		case CRYPTO_ALG_TYPE_AHASH:
1677			err = handle_ahash_req(rctx);
1678			if (err == -EAGAIN)
1679				/*
1680				 * we saved data in hash carry, but tell crypto
1681				 * API we successfully completed request.
1682				 */
1683				err = 0;
1684			break;
1685		case CRYPTO_ALG_TYPE_AEAD:
1686			err = handle_aead_req(rctx);
1687			break;
1688		default:
1689			err = -EINVAL;
1690		}
1691
1692		if (err == -EINPROGRESS)
1693			/* Successfully submitted request for next chunk */
1694			return;
1695	}
1696
1697cb_finish:
1698	finish_req(rctx, err);
1699}
1700
1701/* ==================== Kernel Cryptographic API ==================== */
1702
1703/**
1704 * skcipher_enqueue() - Handle skcipher encrypt or decrypt request.
1705 * @req:	Crypto API request
1706 * @encrypt:	true if encrypting; false if decrypting
1707 *
1708 * Return: -EINPROGRESS if request accepted and result will be returned
1709 *			asynchronously
1710 *	   < 0 if an error
1711 */
1712static int skcipher_enqueue(struct skcipher_request *req, bool encrypt)
1713{
1714	struct iproc_reqctx_s *rctx = skcipher_request_ctx(req);
1715	struct iproc_ctx_s *ctx =
1716	    crypto_skcipher_ctx(crypto_skcipher_reqtfm(req));
1717	int err;
1718
1719	flow_log("%s() enc:%u\n", __func__, encrypt);
1720
1721	rctx->gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
1722		       CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
1723	rctx->parent = &req->base;
1724	rctx->is_encrypt = encrypt;
1725	rctx->bd_suppress = false;
1726	rctx->total_todo = req->cryptlen;
1727	rctx->src_sent = 0;
1728	rctx->total_sent = 0;
1729	rctx->total_received = 0;
1730	rctx->ctx = ctx;
1731
1732	/* Initialize current position in src and dst scatterlists */
1733	rctx->src_sg = req->src;
1734	rctx->src_nents = 0;
1735	rctx->src_skip = 0;
1736	rctx->dst_sg = req->dst;
1737	rctx->dst_nents = 0;
1738	rctx->dst_skip = 0;
1739
1740	if (ctx->cipher.mode == CIPHER_MODE_CBC ||
1741	    ctx->cipher.mode == CIPHER_MODE_CTR ||
1742	    ctx->cipher.mode == CIPHER_MODE_OFB ||
1743	    ctx->cipher.mode == CIPHER_MODE_XTS ||
1744	    ctx->cipher.mode == CIPHER_MODE_GCM ||
1745	    ctx->cipher.mode == CIPHER_MODE_CCM) {
1746		rctx->iv_ctr_len =
1747		    crypto_skcipher_ivsize(crypto_skcipher_reqtfm(req));
1748		memcpy(rctx->msg_buf.iv_ctr, req->iv, rctx->iv_ctr_len);
1749	} else {
1750		rctx->iv_ctr_len = 0;
1751	}
1752
1753	/* Choose a SPU to process this request */
1754	rctx->chan_idx = select_channel();
1755	err = handle_skcipher_req(rctx);
1756	if (err != -EINPROGRESS)
1757		/* synchronous result */
1758		spu_chunk_cleanup(rctx);
1759
1760	return err;
1761}
1762
1763static int des_setkey(struct crypto_skcipher *cipher, const u8 *key,
1764		      unsigned int keylen)
1765{
1766	struct iproc_ctx_s *ctx = crypto_skcipher_ctx(cipher);
1767	int err;
1768
1769	err = verify_skcipher_des_key(cipher, key);
1770	if (err)
1771		return err;
1772
1773	ctx->cipher_type = CIPHER_TYPE_DES;
1774	return 0;
1775}
1776
1777static int threedes_setkey(struct crypto_skcipher *cipher, const u8 *key,
1778			   unsigned int keylen)
1779{
1780	struct iproc_ctx_s *ctx = crypto_skcipher_ctx(cipher);
1781	int err;
1782
1783	err = verify_skcipher_des3_key(cipher, key);
1784	if (err)
1785		return err;
1786
1787	ctx->cipher_type = CIPHER_TYPE_3DES;
1788	return 0;
1789}
1790
1791static int aes_setkey(struct crypto_skcipher *cipher, const u8 *key,
1792		      unsigned int keylen)
1793{
1794	struct iproc_ctx_s *ctx = crypto_skcipher_ctx(cipher);
1795
1796	if (ctx->cipher.mode == CIPHER_MODE_XTS)
1797		/* XTS includes two keys of equal length */
1798		keylen = keylen / 2;
1799
1800	switch (keylen) {
1801	case AES_KEYSIZE_128:
1802		ctx->cipher_type = CIPHER_TYPE_AES128;
1803		break;
1804	case AES_KEYSIZE_192:
1805		ctx->cipher_type = CIPHER_TYPE_AES192;
1806		break;
1807	case AES_KEYSIZE_256:
1808		ctx->cipher_type = CIPHER_TYPE_AES256;
1809		break;
1810	default:
1811		return -EINVAL;
1812	}
1813	WARN_ON((ctx->max_payload != SPU_MAX_PAYLOAD_INF) &&
1814		((ctx->max_payload % AES_BLOCK_SIZE) != 0));
1815	return 0;
1816}
1817
1818static int skcipher_setkey(struct crypto_skcipher *cipher, const u8 *key,
1819			     unsigned int keylen)
1820{
1821	struct spu_hw *spu = &iproc_priv.spu;
1822	struct iproc_ctx_s *ctx = crypto_skcipher_ctx(cipher);
1823	struct spu_cipher_parms cipher_parms;
1824	u32 alloc_len = 0;
1825	int err;
1826
1827	flow_log("skcipher_setkey() keylen: %d\n", keylen);
1828	flow_dump("  key: ", key, keylen);
1829
1830	switch (ctx->cipher.alg) {
1831	case CIPHER_ALG_DES:
1832		err = des_setkey(cipher, key, keylen);
1833		break;
1834	case CIPHER_ALG_3DES:
1835		err = threedes_setkey(cipher, key, keylen);
1836		break;
1837	case CIPHER_ALG_AES:
1838		err = aes_setkey(cipher, key, keylen);
1839		break;
1840	default:
1841		pr_err("%s() Error: unknown cipher alg\n", __func__);
1842		err = -EINVAL;
1843	}
1844	if (err)
1845		return err;
1846
1847	memcpy(ctx->enckey, key, keylen);
1848	ctx->enckeylen = keylen;
1849
1850	/* SPU needs XTS keys in the reverse order the crypto API presents */
1851	if ((ctx->cipher.alg == CIPHER_ALG_AES) &&
1852	    (ctx->cipher.mode == CIPHER_MODE_XTS)) {
1853		unsigned int xts_keylen = keylen / 2;
1854
1855		memcpy(ctx->enckey, key + xts_keylen, xts_keylen);
1856		memcpy(ctx->enckey + xts_keylen, key, xts_keylen);
1857	}
1858
1859	if (spu->spu_type == SPU_TYPE_SPUM)
1860		alloc_len = BCM_HDR_LEN + SPU_HEADER_ALLOC_LEN;
1861	else if (spu->spu_type == SPU_TYPE_SPU2)
1862		alloc_len = BCM_HDR_LEN + SPU2_HEADER_ALLOC_LEN;
1863	memset(ctx->bcm_spu_req_hdr, 0, alloc_len);
1864	cipher_parms.iv_buf = NULL;
1865	cipher_parms.iv_len = crypto_skcipher_ivsize(cipher);
1866	flow_log("%s: iv_len %u\n", __func__, cipher_parms.iv_len);
1867
1868	cipher_parms.alg = ctx->cipher.alg;
1869	cipher_parms.mode = ctx->cipher.mode;
1870	cipher_parms.type = ctx->cipher_type;
1871	cipher_parms.key_buf = ctx->enckey;
1872	cipher_parms.key_len = ctx->enckeylen;
1873
1874	/* Prepend SPU request message with BCM header */
1875	memcpy(ctx->bcm_spu_req_hdr, BCMHEADER, BCM_HDR_LEN);
1876	ctx->spu_req_hdr_len =
1877	    spu->spu_cipher_req_init(ctx->bcm_spu_req_hdr + BCM_HDR_LEN,
1878				     &cipher_parms);
1879
1880	ctx->spu_resp_hdr_len = spu->spu_response_hdr_len(ctx->authkeylen,
1881							  ctx->enckeylen,
1882							  false);
1883
1884	atomic_inc(&iproc_priv.setkey_cnt[SPU_OP_CIPHER]);
1885
1886	return 0;
1887}
1888
1889static int skcipher_encrypt(struct skcipher_request *req)
1890{
1891	flow_log("skcipher_encrypt() nbytes:%u\n", req->cryptlen);
1892
1893	return skcipher_enqueue(req, true);
1894}
1895
1896static int skcipher_decrypt(struct skcipher_request *req)
1897{
1898	flow_log("skcipher_decrypt() nbytes:%u\n", req->cryptlen);
1899	return skcipher_enqueue(req, false);
1900}
1901
1902static int ahash_enqueue(struct ahash_request *req)
1903{
1904	struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
1905	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1906	struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
1907	int err;
1908	const char *alg_name;
1909
1910	flow_log("ahash_enqueue() nbytes:%u\n", req->nbytes);
1911
1912	rctx->gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
1913		       CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
1914	rctx->parent = &req->base;
1915	rctx->ctx = ctx;
1916	rctx->bd_suppress = true;
1917	memset(&rctx->mb_mssg, 0, sizeof(struct brcm_message));
1918
1919	/* Initialize position in src scatterlist */
1920	rctx->src_sg = req->src;
1921	rctx->src_skip = 0;
1922	rctx->src_nents = 0;
1923	rctx->dst_sg = NULL;
1924	rctx->dst_skip = 0;
1925	rctx->dst_nents = 0;
1926
1927	/* SPU2 hardware does not compute hash of zero length data */
1928	if ((rctx->is_final == 1) && (rctx->total_todo == 0) &&
1929	    (iproc_priv.spu.spu_type == SPU_TYPE_SPU2)) {
1930		alg_name = crypto_ahash_alg_name(tfm);
1931		flow_log("Doing %sfinal %s zero-len hash request in software\n",
1932			 rctx->is_final ? "" : "non-", alg_name);
1933		err = do_shash((unsigned char *)alg_name, req->result,
1934			       NULL, 0, NULL, 0, ctx->authkey,
1935			       ctx->authkeylen);
1936		if (err < 0)
1937			flow_log("Hash request failed with error %d\n", err);
1938		return err;
1939	}
1940	/* Choose a SPU to process this request */
1941	rctx->chan_idx = select_channel();
1942
1943	err = handle_ahash_req(rctx);
1944	if (err != -EINPROGRESS)
1945		/* synchronous result */
1946		spu_chunk_cleanup(rctx);
1947
1948	if (err == -EAGAIN)
1949		/*
1950		 * we saved data in hash carry, but tell crypto API
1951		 * we successfully completed request.
1952		 */
1953		err = 0;
1954
1955	return err;
1956}
1957
1958static int __ahash_init(struct ahash_request *req)
1959{
1960	struct spu_hw *spu = &iproc_priv.spu;
1961	struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
1962	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1963	struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
1964
1965	flow_log("%s()\n", __func__);
1966
1967	/* Initialize the context */
1968	rctx->hash_carry_len = 0;
1969	rctx->is_final = 0;
1970
1971	rctx->total_todo = 0;
1972	rctx->src_sent = 0;
1973	rctx->total_sent = 0;
1974	rctx->total_received = 0;
1975
1976	ctx->digestsize = crypto_ahash_digestsize(tfm);
1977	/* If we add a hash whose digest is larger, catch it here. */
1978	WARN_ON(ctx->digestsize > MAX_DIGEST_SIZE);
1979
1980	rctx->is_sw_hmac = false;
1981
1982	ctx->spu_resp_hdr_len = spu->spu_response_hdr_len(ctx->authkeylen, 0,
1983							  true);
1984
1985	return 0;
1986}
1987
1988/**
1989 * spu_no_incr_hash() - Determine whether incremental hashing is supported.
1990 * @ctx:  Crypto session context
1991 *
1992 * SPU-2 does not support incremental hashing (we'll have to revisit and
1993 * condition based on chip revision or device tree entry if future versions do
1994 * support incremental hash)
1995 *
1996 * SPU-M also doesn't support incremental hashing of AES-XCBC
1997 *
1998 * Return: true if incremental hashing is not supported
1999 *         false otherwise
2000 */
2001static bool spu_no_incr_hash(struct iproc_ctx_s *ctx)
2002{
2003	struct spu_hw *spu = &iproc_priv.spu;
2004
2005	if (spu->spu_type == SPU_TYPE_SPU2)
2006		return true;
2007
2008	if ((ctx->auth.alg == HASH_ALG_AES) &&
2009	    (ctx->auth.mode == HASH_MODE_XCBC))
2010		return true;
2011
2012	/* Otherwise, incremental hashing is supported */
2013	return false;
2014}
2015
2016static int ahash_init(struct ahash_request *req)
2017{
2018	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2019	struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
2020	const char *alg_name;
2021	struct crypto_shash *hash;
2022	int ret;
2023	gfp_t gfp;
2024
2025	if (spu_no_incr_hash(ctx)) {
2026		/*
2027		 * If we get an incremental hashing request and it's not
2028		 * supported by the hardware, we need to handle it in software
2029		 * by calling synchronous hash functions.
2030		 */
2031		alg_name = crypto_ahash_alg_name(tfm);
2032		hash = crypto_alloc_shash(alg_name, 0, 0);
2033		if (IS_ERR(hash)) {
2034			ret = PTR_ERR(hash);
2035			goto err;
2036		}
2037
2038		gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
2039		       CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
2040		ctx->shash = kmalloc(sizeof(*ctx->shash) +
2041				     crypto_shash_descsize(hash), gfp);
2042		if (!ctx->shash) {
2043			ret = -ENOMEM;
2044			goto err_hash;
2045		}
2046		ctx->shash->tfm = hash;
2047
2048		/* Set the key using data we already have from setkey */
2049		if (ctx->authkeylen > 0) {
2050			ret = crypto_shash_setkey(hash, ctx->authkey,
2051						  ctx->authkeylen);
2052			if (ret)
2053				goto err_shash;
2054		}
2055
2056		/* Initialize hash w/ this key and other params */
2057		ret = crypto_shash_init(ctx->shash);
2058		if (ret)
2059			goto err_shash;
2060	} else {
2061		/* Otherwise call the internal function which uses SPU hw */
2062		ret = __ahash_init(req);
2063	}
2064
2065	return ret;
2066
2067err_shash:
2068	kfree(ctx->shash);
2069err_hash:
2070	crypto_free_shash(hash);
2071err:
2072	return ret;
2073}
2074
2075static int __ahash_update(struct ahash_request *req)
2076{
2077	struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2078
2079	flow_log("ahash_update() nbytes:%u\n", req->nbytes);
2080
2081	if (!req->nbytes)
2082		return 0;
2083	rctx->total_todo += req->nbytes;
2084	rctx->src_sent = 0;
2085
2086	return ahash_enqueue(req);
2087}
2088
2089static int ahash_update(struct ahash_request *req)
2090{
2091	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2092	struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
2093	u8 *tmpbuf;
2094	int ret;
2095	int nents;
2096	gfp_t gfp;
2097
2098	if (spu_no_incr_hash(ctx)) {
2099		/*
2100		 * If we get an incremental hashing request and it's not
2101		 * supported by the hardware, we need to handle it in software
2102		 * by calling synchronous hash functions.
2103		 */
2104		if (req->src)
2105			nents = sg_nents(req->src);
2106		else
2107			return -EINVAL;
2108
2109		/* Copy data from req scatterlist to tmp buffer */
2110		gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
2111		       CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
2112		tmpbuf = kmalloc(req->nbytes, gfp);
2113		if (!tmpbuf)
2114			return -ENOMEM;
2115
2116		if (sg_copy_to_buffer(req->src, nents, tmpbuf, req->nbytes) !=
2117				req->nbytes) {
2118			kfree(tmpbuf);
2119			return -EINVAL;
2120		}
2121
2122		/* Call synchronous update */
2123		ret = crypto_shash_update(ctx->shash, tmpbuf, req->nbytes);
2124		kfree(tmpbuf);
2125	} else {
2126		/* Otherwise call the internal function which uses SPU hw */
2127		ret = __ahash_update(req);
2128	}
2129
2130	return ret;
2131}
2132
2133static int __ahash_final(struct ahash_request *req)
2134{
2135	struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2136
2137	flow_log("ahash_final() nbytes:%u\n", req->nbytes);
2138
2139	rctx->is_final = 1;
2140
2141	return ahash_enqueue(req);
2142}
2143
2144static int ahash_final(struct ahash_request *req)
2145{
2146	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2147	struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
2148	int ret;
2149
2150	if (spu_no_incr_hash(ctx)) {
2151		/*
2152		 * If we get an incremental hashing request and it's not
2153		 * supported by the hardware, we need to handle it in software
2154		 * by calling synchronous hash functions.
2155		 */
2156		ret = crypto_shash_final(ctx->shash, req->result);
2157
2158		/* Done with hash, can deallocate it now */
2159		crypto_free_shash(ctx->shash->tfm);
2160		kfree(ctx->shash);
2161
2162	} else {
2163		/* Otherwise call the internal function which uses SPU hw */
2164		ret = __ahash_final(req);
2165	}
2166
2167	return ret;
2168}
2169
2170static int __ahash_finup(struct ahash_request *req)
2171{
2172	struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2173
2174	flow_log("ahash_finup() nbytes:%u\n", req->nbytes);
2175
2176	rctx->total_todo += req->nbytes;
2177	rctx->src_sent = 0;
2178	rctx->is_final = 1;
2179
2180	return ahash_enqueue(req);
2181}
2182
2183static int ahash_finup(struct ahash_request *req)
2184{
2185	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2186	struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
2187	u8 *tmpbuf;
2188	int ret;
2189	int nents;
2190	gfp_t gfp;
2191
2192	if (spu_no_incr_hash(ctx)) {
2193		/*
2194		 * If we get an incremental hashing request and it's not
2195		 * supported by the hardware, we need to handle it in software
2196		 * by calling synchronous hash functions.
2197		 */
2198		if (req->src) {
2199			nents = sg_nents(req->src);
2200		} else {
2201			ret = -EINVAL;
2202			goto ahash_finup_exit;
2203		}
2204
2205		/* Copy data from req scatterlist to tmp buffer */
2206		gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
2207		       CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
2208		tmpbuf = kmalloc(req->nbytes, gfp);
2209		if (!tmpbuf) {
2210			ret = -ENOMEM;
2211			goto ahash_finup_exit;
2212		}
2213
2214		if (sg_copy_to_buffer(req->src, nents, tmpbuf, req->nbytes) !=
2215				req->nbytes) {
2216			ret = -EINVAL;
2217			goto ahash_finup_free;
2218		}
2219
2220		/* Call synchronous update */
2221		ret = crypto_shash_finup(ctx->shash, tmpbuf, req->nbytes,
2222					 req->result);
2223	} else {
2224		/* Otherwise call the internal function which uses SPU hw */
2225		return __ahash_finup(req);
2226	}
2227ahash_finup_free:
2228	kfree(tmpbuf);
2229
2230ahash_finup_exit:
2231	/* Done with hash, can deallocate it now */
2232	crypto_free_shash(ctx->shash->tfm);
2233	kfree(ctx->shash);
2234	return ret;
2235}
2236
2237static int ahash_digest(struct ahash_request *req)
2238{
2239	int err;
2240
2241	flow_log("ahash_digest() nbytes:%u\n", req->nbytes);
2242
2243	/* whole thing at once */
2244	err = __ahash_init(req);
2245	if (!err)
2246		err = __ahash_finup(req);
2247
2248	return err;
2249}
2250
2251static int ahash_setkey(struct crypto_ahash *ahash, const u8 *key,
2252			unsigned int keylen)
2253{
2254	struct iproc_ctx_s *ctx = crypto_ahash_ctx(ahash);
2255
2256	flow_log("%s() ahash:%p key:%p keylen:%u\n",
2257		 __func__, ahash, key, keylen);
2258	flow_dump("  key: ", key, keylen);
2259
2260	if (ctx->auth.alg == HASH_ALG_AES) {
2261		switch (keylen) {
2262		case AES_KEYSIZE_128:
2263			ctx->cipher_type = CIPHER_TYPE_AES128;
2264			break;
2265		case AES_KEYSIZE_192:
2266			ctx->cipher_type = CIPHER_TYPE_AES192;
2267			break;
2268		case AES_KEYSIZE_256:
2269			ctx->cipher_type = CIPHER_TYPE_AES256;
2270			break;
2271		default:
2272			pr_err("%s() Error: Invalid key length\n", __func__);
2273			return -EINVAL;
2274		}
2275	} else {
2276		pr_err("%s() Error: unknown hash alg\n", __func__);
2277		return -EINVAL;
2278	}
2279	memcpy(ctx->authkey, key, keylen);
2280	ctx->authkeylen = keylen;
2281
2282	return 0;
2283}
2284
2285static int ahash_export(struct ahash_request *req, void *out)
2286{
2287	const struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2288	struct spu_hash_export_s *spu_exp = (struct spu_hash_export_s *)out;
2289
2290	spu_exp->total_todo = rctx->total_todo;
2291	spu_exp->total_sent = rctx->total_sent;
2292	spu_exp->is_sw_hmac = rctx->is_sw_hmac;
2293	memcpy(spu_exp->hash_carry, rctx->hash_carry, sizeof(rctx->hash_carry));
2294	spu_exp->hash_carry_len = rctx->hash_carry_len;
2295	memcpy(spu_exp->incr_hash, rctx->incr_hash, sizeof(rctx->incr_hash));
2296
2297	return 0;
2298}
2299
2300static int ahash_import(struct ahash_request *req, const void *in)
2301{
2302	struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2303	struct spu_hash_export_s *spu_exp = (struct spu_hash_export_s *)in;
2304
2305	rctx->total_todo = spu_exp->total_todo;
2306	rctx->total_sent = spu_exp->total_sent;
2307	rctx->is_sw_hmac = spu_exp->is_sw_hmac;
2308	memcpy(rctx->hash_carry, spu_exp->hash_carry, sizeof(rctx->hash_carry));
2309	rctx->hash_carry_len = spu_exp->hash_carry_len;
2310	memcpy(rctx->incr_hash, spu_exp->incr_hash, sizeof(rctx->incr_hash));
2311
2312	return 0;
2313}
2314
2315static int ahash_hmac_setkey(struct crypto_ahash *ahash, const u8 *key,
2316			     unsigned int keylen)
2317{
2318	struct iproc_ctx_s *ctx = crypto_ahash_ctx(ahash);
2319	unsigned int blocksize =
2320		crypto_tfm_alg_blocksize(crypto_ahash_tfm(ahash));
2321	unsigned int digestsize = crypto_ahash_digestsize(ahash);
2322	unsigned int index;
2323	int rc;
2324
2325	flow_log("%s() ahash:%p key:%p keylen:%u blksz:%u digestsz:%u\n",
2326		 __func__, ahash, key, keylen, blocksize, digestsize);
2327	flow_dump("  key: ", key, keylen);
2328
2329	if (keylen > blocksize) {
2330		switch (ctx->auth.alg) {
2331		case HASH_ALG_MD5:
2332			rc = do_shash("md5", ctx->authkey, key, keylen, NULL,
2333				      0, NULL, 0);
2334			break;
2335		case HASH_ALG_SHA1:
2336			rc = do_shash("sha1", ctx->authkey, key, keylen, NULL,
2337				      0, NULL, 0);
2338			break;
2339		case HASH_ALG_SHA224:
2340			rc = do_shash("sha224", ctx->authkey, key, keylen, NULL,
2341				      0, NULL, 0);
2342			break;
2343		case HASH_ALG_SHA256:
2344			rc = do_shash("sha256", ctx->authkey, key, keylen, NULL,
2345				      0, NULL, 0);
2346			break;
2347		case HASH_ALG_SHA384:
2348			rc = do_shash("sha384", ctx->authkey, key, keylen, NULL,
2349				      0, NULL, 0);
2350			break;
2351		case HASH_ALG_SHA512:
2352			rc = do_shash("sha512", ctx->authkey, key, keylen, NULL,
2353				      0, NULL, 0);
2354			break;
2355		case HASH_ALG_SHA3_224:
2356			rc = do_shash("sha3-224", ctx->authkey, key, keylen,
2357				      NULL, 0, NULL, 0);
2358			break;
2359		case HASH_ALG_SHA3_256:
2360			rc = do_shash("sha3-256", ctx->authkey, key, keylen,
2361				      NULL, 0, NULL, 0);
2362			break;
2363		case HASH_ALG_SHA3_384:
2364			rc = do_shash("sha3-384", ctx->authkey, key, keylen,
2365				      NULL, 0, NULL, 0);
2366			break;
2367		case HASH_ALG_SHA3_512:
2368			rc = do_shash("sha3-512", ctx->authkey, key, keylen,
2369				      NULL, 0, NULL, 0);
2370			break;
2371		default:
2372			pr_err("%s() Error: unknown hash alg\n", __func__);
2373			return -EINVAL;
2374		}
2375		if (rc < 0) {
2376			pr_err("%s() Error %d computing shash for %s\n",
2377			       __func__, rc, hash_alg_name[ctx->auth.alg]);
2378			return rc;
2379		}
2380		ctx->authkeylen = digestsize;
2381
2382		flow_log("  keylen > digestsize... hashed\n");
2383		flow_dump("  newkey: ", ctx->authkey, ctx->authkeylen);
2384	} else {
2385		memcpy(ctx->authkey, key, keylen);
2386		ctx->authkeylen = keylen;
2387	}
2388
2389	/*
2390	 * Full HMAC operation in SPUM is not verified,
2391	 * So keeping the generation of IPAD, OPAD and
2392	 * outer hashing in software.
2393	 */
2394	if (iproc_priv.spu.spu_type == SPU_TYPE_SPUM) {
2395		memcpy(ctx->ipad, ctx->authkey, ctx->authkeylen);
2396		memset(ctx->ipad + ctx->authkeylen, 0,
2397		       blocksize - ctx->authkeylen);
2398		ctx->authkeylen = 0;
2399		unsafe_memcpy(ctx->opad, ctx->ipad, blocksize,
2400			      "fortified memcpy causes -Wrestrict warning");
2401
2402		for (index = 0; index < blocksize; index++) {
2403			ctx->ipad[index] ^= HMAC_IPAD_VALUE;
2404			ctx->opad[index] ^= HMAC_OPAD_VALUE;
2405		}
2406
2407		flow_dump("  ipad: ", ctx->ipad, blocksize);
2408		flow_dump("  opad: ", ctx->opad, blocksize);
2409	}
2410	ctx->digestsize = digestsize;
2411	atomic_inc(&iproc_priv.setkey_cnt[SPU_OP_HMAC]);
2412
2413	return 0;
2414}
2415
2416static int ahash_hmac_init(struct ahash_request *req)
2417{
2418	struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2419	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2420	struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
2421	unsigned int blocksize =
2422			crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
2423
2424	flow_log("ahash_hmac_init()\n");
2425
2426	/* init the context as a hash */
2427	ahash_init(req);
2428
2429	if (!spu_no_incr_hash(ctx)) {
2430		/* SPU-M can do incr hashing but needs sw for outer HMAC */
2431		rctx->is_sw_hmac = true;
2432		ctx->auth.mode = HASH_MODE_HASH;
2433		/* start with a prepended ipad */
2434		memcpy(rctx->hash_carry, ctx->ipad, blocksize);
2435		rctx->hash_carry_len = blocksize;
2436		rctx->total_todo += blocksize;
2437	}
2438
2439	return 0;
2440}
2441
2442static int ahash_hmac_update(struct ahash_request *req)
2443{
2444	flow_log("ahash_hmac_update() nbytes:%u\n", req->nbytes);
2445
2446	if (!req->nbytes)
2447		return 0;
2448
2449	return ahash_update(req);
2450}
2451
2452static int ahash_hmac_final(struct ahash_request *req)
2453{
2454	flow_log("ahash_hmac_final() nbytes:%u\n", req->nbytes);
2455
2456	return ahash_final(req);
2457}
2458
2459static int ahash_hmac_finup(struct ahash_request *req)
2460{
2461	flow_log("ahash_hmac_finupl() nbytes:%u\n", req->nbytes);
2462
2463	return ahash_finup(req);
2464}
2465
2466static int ahash_hmac_digest(struct ahash_request *req)
2467{
2468	struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2469	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2470	struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
2471	unsigned int blocksize =
2472			crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
2473
2474	flow_log("ahash_hmac_digest() nbytes:%u\n", req->nbytes);
2475
2476	/* Perform initialization and then call finup */
2477	__ahash_init(req);
2478
2479	if (iproc_priv.spu.spu_type == SPU_TYPE_SPU2) {
2480		/*
2481		 * SPU2 supports full HMAC implementation in the
2482		 * hardware, need not to generate IPAD, OPAD and
2483		 * outer hash in software.
2484		 * Only for hash key len > hash block size, SPU2
2485		 * expects to perform hashing on the key, shorten
2486		 * it to digest size and feed it as hash key.
2487		 */
2488		rctx->is_sw_hmac = false;
2489		ctx->auth.mode = HASH_MODE_HMAC;
2490	} else {
2491		rctx->is_sw_hmac = true;
2492		ctx->auth.mode = HASH_MODE_HASH;
2493		/* start with a prepended ipad */
2494		memcpy(rctx->hash_carry, ctx->ipad, blocksize);
2495		rctx->hash_carry_len = blocksize;
2496		rctx->total_todo += blocksize;
2497	}
2498
2499	return __ahash_finup(req);
2500}
2501
2502/* aead helpers */
2503
2504static int aead_need_fallback(struct aead_request *req)
2505{
2506	struct iproc_reqctx_s *rctx = aead_request_ctx(req);
2507	struct spu_hw *spu = &iproc_priv.spu;
2508	struct crypto_aead *aead = crypto_aead_reqtfm(req);
2509	struct iproc_ctx_s *ctx = crypto_aead_ctx(aead);
2510	u32 payload_len;
2511
2512	/*
2513	 * SPU hardware cannot handle the AES-GCM/CCM case where plaintext
2514	 * and AAD are both 0 bytes long. So use fallback in this case.
2515	 */
2516	if (((ctx->cipher.mode == CIPHER_MODE_GCM) ||
2517	     (ctx->cipher.mode == CIPHER_MODE_CCM)) &&
2518	    (req->assoclen == 0)) {
2519		if ((rctx->is_encrypt && (req->cryptlen == 0)) ||
2520		    (!rctx->is_encrypt && (req->cryptlen == ctx->digestsize))) {
2521			flow_log("AES GCM/CCM needs fallback for 0 len req\n");
2522			return 1;
2523		}
2524	}
2525
2526	/* SPU-M hardware only supports CCM digest size of 8, 12, or 16 bytes */
2527	if ((ctx->cipher.mode == CIPHER_MODE_CCM) &&
2528	    (spu->spu_type == SPU_TYPE_SPUM) &&
2529	    (ctx->digestsize != 8) && (ctx->digestsize != 12) &&
2530	    (ctx->digestsize != 16)) {
2531		flow_log("%s() AES CCM needs fallback for digest size %d\n",
2532			 __func__, ctx->digestsize);
2533		return 1;
2534	}
2535
2536	/*
2537	 * SPU-M on NSP has an issue where AES-CCM hash is not correct
2538	 * when AAD size is 0
2539	 */
2540	if ((ctx->cipher.mode == CIPHER_MODE_CCM) &&
2541	    (spu->spu_subtype == SPU_SUBTYPE_SPUM_NSP) &&
2542	    (req->assoclen == 0)) {
2543		flow_log("%s() AES_CCM needs fallback for 0 len AAD on NSP\n",
2544			 __func__);
2545		return 1;
2546	}
2547
2548	/*
2549	 * RFC4106 and RFC4543 cannot handle the case where AAD is other than
2550	 * 16 or 20 bytes long. So use fallback in this case.
2551	 */
2552	if (ctx->cipher.mode == CIPHER_MODE_GCM &&
2553	    ctx->cipher.alg == CIPHER_ALG_AES &&
2554	    rctx->iv_ctr_len == GCM_RFC4106_IV_SIZE &&
2555	    req->assoclen != 16 && req->assoclen != 20) {
2556		flow_log("RFC4106/RFC4543 needs fallback for assoclen"
2557			 " other than 16 or 20 bytes\n");
2558		return 1;
2559	}
2560
2561	payload_len = req->cryptlen;
2562	if (spu->spu_type == SPU_TYPE_SPUM)
2563		payload_len += req->assoclen;
2564
2565	flow_log("%s() payload len: %u\n", __func__, payload_len);
2566
2567	if (ctx->max_payload == SPU_MAX_PAYLOAD_INF)
2568		return 0;
2569	else
2570		return payload_len > ctx->max_payload;
2571}
2572
2573static int aead_do_fallback(struct aead_request *req, bool is_encrypt)
2574{
2575	struct crypto_aead *aead = crypto_aead_reqtfm(req);
2576	struct crypto_tfm *tfm = crypto_aead_tfm(aead);
2577	struct iproc_reqctx_s *rctx = aead_request_ctx(req);
2578	struct iproc_ctx_s *ctx = crypto_tfm_ctx(tfm);
2579	struct aead_request *subreq;
2580
2581	flow_log("%s() enc:%u\n", __func__, is_encrypt);
2582
2583	if (!ctx->fallback_cipher)
2584		return -EINVAL;
2585
2586	subreq = &rctx->req;
2587	aead_request_set_tfm(subreq, ctx->fallback_cipher);
2588	aead_request_set_callback(subreq, aead_request_flags(req),
2589				  req->base.complete, req->base.data);
2590	aead_request_set_crypt(subreq, req->src, req->dst, req->cryptlen,
2591			       req->iv);
2592	aead_request_set_ad(subreq, req->assoclen);
2593
2594	return is_encrypt ? crypto_aead_encrypt(req) :
2595			    crypto_aead_decrypt(req);
2596}
2597
2598static int aead_enqueue(struct aead_request *req, bool is_encrypt)
2599{
2600	struct iproc_reqctx_s *rctx = aead_request_ctx(req);
2601	struct crypto_aead *aead = crypto_aead_reqtfm(req);
2602	struct iproc_ctx_s *ctx = crypto_aead_ctx(aead);
2603	int err;
2604
2605	flow_log("%s() enc:%u\n", __func__, is_encrypt);
2606
2607	if (req->assoclen > MAX_ASSOC_SIZE) {
2608		pr_err
2609		    ("%s() Error: associated data too long. (%u > %u bytes)\n",
2610		     __func__, req->assoclen, MAX_ASSOC_SIZE);
2611		return -EINVAL;
2612	}
2613
2614	rctx->gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
2615		       CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
2616	rctx->parent = &req->base;
2617	rctx->is_encrypt = is_encrypt;
2618	rctx->bd_suppress = false;
2619	rctx->total_todo = req->cryptlen;
2620	rctx->src_sent = 0;
2621	rctx->total_sent = 0;
2622	rctx->total_received = 0;
2623	rctx->is_sw_hmac = false;
2624	rctx->ctx = ctx;
2625	memset(&rctx->mb_mssg, 0, sizeof(struct brcm_message));
2626
2627	/* assoc data is at start of src sg */
2628	rctx->assoc = req->src;
2629
2630	/*
2631	 * Init current position in src scatterlist to be after assoc data.
2632	 * src_skip set to buffer offset where data begins. (Assoc data could
2633	 * end in the middle of a buffer.)
2634	 */
2635	if (spu_sg_at_offset(req->src, req->assoclen, &rctx->src_sg,
2636			     &rctx->src_skip) < 0) {
2637		pr_err("%s() Error: Unable to find start of src data\n",
2638		       __func__);
2639		return -EINVAL;
2640	}
2641
2642	rctx->src_nents = 0;
2643	rctx->dst_nents = 0;
2644	if (req->dst == req->src) {
2645		rctx->dst_sg = rctx->src_sg;
2646		rctx->dst_skip = rctx->src_skip;
2647	} else {
2648		/*
2649		 * Expect req->dst to have room for assoc data followed by
2650		 * output data and ICV, if encrypt. So initialize dst_sg
2651		 * to point beyond assoc len offset.
2652		 */
2653		if (spu_sg_at_offset(req->dst, req->assoclen, &rctx->dst_sg,
2654				     &rctx->dst_skip) < 0) {
2655			pr_err("%s() Error: Unable to find start of dst data\n",
2656			       __func__);
2657			return -EINVAL;
2658		}
2659	}
2660
2661	if (ctx->cipher.mode == CIPHER_MODE_CBC ||
2662	    ctx->cipher.mode == CIPHER_MODE_CTR ||
2663	    ctx->cipher.mode == CIPHER_MODE_OFB ||
2664	    ctx->cipher.mode == CIPHER_MODE_XTS ||
2665	    ctx->cipher.mode == CIPHER_MODE_GCM) {
2666		rctx->iv_ctr_len =
2667			ctx->salt_len +
2668			crypto_aead_ivsize(crypto_aead_reqtfm(req));
2669	} else if (ctx->cipher.mode == CIPHER_MODE_CCM) {
2670		rctx->iv_ctr_len = CCM_AES_IV_SIZE;
2671	} else {
2672		rctx->iv_ctr_len = 0;
2673	}
2674
2675	rctx->hash_carry_len = 0;
2676
2677	flow_log("  src sg: %p\n", req->src);
2678	flow_log("  rctx->src_sg: %p, src_skip %u\n",
2679		 rctx->src_sg, rctx->src_skip);
2680	flow_log("  assoc:  %p, assoclen %u\n", rctx->assoc, req->assoclen);
2681	flow_log("  dst sg: %p\n", req->dst);
2682	flow_log("  rctx->dst_sg: %p, dst_skip %u\n",
2683		 rctx->dst_sg, rctx->dst_skip);
2684	flow_log("  iv_ctr_len:%u\n", rctx->iv_ctr_len);
2685	flow_dump("  iv: ", req->iv, rctx->iv_ctr_len);
2686	flow_log("  authkeylen:%u\n", ctx->authkeylen);
2687	flow_log("  is_esp: %s\n", ctx->is_esp ? "yes" : "no");
2688
2689	if (ctx->max_payload == SPU_MAX_PAYLOAD_INF)
2690		flow_log("  max_payload infinite");
2691	else
2692		flow_log("  max_payload: %u\n", ctx->max_payload);
2693
2694	if (unlikely(aead_need_fallback(req)))
2695		return aead_do_fallback(req, is_encrypt);
2696
2697	/*
2698	 * Do memory allocations for request after fallback check, because if we
2699	 * do fallback, we won't call finish_req() to dealloc.
2700	 */
2701	if (rctx->iv_ctr_len) {
2702		if (ctx->salt_len)
2703			memcpy(rctx->msg_buf.iv_ctr + ctx->salt_offset,
2704			       ctx->salt, ctx->salt_len);
2705		memcpy(rctx->msg_buf.iv_ctr + ctx->salt_offset + ctx->salt_len,
2706		       req->iv,
2707		       rctx->iv_ctr_len - ctx->salt_len - ctx->salt_offset);
2708	}
2709
2710	rctx->chan_idx = select_channel();
2711	err = handle_aead_req(rctx);
2712	if (err != -EINPROGRESS)
2713		/* synchronous result */
2714		spu_chunk_cleanup(rctx);
2715
2716	return err;
2717}
2718
2719static int aead_authenc_setkey(struct crypto_aead *cipher,
2720			       const u8 *key, unsigned int keylen)
2721{
2722	struct spu_hw *spu = &iproc_priv.spu;
2723	struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher);
2724	struct crypto_tfm *tfm = crypto_aead_tfm(cipher);
2725	struct crypto_authenc_keys keys;
2726	int ret;
2727
2728	flow_log("%s() aead:%p key:%p keylen:%u\n", __func__, cipher, key,
2729		 keylen);
2730	flow_dump("  key: ", key, keylen);
2731
2732	ret = crypto_authenc_extractkeys(&keys, key, keylen);
2733	if (ret)
2734		goto badkey;
2735
2736	if (keys.enckeylen > MAX_KEY_SIZE ||
2737	    keys.authkeylen > MAX_KEY_SIZE)
2738		goto badkey;
2739
2740	ctx->enckeylen = keys.enckeylen;
2741	ctx->authkeylen = keys.authkeylen;
2742
2743	memcpy(ctx->enckey, keys.enckey, keys.enckeylen);
2744	/* May end up padding auth key. So make sure it's zeroed. */
2745	memset(ctx->authkey, 0, sizeof(ctx->authkey));
2746	memcpy(ctx->authkey, keys.authkey, keys.authkeylen);
2747
2748	switch (ctx->alg->cipher_info.alg) {
2749	case CIPHER_ALG_DES:
2750		if (verify_aead_des_key(cipher, keys.enckey, keys.enckeylen))
2751			return -EINVAL;
2752
2753		ctx->cipher_type = CIPHER_TYPE_DES;
2754		break;
2755	case CIPHER_ALG_3DES:
2756		if (verify_aead_des3_key(cipher, keys.enckey, keys.enckeylen))
2757			return -EINVAL;
2758
2759		ctx->cipher_type = CIPHER_TYPE_3DES;
2760		break;
2761	case CIPHER_ALG_AES:
2762		switch (ctx->enckeylen) {
2763		case AES_KEYSIZE_128:
2764			ctx->cipher_type = CIPHER_TYPE_AES128;
2765			break;
2766		case AES_KEYSIZE_192:
2767			ctx->cipher_type = CIPHER_TYPE_AES192;
2768			break;
2769		case AES_KEYSIZE_256:
2770			ctx->cipher_type = CIPHER_TYPE_AES256;
2771			break;
2772		default:
2773			goto badkey;
2774		}
2775		break;
2776	default:
2777		pr_err("%s() Error: Unknown cipher alg\n", __func__);
2778		return -EINVAL;
2779	}
2780
2781	flow_log("  enckeylen:%u authkeylen:%u\n", ctx->enckeylen,
2782		 ctx->authkeylen);
2783	flow_dump("  enc: ", ctx->enckey, ctx->enckeylen);
2784	flow_dump("  auth: ", ctx->authkey, ctx->authkeylen);
2785
2786	/* setkey the fallback just in case we needto use it */
2787	if (ctx->fallback_cipher) {
2788		flow_log("  running fallback setkey()\n");
2789
2790		ctx->fallback_cipher->base.crt_flags &= ~CRYPTO_TFM_REQ_MASK;
2791		ctx->fallback_cipher->base.crt_flags |=
2792		    tfm->crt_flags & CRYPTO_TFM_REQ_MASK;
2793		ret = crypto_aead_setkey(ctx->fallback_cipher, key, keylen);
2794		if (ret)
2795			flow_log("  fallback setkey() returned:%d\n", ret);
2796	}
2797
2798	ctx->spu_resp_hdr_len = spu->spu_response_hdr_len(ctx->authkeylen,
2799							  ctx->enckeylen,
2800							  false);
2801
2802	atomic_inc(&iproc_priv.setkey_cnt[SPU_OP_AEAD]);
2803
2804	return ret;
2805
2806badkey:
2807	ctx->enckeylen = 0;
2808	ctx->authkeylen = 0;
2809	ctx->digestsize = 0;
2810
2811	return -EINVAL;
2812}
2813
2814static int aead_gcm_ccm_setkey(struct crypto_aead *cipher,
2815			       const u8 *key, unsigned int keylen)
2816{
2817	struct spu_hw *spu = &iproc_priv.spu;
2818	struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher);
2819	struct crypto_tfm *tfm = crypto_aead_tfm(cipher);
2820
2821	int ret = 0;
2822
2823	flow_log("%s() keylen:%u\n", __func__, keylen);
2824	flow_dump("  key: ", key, keylen);
2825
2826	if (!ctx->is_esp)
2827		ctx->digestsize = keylen;
2828
2829	ctx->enckeylen = keylen;
2830	ctx->authkeylen = 0;
2831
2832	switch (ctx->enckeylen) {
2833	case AES_KEYSIZE_128:
2834		ctx->cipher_type = CIPHER_TYPE_AES128;
2835		break;
2836	case AES_KEYSIZE_192:
2837		ctx->cipher_type = CIPHER_TYPE_AES192;
2838		break;
2839	case AES_KEYSIZE_256:
2840		ctx->cipher_type = CIPHER_TYPE_AES256;
2841		break;
2842	default:
2843		goto badkey;
2844	}
2845
2846	memcpy(ctx->enckey, key, ctx->enckeylen);
2847
2848	flow_log("  enckeylen:%u authkeylen:%u\n", ctx->enckeylen,
2849		 ctx->authkeylen);
2850	flow_dump("  enc: ", ctx->enckey, ctx->enckeylen);
2851	flow_dump("  auth: ", ctx->authkey, ctx->authkeylen);
2852
2853	/* setkey the fallback just in case we need to use it */
2854	if (ctx->fallback_cipher) {
2855		flow_log("  running fallback setkey()\n");
2856
2857		ctx->fallback_cipher->base.crt_flags &= ~CRYPTO_TFM_REQ_MASK;
2858		ctx->fallback_cipher->base.crt_flags |=
2859		    tfm->crt_flags & CRYPTO_TFM_REQ_MASK;
2860		ret = crypto_aead_setkey(ctx->fallback_cipher, key,
2861					 keylen + ctx->salt_len);
2862		if (ret)
2863			flow_log("  fallback setkey() returned:%d\n", ret);
2864	}
2865
2866	ctx->spu_resp_hdr_len = spu->spu_response_hdr_len(ctx->authkeylen,
2867							  ctx->enckeylen,
2868							  false);
2869
2870	atomic_inc(&iproc_priv.setkey_cnt[SPU_OP_AEAD]);
2871
2872	flow_log("  enckeylen:%u authkeylen:%u\n", ctx->enckeylen,
2873		 ctx->authkeylen);
2874
2875	return ret;
2876
2877badkey:
2878	ctx->enckeylen = 0;
2879	ctx->authkeylen = 0;
2880	ctx->digestsize = 0;
2881
2882	return -EINVAL;
2883}
2884
2885/**
2886 * aead_gcm_esp_setkey() - setkey() operation for ESP variant of GCM AES.
2887 * @cipher: AEAD structure
2888 * @key:    Key followed by 4 bytes of salt
2889 * @keylen: Length of key plus salt, in bytes
2890 *
2891 * Extracts salt from key and stores it to be prepended to IV on each request.
2892 * Digest is always 16 bytes
2893 *
2894 * Return: Value from generic gcm setkey.
2895 */
2896static int aead_gcm_esp_setkey(struct crypto_aead *cipher,
2897			       const u8 *key, unsigned int keylen)
2898{
2899	struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher);
2900
2901	flow_log("%s\n", __func__);
2902
2903	if (keylen < GCM_ESP_SALT_SIZE)
2904		return -EINVAL;
2905
2906	ctx->salt_len = GCM_ESP_SALT_SIZE;
2907	ctx->salt_offset = GCM_ESP_SALT_OFFSET;
2908	memcpy(ctx->salt, key + keylen - GCM_ESP_SALT_SIZE, GCM_ESP_SALT_SIZE);
2909	keylen -= GCM_ESP_SALT_SIZE;
2910	ctx->digestsize = GCM_ESP_DIGESTSIZE;
2911	ctx->is_esp = true;
2912	flow_dump("salt: ", ctx->salt, GCM_ESP_SALT_SIZE);
2913
2914	return aead_gcm_ccm_setkey(cipher, key, keylen);
2915}
2916
2917/**
2918 * rfc4543_gcm_esp_setkey() - setkey operation for RFC4543 variant of GCM/GMAC.
2919 * @cipher: AEAD structure
2920 * @key:    Key followed by 4 bytes of salt
2921 * @keylen: Length of key plus salt, in bytes
2922 *
2923 * Extracts salt from key and stores it to be prepended to IV on each request.
2924 * Digest is always 16 bytes
2925 *
2926 * Return: Value from generic gcm setkey.
2927 */
2928static int rfc4543_gcm_esp_setkey(struct crypto_aead *cipher,
2929				  const u8 *key, unsigned int keylen)
2930{
2931	struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher);
2932
2933	flow_log("%s\n", __func__);
2934
2935	if (keylen < GCM_ESP_SALT_SIZE)
2936		return -EINVAL;
2937
2938	ctx->salt_len = GCM_ESP_SALT_SIZE;
2939	ctx->salt_offset = GCM_ESP_SALT_OFFSET;
2940	memcpy(ctx->salt, key + keylen - GCM_ESP_SALT_SIZE, GCM_ESP_SALT_SIZE);
2941	keylen -= GCM_ESP_SALT_SIZE;
2942	ctx->digestsize = GCM_ESP_DIGESTSIZE;
2943	ctx->is_esp = true;
2944	ctx->is_rfc4543 = true;
2945	flow_dump("salt: ", ctx->salt, GCM_ESP_SALT_SIZE);
2946
2947	return aead_gcm_ccm_setkey(cipher, key, keylen);
2948}
2949
2950/**
2951 * aead_ccm_esp_setkey() - setkey() operation for ESP variant of CCM AES.
2952 * @cipher: AEAD structure
2953 * @key:    Key followed by 4 bytes of salt
2954 * @keylen: Length of key plus salt, in bytes
2955 *
2956 * Extracts salt from key and stores it to be prepended to IV on each request.
2957 * Digest is always 16 bytes
2958 *
2959 * Return: Value from generic ccm setkey.
2960 */
2961static int aead_ccm_esp_setkey(struct crypto_aead *cipher,
2962			       const u8 *key, unsigned int keylen)
2963{
2964	struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher);
2965
2966	flow_log("%s\n", __func__);
2967
2968	if (keylen < CCM_ESP_SALT_SIZE)
2969		return -EINVAL;
2970
2971	ctx->salt_len = CCM_ESP_SALT_SIZE;
2972	ctx->salt_offset = CCM_ESP_SALT_OFFSET;
2973	memcpy(ctx->salt, key + keylen - CCM_ESP_SALT_SIZE, CCM_ESP_SALT_SIZE);
2974	keylen -= CCM_ESP_SALT_SIZE;
2975	ctx->is_esp = true;
2976	flow_dump("salt: ", ctx->salt, CCM_ESP_SALT_SIZE);
2977
2978	return aead_gcm_ccm_setkey(cipher, key, keylen);
2979}
2980
2981static int aead_setauthsize(struct crypto_aead *cipher, unsigned int authsize)
2982{
2983	struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher);
2984	int ret = 0;
2985
2986	flow_log("%s() authkeylen:%u authsize:%u\n",
2987		 __func__, ctx->authkeylen, authsize);
2988
2989	ctx->digestsize = authsize;
2990
2991	/* setkey the fallback just in case we needto use it */
2992	if (ctx->fallback_cipher) {
2993		flow_log("  running fallback setauth()\n");
2994
2995		ret = crypto_aead_setauthsize(ctx->fallback_cipher, authsize);
2996		if (ret)
2997			flow_log("  fallback setauth() returned:%d\n", ret);
2998	}
2999
3000	return ret;
3001}
3002
3003static int aead_encrypt(struct aead_request *req)
3004{
3005	flow_log("%s() cryptlen:%u %08x\n", __func__, req->cryptlen,
3006		 req->cryptlen);
3007	dump_sg(req->src, 0, req->cryptlen + req->assoclen);
3008	flow_log("  assoc_len:%u\n", req->assoclen);
3009
3010	return aead_enqueue(req, true);
3011}
3012
3013static int aead_decrypt(struct aead_request *req)
3014{
3015	flow_log("%s() cryptlen:%u\n", __func__, req->cryptlen);
3016	dump_sg(req->src, 0, req->cryptlen + req->assoclen);
3017	flow_log("  assoc_len:%u\n", req->assoclen);
3018
3019	return aead_enqueue(req, false);
3020}
3021
3022/* ==================== Supported Cipher Algorithms ==================== */
3023
3024static struct iproc_alg_s driver_algs[] = {
3025	{
3026	 .type = CRYPTO_ALG_TYPE_AEAD,
3027	 .alg.aead = {
3028		 .base = {
3029			.cra_name = "gcm(aes)",
3030			.cra_driver_name = "gcm-aes-iproc",
3031			.cra_blocksize = AES_BLOCK_SIZE,
3032			.cra_flags = CRYPTO_ALG_NEED_FALLBACK
3033		 },
3034		 .setkey = aead_gcm_ccm_setkey,
3035		 .ivsize = GCM_AES_IV_SIZE,
3036		.maxauthsize = AES_BLOCK_SIZE,
3037	 },
3038	 .cipher_info = {
3039			 .alg = CIPHER_ALG_AES,
3040			 .mode = CIPHER_MODE_GCM,
3041			 },
3042	 .auth_info = {
3043		       .alg = HASH_ALG_AES,
3044		       .mode = HASH_MODE_GCM,
3045		       },
3046	 .auth_first = 0,
3047	 },
3048	{
3049	 .type = CRYPTO_ALG_TYPE_AEAD,
3050	 .alg.aead = {
3051		 .base = {
3052			.cra_name = "ccm(aes)",
3053			.cra_driver_name = "ccm-aes-iproc",
3054			.cra_blocksize = AES_BLOCK_SIZE,
3055			.cra_flags = CRYPTO_ALG_NEED_FALLBACK
3056		 },
3057		 .setkey = aead_gcm_ccm_setkey,
3058		 .ivsize = CCM_AES_IV_SIZE,
3059		.maxauthsize = AES_BLOCK_SIZE,
3060	 },
3061	 .cipher_info = {
3062			 .alg = CIPHER_ALG_AES,
3063			 .mode = CIPHER_MODE_CCM,
3064			 },
3065	 .auth_info = {
3066		       .alg = HASH_ALG_AES,
3067		       .mode = HASH_MODE_CCM,
3068		       },
3069	 .auth_first = 0,
3070	 },
3071	{
3072	 .type = CRYPTO_ALG_TYPE_AEAD,
3073	 .alg.aead = {
3074		 .base = {
3075			.cra_name = "rfc4106(gcm(aes))",
3076			.cra_driver_name = "gcm-aes-esp-iproc",
3077			.cra_blocksize = AES_BLOCK_SIZE,
3078			.cra_flags = CRYPTO_ALG_NEED_FALLBACK
3079		 },
3080		 .setkey = aead_gcm_esp_setkey,
3081		 .ivsize = GCM_RFC4106_IV_SIZE,
3082		 .maxauthsize = AES_BLOCK_SIZE,
3083	 },
3084	 .cipher_info = {
3085			 .alg = CIPHER_ALG_AES,
3086			 .mode = CIPHER_MODE_GCM,
3087			 },
3088	 .auth_info = {
3089		       .alg = HASH_ALG_AES,
3090		       .mode = HASH_MODE_GCM,
3091		       },
3092	 .auth_first = 0,
3093	 },
3094	{
3095	 .type = CRYPTO_ALG_TYPE_AEAD,
3096	 .alg.aead = {
3097		 .base = {
3098			.cra_name = "rfc4309(ccm(aes))",
3099			.cra_driver_name = "ccm-aes-esp-iproc",
3100			.cra_blocksize = AES_BLOCK_SIZE,
3101			.cra_flags = CRYPTO_ALG_NEED_FALLBACK
3102		 },
3103		 .setkey = aead_ccm_esp_setkey,
3104		 .ivsize = CCM_AES_IV_SIZE,
3105		 .maxauthsize = AES_BLOCK_SIZE,
3106	 },
3107	 .cipher_info = {
3108			 .alg = CIPHER_ALG_AES,
3109			 .mode = CIPHER_MODE_CCM,
3110			 },
3111	 .auth_info = {
3112		       .alg = HASH_ALG_AES,
3113		       .mode = HASH_MODE_CCM,
3114		       },
3115	 .auth_first = 0,
3116	 },
3117	{
3118	 .type = CRYPTO_ALG_TYPE_AEAD,
3119	 .alg.aead = {
3120		 .base = {
3121			.cra_name = "rfc4543(gcm(aes))",
3122			.cra_driver_name = "gmac-aes-esp-iproc",
3123			.cra_blocksize = AES_BLOCK_SIZE,
3124			.cra_flags = CRYPTO_ALG_NEED_FALLBACK
3125		 },
3126		 .setkey = rfc4543_gcm_esp_setkey,
3127		 .ivsize = GCM_RFC4106_IV_SIZE,
3128		 .maxauthsize = AES_BLOCK_SIZE,
3129	 },
3130	 .cipher_info = {
3131			 .alg = CIPHER_ALG_AES,
3132			 .mode = CIPHER_MODE_GCM,
3133			 },
3134	 .auth_info = {
3135		       .alg = HASH_ALG_AES,
3136		       .mode = HASH_MODE_GCM,
3137		       },
3138	 .auth_first = 0,
3139	 },
3140	{
3141	 .type = CRYPTO_ALG_TYPE_AEAD,
3142	 .alg.aead = {
3143		 .base = {
3144			.cra_name = "authenc(hmac(md5),cbc(aes))",
3145			.cra_driver_name = "authenc-hmac-md5-cbc-aes-iproc",
3146			.cra_blocksize = AES_BLOCK_SIZE,
3147			.cra_flags = CRYPTO_ALG_NEED_FALLBACK |
3148				     CRYPTO_ALG_ASYNC |
3149				     CRYPTO_ALG_ALLOCATES_MEMORY
3150		 },
3151		 .setkey = aead_authenc_setkey,
3152		.ivsize = AES_BLOCK_SIZE,
3153		.maxauthsize = MD5_DIGEST_SIZE,
3154	 },
3155	 .cipher_info = {
3156			 .alg = CIPHER_ALG_AES,
3157			 .mode = CIPHER_MODE_CBC,
3158			 },
3159	 .auth_info = {
3160		       .alg = HASH_ALG_MD5,
3161		       .mode = HASH_MODE_HMAC,
3162		       },
3163	 .auth_first = 0,
3164	 },
3165	{
3166	 .type = CRYPTO_ALG_TYPE_AEAD,
3167	 .alg.aead = {
3168		 .base = {
3169			.cra_name = "authenc(hmac(sha1),cbc(aes))",
3170			.cra_driver_name = "authenc-hmac-sha1-cbc-aes-iproc",
3171			.cra_blocksize = AES_BLOCK_SIZE,
3172			.cra_flags = CRYPTO_ALG_NEED_FALLBACK |
3173				     CRYPTO_ALG_ASYNC |
3174				     CRYPTO_ALG_ALLOCATES_MEMORY
3175		 },
3176		 .setkey = aead_authenc_setkey,
3177		 .ivsize = AES_BLOCK_SIZE,
3178		 .maxauthsize = SHA1_DIGEST_SIZE,
3179	 },
3180	 .cipher_info = {
3181			 .alg = CIPHER_ALG_AES,
3182			 .mode = CIPHER_MODE_CBC,
3183			 },
3184	 .auth_info = {
3185		       .alg = HASH_ALG_SHA1,
3186		       .mode = HASH_MODE_HMAC,
3187		       },
3188	 .auth_first = 0,
3189	 },
3190	{
3191	 .type = CRYPTO_ALG_TYPE_AEAD,
3192	 .alg.aead = {
3193		 .base = {
3194			.cra_name = "authenc(hmac(sha256),cbc(aes))",
3195			.cra_driver_name = "authenc-hmac-sha256-cbc-aes-iproc",
3196			.cra_blocksize = AES_BLOCK_SIZE,
3197			.cra_flags = CRYPTO_ALG_NEED_FALLBACK |
3198				     CRYPTO_ALG_ASYNC |
3199				     CRYPTO_ALG_ALLOCATES_MEMORY
3200		 },
3201		 .setkey = aead_authenc_setkey,
3202		 .ivsize = AES_BLOCK_SIZE,
3203		 .maxauthsize = SHA256_DIGEST_SIZE,
3204	 },
3205	 .cipher_info = {
3206			 .alg = CIPHER_ALG_AES,
3207			 .mode = CIPHER_MODE_CBC,
3208			 },
3209	 .auth_info = {
3210		       .alg = HASH_ALG_SHA256,
3211		       .mode = HASH_MODE_HMAC,
3212		       },
3213	 .auth_first = 0,
3214	 },
3215	{
3216	 .type = CRYPTO_ALG_TYPE_AEAD,
3217	 .alg.aead = {
3218		 .base = {
3219			.cra_name = "authenc(hmac(md5),cbc(des))",
3220			.cra_driver_name = "authenc-hmac-md5-cbc-des-iproc",
3221			.cra_blocksize = DES_BLOCK_SIZE,
3222			.cra_flags = CRYPTO_ALG_NEED_FALLBACK |
3223				     CRYPTO_ALG_ASYNC |
3224				     CRYPTO_ALG_ALLOCATES_MEMORY
3225		 },
3226		 .setkey = aead_authenc_setkey,
3227		 .ivsize = DES_BLOCK_SIZE,
3228		 .maxauthsize = MD5_DIGEST_SIZE,
3229	 },
3230	 .cipher_info = {
3231			 .alg = CIPHER_ALG_DES,
3232			 .mode = CIPHER_MODE_CBC,
3233			 },
3234	 .auth_info = {
3235		       .alg = HASH_ALG_MD5,
3236		       .mode = HASH_MODE_HMAC,
3237		       },
3238	 .auth_first = 0,
3239	 },
3240	{
3241	 .type = CRYPTO_ALG_TYPE_AEAD,
3242	 .alg.aead = {
3243		 .base = {
3244			.cra_name = "authenc(hmac(sha1),cbc(des))",
3245			.cra_driver_name = "authenc-hmac-sha1-cbc-des-iproc",
3246			.cra_blocksize = DES_BLOCK_SIZE,
3247			.cra_flags = CRYPTO_ALG_NEED_FALLBACK |
3248				     CRYPTO_ALG_ASYNC |
3249				     CRYPTO_ALG_ALLOCATES_MEMORY
3250		 },
3251		 .setkey = aead_authenc_setkey,
3252		 .ivsize = DES_BLOCK_SIZE,
3253		 .maxauthsize = SHA1_DIGEST_SIZE,
3254	 },
3255	 .cipher_info = {
3256			 .alg = CIPHER_ALG_DES,
3257			 .mode = CIPHER_MODE_CBC,
3258			 },
3259	 .auth_info = {
3260		       .alg = HASH_ALG_SHA1,
3261		       .mode = HASH_MODE_HMAC,
3262		       },
3263	 .auth_first = 0,
3264	 },
3265	{
3266	 .type = CRYPTO_ALG_TYPE_AEAD,
3267	 .alg.aead = {
3268		 .base = {
3269			.cra_name = "authenc(hmac(sha224),cbc(des))",
3270			.cra_driver_name = "authenc-hmac-sha224-cbc-des-iproc",
3271			.cra_blocksize = DES_BLOCK_SIZE,
3272			.cra_flags = CRYPTO_ALG_NEED_FALLBACK |
3273				     CRYPTO_ALG_ASYNC |
3274				     CRYPTO_ALG_ALLOCATES_MEMORY
3275		 },
3276		 .setkey = aead_authenc_setkey,
3277		 .ivsize = DES_BLOCK_SIZE,
3278		 .maxauthsize = SHA224_DIGEST_SIZE,
3279	 },
3280	 .cipher_info = {
3281			 .alg = CIPHER_ALG_DES,
3282			 .mode = CIPHER_MODE_CBC,
3283			 },
3284	 .auth_info = {
3285		       .alg = HASH_ALG_SHA224,
3286		       .mode = HASH_MODE_HMAC,
3287		       },
3288	 .auth_first = 0,
3289	 },
3290	{
3291	 .type = CRYPTO_ALG_TYPE_AEAD,
3292	 .alg.aead = {
3293		 .base = {
3294			.cra_name = "authenc(hmac(sha256),cbc(des))",
3295			.cra_driver_name = "authenc-hmac-sha256-cbc-des-iproc",
3296			.cra_blocksize = DES_BLOCK_SIZE,
3297			.cra_flags = CRYPTO_ALG_NEED_FALLBACK |
3298				     CRYPTO_ALG_ASYNC |
3299				     CRYPTO_ALG_ALLOCATES_MEMORY
3300		 },
3301		 .setkey = aead_authenc_setkey,
3302		 .ivsize = DES_BLOCK_SIZE,
3303		 .maxauthsize = SHA256_DIGEST_SIZE,
3304	 },
3305	 .cipher_info = {
3306			 .alg = CIPHER_ALG_DES,
3307			 .mode = CIPHER_MODE_CBC,
3308			 },
3309	 .auth_info = {
3310		       .alg = HASH_ALG_SHA256,
3311		       .mode = HASH_MODE_HMAC,
3312		       },
3313	 .auth_first = 0,
3314	 },
3315	{
3316	 .type = CRYPTO_ALG_TYPE_AEAD,
3317	 .alg.aead = {
3318		 .base = {
3319			.cra_name = "authenc(hmac(sha384),cbc(des))",
3320			.cra_driver_name = "authenc-hmac-sha384-cbc-des-iproc",
3321			.cra_blocksize = DES_BLOCK_SIZE,
3322			.cra_flags = CRYPTO_ALG_NEED_FALLBACK |
3323				     CRYPTO_ALG_ASYNC |
3324				     CRYPTO_ALG_ALLOCATES_MEMORY
3325		 },
3326		 .setkey = aead_authenc_setkey,
3327		 .ivsize = DES_BLOCK_SIZE,
3328		 .maxauthsize = SHA384_DIGEST_SIZE,
3329	 },
3330	 .cipher_info = {
3331			 .alg = CIPHER_ALG_DES,
3332			 .mode = CIPHER_MODE_CBC,
3333			 },
3334	 .auth_info = {
3335		       .alg = HASH_ALG_SHA384,
3336		       .mode = HASH_MODE_HMAC,
3337		       },
3338	 .auth_first = 0,
3339	 },
3340	{
3341	 .type = CRYPTO_ALG_TYPE_AEAD,
3342	 .alg.aead = {
3343		 .base = {
3344			.cra_name = "authenc(hmac(sha512),cbc(des))",
3345			.cra_driver_name = "authenc-hmac-sha512-cbc-des-iproc",
3346			.cra_blocksize = DES_BLOCK_SIZE,
3347			.cra_flags = CRYPTO_ALG_NEED_FALLBACK |
3348				     CRYPTO_ALG_ASYNC |
3349				     CRYPTO_ALG_ALLOCATES_MEMORY
3350		 },
3351		 .setkey = aead_authenc_setkey,
3352		 .ivsize = DES_BLOCK_SIZE,
3353		 .maxauthsize = SHA512_DIGEST_SIZE,
3354	 },
3355	 .cipher_info = {
3356			 .alg = CIPHER_ALG_DES,
3357			 .mode = CIPHER_MODE_CBC,
3358			 },
3359	 .auth_info = {
3360		       .alg = HASH_ALG_SHA512,
3361		       .mode = HASH_MODE_HMAC,
3362		       },
3363	 .auth_first = 0,
3364	 },
3365	{
3366	 .type = CRYPTO_ALG_TYPE_AEAD,
3367	 .alg.aead = {
3368		 .base = {
3369			.cra_name = "authenc(hmac(md5),cbc(des3_ede))",
3370			.cra_driver_name = "authenc-hmac-md5-cbc-des3-iproc",
3371			.cra_blocksize = DES3_EDE_BLOCK_SIZE,
3372			.cra_flags = CRYPTO_ALG_NEED_FALLBACK |
3373				     CRYPTO_ALG_ASYNC |
3374				     CRYPTO_ALG_ALLOCATES_MEMORY
3375		 },
3376		 .setkey = aead_authenc_setkey,
3377		 .ivsize = DES3_EDE_BLOCK_SIZE,
3378		 .maxauthsize = MD5_DIGEST_SIZE,
3379	 },
3380	 .cipher_info = {
3381			 .alg = CIPHER_ALG_3DES,
3382			 .mode = CIPHER_MODE_CBC,
3383			 },
3384	 .auth_info = {
3385		       .alg = HASH_ALG_MD5,
3386		       .mode = HASH_MODE_HMAC,
3387		       },
3388	 .auth_first = 0,
3389	 },
3390	{
3391	 .type = CRYPTO_ALG_TYPE_AEAD,
3392	 .alg.aead = {
3393		 .base = {
3394			.cra_name = "authenc(hmac(sha1),cbc(des3_ede))",
3395			.cra_driver_name = "authenc-hmac-sha1-cbc-des3-iproc",
3396			.cra_blocksize = DES3_EDE_BLOCK_SIZE,
3397			.cra_flags = CRYPTO_ALG_NEED_FALLBACK |
3398				     CRYPTO_ALG_ASYNC |
3399				     CRYPTO_ALG_ALLOCATES_MEMORY
3400		 },
3401		 .setkey = aead_authenc_setkey,
3402		 .ivsize = DES3_EDE_BLOCK_SIZE,
3403		 .maxauthsize = SHA1_DIGEST_SIZE,
3404	 },
3405	 .cipher_info = {
3406			 .alg = CIPHER_ALG_3DES,
3407			 .mode = CIPHER_MODE_CBC,
3408			 },
3409	 .auth_info = {
3410		       .alg = HASH_ALG_SHA1,
3411		       .mode = HASH_MODE_HMAC,
3412		       },
3413	 .auth_first = 0,
3414	 },
3415	{
3416	 .type = CRYPTO_ALG_TYPE_AEAD,
3417	 .alg.aead = {
3418		 .base = {
3419			.cra_name = "authenc(hmac(sha224),cbc(des3_ede))",
3420			.cra_driver_name = "authenc-hmac-sha224-cbc-des3-iproc",
3421			.cra_blocksize = DES3_EDE_BLOCK_SIZE,
3422			.cra_flags = CRYPTO_ALG_NEED_FALLBACK |
3423				     CRYPTO_ALG_ASYNC |
3424				     CRYPTO_ALG_ALLOCATES_MEMORY
3425		 },
3426		 .setkey = aead_authenc_setkey,
3427		 .ivsize = DES3_EDE_BLOCK_SIZE,
3428		 .maxauthsize = SHA224_DIGEST_SIZE,
3429	 },
3430	 .cipher_info = {
3431			 .alg = CIPHER_ALG_3DES,
3432			 .mode = CIPHER_MODE_CBC,
3433			 },
3434	 .auth_info = {
3435		       .alg = HASH_ALG_SHA224,
3436		       .mode = HASH_MODE_HMAC,
3437		       },
3438	 .auth_first = 0,
3439	 },
3440	{
3441	 .type = CRYPTO_ALG_TYPE_AEAD,
3442	 .alg.aead = {
3443		 .base = {
3444			.cra_name = "authenc(hmac(sha256),cbc(des3_ede))",
3445			.cra_driver_name = "authenc-hmac-sha256-cbc-des3-iproc",
3446			.cra_blocksize = DES3_EDE_BLOCK_SIZE,
3447			.cra_flags = CRYPTO_ALG_NEED_FALLBACK |
3448				     CRYPTO_ALG_ASYNC |
3449				     CRYPTO_ALG_ALLOCATES_MEMORY
3450		 },
3451		 .setkey = aead_authenc_setkey,
3452		 .ivsize = DES3_EDE_BLOCK_SIZE,
3453		 .maxauthsize = SHA256_DIGEST_SIZE,
3454	 },
3455	 .cipher_info = {
3456			 .alg = CIPHER_ALG_3DES,
3457			 .mode = CIPHER_MODE_CBC,
3458			 },
3459	 .auth_info = {
3460		       .alg = HASH_ALG_SHA256,
3461		       .mode = HASH_MODE_HMAC,
3462		       },
3463	 .auth_first = 0,
3464	 },
3465	{
3466	 .type = CRYPTO_ALG_TYPE_AEAD,
3467	 .alg.aead = {
3468		 .base = {
3469			.cra_name = "authenc(hmac(sha384),cbc(des3_ede))",
3470			.cra_driver_name = "authenc-hmac-sha384-cbc-des3-iproc",
3471			.cra_blocksize = DES3_EDE_BLOCK_SIZE,
3472			.cra_flags = CRYPTO_ALG_NEED_FALLBACK |
3473				     CRYPTO_ALG_ASYNC |
3474				     CRYPTO_ALG_ALLOCATES_MEMORY
3475		 },
3476		 .setkey = aead_authenc_setkey,
3477		 .ivsize = DES3_EDE_BLOCK_SIZE,
3478		 .maxauthsize = SHA384_DIGEST_SIZE,
3479	 },
3480	 .cipher_info = {
3481			 .alg = CIPHER_ALG_3DES,
3482			 .mode = CIPHER_MODE_CBC,
3483			 },
3484	 .auth_info = {
3485		       .alg = HASH_ALG_SHA384,
3486		       .mode = HASH_MODE_HMAC,
3487		       },
3488	 .auth_first = 0,
3489	 },
3490	{
3491	 .type = CRYPTO_ALG_TYPE_AEAD,
3492	 .alg.aead = {
3493		 .base = {
3494			.cra_name = "authenc(hmac(sha512),cbc(des3_ede))",
3495			.cra_driver_name = "authenc-hmac-sha512-cbc-des3-iproc",
3496			.cra_blocksize = DES3_EDE_BLOCK_SIZE,
3497			.cra_flags = CRYPTO_ALG_NEED_FALLBACK |
3498				     CRYPTO_ALG_ASYNC |
3499				     CRYPTO_ALG_ALLOCATES_MEMORY
3500		 },
3501		 .setkey = aead_authenc_setkey,
3502		 .ivsize = DES3_EDE_BLOCK_SIZE,
3503		 .maxauthsize = SHA512_DIGEST_SIZE,
3504	 },
3505	 .cipher_info = {
3506			 .alg = CIPHER_ALG_3DES,
3507			 .mode = CIPHER_MODE_CBC,
3508			 },
3509	 .auth_info = {
3510		       .alg = HASH_ALG_SHA512,
3511		       .mode = HASH_MODE_HMAC,
3512		       },
3513	 .auth_first = 0,
3514	 },
3515
3516/* SKCIPHER algorithms. */
3517	{
3518	 .type = CRYPTO_ALG_TYPE_SKCIPHER,
3519	 .alg.skcipher = {
3520			.base.cra_name = "cbc(des)",
3521			.base.cra_driver_name = "cbc-des-iproc",
3522			.base.cra_blocksize = DES_BLOCK_SIZE,
3523			.min_keysize = DES_KEY_SIZE,
3524			.max_keysize = DES_KEY_SIZE,
3525			.ivsize = DES_BLOCK_SIZE,
3526			},
3527	 .cipher_info = {
3528			 .alg = CIPHER_ALG_DES,
3529			 .mode = CIPHER_MODE_CBC,
3530			 },
3531	 .auth_info = {
3532		       .alg = HASH_ALG_NONE,
3533		       .mode = HASH_MODE_NONE,
3534		       },
3535	 },
3536	{
3537	 .type = CRYPTO_ALG_TYPE_SKCIPHER,
3538	 .alg.skcipher = {
3539			.base.cra_name = "ecb(des)",
3540			.base.cra_driver_name = "ecb-des-iproc",
3541			.base.cra_blocksize = DES_BLOCK_SIZE,
3542			.min_keysize = DES_KEY_SIZE,
3543			.max_keysize = DES_KEY_SIZE,
3544			.ivsize = 0,
3545			},
3546	 .cipher_info = {
3547			 .alg = CIPHER_ALG_DES,
3548			 .mode = CIPHER_MODE_ECB,
3549			 },
3550	 .auth_info = {
3551		       .alg = HASH_ALG_NONE,
3552		       .mode = HASH_MODE_NONE,
3553		       },
3554	 },
3555	{
3556	 .type = CRYPTO_ALG_TYPE_SKCIPHER,
3557	 .alg.skcipher = {
3558			.base.cra_name = "cbc(des3_ede)",
3559			.base.cra_driver_name = "cbc-des3-iproc",
3560			.base.cra_blocksize = DES3_EDE_BLOCK_SIZE,
3561			.min_keysize = DES3_EDE_KEY_SIZE,
3562			.max_keysize = DES3_EDE_KEY_SIZE,
3563			.ivsize = DES3_EDE_BLOCK_SIZE,
3564			},
3565	 .cipher_info = {
3566			 .alg = CIPHER_ALG_3DES,
3567			 .mode = CIPHER_MODE_CBC,
3568			 },
3569	 .auth_info = {
3570		       .alg = HASH_ALG_NONE,
3571		       .mode = HASH_MODE_NONE,
3572		       },
3573	 },
3574	{
3575	 .type = CRYPTO_ALG_TYPE_SKCIPHER,
3576	 .alg.skcipher = {
3577			.base.cra_name = "ecb(des3_ede)",
3578			.base.cra_driver_name = "ecb-des3-iproc",
3579			.base.cra_blocksize = DES3_EDE_BLOCK_SIZE,
3580			.min_keysize = DES3_EDE_KEY_SIZE,
3581			.max_keysize = DES3_EDE_KEY_SIZE,
3582			.ivsize = 0,
3583			},
3584	 .cipher_info = {
3585			 .alg = CIPHER_ALG_3DES,
3586			 .mode = CIPHER_MODE_ECB,
3587			 },
3588	 .auth_info = {
3589		       .alg = HASH_ALG_NONE,
3590		       .mode = HASH_MODE_NONE,
3591		       },
3592	 },
3593	{
3594	 .type = CRYPTO_ALG_TYPE_SKCIPHER,
3595	 .alg.skcipher = {
3596			.base.cra_name = "cbc(aes)",
3597			.base.cra_driver_name = "cbc-aes-iproc",
3598			.base.cra_blocksize = AES_BLOCK_SIZE,
3599			.min_keysize = AES_MIN_KEY_SIZE,
3600			.max_keysize = AES_MAX_KEY_SIZE,
3601			.ivsize = AES_BLOCK_SIZE,
3602			},
3603	 .cipher_info = {
3604			 .alg = CIPHER_ALG_AES,
3605			 .mode = CIPHER_MODE_CBC,
3606			 },
3607	 .auth_info = {
3608		       .alg = HASH_ALG_NONE,
3609		       .mode = HASH_MODE_NONE,
3610		       },
3611	 },
3612	{
3613	 .type = CRYPTO_ALG_TYPE_SKCIPHER,
3614	 .alg.skcipher = {
3615			.base.cra_name = "ecb(aes)",
3616			.base.cra_driver_name = "ecb-aes-iproc",
3617			.base.cra_blocksize = AES_BLOCK_SIZE,
3618			.min_keysize = AES_MIN_KEY_SIZE,
3619			.max_keysize = AES_MAX_KEY_SIZE,
3620			.ivsize = 0,
3621			},
3622	 .cipher_info = {
3623			 .alg = CIPHER_ALG_AES,
3624			 .mode = CIPHER_MODE_ECB,
3625			 },
3626	 .auth_info = {
3627		       .alg = HASH_ALG_NONE,
3628		       .mode = HASH_MODE_NONE,
3629		       },
3630	 },
3631	{
3632	 .type = CRYPTO_ALG_TYPE_SKCIPHER,
3633	 .alg.skcipher = {
3634			.base.cra_name = "ctr(aes)",
3635			.base.cra_driver_name = "ctr-aes-iproc",
3636			.base.cra_blocksize = AES_BLOCK_SIZE,
3637			.min_keysize = AES_MIN_KEY_SIZE,
3638			.max_keysize = AES_MAX_KEY_SIZE,
3639			.ivsize = AES_BLOCK_SIZE,
3640			},
3641	 .cipher_info = {
3642			 .alg = CIPHER_ALG_AES,
3643			 .mode = CIPHER_MODE_CTR,
3644			 },
3645	 .auth_info = {
3646		       .alg = HASH_ALG_NONE,
3647		       .mode = HASH_MODE_NONE,
3648		       },
3649	 },
3650{
3651	 .type = CRYPTO_ALG_TYPE_SKCIPHER,
3652	 .alg.skcipher = {
3653			.base.cra_name = "xts(aes)",
3654			.base.cra_driver_name = "xts-aes-iproc",
3655			.base.cra_blocksize = AES_BLOCK_SIZE,
3656			.min_keysize = 2 * AES_MIN_KEY_SIZE,
3657			.max_keysize = 2 * AES_MAX_KEY_SIZE,
3658			.ivsize = AES_BLOCK_SIZE,
3659			},
3660	 .cipher_info = {
3661			 .alg = CIPHER_ALG_AES,
3662			 .mode = CIPHER_MODE_XTS,
3663			 },
3664	 .auth_info = {
3665		       .alg = HASH_ALG_NONE,
3666		       .mode = HASH_MODE_NONE,
3667		       },
3668	 },
3669
3670/* AHASH algorithms. */
3671	{
3672	 .type = CRYPTO_ALG_TYPE_AHASH,
3673	 .alg.hash = {
3674		      .halg.digestsize = MD5_DIGEST_SIZE,
3675		      .halg.base = {
3676				    .cra_name = "md5",
3677				    .cra_driver_name = "md5-iproc",
3678				    .cra_blocksize = MD5_BLOCK_WORDS * 4,
3679				    .cra_flags = CRYPTO_ALG_ASYNC |
3680						 CRYPTO_ALG_ALLOCATES_MEMORY,
3681				}
3682		      },
3683	 .cipher_info = {
3684			 .alg = CIPHER_ALG_NONE,
3685			 .mode = CIPHER_MODE_NONE,
3686			 },
3687	 .auth_info = {
3688		       .alg = HASH_ALG_MD5,
3689		       .mode = HASH_MODE_HASH,
3690		       },
3691	 },
3692	{
3693	 .type = CRYPTO_ALG_TYPE_AHASH,
3694	 .alg.hash = {
3695		      .halg.digestsize = MD5_DIGEST_SIZE,
3696		      .halg.base = {
3697				    .cra_name = "hmac(md5)",
3698				    .cra_driver_name = "hmac-md5-iproc",
3699				    .cra_blocksize = MD5_BLOCK_WORDS * 4,
3700				}
3701		      },
3702	 .cipher_info = {
3703			 .alg = CIPHER_ALG_NONE,
3704			 .mode = CIPHER_MODE_NONE,
3705			 },
3706	 .auth_info = {
3707		       .alg = HASH_ALG_MD5,
3708		       .mode = HASH_MODE_HMAC,
3709		       },
3710	 },
3711	{.type = CRYPTO_ALG_TYPE_AHASH,
3712	 .alg.hash = {
3713		      .halg.digestsize = SHA1_DIGEST_SIZE,
3714		      .halg.base = {
3715				    .cra_name = "sha1",
3716				    .cra_driver_name = "sha1-iproc",
3717				    .cra_blocksize = SHA1_BLOCK_SIZE,
3718				}
3719		      },
3720	 .cipher_info = {
3721			 .alg = CIPHER_ALG_NONE,
3722			 .mode = CIPHER_MODE_NONE,
3723			 },
3724	 .auth_info = {
3725		       .alg = HASH_ALG_SHA1,
3726		       .mode = HASH_MODE_HASH,
3727		       },
3728	 },
3729	{.type = CRYPTO_ALG_TYPE_AHASH,
3730	 .alg.hash = {
3731		      .halg.digestsize = SHA1_DIGEST_SIZE,
3732		      .halg.base = {
3733				    .cra_name = "hmac(sha1)",
3734				    .cra_driver_name = "hmac-sha1-iproc",
3735				    .cra_blocksize = SHA1_BLOCK_SIZE,
3736				}
3737		      },
3738	 .cipher_info = {
3739			 .alg = CIPHER_ALG_NONE,
3740			 .mode = CIPHER_MODE_NONE,
3741			 },
3742	 .auth_info = {
3743		       .alg = HASH_ALG_SHA1,
3744		       .mode = HASH_MODE_HMAC,
3745		       },
3746	 },
3747	{.type = CRYPTO_ALG_TYPE_AHASH,
3748	 .alg.hash = {
3749			.halg.digestsize = SHA224_DIGEST_SIZE,
3750			.halg.base = {
3751				    .cra_name = "sha224",
3752				    .cra_driver_name = "sha224-iproc",
3753				    .cra_blocksize = SHA224_BLOCK_SIZE,
3754			}
3755		      },
3756	 .cipher_info = {
3757			 .alg = CIPHER_ALG_NONE,
3758			 .mode = CIPHER_MODE_NONE,
3759			 },
3760	 .auth_info = {
3761		       .alg = HASH_ALG_SHA224,
3762		       .mode = HASH_MODE_HASH,
3763		       },
3764	 },
3765	{.type = CRYPTO_ALG_TYPE_AHASH,
3766	 .alg.hash = {
3767		      .halg.digestsize = SHA224_DIGEST_SIZE,
3768		      .halg.base = {
3769				    .cra_name = "hmac(sha224)",
3770				    .cra_driver_name = "hmac-sha224-iproc",
3771				    .cra_blocksize = SHA224_BLOCK_SIZE,
3772				}
3773		      },
3774	 .cipher_info = {
3775			 .alg = CIPHER_ALG_NONE,
3776			 .mode = CIPHER_MODE_NONE,
3777			 },
3778	 .auth_info = {
3779		       .alg = HASH_ALG_SHA224,
3780		       .mode = HASH_MODE_HMAC,
3781		       },
3782	 },
3783	{.type = CRYPTO_ALG_TYPE_AHASH,
3784	 .alg.hash = {
3785		      .halg.digestsize = SHA256_DIGEST_SIZE,
3786		      .halg.base = {
3787				    .cra_name = "sha256",
3788				    .cra_driver_name = "sha256-iproc",
3789				    .cra_blocksize = SHA256_BLOCK_SIZE,
3790				}
3791		      },
3792	 .cipher_info = {
3793			 .alg = CIPHER_ALG_NONE,
3794			 .mode = CIPHER_MODE_NONE,
3795			 },
3796	 .auth_info = {
3797		       .alg = HASH_ALG_SHA256,
3798		       .mode = HASH_MODE_HASH,
3799		       },
3800	 },
3801	{.type = CRYPTO_ALG_TYPE_AHASH,
3802	 .alg.hash = {
3803		      .halg.digestsize = SHA256_DIGEST_SIZE,
3804		      .halg.base = {
3805				    .cra_name = "hmac(sha256)",
3806				    .cra_driver_name = "hmac-sha256-iproc",
3807				    .cra_blocksize = SHA256_BLOCK_SIZE,
3808				}
3809		      },
3810	 .cipher_info = {
3811			 .alg = CIPHER_ALG_NONE,
3812			 .mode = CIPHER_MODE_NONE,
3813			 },
3814	 .auth_info = {
3815		       .alg = HASH_ALG_SHA256,
3816		       .mode = HASH_MODE_HMAC,
3817		       },
3818	 },
3819	{
3820	.type = CRYPTO_ALG_TYPE_AHASH,
3821	 .alg.hash = {
3822		      .halg.digestsize = SHA384_DIGEST_SIZE,
3823		      .halg.base = {
3824				    .cra_name = "sha384",
3825				    .cra_driver_name = "sha384-iproc",
3826				    .cra_blocksize = SHA384_BLOCK_SIZE,
3827				}
3828		      },
3829	 .cipher_info = {
3830			 .alg = CIPHER_ALG_NONE,
3831			 .mode = CIPHER_MODE_NONE,
3832			 },
3833	 .auth_info = {
3834		       .alg = HASH_ALG_SHA384,
3835		       .mode = HASH_MODE_HASH,
3836		       },
3837	 },
3838	{
3839	 .type = CRYPTO_ALG_TYPE_AHASH,
3840	 .alg.hash = {
3841		      .halg.digestsize = SHA384_DIGEST_SIZE,
3842		      .halg.base = {
3843				    .cra_name = "hmac(sha384)",
3844				    .cra_driver_name = "hmac-sha384-iproc",
3845				    .cra_blocksize = SHA384_BLOCK_SIZE,
3846				}
3847		      },
3848	 .cipher_info = {
3849			 .alg = CIPHER_ALG_NONE,
3850			 .mode = CIPHER_MODE_NONE,
3851			 },
3852	 .auth_info = {
3853		       .alg = HASH_ALG_SHA384,
3854		       .mode = HASH_MODE_HMAC,
3855		       },
3856	 },
3857	{
3858	 .type = CRYPTO_ALG_TYPE_AHASH,
3859	 .alg.hash = {
3860		      .halg.digestsize = SHA512_DIGEST_SIZE,
3861		      .halg.base = {
3862				    .cra_name = "sha512",
3863				    .cra_driver_name = "sha512-iproc",
3864				    .cra_blocksize = SHA512_BLOCK_SIZE,
3865				}
3866		      },
3867	 .cipher_info = {
3868			 .alg = CIPHER_ALG_NONE,
3869			 .mode = CIPHER_MODE_NONE,
3870			 },
3871	 .auth_info = {
3872		       .alg = HASH_ALG_SHA512,
3873		       .mode = HASH_MODE_HASH,
3874		       },
3875	 },
3876	{
3877	 .type = CRYPTO_ALG_TYPE_AHASH,
3878	 .alg.hash = {
3879		      .halg.digestsize = SHA512_DIGEST_SIZE,
3880		      .halg.base = {
3881				    .cra_name = "hmac(sha512)",
3882				    .cra_driver_name = "hmac-sha512-iproc",
3883				    .cra_blocksize = SHA512_BLOCK_SIZE,
3884				}
3885		      },
3886	 .cipher_info = {
3887			 .alg = CIPHER_ALG_NONE,
3888			 .mode = CIPHER_MODE_NONE,
3889			 },
3890	 .auth_info = {
3891		       .alg = HASH_ALG_SHA512,
3892		       .mode = HASH_MODE_HMAC,
3893		       },
3894	 },
3895	{
3896	 .type = CRYPTO_ALG_TYPE_AHASH,
3897	 .alg.hash = {
3898		      .halg.digestsize = SHA3_224_DIGEST_SIZE,
3899		      .halg.base = {
3900				    .cra_name = "sha3-224",
3901				    .cra_driver_name = "sha3-224-iproc",
3902				    .cra_blocksize = SHA3_224_BLOCK_SIZE,
3903				}
3904		      },
3905	 .cipher_info = {
3906			 .alg = CIPHER_ALG_NONE,
3907			 .mode = CIPHER_MODE_NONE,
3908			 },
3909	 .auth_info = {
3910		       .alg = HASH_ALG_SHA3_224,
3911		       .mode = HASH_MODE_HASH,
3912		       },
3913	 },
3914	{
3915	 .type = CRYPTO_ALG_TYPE_AHASH,
3916	 .alg.hash = {
3917		      .halg.digestsize = SHA3_224_DIGEST_SIZE,
3918		      .halg.base = {
3919				    .cra_name = "hmac(sha3-224)",
3920				    .cra_driver_name = "hmac-sha3-224-iproc",
3921				    .cra_blocksize = SHA3_224_BLOCK_SIZE,
3922				}
3923		      },
3924	 .cipher_info = {
3925			 .alg = CIPHER_ALG_NONE,
3926			 .mode = CIPHER_MODE_NONE,
3927			 },
3928	 .auth_info = {
3929		       .alg = HASH_ALG_SHA3_224,
3930		       .mode = HASH_MODE_HMAC
3931		       },
3932	 },
3933	{
3934	 .type = CRYPTO_ALG_TYPE_AHASH,
3935	 .alg.hash = {
3936		      .halg.digestsize = SHA3_256_DIGEST_SIZE,
3937		      .halg.base = {
3938				    .cra_name = "sha3-256",
3939				    .cra_driver_name = "sha3-256-iproc",
3940				    .cra_blocksize = SHA3_256_BLOCK_SIZE,
3941				}
3942		      },
3943	 .cipher_info = {
3944			 .alg = CIPHER_ALG_NONE,
3945			 .mode = CIPHER_MODE_NONE,
3946			 },
3947	 .auth_info = {
3948		       .alg = HASH_ALG_SHA3_256,
3949		       .mode = HASH_MODE_HASH,
3950		       },
3951	 },
3952	{
3953	 .type = CRYPTO_ALG_TYPE_AHASH,
3954	 .alg.hash = {
3955		      .halg.digestsize = SHA3_256_DIGEST_SIZE,
3956		      .halg.base = {
3957				    .cra_name = "hmac(sha3-256)",
3958				    .cra_driver_name = "hmac-sha3-256-iproc",
3959				    .cra_blocksize = SHA3_256_BLOCK_SIZE,
3960				}
3961		      },
3962	 .cipher_info = {
3963			 .alg = CIPHER_ALG_NONE,
3964			 .mode = CIPHER_MODE_NONE,
3965			 },
3966	 .auth_info = {
3967		       .alg = HASH_ALG_SHA3_256,
3968		       .mode = HASH_MODE_HMAC,
3969		       },
3970	 },
3971	{
3972	 .type = CRYPTO_ALG_TYPE_AHASH,
3973	 .alg.hash = {
3974		      .halg.digestsize = SHA3_384_DIGEST_SIZE,
3975		      .halg.base = {
3976				    .cra_name = "sha3-384",
3977				    .cra_driver_name = "sha3-384-iproc",
3978				    .cra_blocksize = SHA3_224_BLOCK_SIZE,
3979				}
3980		      },
3981	 .cipher_info = {
3982			 .alg = CIPHER_ALG_NONE,
3983			 .mode = CIPHER_MODE_NONE,
3984			 },
3985	 .auth_info = {
3986		       .alg = HASH_ALG_SHA3_384,
3987		       .mode = HASH_MODE_HASH,
3988		       },
3989	 },
3990	{
3991	 .type = CRYPTO_ALG_TYPE_AHASH,
3992	 .alg.hash = {
3993		      .halg.digestsize = SHA3_384_DIGEST_SIZE,
3994		      .halg.base = {
3995				    .cra_name = "hmac(sha3-384)",
3996				    .cra_driver_name = "hmac-sha3-384-iproc",
3997				    .cra_blocksize = SHA3_384_BLOCK_SIZE,
3998				}
3999		      },
4000	 .cipher_info = {
4001			 .alg = CIPHER_ALG_NONE,
4002			 .mode = CIPHER_MODE_NONE,
4003			 },
4004	 .auth_info = {
4005		       .alg = HASH_ALG_SHA3_384,
4006		       .mode = HASH_MODE_HMAC,
4007		       },
4008	 },
4009	{
4010	 .type = CRYPTO_ALG_TYPE_AHASH,
4011	 .alg.hash = {
4012		      .halg.digestsize = SHA3_512_DIGEST_SIZE,
4013		      .halg.base = {
4014				    .cra_name = "sha3-512",
4015				    .cra_driver_name = "sha3-512-iproc",
4016				    .cra_blocksize = SHA3_512_BLOCK_SIZE,
4017				}
4018		      },
4019	 .cipher_info = {
4020			 .alg = CIPHER_ALG_NONE,
4021			 .mode = CIPHER_MODE_NONE,
4022			 },
4023	 .auth_info = {
4024		       .alg = HASH_ALG_SHA3_512,
4025		       .mode = HASH_MODE_HASH,
4026		       },
4027	 },
4028	{
4029	 .type = CRYPTO_ALG_TYPE_AHASH,
4030	 .alg.hash = {
4031		      .halg.digestsize = SHA3_512_DIGEST_SIZE,
4032		      .halg.base = {
4033				    .cra_name = "hmac(sha3-512)",
4034				    .cra_driver_name = "hmac-sha3-512-iproc",
4035				    .cra_blocksize = SHA3_512_BLOCK_SIZE,
4036				}
4037		      },
4038	 .cipher_info = {
4039			 .alg = CIPHER_ALG_NONE,
4040			 .mode = CIPHER_MODE_NONE,
4041			 },
4042	 .auth_info = {
4043		       .alg = HASH_ALG_SHA3_512,
4044		       .mode = HASH_MODE_HMAC,
4045		       },
4046	 },
4047	{
4048	 .type = CRYPTO_ALG_TYPE_AHASH,
4049	 .alg.hash = {
4050		      .halg.digestsize = AES_BLOCK_SIZE,
4051		      .halg.base = {
4052				    .cra_name = "xcbc(aes)",
4053				    .cra_driver_name = "xcbc-aes-iproc",
4054				    .cra_blocksize = AES_BLOCK_SIZE,
4055				}
4056		      },
4057	 .cipher_info = {
4058			 .alg = CIPHER_ALG_NONE,
4059			 .mode = CIPHER_MODE_NONE,
4060			 },
4061	 .auth_info = {
4062		       .alg = HASH_ALG_AES,
4063		       .mode = HASH_MODE_XCBC,
4064		       },
4065	 },
4066	{
4067	 .type = CRYPTO_ALG_TYPE_AHASH,
4068	 .alg.hash = {
4069		      .halg.digestsize = AES_BLOCK_SIZE,
4070		      .halg.base = {
4071				    .cra_name = "cmac(aes)",
4072				    .cra_driver_name = "cmac-aes-iproc",
4073				    .cra_blocksize = AES_BLOCK_SIZE,
4074				}
4075		      },
4076	 .cipher_info = {
4077			 .alg = CIPHER_ALG_NONE,
4078			 .mode = CIPHER_MODE_NONE,
4079			 },
4080	 .auth_info = {
4081		       .alg = HASH_ALG_AES,
4082		       .mode = HASH_MODE_CMAC,
4083		       },
4084	 },
4085};
4086
4087static int generic_cra_init(struct crypto_tfm *tfm,
4088			    struct iproc_alg_s *cipher_alg)
4089{
4090	struct spu_hw *spu = &iproc_priv.spu;
4091	struct iproc_ctx_s *ctx = crypto_tfm_ctx(tfm);
4092	unsigned int blocksize = crypto_tfm_alg_blocksize(tfm);
4093
4094	flow_log("%s()\n", __func__);
4095
4096	ctx->alg = cipher_alg;
4097	ctx->cipher = cipher_alg->cipher_info;
4098	ctx->auth = cipher_alg->auth_info;
4099	ctx->auth_first = cipher_alg->auth_first;
4100	ctx->max_payload = spu->spu_ctx_max_payload(ctx->cipher.alg,
4101						    ctx->cipher.mode,
4102						    blocksize);
4103	ctx->fallback_cipher = NULL;
4104
4105	ctx->enckeylen = 0;
4106	ctx->authkeylen = 0;
4107
4108	atomic_inc(&iproc_priv.stream_count);
4109	atomic_inc(&iproc_priv.session_count);
4110
4111	return 0;
4112}
4113
4114static int skcipher_init_tfm(struct crypto_skcipher *skcipher)
4115{
4116	struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher);
4117	struct skcipher_alg *alg = crypto_skcipher_alg(skcipher);
4118	struct iproc_alg_s *cipher_alg;
4119
4120	flow_log("%s()\n", __func__);
4121
4122	crypto_skcipher_set_reqsize(skcipher, sizeof(struct iproc_reqctx_s));
4123
4124	cipher_alg = container_of(alg, struct iproc_alg_s, alg.skcipher);
4125	return generic_cra_init(tfm, cipher_alg);
4126}
4127
4128static int ahash_cra_init(struct crypto_tfm *tfm)
4129{
4130	int err;
4131	struct crypto_alg *alg = tfm->__crt_alg;
4132	struct iproc_alg_s *cipher_alg;
4133
4134	cipher_alg = container_of(__crypto_ahash_alg(alg), struct iproc_alg_s,
4135				  alg.hash);
4136
4137	err = generic_cra_init(tfm, cipher_alg);
4138	flow_log("%s()\n", __func__);
4139
4140	/*
4141	 * export state size has to be < 512 bytes. So don't include msg bufs
4142	 * in state size.
4143	 */
4144	crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
4145				 sizeof(struct iproc_reqctx_s));
4146
4147	return err;
4148}
4149
4150static int aead_cra_init(struct crypto_aead *aead)
4151{
4152	unsigned int reqsize = sizeof(struct iproc_reqctx_s);
4153	struct crypto_tfm *tfm = crypto_aead_tfm(aead);
4154	struct iproc_ctx_s *ctx = crypto_tfm_ctx(tfm);
4155	struct crypto_alg *alg = tfm->__crt_alg;
4156	struct aead_alg *aalg = container_of(alg, struct aead_alg, base);
4157	struct iproc_alg_s *cipher_alg = container_of(aalg, struct iproc_alg_s,
4158						      alg.aead);
4159
4160	int err = generic_cra_init(tfm, cipher_alg);
4161
4162	flow_log("%s()\n", __func__);
4163
4164	ctx->is_esp = false;
4165	ctx->salt_len = 0;
4166	ctx->salt_offset = 0;
4167
4168	/* random first IV */
4169	get_random_bytes(ctx->iv, MAX_IV_SIZE);
4170	flow_dump("  iv: ", ctx->iv, MAX_IV_SIZE);
4171
4172	if (err)
4173		goto out;
4174
4175	if (!(alg->cra_flags & CRYPTO_ALG_NEED_FALLBACK))
4176		goto reqsize;
4177
4178	flow_log("%s() creating fallback cipher\n", __func__);
4179
4180	ctx->fallback_cipher = crypto_alloc_aead(alg->cra_name, 0,
4181						 CRYPTO_ALG_ASYNC |
4182						 CRYPTO_ALG_NEED_FALLBACK);
4183	if (IS_ERR(ctx->fallback_cipher)) {
4184		pr_err("%s() Error: failed to allocate fallback for %s\n",
4185		       __func__, alg->cra_name);
4186		return PTR_ERR(ctx->fallback_cipher);
4187	}
4188
4189	reqsize += crypto_aead_reqsize(ctx->fallback_cipher);
4190
4191reqsize:
4192	crypto_aead_set_reqsize(aead, reqsize);
4193
4194out:
4195	return err;
4196}
4197
4198static void generic_cra_exit(struct crypto_tfm *tfm)
4199{
4200	atomic_dec(&iproc_priv.session_count);
4201}
4202
4203static void skcipher_exit_tfm(struct crypto_skcipher *tfm)
4204{
4205	generic_cra_exit(crypto_skcipher_tfm(tfm));
4206}
4207
4208static void aead_cra_exit(struct crypto_aead *aead)
4209{
4210	struct crypto_tfm *tfm = crypto_aead_tfm(aead);
4211	struct iproc_ctx_s *ctx = crypto_tfm_ctx(tfm);
4212
4213	generic_cra_exit(tfm);
4214
4215	if (ctx->fallback_cipher) {
4216		crypto_free_aead(ctx->fallback_cipher);
4217		ctx->fallback_cipher = NULL;
4218	}
4219}
4220
4221/**
4222 * spu_functions_register() - Specify hardware-specific SPU functions based on
4223 * SPU type read from device tree.
4224 * @dev:	device structure
4225 * @spu_type:	SPU hardware generation
4226 * @spu_subtype: SPU hardware version
4227 */
4228static void spu_functions_register(struct device *dev,
4229				   enum spu_spu_type spu_type,
4230				   enum spu_spu_subtype spu_subtype)
4231{
4232	struct spu_hw *spu = &iproc_priv.spu;
4233
4234	if (spu_type == SPU_TYPE_SPUM) {
4235		dev_dbg(dev, "Registering SPUM functions");
4236		spu->spu_dump_msg_hdr = spum_dump_msg_hdr;
4237		spu->spu_payload_length = spum_payload_length;
4238		spu->spu_response_hdr_len = spum_response_hdr_len;
4239		spu->spu_hash_pad_len = spum_hash_pad_len;
4240		spu->spu_gcm_ccm_pad_len = spum_gcm_ccm_pad_len;
4241		spu->spu_assoc_resp_len = spum_assoc_resp_len;
4242		spu->spu_aead_ivlen = spum_aead_ivlen;
4243		spu->spu_hash_type = spum_hash_type;
4244		spu->spu_digest_size = spum_digest_size;
4245		spu->spu_create_request = spum_create_request;
4246		spu->spu_cipher_req_init = spum_cipher_req_init;
4247		spu->spu_cipher_req_finish = spum_cipher_req_finish;
4248		spu->spu_request_pad = spum_request_pad;
4249		spu->spu_tx_status_len = spum_tx_status_len;
4250		spu->spu_rx_status_len = spum_rx_status_len;
4251		spu->spu_status_process = spum_status_process;
4252		spu->spu_xts_tweak_in_payload = spum_xts_tweak_in_payload;
4253		spu->spu_ccm_update_iv = spum_ccm_update_iv;
4254		spu->spu_wordalign_padlen = spum_wordalign_padlen;
4255		if (spu_subtype == SPU_SUBTYPE_SPUM_NS2)
4256			spu->spu_ctx_max_payload = spum_ns2_ctx_max_payload;
4257		else
4258			spu->spu_ctx_max_payload = spum_nsp_ctx_max_payload;
4259	} else {
4260		dev_dbg(dev, "Registering SPU2 functions");
4261		spu->spu_dump_msg_hdr = spu2_dump_msg_hdr;
4262		spu->spu_ctx_max_payload = spu2_ctx_max_payload;
4263		spu->spu_payload_length = spu2_payload_length;
4264		spu->spu_response_hdr_len = spu2_response_hdr_len;
4265		spu->spu_hash_pad_len = spu2_hash_pad_len;
4266		spu->spu_gcm_ccm_pad_len = spu2_gcm_ccm_pad_len;
4267		spu->spu_assoc_resp_len = spu2_assoc_resp_len;
4268		spu->spu_aead_ivlen = spu2_aead_ivlen;
4269		spu->spu_hash_type = spu2_hash_type;
4270		spu->spu_digest_size = spu2_digest_size;
4271		spu->spu_create_request = spu2_create_request;
4272		spu->spu_cipher_req_init = spu2_cipher_req_init;
4273		spu->spu_cipher_req_finish = spu2_cipher_req_finish;
4274		spu->spu_request_pad = spu2_request_pad;
4275		spu->spu_tx_status_len = spu2_tx_status_len;
4276		spu->spu_rx_status_len = spu2_rx_status_len;
4277		spu->spu_status_process = spu2_status_process;
4278		spu->spu_xts_tweak_in_payload = spu2_xts_tweak_in_payload;
4279		spu->spu_ccm_update_iv = spu2_ccm_update_iv;
4280		spu->spu_wordalign_padlen = spu2_wordalign_padlen;
4281	}
4282}
4283
4284/**
4285 * spu_mb_init() - Initialize mailbox client. Request ownership of a mailbox
4286 * channel for the SPU being probed.
4287 * @dev:  SPU driver device structure
4288 *
4289 * Return: 0 if successful
4290 *	   < 0 otherwise
4291 */
4292static int spu_mb_init(struct device *dev)
4293{
4294	struct mbox_client *mcl = &iproc_priv.mcl;
4295	int err, i;
4296
4297	iproc_priv.mbox = devm_kcalloc(dev, iproc_priv.spu.num_chan,
4298				  sizeof(struct mbox_chan *), GFP_KERNEL);
4299	if (!iproc_priv.mbox)
4300		return -ENOMEM;
4301
4302	mcl->dev = dev;
4303	mcl->tx_block = false;
4304	mcl->tx_tout = 0;
4305	mcl->knows_txdone = true;
4306	mcl->rx_callback = spu_rx_callback;
4307	mcl->tx_done = NULL;
4308
4309	for (i = 0; i < iproc_priv.spu.num_chan; i++) {
4310		iproc_priv.mbox[i] = mbox_request_channel(mcl, i);
4311		if (IS_ERR(iproc_priv.mbox[i])) {
4312			err = PTR_ERR(iproc_priv.mbox[i]);
4313			dev_err(dev,
4314				"Mbox channel %d request failed with err %d",
4315				i, err);
4316			iproc_priv.mbox[i] = NULL;
4317			goto free_channels;
4318		}
4319	}
4320
4321	return 0;
4322free_channels:
4323	for (i = 0; i < iproc_priv.spu.num_chan; i++) {
4324		if (iproc_priv.mbox[i])
4325			mbox_free_channel(iproc_priv.mbox[i]);
4326	}
4327
4328	return err;
4329}
4330
4331static void spu_mb_release(struct platform_device *pdev)
4332{
4333	int i;
4334
4335	for (i = 0; i < iproc_priv.spu.num_chan; i++)
4336		mbox_free_channel(iproc_priv.mbox[i]);
4337}
4338
4339static void spu_counters_init(void)
4340{
4341	int i;
4342	int j;
4343
4344	atomic_set(&iproc_priv.session_count, 0);
4345	atomic_set(&iproc_priv.stream_count, 0);
4346	atomic_set(&iproc_priv.next_chan, (int)iproc_priv.spu.num_chan);
4347	atomic64_set(&iproc_priv.bytes_in, 0);
4348	atomic64_set(&iproc_priv.bytes_out, 0);
4349	for (i = 0; i < SPU_OP_NUM; i++) {
4350		atomic_set(&iproc_priv.op_counts[i], 0);
4351		atomic_set(&iproc_priv.setkey_cnt[i], 0);
4352	}
4353	for (i = 0; i < CIPHER_ALG_LAST; i++)
4354		for (j = 0; j < CIPHER_MODE_LAST; j++)
4355			atomic_set(&iproc_priv.cipher_cnt[i][j], 0);
4356
4357	for (i = 0; i < HASH_ALG_LAST; i++) {
4358		atomic_set(&iproc_priv.hash_cnt[i], 0);
4359		atomic_set(&iproc_priv.hmac_cnt[i], 0);
4360	}
4361	for (i = 0; i < AEAD_TYPE_LAST; i++)
4362		atomic_set(&iproc_priv.aead_cnt[i], 0);
4363
4364	atomic_set(&iproc_priv.mb_no_spc, 0);
4365	atomic_set(&iproc_priv.mb_send_fail, 0);
4366	atomic_set(&iproc_priv.bad_icv, 0);
4367}
4368
4369static int spu_register_skcipher(struct iproc_alg_s *driver_alg)
4370{
4371	struct skcipher_alg *crypto = &driver_alg->alg.skcipher;
4372	int err;
4373
4374	crypto->base.cra_module = THIS_MODULE;
4375	crypto->base.cra_priority = cipher_pri;
4376	crypto->base.cra_alignmask = 0;
4377	crypto->base.cra_ctxsize = sizeof(struct iproc_ctx_s);
4378	crypto->base.cra_flags = CRYPTO_ALG_ASYNC |
4379				 CRYPTO_ALG_ALLOCATES_MEMORY |
4380				 CRYPTO_ALG_KERN_DRIVER_ONLY;
4381
4382	crypto->init = skcipher_init_tfm;
4383	crypto->exit = skcipher_exit_tfm;
4384	crypto->setkey = skcipher_setkey;
4385	crypto->encrypt = skcipher_encrypt;
4386	crypto->decrypt = skcipher_decrypt;
4387
4388	err = crypto_register_skcipher(crypto);
4389	/* Mark alg as having been registered, if successful */
4390	if (err == 0)
4391		driver_alg->registered = true;
4392	pr_debug("  registered skcipher %s\n", crypto->base.cra_driver_name);
4393	return err;
4394}
4395
4396static int spu_register_ahash(struct iproc_alg_s *driver_alg)
4397{
4398	struct spu_hw *spu = &iproc_priv.spu;
4399	struct ahash_alg *hash = &driver_alg->alg.hash;
4400	int err;
4401
4402	/* AES-XCBC is the only AES hash type currently supported on SPU-M */
4403	if ((driver_alg->auth_info.alg == HASH_ALG_AES) &&
4404	    (driver_alg->auth_info.mode != HASH_MODE_XCBC) &&
4405	    (spu->spu_type == SPU_TYPE_SPUM))
4406		return 0;
4407
4408	/* SHA3 algorithm variants are not registered for SPU-M or SPU2. */
4409	if ((driver_alg->auth_info.alg >= HASH_ALG_SHA3_224) &&
4410	    (spu->spu_subtype != SPU_SUBTYPE_SPU2_V2))
4411		return 0;
4412
4413	hash->halg.base.cra_module = THIS_MODULE;
4414	hash->halg.base.cra_priority = hash_pri;
4415	hash->halg.base.cra_alignmask = 0;
4416	hash->halg.base.cra_ctxsize = sizeof(struct iproc_ctx_s);
4417	hash->halg.base.cra_init = ahash_cra_init;
4418	hash->halg.base.cra_exit = generic_cra_exit;
4419	hash->halg.base.cra_flags = CRYPTO_ALG_ASYNC |
4420				    CRYPTO_ALG_ALLOCATES_MEMORY;
4421	hash->halg.statesize = sizeof(struct spu_hash_export_s);
4422
4423	if (driver_alg->auth_info.mode != HASH_MODE_HMAC) {
4424		hash->init = ahash_init;
4425		hash->update = ahash_update;
4426		hash->final = ahash_final;
4427		hash->finup = ahash_finup;
4428		hash->digest = ahash_digest;
4429		if ((driver_alg->auth_info.alg == HASH_ALG_AES) &&
4430		    ((driver_alg->auth_info.mode == HASH_MODE_XCBC) ||
4431		    (driver_alg->auth_info.mode == HASH_MODE_CMAC))) {
4432			hash->setkey = ahash_setkey;
4433		}
4434	} else {
4435		hash->setkey = ahash_hmac_setkey;
4436		hash->init = ahash_hmac_init;
4437		hash->update = ahash_hmac_update;
4438		hash->final = ahash_hmac_final;
4439		hash->finup = ahash_hmac_finup;
4440		hash->digest = ahash_hmac_digest;
4441	}
4442	hash->export = ahash_export;
4443	hash->import = ahash_import;
4444
4445	err = crypto_register_ahash(hash);
4446	/* Mark alg as having been registered, if successful */
4447	if (err == 0)
4448		driver_alg->registered = true;
4449	pr_debug("  registered ahash %s\n",
4450		 hash->halg.base.cra_driver_name);
4451	return err;
4452}
4453
4454static int spu_register_aead(struct iproc_alg_s *driver_alg)
4455{
4456	struct aead_alg *aead = &driver_alg->alg.aead;
4457	int err;
4458
4459	aead->base.cra_module = THIS_MODULE;
4460	aead->base.cra_priority = aead_pri;
4461	aead->base.cra_alignmask = 0;
4462	aead->base.cra_ctxsize = sizeof(struct iproc_ctx_s);
4463
4464	aead->base.cra_flags |= CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY;
4465	/* setkey set in alg initialization */
4466	aead->setauthsize = aead_setauthsize;
4467	aead->encrypt = aead_encrypt;
4468	aead->decrypt = aead_decrypt;
4469	aead->init = aead_cra_init;
4470	aead->exit = aead_cra_exit;
4471
4472	err = crypto_register_aead(aead);
4473	/* Mark alg as having been registered, if successful */
4474	if (err == 0)
4475		driver_alg->registered = true;
4476	pr_debug("  registered aead %s\n", aead->base.cra_driver_name);
4477	return err;
4478}
4479
4480/* register crypto algorithms the device supports */
4481static int spu_algs_register(struct device *dev)
4482{
4483	int i, j;
4484	int err;
4485
4486	for (i = 0; i < ARRAY_SIZE(driver_algs); i++) {
4487		switch (driver_algs[i].type) {
4488		case CRYPTO_ALG_TYPE_SKCIPHER:
4489			err = spu_register_skcipher(&driver_algs[i]);
4490			break;
4491		case CRYPTO_ALG_TYPE_AHASH:
4492			err = spu_register_ahash(&driver_algs[i]);
4493			break;
4494		case CRYPTO_ALG_TYPE_AEAD:
4495			err = spu_register_aead(&driver_algs[i]);
4496			break;
4497		default:
4498			dev_err(dev,
4499				"iproc-crypto: unknown alg type: %d",
4500				driver_algs[i].type);
4501			err = -EINVAL;
4502		}
4503
4504		if (err) {
4505			dev_err(dev, "alg registration failed with error %d\n",
4506				err);
4507			goto err_algs;
4508		}
4509	}
4510
4511	return 0;
4512
4513err_algs:
4514	for (j = 0; j < i; j++) {
4515		/* Skip any algorithm not registered */
4516		if (!driver_algs[j].registered)
4517			continue;
4518		switch (driver_algs[j].type) {
4519		case CRYPTO_ALG_TYPE_SKCIPHER:
4520			crypto_unregister_skcipher(&driver_algs[j].alg.skcipher);
4521			driver_algs[j].registered = false;
4522			break;
4523		case CRYPTO_ALG_TYPE_AHASH:
4524			crypto_unregister_ahash(&driver_algs[j].alg.hash);
4525			driver_algs[j].registered = false;
4526			break;
4527		case CRYPTO_ALG_TYPE_AEAD:
4528			crypto_unregister_aead(&driver_algs[j].alg.aead);
4529			driver_algs[j].registered = false;
4530			break;
4531		}
4532	}
4533	return err;
4534}
4535
4536/* ==================== Kernel Platform API ==================== */
4537
4538static struct spu_type_subtype spum_ns2_types = {
4539	SPU_TYPE_SPUM, SPU_SUBTYPE_SPUM_NS2
4540};
4541
4542static struct spu_type_subtype spum_nsp_types = {
4543	SPU_TYPE_SPUM, SPU_SUBTYPE_SPUM_NSP
4544};
4545
4546static struct spu_type_subtype spu2_types = {
4547	SPU_TYPE_SPU2, SPU_SUBTYPE_SPU2_V1
4548};
4549
4550static struct spu_type_subtype spu2_v2_types = {
4551	SPU_TYPE_SPU2, SPU_SUBTYPE_SPU2_V2
4552};
4553
4554static const struct of_device_id bcm_spu_dt_ids[] = {
4555	{
4556		.compatible = "brcm,spum-crypto",
4557		.data = &spum_ns2_types,
4558	},
4559	{
4560		.compatible = "brcm,spum-nsp-crypto",
4561		.data = &spum_nsp_types,
4562	},
4563	{
4564		.compatible = "brcm,spu2-crypto",
4565		.data = &spu2_types,
4566	},
4567	{
4568		.compatible = "brcm,spu2-v2-crypto",
4569		.data = &spu2_v2_types,
4570	},
4571	{ /* sentinel */ }
4572};
4573
4574MODULE_DEVICE_TABLE(of, bcm_spu_dt_ids);
4575
4576static int spu_dt_read(struct platform_device *pdev)
4577{
4578	struct device *dev = &pdev->dev;
4579	struct spu_hw *spu = &iproc_priv.spu;
4580	struct resource *spu_ctrl_regs;
4581	const struct spu_type_subtype *matched_spu_type;
4582	struct device_node *dn = pdev->dev.of_node;
4583	int err, i;
4584
4585	/* Count number of mailbox channels */
4586	spu->num_chan = of_count_phandle_with_args(dn, "mboxes", "#mbox-cells");
4587
4588	matched_spu_type = of_device_get_match_data(dev);
4589	if (!matched_spu_type) {
4590		dev_err(dev, "Failed to match device\n");
4591		return -ENODEV;
4592	}
4593
4594	spu->spu_type = matched_spu_type->type;
4595	spu->spu_subtype = matched_spu_type->subtype;
4596
4597	for (i = 0; (i < MAX_SPUS) && ((spu_ctrl_regs =
4598		platform_get_resource(pdev, IORESOURCE_MEM, i)) != NULL); i++) {
4599
4600		spu->reg_vbase[i] = devm_ioremap_resource(dev, spu_ctrl_regs);
4601		if (IS_ERR(spu->reg_vbase[i])) {
4602			err = PTR_ERR(spu->reg_vbase[i]);
4603			dev_err(dev, "Failed to map registers: %d\n",
4604				err);
4605			spu->reg_vbase[i] = NULL;
4606			return err;
4607		}
4608	}
4609	spu->num_spu = i;
4610	dev_dbg(dev, "Device has %d SPUs", spu->num_spu);
4611
4612	return 0;
4613}
4614
4615static int bcm_spu_probe(struct platform_device *pdev)
4616{
4617	struct device *dev = &pdev->dev;
4618	struct spu_hw *spu = &iproc_priv.spu;
4619	int err;
4620
4621	iproc_priv.pdev  = pdev;
4622	platform_set_drvdata(iproc_priv.pdev,
4623			     &iproc_priv);
4624
4625	err = spu_dt_read(pdev);
4626	if (err < 0)
4627		goto failure;
4628
4629	err = spu_mb_init(dev);
4630	if (err < 0)
4631		goto failure;
4632
4633	if (spu->spu_type == SPU_TYPE_SPUM)
4634		iproc_priv.bcm_hdr_len = 8;
4635	else if (spu->spu_type == SPU_TYPE_SPU2)
4636		iproc_priv.bcm_hdr_len = 0;
4637
4638	spu_functions_register(dev, spu->spu_type, spu->spu_subtype);
4639
4640	spu_counters_init();
4641
4642	spu_setup_debugfs();
4643
4644	err = spu_algs_register(dev);
4645	if (err < 0)
4646		goto fail_reg;
4647
4648	return 0;
4649
4650fail_reg:
4651	spu_free_debugfs();
4652failure:
4653	spu_mb_release(pdev);
4654	dev_err(dev, "%s failed with error %d.\n", __func__, err);
4655
4656	return err;
4657}
4658
4659static void bcm_spu_remove(struct platform_device *pdev)
4660{
4661	int i;
4662	struct device *dev = &pdev->dev;
4663	char *cdn;
4664
4665	for (i = 0; i < ARRAY_SIZE(driver_algs); i++) {
4666		/*
4667		 * Not all algorithms were registered, depending on whether
4668		 * hardware is SPU or SPU2.  So here we make sure to skip
4669		 * those algorithms that were not previously registered.
4670		 */
4671		if (!driver_algs[i].registered)
4672			continue;
4673
4674		switch (driver_algs[i].type) {
4675		case CRYPTO_ALG_TYPE_SKCIPHER:
4676			crypto_unregister_skcipher(&driver_algs[i].alg.skcipher);
4677			dev_dbg(dev, "  unregistered cipher %s\n",
4678				driver_algs[i].alg.skcipher.base.cra_driver_name);
4679			driver_algs[i].registered = false;
4680			break;
4681		case CRYPTO_ALG_TYPE_AHASH:
4682			crypto_unregister_ahash(&driver_algs[i].alg.hash);
4683			cdn = driver_algs[i].alg.hash.halg.base.cra_driver_name;
4684			dev_dbg(dev, "  unregistered hash %s\n", cdn);
4685			driver_algs[i].registered = false;
4686			break;
4687		case CRYPTO_ALG_TYPE_AEAD:
4688			crypto_unregister_aead(&driver_algs[i].alg.aead);
4689			dev_dbg(dev, "  unregistered aead %s\n",
4690				driver_algs[i].alg.aead.base.cra_driver_name);
4691			driver_algs[i].registered = false;
4692			break;
4693		}
4694	}
4695	spu_free_debugfs();
4696	spu_mb_release(pdev);
4697}
4698
4699/* ===== Kernel Module API ===== */
4700
4701static struct platform_driver bcm_spu_pdriver = {
4702	.driver = {
4703		   .name = "brcm-spu-crypto",
4704		   .of_match_table = of_match_ptr(bcm_spu_dt_ids),
4705		   },
4706	.probe = bcm_spu_probe,
4707	.remove_new = bcm_spu_remove,
4708};
4709module_platform_driver(bcm_spu_pdriver);
4710
4711MODULE_AUTHOR("Rob Rice <rob.rice@broadcom.com>");
4712MODULE_DESCRIPTION("Broadcom symmetric crypto offload driver");
4713MODULE_LICENSE("GPL v2");
4714