1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Cryptographic API.
4 *
5 * Support for ATMEL AES HW acceleration.
6 *
7 * Copyright (c) 2012 Eukr��a Electromatique - ATMEL
8 * Author: Nicolas Royer <nicolas@eukrea.com>
9 *
10 * Some ideas are from omap-aes.c driver.
11 */
12
13
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/slab.h>
17#include <linux/err.h>
18#include <linux/clk.h>
19#include <linux/io.h>
20#include <linux/hw_random.h>
21#include <linux/platform_device.h>
22
23#include <linux/device.h>
24#include <linux/dmaengine.h>
25#include <linux/init.h>
26#include <linux/errno.h>
27#include <linux/interrupt.h>
28#include <linux/irq.h>
29#include <linux/scatterlist.h>
30#include <linux/dma-mapping.h>
31#include <linux/mod_devicetable.h>
32#include <linux/delay.h>
33#include <linux/crypto.h>
34#include <crypto/scatterwalk.h>
35#include <crypto/algapi.h>
36#include <crypto/aes.h>
37#include <crypto/gcm.h>
38#include <crypto/xts.h>
39#include <crypto/internal/aead.h>
40#include <crypto/internal/skcipher.h>
41#include "atmel-aes-regs.h"
42#include "atmel-authenc.h"
43
44#define ATMEL_AES_PRIORITY	300
45
46#define ATMEL_AES_BUFFER_ORDER	2
47#define ATMEL_AES_BUFFER_SIZE	(PAGE_SIZE << ATMEL_AES_BUFFER_ORDER)
48
49#define SIZE_IN_WORDS(x)	((x) >> 2)
50
51/* AES flags */
52/* Reserve bits [18:16] [14:12] [1:0] for mode (same as for AES_MR) */
53#define AES_FLAGS_ENCRYPT	AES_MR_CYPHER_ENC
54#define AES_FLAGS_GTAGEN	AES_MR_GTAGEN
55#define AES_FLAGS_OPMODE_MASK	(AES_MR_OPMOD_MASK | AES_MR_CFBS_MASK)
56#define AES_FLAGS_ECB		AES_MR_OPMOD_ECB
57#define AES_FLAGS_CBC		AES_MR_OPMOD_CBC
58#define AES_FLAGS_CTR		AES_MR_OPMOD_CTR
59#define AES_FLAGS_GCM		AES_MR_OPMOD_GCM
60#define AES_FLAGS_XTS		AES_MR_OPMOD_XTS
61
62#define AES_FLAGS_MODE_MASK	(AES_FLAGS_OPMODE_MASK |	\
63				 AES_FLAGS_ENCRYPT |		\
64				 AES_FLAGS_GTAGEN)
65
66#define AES_FLAGS_BUSY		BIT(3)
67#define AES_FLAGS_DUMP_REG	BIT(4)
68#define AES_FLAGS_OWN_SHA	BIT(5)
69
70#define AES_FLAGS_PERSISTENT	AES_FLAGS_BUSY
71
72#define ATMEL_AES_QUEUE_LENGTH	50
73
74#define ATMEL_AES_DMA_THRESHOLD		256
75
76
77struct atmel_aes_caps {
78	bool			has_dualbuff;
79	bool			has_gcm;
80	bool			has_xts;
81	bool			has_authenc;
82	u32			max_burst_size;
83};
84
85struct atmel_aes_dev;
86
87
88typedef int (*atmel_aes_fn_t)(struct atmel_aes_dev *);
89
90
91struct atmel_aes_base_ctx {
92	struct atmel_aes_dev	*dd;
93	atmel_aes_fn_t		start;
94	int			keylen;
95	u32			key[AES_KEYSIZE_256 / sizeof(u32)];
96	u16			block_size;
97	bool			is_aead;
98};
99
100struct atmel_aes_ctx {
101	struct atmel_aes_base_ctx	base;
102};
103
104struct atmel_aes_ctr_ctx {
105	struct atmel_aes_base_ctx	base;
106
107	__be32			iv[AES_BLOCK_SIZE / sizeof(u32)];
108	size_t			offset;
109	struct scatterlist	src[2];
110	struct scatterlist	dst[2];
111	u32			blocks;
112};
113
114struct atmel_aes_gcm_ctx {
115	struct atmel_aes_base_ctx	base;
116
117	struct scatterlist	src[2];
118	struct scatterlist	dst[2];
119
120	__be32			j0[AES_BLOCK_SIZE / sizeof(u32)];
121	u32			tag[AES_BLOCK_SIZE / sizeof(u32)];
122	__be32			ghash[AES_BLOCK_SIZE / sizeof(u32)];
123	size_t			textlen;
124
125	const __be32		*ghash_in;
126	__be32			*ghash_out;
127	atmel_aes_fn_t		ghash_resume;
128};
129
130struct atmel_aes_xts_ctx {
131	struct atmel_aes_base_ctx	base;
132
133	u32			key2[AES_KEYSIZE_256 / sizeof(u32)];
134	struct crypto_skcipher *fallback_tfm;
135};
136
137#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
138struct atmel_aes_authenc_ctx {
139	struct atmel_aes_base_ctx	base;
140	struct atmel_sha_authenc_ctx	*auth;
141};
142#endif
143
144struct atmel_aes_reqctx {
145	unsigned long		mode;
146	u8			lastc[AES_BLOCK_SIZE];
147	struct skcipher_request fallback_req;
148};
149
150#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
151struct atmel_aes_authenc_reqctx {
152	struct atmel_aes_reqctx	base;
153
154	struct scatterlist	src[2];
155	struct scatterlist	dst[2];
156	size_t			textlen;
157	u32			digest[SHA512_DIGEST_SIZE / sizeof(u32)];
158
159	/* auth_req MUST be place last. */
160	struct ahash_request	auth_req;
161};
162#endif
163
164struct atmel_aes_dma {
165	struct dma_chan		*chan;
166	struct scatterlist	*sg;
167	int			nents;
168	unsigned int		remainder;
169	unsigned int		sg_len;
170};
171
172struct atmel_aes_dev {
173	struct list_head	list;
174	unsigned long		phys_base;
175	void __iomem		*io_base;
176
177	struct crypto_async_request	*areq;
178	struct atmel_aes_base_ctx	*ctx;
179
180	bool			is_async;
181	atmel_aes_fn_t		resume;
182	atmel_aes_fn_t		cpu_transfer_complete;
183
184	struct device		*dev;
185	struct clk		*iclk;
186	int			irq;
187
188	unsigned long		flags;
189
190	spinlock_t		lock;
191	struct crypto_queue	queue;
192
193	struct tasklet_struct	done_task;
194	struct tasklet_struct	queue_task;
195
196	size_t			total;
197	size_t			datalen;
198	u32			*data;
199
200	struct atmel_aes_dma	src;
201	struct atmel_aes_dma	dst;
202
203	size_t			buflen;
204	void			*buf;
205	struct scatterlist	aligned_sg;
206	struct scatterlist	*real_dst;
207
208	struct atmel_aes_caps	caps;
209
210	u32			hw_version;
211};
212
213struct atmel_aes_drv {
214	struct list_head	dev_list;
215	spinlock_t		lock;
216};
217
218static struct atmel_aes_drv atmel_aes = {
219	.dev_list = LIST_HEAD_INIT(atmel_aes.dev_list),
220	.lock = __SPIN_LOCK_UNLOCKED(atmel_aes.lock),
221};
222
223#ifdef VERBOSE_DEBUG
224static const char *atmel_aes_reg_name(u32 offset, char *tmp, size_t sz)
225{
226	switch (offset) {
227	case AES_CR:
228		return "CR";
229
230	case AES_MR:
231		return "MR";
232
233	case AES_ISR:
234		return "ISR";
235
236	case AES_IMR:
237		return "IMR";
238
239	case AES_IER:
240		return "IER";
241
242	case AES_IDR:
243		return "IDR";
244
245	case AES_KEYWR(0):
246	case AES_KEYWR(1):
247	case AES_KEYWR(2):
248	case AES_KEYWR(3):
249	case AES_KEYWR(4):
250	case AES_KEYWR(5):
251	case AES_KEYWR(6):
252	case AES_KEYWR(7):
253		snprintf(tmp, sz, "KEYWR[%u]", (offset - AES_KEYWR(0)) >> 2);
254		break;
255
256	case AES_IDATAR(0):
257	case AES_IDATAR(1):
258	case AES_IDATAR(2):
259	case AES_IDATAR(3):
260		snprintf(tmp, sz, "IDATAR[%u]", (offset - AES_IDATAR(0)) >> 2);
261		break;
262
263	case AES_ODATAR(0):
264	case AES_ODATAR(1):
265	case AES_ODATAR(2):
266	case AES_ODATAR(3):
267		snprintf(tmp, sz, "ODATAR[%u]", (offset - AES_ODATAR(0)) >> 2);
268		break;
269
270	case AES_IVR(0):
271	case AES_IVR(1):
272	case AES_IVR(2):
273	case AES_IVR(3):
274		snprintf(tmp, sz, "IVR[%u]", (offset - AES_IVR(0)) >> 2);
275		break;
276
277	case AES_AADLENR:
278		return "AADLENR";
279
280	case AES_CLENR:
281		return "CLENR";
282
283	case AES_GHASHR(0):
284	case AES_GHASHR(1):
285	case AES_GHASHR(2):
286	case AES_GHASHR(3):
287		snprintf(tmp, sz, "GHASHR[%u]", (offset - AES_GHASHR(0)) >> 2);
288		break;
289
290	case AES_TAGR(0):
291	case AES_TAGR(1):
292	case AES_TAGR(2):
293	case AES_TAGR(3):
294		snprintf(tmp, sz, "TAGR[%u]", (offset - AES_TAGR(0)) >> 2);
295		break;
296
297	case AES_CTRR:
298		return "CTRR";
299
300	case AES_GCMHR(0):
301	case AES_GCMHR(1):
302	case AES_GCMHR(2):
303	case AES_GCMHR(3):
304		snprintf(tmp, sz, "GCMHR[%u]", (offset - AES_GCMHR(0)) >> 2);
305		break;
306
307	case AES_EMR:
308		return "EMR";
309
310	case AES_TWR(0):
311	case AES_TWR(1):
312	case AES_TWR(2):
313	case AES_TWR(3):
314		snprintf(tmp, sz, "TWR[%u]", (offset - AES_TWR(0)) >> 2);
315		break;
316
317	case AES_ALPHAR(0):
318	case AES_ALPHAR(1):
319	case AES_ALPHAR(2):
320	case AES_ALPHAR(3):
321		snprintf(tmp, sz, "ALPHAR[%u]", (offset - AES_ALPHAR(0)) >> 2);
322		break;
323
324	default:
325		snprintf(tmp, sz, "0x%02x", offset);
326		break;
327	}
328
329	return tmp;
330}
331#endif /* VERBOSE_DEBUG */
332
333/* Shared functions */
334
335static inline u32 atmel_aes_read(struct atmel_aes_dev *dd, u32 offset)
336{
337	u32 value = readl_relaxed(dd->io_base + offset);
338
339#ifdef VERBOSE_DEBUG
340	if (dd->flags & AES_FLAGS_DUMP_REG) {
341		char tmp[16];
342
343		dev_vdbg(dd->dev, "read 0x%08x from %s\n", value,
344			 atmel_aes_reg_name(offset, tmp, sizeof(tmp)));
345	}
346#endif /* VERBOSE_DEBUG */
347
348	return value;
349}
350
351static inline void atmel_aes_write(struct atmel_aes_dev *dd,
352					u32 offset, u32 value)
353{
354#ifdef VERBOSE_DEBUG
355	if (dd->flags & AES_FLAGS_DUMP_REG) {
356		char tmp[16];
357
358		dev_vdbg(dd->dev, "write 0x%08x into %s\n", value,
359			 atmel_aes_reg_name(offset, tmp, sizeof(tmp)));
360	}
361#endif /* VERBOSE_DEBUG */
362
363	writel_relaxed(value, dd->io_base + offset);
364}
365
366static void atmel_aes_read_n(struct atmel_aes_dev *dd, u32 offset,
367					u32 *value, int count)
368{
369	for (; count--; value++, offset += 4)
370		*value = atmel_aes_read(dd, offset);
371}
372
373static void atmel_aes_write_n(struct atmel_aes_dev *dd, u32 offset,
374			      const u32 *value, int count)
375{
376	for (; count--; value++, offset += 4)
377		atmel_aes_write(dd, offset, *value);
378}
379
380static inline void atmel_aes_read_block(struct atmel_aes_dev *dd, u32 offset,
381					void *value)
382{
383	atmel_aes_read_n(dd, offset, value, SIZE_IN_WORDS(AES_BLOCK_SIZE));
384}
385
386static inline void atmel_aes_write_block(struct atmel_aes_dev *dd, u32 offset,
387					 const void *value)
388{
389	atmel_aes_write_n(dd, offset, value, SIZE_IN_WORDS(AES_BLOCK_SIZE));
390}
391
392static inline int atmel_aes_wait_for_data_ready(struct atmel_aes_dev *dd,
393						atmel_aes_fn_t resume)
394{
395	u32 isr = atmel_aes_read(dd, AES_ISR);
396
397	if (unlikely(isr & AES_INT_DATARDY))
398		return resume(dd);
399
400	dd->resume = resume;
401	atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
402	return -EINPROGRESS;
403}
404
405static inline size_t atmel_aes_padlen(size_t len, size_t block_size)
406{
407	len &= block_size - 1;
408	return len ? block_size - len : 0;
409}
410
411static struct atmel_aes_dev *atmel_aes_dev_alloc(struct atmel_aes_base_ctx *ctx)
412{
413	struct atmel_aes_dev *aes_dd;
414
415	spin_lock_bh(&atmel_aes.lock);
416	/* One AES IP per SoC. */
417	aes_dd = list_first_entry_or_null(&atmel_aes.dev_list,
418					  struct atmel_aes_dev, list);
419	spin_unlock_bh(&atmel_aes.lock);
420	return aes_dd;
421}
422
423static int atmel_aes_hw_init(struct atmel_aes_dev *dd)
424{
425	int err;
426
427	err = clk_enable(dd->iclk);
428	if (err)
429		return err;
430
431	atmel_aes_write(dd, AES_CR, AES_CR_SWRST);
432	atmel_aes_write(dd, AES_MR, 0xE << AES_MR_CKEY_OFFSET);
433
434	return 0;
435}
436
437static inline unsigned int atmel_aes_get_version(struct atmel_aes_dev *dd)
438{
439	return atmel_aes_read(dd, AES_HW_VERSION) & 0x00000fff;
440}
441
442static int atmel_aes_hw_version_init(struct atmel_aes_dev *dd)
443{
444	int err;
445
446	err = atmel_aes_hw_init(dd);
447	if (err)
448		return err;
449
450	dd->hw_version = atmel_aes_get_version(dd);
451
452	dev_info(dd->dev, "version: 0x%x\n", dd->hw_version);
453
454	clk_disable(dd->iclk);
455	return 0;
456}
457
458static inline void atmel_aes_set_mode(struct atmel_aes_dev *dd,
459				      const struct atmel_aes_reqctx *rctx)
460{
461	/* Clear all but persistent flags and set request flags. */
462	dd->flags = (dd->flags & AES_FLAGS_PERSISTENT) | rctx->mode;
463}
464
465static inline bool atmel_aes_is_encrypt(const struct atmel_aes_dev *dd)
466{
467	return (dd->flags & AES_FLAGS_ENCRYPT);
468}
469
470#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
471static void atmel_aes_authenc_complete(struct atmel_aes_dev *dd, int err);
472#endif
473
474static void atmel_aes_set_iv_as_last_ciphertext_block(struct atmel_aes_dev *dd)
475{
476	struct skcipher_request *req = skcipher_request_cast(dd->areq);
477	struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
478	struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
479	unsigned int ivsize = crypto_skcipher_ivsize(skcipher);
480
481	if (req->cryptlen < ivsize)
482		return;
483
484	if (rctx->mode & AES_FLAGS_ENCRYPT)
485		scatterwalk_map_and_copy(req->iv, req->dst,
486					 req->cryptlen - ivsize, ivsize, 0);
487	else
488		memcpy(req->iv, rctx->lastc, ivsize);
489}
490
491static inline struct atmel_aes_ctr_ctx *
492atmel_aes_ctr_ctx_cast(struct atmel_aes_base_ctx *ctx)
493{
494	return container_of(ctx, struct atmel_aes_ctr_ctx, base);
495}
496
497static void atmel_aes_ctr_update_req_iv(struct atmel_aes_dev *dd)
498{
499	struct atmel_aes_ctr_ctx *ctx = atmel_aes_ctr_ctx_cast(dd->ctx);
500	struct skcipher_request *req = skcipher_request_cast(dd->areq);
501	struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
502	unsigned int ivsize = crypto_skcipher_ivsize(skcipher);
503	int i;
504
505	/*
506	 * The CTR transfer works in fragments of data of maximum 1 MByte
507	 * because of the 16 bit CTR counter embedded in the IP. When reaching
508	 * here, ctx->blocks contains the number of blocks of the last fragment
509	 * processed, there is no need to explicit cast it to u16.
510	 */
511	for (i = 0; i < ctx->blocks; i++)
512		crypto_inc((u8 *)ctx->iv, AES_BLOCK_SIZE);
513
514	memcpy(req->iv, ctx->iv, ivsize);
515}
516
517static inline int atmel_aes_complete(struct atmel_aes_dev *dd, int err)
518{
519	struct skcipher_request *req = skcipher_request_cast(dd->areq);
520	struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
521
522#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
523	if (dd->ctx->is_aead)
524		atmel_aes_authenc_complete(dd, err);
525#endif
526
527	clk_disable(dd->iclk);
528	dd->flags &= ~AES_FLAGS_BUSY;
529
530	if (!err && !dd->ctx->is_aead &&
531	    (rctx->mode & AES_FLAGS_OPMODE_MASK) != AES_FLAGS_ECB) {
532		if ((rctx->mode & AES_FLAGS_OPMODE_MASK) != AES_FLAGS_CTR)
533			atmel_aes_set_iv_as_last_ciphertext_block(dd);
534		else
535			atmel_aes_ctr_update_req_iv(dd);
536	}
537
538	if (dd->is_async)
539		crypto_request_complete(dd->areq, err);
540
541	tasklet_schedule(&dd->queue_task);
542
543	return err;
544}
545
546static void atmel_aes_write_ctrl_key(struct atmel_aes_dev *dd, bool use_dma,
547				     const __be32 *iv, const u32 *key, int keylen)
548{
549	u32 valmr = 0;
550
551	/* MR register must be set before IV registers */
552	if (keylen == AES_KEYSIZE_128)
553		valmr |= AES_MR_KEYSIZE_128;
554	else if (keylen == AES_KEYSIZE_192)
555		valmr |= AES_MR_KEYSIZE_192;
556	else
557		valmr |= AES_MR_KEYSIZE_256;
558
559	valmr |= dd->flags & AES_FLAGS_MODE_MASK;
560
561	if (use_dma) {
562		valmr |= AES_MR_SMOD_IDATAR0;
563		if (dd->caps.has_dualbuff)
564			valmr |= AES_MR_DUALBUFF;
565	} else {
566		valmr |= AES_MR_SMOD_AUTO;
567	}
568
569	atmel_aes_write(dd, AES_MR, valmr);
570
571	atmel_aes_write_n(dd, AES_KEYWR(0), key, SIZE_IN_WORDS(keylen));
572
573	if (iv && (valmr & AES_MR_OPMOD_MASK) != AES_MR_OPMOD_ECB)
574		atmel_aes_write_block(dd, AES_IVR(0), iv);
575}
576
577static inline void atmel_aes_write_ctrl(struct atmel_aes_dev *dd, bool use_dma,
578					const __be32 *iv)
579
580{
581	atmel_aes_write_ctrl_key(dd, use_dma, iv,
582				 dd->ctx->key, dd->ctx->keylen);
583}
584
585/* CPU transfer */
586
587static int atmel_aes_cpu_transfer(struct atmel_aes_dev *dd)
588{
589	int err = 0;
590	u32 isr;
591
592	for (;;) {
593		atmel_aes_read_block(dd, AES_ODATAR(0), dd->data);
594		dd->data += 4;
595		dd->datalen -= AES_BLOCK_SIZE;
596
597		if (dd->datalen < AES_BLOCK_SIZE)
598			break;
599
600		atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
601
602		isr = atmel_aes_read(dd, AES_ISR);
603		if (!(isr & AES_INT_DATARDY)) {
604			dd->resume = atmel_aes_cpu_transfer;
605			atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
606			return -EINPROGRESS;
607		}
608	}
609
610	if (!sg_copy_from_buffer(dd->real_dst, sg_nents(dd->real_dst),
611				 dd->buf, dd->total))
612		err = -EINVAL;
613
614	if (err)
615		return atmel_aes_complete(dd, err);
616
617	return dd->cpu_transfer_complete(dd);
618}
619
620static int atmel_aes_cpu_start(struct atmel_aes_dev *dd,
621			       struct scatterlist *src,
622			       struct scatterlist *dst,
623			       size_t len,
624			       atmel_aes_fn_t resume)
625{
626	size_t padlen = atmel_aes_padlen(len, AES_BLOCK_SIZE);
627
628	if (unlikely(len == 0))
629		return -EINVAL;
630
631	sg_copy_to_buffer(src, sg_nents(src), dd->buf, len);
632
633	dd->total = len;
634	dd->real_dst = dst;
635	dd->cpu_transfer_complete = resume;
636	dd->datalen = len + padlen;
637	dd->data = (u32 *)dd->buf;
638	atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
639	return atmel_aes_wait_for_data_ready(dd, atmel_aes_cpu_transfer);
640}
641
642
643/* DMA transfer */
644
645static void atmel_aes_dma_callback(void *data);
646
647static bool atmel_aes_check_aligned(struct atmel_aes_dev *dd,
648				    struct scatterlist *sg,
649				    size_t len,
650				    struct atmel_aes_dma *dma)
651{
652	int nents;
653
654	if (!IS_ALIGNED(len, dd->ctx->block_size))
655		return false;
656
657	for (nents = 0; sg; sg = sg_next(sg), ++nents) {
658		if (!IS_ALIGNED(sg->offset, sizeof(u32)))
659			return false;
660
661		if (len <= sg->length) {
662			if (!IS_ALIGNED(len, dd->ctx->block_size))
663				return false;
664
665			dma->nents = nents+1;
666			dma->remainder = sg->length - len;
667			sg->length = len;
668			return true;
669		}
670
671		if (!IS_ALIGNED(sg->length, dd->ctx->block_size))
672			return false;
673
674		len -= sg->length;
675	}
676
677	return false;
678}
679
680static inline void atmel_aes_restore_sg(const struct atmel_aes_dma *dma)
681{
682	struct scatterlist *sg = dma->sg;
683	int nents = dma->nents;
684
685	if (!dma->remainder)
686		return;
687
688	while (--nents > 0 && sg)
689		sg = sg_next(sg);
690
691	if (!sg)
692		return;
693
694	sg->length += dma->remainder;
695}
696
697static int atmel_aes_map(struct atmel_aes_dev *dd,
698			 struct scatterlist *src,
699			 struct scatterlist *dst,
700			 size_t len)
701{
702	bool src_aligned, dst_aligned;
703	size_t padlen;
704
705	dd->total = len;
706	dd->src.sg = src;
707	dd->dst.sg = dst;
708	dd->real_dst = dst;
709
710	src_aligned = atmel_aes_check_aligned(dd, src, len, &dd->src);
711	if (src == dst)
712		dst_aligned = src_aligned;
713	else
714		dst_aligned = atmel_aes_check_aligned(dd, dst, len, &dd->dst);
715	if (!src_aligned || !dst_aligned) {
716		padlen = atmel_aes_padlen(len, dd->ctx->block_size);
717
718		if (dd->buflen < len + padlen)
719			return -ENOMEM;
720
721		if (!src_aligned) {
722			sg_copy_to_buffer(src, sg_nents(src), dd->buf, len);
723			dd->src.sg = &dd->aligned_sg;
724			dd->src.nents = 1;
725			dd->src.remainder = 0;
726		}
727
728		if (!dst_aligned) {
729			dd->dst.sg = &dd->aligned_sg;
730			dd->dst.nents = 1;
731			dd->dst.remainder = 0;
732		}
733
734		sg_init_table(&dd->aligned_sg, 1);
735		sg_set_buf(&dd->aligned_sg, dd->buf, len + padlen);
736	}
737
738	if (dd->src.sg == dd->dst.sg) {
739		dd->src.sg_len = dma_map_sg(dd->dev, dd->src.sg, dd->src.nents,
740					    DMA_BIDIRECTIONAL);
741		dd->dst.sg_len = dd->src.sg_len;
742		if (!dd->src.sg_len)
743			return -EFAULT;
744	} else {
745		dd->src.sg_len = dma_map_sg(dd->dev, dd->src.sg, dd->src.nents,
746					    DMA_TO_DEVICE);
747		if (!dd->src.sg_len)
748			return -EFAULT;
749
750		dd->dst.sg_len = dma_map_sg(dd->dev, dd->dst.sg, dd->dst.nents,
751					    DMA_FROM_DEVICE);
752		if (!dd->dst.sg_len) {
753			dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents,
754				     DMA_TO_DEVICE);
755			return -EFAULT;
756		}
757	}
758
759	return 0;
760}
761
762static void atmel_aes_unmap(struct atmel_aes_dev *dd)
763{
764	if (dd->src.sg == dd->dst.sg) {
765		dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents,
766			     DMA_BIDIRECTIONAL);
767
768		if (dd->src.sg != &dd->aligned_sg)
769			atmel_aes_restore_sg(&dd->src);
770	} else {
771		dma_unmap_sg(dd->dev, dd->dst.sg, dd->dst.nents,
772			     DMA_FROM_DEVICE);
773
774		if (dd->dst.sg != &dd->aligned_sg)
775			atmel_aes_restore_sg(&dd->dst);
776
777		dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents,
778			     DMA_TO_DEVICE);
779
780		if (dd->src.sg != &dd->aligned_sg)
781			atmel_aes_restore_sg(&dd->src);
782	}
783
784	if (dd->dst.sg == &dd->aligned_sg)
785		sg_copy_from_buffer(dd->real_dst, sg_nents(dd->real_dst),
786				    dd->buf, dd->total);
787}
788
789static int atmel_aes_dma_transfer_start(struct atmel_aes_dev *dd,
790					enum dma_slave_buswidth addr_width,
791					enum dma_transfer_direction dir,
792					u32 maxburst)
793{
794	struct dma_async_tx_descriptor *desc;
795	struct dma_slave_config config;
796	dma_async_tx_callback callback;
797	struct atmel_aes_dma *dma;
798	int err;
799
800	memset(&config, 0, sizeof(config));
801	config.src_addr_width = addr_width;
802	config.dst_addr_width = addr_width;
803	config.src_maxburst = maxburst;
804	config.dst_maxburst = maxburst;
805
806	switch (dir) {
807	case DMA_MEM_TO_DEV:
808		dma = &dd->src;
809		callback = NULL;
810		config.dst_addr = dd->phys_base + AES_IDATAR(0);
811		break;
812
813	case DMA_DEV_TO_MEM:
814		dma = &dd->dst;
815		callback = atmel_aes_dma_callback;
816		config.src_addr = dd->phys_base + AES_ODATAR(0);
817		break;
818
819	default:
820		return -EINVAL;
821	}
822
823	err = dmaengine_slave_config(dma->chan, &config);
824	if (err)
825		return err;
826
827	desc = dmaengine_prep_slave_sg(dma->chan, dma->sg, dma->sg_len, dir,
828				       DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
829	if (!desc)
830		return -ENOMEM;
831
832	desc->callback = callback;
833	desc->callback_param = dd;
834	dmaengine_submit(desc);
835	dma_async_issue_pending(dma->chan);
836
837	return 0;
838}
839
840static int atmel_aes_dma_start(struct atmel_aes_dev *dd,
841			       struct scatterlist *src,
842			       struct scatterlist *dst,
843			       size_t len,
844			       atmel_aes_fn_t resume)
845{
846	enum dma_slave_buswidth addr_width;
847	u32 maxburst;
848	int err;
849
850	switch (dd->ctx->block_size) {
851	case AES_BLOCK_SIZE:
852		addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
853		maxburst = dd->caps.max_burst_size;
854		break;
855
856	default:
857		err = -EINVAL;
858		goto exit;
859	}
860
861	err = atmel_aes_map(dd, src, dst, len);
862	if (err)
863		goto exit;
864
865	dd->resume = resume;
866
867	/* Set output DMA transfer first */
868	err = atmel_aes_dma_transfer_start(dd, addr_width, DMA_DEV_TO_MEM,
869					   maxburst);
870	if (err)
871		goto unmap;
872
873	/* Then set input DMA transfer */
874	err = atmel_aes_dma_transfer_start(dd, addr_width, DMA_MEM_TO_DEV,
875					   maxburst);
876	if (err)
877		goto output_transfer_stop;
878
879	return -EINPROGRESS;
880
881output_transfer_stop:
882	dmaengine_terminate_sync(dd->dst.chan);
883unmap:
884	atmel_aes_unmap(dd);
885exit:
886	return atmel_aes_complete(dd, err);
887}
888
889static void atmel_aes_dma_callback(void *data)
890{
891	struct atmel_aes_dev *dd = data;
892
893	atmel_aes_unmap(dd);
894	dd->is_async = true;
895	(void)dd->resume(dd);
896}
897
898static int atmel_aes_handle_queue(struct atmel_aes_dev *dd,
899				  struct crypto_async_request *new_areq)
900{
901	struct crypto_async_request *areq, *backlog;
902	struct atmel_aes_base_ctx *ctx;
903	unsigned long flags;
904	bool start_async;
905	int err, ret = 0;
906
907	spin_lock_irqsave(&dd->lock, flags);
908	if (new_areq)
909		ret = crypto_enqueue_request(&dd->queue, new_areq);
910	if (dd->flags & AES_FLAGS_BUSY) {
911		spin_unlock_irqrestore(&dd->lock, flags);
912		return ret;
913	}
914	backlog = crypto_get_backlog(&dd->queue);
915	areq = crypto_dequeue_request(&dd->queue);
916	if (areq)
917		dd->flags |= AES_FLAGS_BUSY;
918	spin_unlock_irqrestore(&dd->lock, flags);
919
920	if (!areq)
921		return ret;
922
923	if (backlog)
924		crypto_request_complete(backlog, -EINPROGRESS);
925
926	ctx = crypto_tfm_ctx(areq->tfm);
927
928	dd->areq = areq;
929	dd->ctx = ctx;
930	start_async = (areq != new_areq);
931	dd->is_async = start_async;
932
933	/* WARNING: ctx->start() MAY change dd->is_async. */
934	err = ctx->start(dd);
935	return (start_async) ? ret : err;
936}
937
938
939/* AES async block ciphers */
940
941static int atmel_aes_transfer_complete(struct atmel_aes_dev *dd)
942{
943	return atmel_aes_complete(dd, 0);
944}
945
946static int atmel_aes_start(struct atmel_aes_dev *dd)
947{
948	struct skcipher_request *req = skcipher_request_cast(dd->areq);
949	struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
950	bool use_dma = (req->cryptlen >= ATMEL_AES_DMA_THRESHOLD ||
951			dd->ctx->block_size != AES_BLOCK_SIZE);
952	int err;
953
954	atmel_aes_set_mode(dd, rctx);
955
956	err = atmel_aes_hw_init(dd);
957	if (err)
958		return atmel_aes_complete(dd, err);
959
960	atmel_aes_write_ctrl(dd, use_dma, (void *)req->iv);
961	if (use_dma)
962		return atmel_aes_dma_start(dd, req->src, req->dst,
963					   req->cryptlen,
964					   atmel_aes_transfer_complete);
965
966	return atmel_aes_cpu_start(dd, req->src, req->dst, req->cryptlen,
967				   atmel_aes_transfer_complete);
968}
969
970static int atmel_aes_ctr_transfer(struct atmel_aes_dev *dd)
971{
972	struct atmel_aes_ctr_ctx *ctx = atmel_aes_ctr_ctx_cast(dd->ctx);
973	struct skcipher_request *req = skcipher_request_cast(dd->areq);
974	struct scatterlist *src, *dst;
975	size_t datalen;
976	u32 ctr;
977	u16 start, end;
978	bool use_dma, fragmented = false;
979
980	/* Check for transfer completion. */
981	ctx->offset += dd->total;
982	if (ctx->offset >= req->cryptlen)
983		return atmel_aes_transfer_complete(dd);
984
985	/* Compute data length. */
986	datalen = req->cryptlen - ctx->offset;
987	ctx->blocks = DIV_ROUND_UP(datalen, AES_BLOCK_SIZE);
988	ctr = be32_to_cpu(ctx->iv[3]);
989
990	/* Check 16bit counter overflow. */
991	start = ctr & 0xffff;
992	end = start + ctx->blocks - 1;
993
994	if (ctx->blocks >> 16 || end < start) {
995		ctr |= 0xffff;
996		datalen = AES_BLOCK_SIZE * (0x10000 - start);
997		fragmented = true;
998	}
999
1000	use_dma = (datalen >= ATMEL_AES_DMA_THRESHOLD);
1001
1002	/* Jump to offset. */
1003	src = scatterwalk_ffwd(ctx->src, req->src, ctx->offset);
1004	dst = ((req->src == req->dst) ? src :
1005	       scatterwalk_ffwd(ctx->dst, req->dst, ctx->offset));
1006
1007	/* Configure hardware. */
1008	atmel_aes_write_ctrl(dd, use_dma, ctx->iv);
1009	if (unlikely(fragmented)) {
1010		/*
1011		 * Increment the counter manually to cope with the hardware
1012		 * counter overflow.
1013		 */
1014		ctx->iv[3] = cpu_to_be32(ctr);
1015		crypto_inc((u8 *)ctx->iv, AES_BLOCK_SIZE);
1016	}
1017
1018	if (use_dma)
1019		return atmel_aes_dma_start(dd, src, dst, datalen,
1020					   atmel_aes_ctr_transfer);
1021
1022	return atmel_aes_cpu_start(dd, src, dst, datalen,
1023				   atmel_aes_ctr_transfer);
1024}
1025
1026static int atmel_aes_ctr_start(struct atmel_aes_dev *dd)
1027{
1028	struct atmel_aes_ctr_ctx *ctx = atmel_aes_ctr_ctx_cast(dd->ctx);
1029	struct skcipher_request *req = skcipher_request_cast(dd->areq);
1030	struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
1031	int err;
1032
1033	atmel_aes_set_mode(dd, rctx);
1034
1035	err = atmel_aes_hw_init(dd);
1036	if (err)
1037		return atmel_aes_complete(dd, err);
1038
1039	memcpy(ctx->iv, req->iv, AES_BLOCK_SIZE);
1040	ctx->offset = 0;
1041	dd->total = 0;
1042	return atmel_aes_ctr_transfer(dd);
1043}
1044
1045static int atmel_aes_xts_fallback(struct skcipher_request *req, bool enc)
1046{
1047	struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
1048	struct atmel_aes_xts_ctx *ctx = crypto_skcipher_ctx(
1049			crypto_skcipher_reqtfm(req));
1050
1051	skcipher_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
1052	skcipher_request_set_callback(&rctx->fallback_req, req->base.flags,
1053				      req->base.complete, req->base.data);
1054	skcipher_request_set_crypt(&rctx->fallback_req, req->src, req->dst,
1055				   req->cryptlen, req->iv);
1056
1057	return enc ? crypto_skcipher_encrypt(&rctx->fallback_req) :
1058		     crypto_skcipher_decrypt(&rctx->fallback_req);
1059}
1060
1061static int atmel_aes_crypt(struct skcipher_request *req, unsigned long mode)
1062{
1063	struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
1064	struct atmel_aes_base_ctx *ctx = crypto_skcipher_ctx(skcipher);
1065	struct atmel_aes_reqctx *rctx;
1066	u32 opmode = mode & AES_FLAGS_OPMODE_MASK;
1067
1068	if (opmode == AES_FLAGS_XTS) {
1069		if (req->cryptlen < XTS_BLOCK_SIZE)
1070			return -EINVAL;
1071
1072		if (!IS_ALIGNED(req->cryptlen, XTS_BLOCK_SIZE))
1073			return atmel_aes_xts_fallback(req,
1074						      mode & AES_FLAGS_ENCRYPT);
1075	}
1076
1077	/*
1078	 * ECB, CBC or CTR mode require the plaintext and ciphertext
1079	 * to have a positve integer length.
1080	 */
1081	if (!req->cryptlen && opmode != AES_FLAGS_XTS)
1082		return 0;
1083
1084	if ((opmode == AES_FLAGS_ECB || opmode == AES_FLAGS_CBC) &&
1085	    !IS_ALIGNED(req->cryptlen, crypto_skcipher_blocksize(skcipher)))
1086		return -EINVAL;
1087
1088	ctx->block_size = AES_BLOCK_SIZE;
1089	ctx->is_aead = false;
1090
1091	rctx = skcipher_request_ctx(req);
1092	rctx->mode = mode;
1093
1094	if (opmode != AES_FLAGS_ECB &&
1095	    !(mode & AES_FLAGS_ENCRYPT)) {
1096		unsigned int ivsize = crypto_skcipher_ivsize(skcipher);
1097
1098		if (req->cryptlen >= ivsize)
1099			scatterwalk_map_and_copy(rctx->lastc, req->src,
1100						 req->cryptlen - ivsize,
1101						 ivsize, 0);
1102	}
1103
1104	return atmel_aes_handle_queue(ctx->dd, &req->base);
1105}
1106
1107static int atmel_aes_setkey(struct crypto_skcipher *tfm, const u8 *key,
1108			   unsigned int keylen)
1109{
1110	struct atmel_aes_base_ctx *ctx = crypto_skcipher_ctx(tfm);
1111
1112	if (keylen != AES_KEYSIZE_128 &&
1113	    keylen != AES_KEYSIZE_192 &&
1114	    keylen != AES_KEYSIZE_256)
1115		return -EINVAL;
1116
1117	memcpy(ctx->key, key, keylen);
1118	ctx->keylen = keylen;
1119
1120	return 0;
1121}
1122
1123static int atmel_aes_ecb_encrypt(struct skcipher_request *req)
1124{
1125	return atmel_aes_crypt(req, AES_FLAGS_ECB | AES_FLAGS_ENCRYPT);
1126}
1127
1128static int atmel_aes_ecb_decrypt(struct skcipher_request *req)
1129{
1130	return atmel_aes_crypt(req, AES_FLAGS_ECB);
1131}
1132
1133static int atmel_aes_cbc_encrypt(struct skcipher_request *req)
1134{
1135	return atmel_aes_crypt(req, AES_FLAGS_CBC | AES_FLAGS_ENCRYPT);
1136}
1137
1138static int atmel_aes_cbc_decrypt(struct skcipher_request *req)
1139{
1140	return atmel_aes_crypt(req, AES_FLAGS_CBC);
1141}
1142
1143static int atmel_aes_ctr_encrypt(struct skcipher_request *req)
1144{
1145	return atmel_aes_crypt(req, AES_FLAGS_CTR | AES_FLAGS_ENCRYPT);
1146}
1147
1148static int atmel_aes_ctr_decrypt(struct skcipher_request *req)
1149{
1150	return atmel_aes_crypt(req, AES_FLAGS_CTR);
1151}
1152
1153static int atmel_aes_init_tfm(struct crypto_skcipher *tfm)
1154{
1155	struct atmel_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
1156	struct atmel_aes_dev *dd;
1157
1158	dd = atmel_aes_dev_alloc(&ctx->base);
1159	if (!dd)
1160		return -ENODEV;
1161
1162	crypto_skcipher_set_reqsize(tfm, sizeof(struct atmel_aes_reqctx));
1163	ctx->base.dd = dd;
1164	ctx->base.start = atmel_aes_start;
1165
1166	return 0;
1167}
1168
1169static int atmel_aes_ctr_init_tfm(struct crypto_skcipher *tfm)
1170{
1171	struct atmel_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
1172	struct atmel_aes_dev *dd;
1173
1174	dd = atmel_aes_dev_alloc(&ctx->base);
1175	if (!dd)
1176		return -ENODEV;
1177
1178	crypto_skcipher_set_reqsize(tfm, sizeof(struct atmel_aes_reqctx));
1179	ctx->base.dd = dd;
1180	ctx->base.start = atmel_aes_ctr_start;
1181
1182	return 0;
1183}
1184
1185static struct skcipher_alg aes_algs[] = {
1186{
1187	.base.cra_name		= "ecb(aes)",
1188	.base.cra_driver_name	= "atmel-ecb-aes",
1189	.base.cra_blocksize	= AES_BLOCK_SIZE,
1190	.base.cra_ctxsize	= sizeof(struct atmel_aes_ctx),
1191
1192	.init			= atmel_aes_init_tfm,
1193	.min_keysize		= AES_MIN_KEY_SIZE,
1194	.max_keysize		= AES_MAX_KEY_SIZE,
1195	.setkey			= atmel_aes_setkey,
1196	.encrypt		= atmel_aes_ecb_encrypt,
1197	.decrypt		= atmel_aes_ecb_decrypt,
1198},
1199{
1200	.base.cra_name		= "cbc(aes)",
1201	.base.cra_driver_name	= "atmel-cbc-aes",
1202	.base.cra_blocksize	= AES_BLOCK_SIZE,
1203	.base.cra_ctxsize	= sizeof(struct atmel_aes_ctx),
1204
1205	.init			= atmel_aes_init_tfm,
1206	.min_keysize		= AES_MIN_KEY_SIZE,
1207	.max_keysize		= AES_MAX_KEY_SIZE,
1208	.setkey			= atmel_aes_setkey,
1209	.encrypt		= atmel_aes_cbc_encrypt,
1210	.decrypt		= atmel_aes_cbc_decrypt,
1211	.ivsize			= AES_BLOCK_SIZE,
1212},
1213{
1214	.base.cra_name		= "ctr(aes)",
1215	.base.cra_driver_name	= "atmel-ctr-aes",
1216	.base.cra_blocksize	= 1,
1217	.base.cra_ctxsize	= sizeof(struct atmel_aes_ctr_ctx),
1218
1219	.init			= atmel_aes_ctr_init_tfm,
1220	.min_keysize		= AES_MIN_KEY_SIZE,
1221	.max_keysize		= AES_MAX_KEY_SIZE,
1222	.setkey			= atmel_aes_setkey,
1223	.encrypt		= atmel_aes_ctr_encrypt,
1224	.decrypt		= atmel_aes_ctr_decrypt,
1225	.ivsize			= AES_BLOCK_SIZE,
1226},
1227};
1228
1229
1230/* gcm aead functions */
1231
1232static int atmel_aes_gcm_ghash(struct atmel_aes_dev *dd,
1233			       const u32 *data, size_t datalen,
1234			       const __be32 *ghash_in, __be32 *ghash_out,
1235			       atmel_aes_fn_t resume);
1236static int atmel_aes_gcm_ghash_init(struct atmel_aes_dev *dd);
1237static int atmel_aes_gcm_ghash_finalize(struct atmel_aes_dev *dd);
1238
1239static int atmel_aes_gcm_start(struct atmel_aes_dev *dd);
1240static int atmel_aes_gcm_process(struct atmel_aes_dev *dd);
1241static int atmel_aes_gcm_length(struct atmel_aes_dev *dd);
1242static int atmel_aes_gcm_data(struct atmel_aes_dev *dd);
1243static int atmel_aes_gcm_tag_init(struct atmel_aes_dev *dd);
1244static int atmel_aes_gcm_tag(struct atmel_aes_dev *dd);
1245static int atmel_aes_gcm_finalize(struct atmel_aes_dev *dd);
1246
1247static inline struct atmel_aes_gcm_ctx *
1248atmel_aes_gcm_ctx_cast(struct atmel_aes_base_ctx *ctx)
1249{
1250	return container_of(ctx, struct atmel_aes_gcm_ctx, base);
1251}
1252
1253static int atmel_aes_gcm_ghash(struct atmel_aes_dev *dd,
1254			       const u32 *data, size_t datalen,
1255			       const __be32 *ghash_in, __be32 *ghash_out,
1256			       atmel_aes_fn_t resume)
1257{
1258	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1259
1260	dd->data = (u32 *)data;
1261	dd->datalen = datalen;
1262	ctx->ghash_in = ghash_in;
1263	ctx->ghash_out = ghash_out;
1264	ctx->ghash_resume = resume;
1265
1266	atmel_aes_write_ctrl(dd, false, NULL);
1267	return atmel_aes_wait_for_data_ready(dd, atmel_aes_gcm_ghash_init);
1268}
1269
1270static int atmel_aes_gcm_ghash_init(struct atmel_aes_dev *dd)
1271{
1272	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1273
1274	/* Set the data length. */
1275	atmel_aes_write(dd, AES_AADLENR, dd->total);
1276	atmel_aes_write(dd, AES_CLENR, 0);
1277
1278	/* If needed, overwrite the GCM Intermediate Hash Word Registers */
1279	if (ctx->ghash_in)
1280		atmel_aes_write_block(dd, AES_GHASHR(0), ctx->ghash_in);
1281
1282	return atmel_aes_gcm_ghash_finalize(dd);
1283}
1284
1285static int atmel_aes_gcm_ghash_finalize(struct atmel_aes_dev *dd)
1286{
1287	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1288	u32 isr;
1289
1290	/* Write data into the Input Data Registers. */
1291	while (dd->datalen > 0) {
1292		atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
1293		dd->data += 4;
1294		dd->datalen -= AES_BLOCK_SIZE;
1295
1296		isr = atmel_aes_read(dd, AES_ISR);
1297		if (!(isr & AES_INT_DATARDY)) {
1298			dd->resume = atmel_aes_gcm_ghash_finalize;
1299			atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
1300			return -EINPROGRESS;
1301		}
1302	}
1303
1304	/* Read the computed hash from GHASHRx. */
1305	atmel_aes_read_block(dd, AES_GHASHR(0), ctx->ghash_out);
1306
1307	return ctx->ghash_resume(dd);
1308}
1309
1310
1311static int atmel_aes_gcm_start(struct atmel_aes_dev *dd)
1312{
1313	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1314	struct aead_request *req = aead_request_cast(dd->areq);
1315	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1316	struct atmel_aes_reqctx *rctx = aead_request_ctx(req);
1317	size_t ivsize = crypto_aead_ivsize(tfm);
1318	size_t datalen, padlen;
1319	const void *iv = req->iv;
1320	u8 *data = dd->buf;
1321	int err;
1322
1323	atmel_aes_set_mode(dd, rctx);
1324
1325	err = atmel_aes_hw_init(dd);
1326	if (err)
1327		return atmel_aes_complete(dd, err);
1328
1329	if (likely(ivsize == GCM_AES_IV_SIZE)) {
1330		memcpy(ctx->j0, iv, ivsize);
1331		ctx->j0[3] = cpu_to_be32(1);
1332		return atmel_aes_gcm_process(dd);
1333	}
1334
1335	padlen = atmel_aes_padlen(ivsize, AES_BLOCK_SIZE);
1336	datalen = ivsize + padlen + AES_BLOCK_SIZE;
1337	if (datalen > dd->buflen)
1338		return atmel_aes_complete(dd, -EINVAL);
1339
1340	memcpy(data, iv, ivsize);
1341	memset(data + ivsize, 0, padlen + sizeof(u64));
1342	((__be64 *)(data + datalen))[-1] = cpu_to_be64(ivsize * 8);
1343
1344	return atmel_aes_gcm_ghash(dd, (const u32 *)data, datalen,
1345				   NULL, ctx->j0, atmel_aes_gcm_process);
1346}
1347
1348static int atmel_aes_gcm_process(struct atmel_aes_dev *dd)
1349{
1350	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1351	struct aead_request *req = aead_request_cast(dd->areq);
1352	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1353	bool enc = atmel_aes_is_encrypt(dd);
1354	u32 authsize;
1355
1356	/* Compute text length. */
1357	authsize = crypto_aead_authsize(tfm);
1358	ctx->textlen = req->cryptlen - (enc ? 0 : authsize);
1359
1360	/*
1361	 * According to tcrypt test suite, the GCM Automatic Tag Generation
1362	 * fails when both the message and its associated data are empty.
1363	 */
1364	if (likely(req->assoclen != 0 || ctx->textlen != 0))
1365		dd->flags |= AES_FLAGS_GTAGEN;
1366
1367	atmel_aes_write_ctrl(dd, false, NULL);
1368	return atmel_aes_wait_for_data_ready(dd, atmel_aes_gcm_length);
1369}
1370
1371static int atmel_aes_gcm_length(struct atmel_aes_dev *dd)
1372{
1373	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1374	struct aead_request *req = aead_request_cast(dd->areq);
1375	__be32 j0_lsw, *j0 = ctx->j0;
1376	size_t padlen;
1377
1378	/* Write incr32(J0) into IV. */
1379	j0_lsw = j0[3];
1380	be32_add_cpu(&j0[3], 1);
1381	atmel_aes_write_block(dd, AES_IVR(0), j0);
1382	j0[3] = j0_lsw;
1383
1384	/* Set aad and text lengths. */
1385	atmel_aes_write(dd, AES_AADLENR, req->assoclen);
1386	atmel_aes_write(dd, AES_CLENR, ctx->textlen);
1387
1388	/* Check whether AAD are present. */
1389	if (unlikely(req->assoclen == 0)) {
1390		dd->datalen = 0;
1391		return atmel_aes_gcm_data(dd);
1392	}
1393
1394	/* Copy assoc data and add padding. */
1395	padlen = atmel_aes_padlen(req->assoclen, AES_BLOCK_SIZE);
1396	if (unlikely(req->assoclen + padlen > dd->buflen))
1397		return atmel_aes_complete(dd, -EINVAL);
1398	sg_copy_to_buffer(req->src, sg_nents(req->src), dd->buf, req->assoclen);
1399
1400	/* Write assoc data into the Input Data register. */
1401	dd->data = (u32 *)dd->buf;
1402	dd->datalen = req->assoclen + padlen;
1403	return atmel_aes_gcm_data(dd);
1404}
1405
1406static int atmel_aes_gcm_data(struct atmel_aes_dev *dd)
1407{
1408	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1409	struct aead_request *req = aead_request_cast(dd->areq);
1410	bool use_dma = (ctx->textlen >= ATMEL_AES_DMA_THRESHOLD);
1411	struct scatterlist *src, *dst;
1412	u32 isr, mr;
1413
1414	/* Write AAD first. */
1415	while (dd->datalen > 0) {
1416		atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
1417		dd->data += 4;
1418		dd->datalen -= AES_BLOCK_SIZE;
1419
1420		isr = atmel_aes_read(dd, AES_ISR);
1421		if (!(isr & AES_INT_DATARDY)) {
1422			dd->resume = atmel_aes_gcm_data;
1423			atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
1424			return -EINPROGRESS;
1425		}
1426	}
1427
1428	/* GMAC only. */
1429	if (unlikely(ctx->textlen == 0))
1430		return atmel_aes_gcm_tag_init(dd);
1431
1432	/* Prepare src and dst scatter lists to transfer cipher/plain texts */
1433	src = scatterwalk_ffwd(ctx->src, req->src, req->assoclen);
1434	dst = ((req->src == req->dst) ? src :
1435	       scatterwalk_ffwd(ctx->dst, req->dst, req->assoclen));
1436
1437	if (use_dma) {
1438		/* Update the Mode Register for DMA transfers. */
1439		mr = atmel_aes_read(dd, AES_MR);
1440		mr &= ~(AES_MR_SMOD_MASK | AES_MR_DUALBUFF);
1441		mr |= AES_MR_SMOD_IDATAR0;
1442		if (dd->caps.has_dualbuff)
1443			mr |= AES_MR_DUALBUFF;
1444		atmel_aes_write(dd, AES_MR, mr);
1445
1446		return atmel_aes_dma_start(dd, src, dst, ctx->textlen,
1447					   atmel_aes_gcm_tag_init);
1448	}
1449
1450	return atmel_aes_cpu_start(dd, src, dst, ctx->textlen,
1451				   atmel_aes_gcm_tag_init);
1452}
1453
1454static int atmel_aes_gcm_tag_init(struct atmel_aes_dev *dd)
1455{
1456	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1457	struct aead_request *req = aead_request_cast(dd->areq);
1458	__be64 *data = dd->buf;
1459
1460	if (likely(dd->flags & AES_FLAGS_GTAGEN)) {
1461		if (!(atmel_aes_read(dd, AES_ISR) & AES_INT_TAGRDY)) {
1462			dd->resume = atmel_aes_gcm_tag_init;
1463			atmel_aes_write(dd, AES_IER, AES_INT_TAGRDY);
1464			return -EINPROGRESS;
1465		}
1466
1467		return atmel_aes_gcm_finalize(dd);
1468	}
1469
1470	/* Read the GCM Intermediate Hash Word Registers. */
1471	atmel_aes_read_block(dd, AES_GHASHR(0), ctx->ghash);
1472
1473	data[0] = cpu_to_be64(req->assoclen * 8);
1474	data[1] = cpu_to_be64(ctx->textlen * 8);
1475
1476	return atmel_aes_gcm_ghash(dd, (const u32 *)data, AES_BLOCK_SIZE,
1477				   ctx->ghash, ctx->ghash, atmel_aes_gcm_tag);
1478}
1479
1480static int atmel_aes_gcm_tag(struct atmel_aes_dev *dd)
1481{
1482	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1483	unsigned long flags;
1484
1485	/*
1486	 * Change mode to CTR to complete the tag generation.
1487	 * Use J0 as Initialization Vector.
1488	 */
1489	flags = dd->flags;
1490	dd->flags &= ~(AES_FLAGS_OPMODE_MASK | AES_FLAGS_GTAGEN);
1491	dd->flags |= AES_FLAGS_CTR;
1492	atmel_aes_write_ctrl(dd, false, ctx->j0);
1493	dd->flags = flags;
1494
1495	atmel_aes_write_block(dd, AES_IDATAR(0), ctx->ghash);
1496	return atmel_aes_wait_for_data_ready(dd, atmel_aes_gcm_finalize);
1497}
1498
1499static int atmel_aes_gcm_finalize(struct atmel_aes_dev *dd)
1500{
1501	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1502	struct aead_request *req = aead_request_cast(dd->areq);
1503	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1504	bool enc = atmel_aes_is_encrypt(dd);
1505	u32 offset, authsize, itag[4], *otag = ctx->tag;
1506	int err;
1507
1508	/* Read the computed tag. */
1509	if (likely(dd->flags & AES_FLAGS_GTAGEN))
1510		atmel_aes_read_block(dd, AES_TAGR(0), ctx->tag);
1511	else
1512		atmel_aes_read_block(dd, AES_ODATAR(0), ctx->tag);
1513
1514	offset = req->assoclen + ctx->textlen;
1515	authsize = crypto_aead_authsize(tfm);
1516	if (enc) {
1517		scatterwalk_map_and_copy(otag, req->dst, offset, authsize, 1);
1518		err = 0;
1519	} else {
1520		scatterwalk_map_and_copy(itag, req->src, offset, authsize, 0);
1521		err = crypto_memneq(itag, otag, authsize) ? -EBADMSG : 0;
1522	}
1523
1524	return atmel_aes_complete(dd, err);
1525}
1526
1527static int atmel_aes_gcm_crypt(struct aead_request *req,
1528			       unsigned long mode)
1529{
1530	struct atmel_aes_base_ctx *ctx;
1531	struct atmel_aes_reqctx *rctx;
1532
1533	ctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
1534	ctx->block_size = AES_BLOCK_SIZE;
1535	ctx->is_aead = true;
1536
1537	rctx = aead_request_ctx(req);
1538	rctx->mode = AES_FLAGS_GCM | mode;
1539
1540	return atmel_aes_handle_queue(ctx->dd, &req->base);
1541}
1542
1543static int atmel_aes_gcm_setkey(struct crypto_aead *tfm, const u8 *key,
1544				unsigned int keylen)
1545{
1546	struct atmel_aes_base_ctx *ctx = crypto_aead_ctx(tfm);
1547
1548	if (keylen != AES_KEYSIZE_256 &&
1549	    keylen != AES_KEYSIZE_192 &&
1550	    keylen != AES_KEYSIZE_128)
1551		return -EINVAL;
1552
1553	memcpy(ctx->key, key, keylen);
1554	ctx->keylen = keylen;
1555
1556	return 0;
1557}
1558
1559static int atmel_aes_gcm_setauthsize(struct crypto_aead *tfm,
1560				     unsigned int authsize)
1561{
1562	return crypto_gcm_check_authsize(authsize);
1563}
1564
1565static int atmel_aes_gcm_encrypt(struct aead_request *req)
1566{
1567	return atmel_aes_gcm_crypt(req, AES_FLAGS_ENCRYPT);
1568}
1569
1570static int atmel_aes_gcm_decrypt(struct aead_request *req)
1571{
1572	return atmel_aes_gcm_crypt(req, 0);
1573}
1574
1575static int atmel_aes_gcm_init(struct crypto_aead *tfm)
1576{
1577	struct atmel_aes_gcm_ctx *ctx = crypto_aead_ctx(tfm);
1578	struct atmel_aes_dev *dd;
1579
1580	dd = atmel_aes_dev_alloc(&ctx->base);
1581	if (!dd)
1582		return -ENODEV;
1583
1584	crypto_aead_set_reqsize(tfm, sizeof(struct atmel_aes_reqctx));
1585	ctx->base.dd = dd;
1586	ctx->base.start = atmel_aes_gcm_start;
1587
1588	return 0;
1589}
1590
1591static struct aead_alg aes_gcm_alg = {
1592	.setkey		= atmel_aes_gcm_setkey,
1593	.setauthsize	= atmel_aes_gcm_setauthsize,
1594	.encrypt	= atmel_aes_gcm_encrypt,
1595	.decrypt	= atmel_aes_gcm_decrypt,
1596	.init		= atmel_aes_gcm_init,
1597	.ivsize		= GCM_AES_IV_SIZE,
1598	.maxauthsize	= AES_BLOCK_SIZE,
1599
1600	.base = {
1601		.cra_name		= "gcm(aes)",
1602		.cra_driver_name	= "atmel-gcm-aes",
1603		.cra_blocksize		= 1,
1604		.cra_ctxsize		= sizeof(struct atmel_aes_gcm_ctx),
1605	},
1606};
1607
1608
1609/* xts functions */
1610
1611static inline struct atmel_aes_xts_ctx *
1612atmel_aes_xts_ctx_cast(struct atmel_aes_base_ctx *ctx)
1613{
1614	return container_of(ctx, struct atmel_aes_xts_ctx, base);
1615}
1616
1617static int atmel_aes_xts_process_data(struct atmel_aes_dev *dd);
1618
1619static int atmel_aes_xts_start(struct atmel_aes_dev *dd)
1620{
1621	struct atmel_aes_xts_ctx *ctx = atmel_aes_xts_ctx_cast(dd->ctx);
1622	struct skcipher_request *req = skcipher_request_cast(dd->areq);
1623	struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
1624	unsigned long flags;
1625	int err;
1626
1627	atmel_aes_set_mode(dd, rctx);
1628
1629	err = atmel_aes_hw_init(dd);
1630	if (err)
1631		return atmel_aes_complete(dd, err);
1632
1633	/* Compute the tweak value from req->iv with ecb(aes). */
1634	flags = dd->flags;
1635	dd->flags &= ~AES_FLAGS_MODE_MASK;
1636	dd->flags |= (AES_FLAGS_ECB | AES_FLAGS_ENCRYPT);
1637	atmel_aes_write_ctrl_key(dd, false, NULL,
1638				 ctx->key2, ctx->base.keylen);
1639	dd->flags = flags;
1640
1641	atmel_aes_write_block(dd, AES_IDATAR(0), req->iv);
1642	return atmel_aes_wait_for_data_ready(dd, atmel_aes_xts_process_data);
1643}
1644
1645static int atmel_aes_xts_process_data(struct atmel_aes_dev *dd)
1646{
1647	struct skcipher_request *req = skcipher_request_cast(dd->areq);
1648	bool use_dma = (req->cryptlen >= ATMEL_AES_DMA_THRESHOLD);
1649	u32 tweak[AES_BLOCK_SIZE / sizeof(u32)];
1650	static const __le32 one[AES_BLOCK_SIZE / sizeof(u32)] = {cpu_to_le32(1), };
1651	u8 *tweak_bytes = (u8 *)tweak;
1652	int i;
1653
1654	/* Read the computed ciphered tweak value. */
1655	atmel_aes_read_block(dd, AES_ODATAR(0), tweak);
1656	/*
1657	 * Hardware quirk:
1658	 * the order of the ciphered tweak bytes need to be reversed before
1659	 * writing them into the ODATARx registers.
1660	 */
1661	for (i = 0; i < AES_BLOCK_SIZE/2; ++i)
1662		swap(tweak_bytes[i], tweak_bytes[AES_BLOCK_SIZE - 1 - i]);
1663
1664	/* Process the data. */
1665	atmel_aes_write_ctrl(dd, use_dma, NULL);
1666	atmel_aes_write_block(dd, AES_TWR(0), tweak);
1667	atmel_aes_write_block(dd, AES_ALPHAR(0), one);
1668	if (use_dma)
1669		return atmel_aes_dma_start(dd, req->src, req->dst,
1670					   req->cryptlen,
1671					   atmel_aes_transfer_complete);
1672
1673	return atmel_aes_cpu_start(dd, req->src, req->dst, req->cryptlen,
1674				   atmel_aes_transfer_complete);
1675}
1676
1677static int atmel_aes_xts_setkey(struct crypto_skcipher *tfm, const u8 *key,
1678				unsigned int keylen)
1679{
1680	struct atmel_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
1681	int err;
1682
1683	err = xts_verify_key(tfm, key, keylen);
1684	if (err)
1685		return err;
1686
1687	crypto_skcipher_clear_flags(ctx->fallback_tfm, CRYPTO_TFM_REQ_MASK);
1688	crypto_skcipher_set_flags(ctx->fallback_tfm, tfm->base.crt_flags &
1689				  CRYPTO_TFM_REQ_MASK);
1690	err = crypto_skcipher_setkey(ctx->fallback_tfm, key, keylen);
1691	if (err)
1692		return err;
1693
1694	memcpy(ctx->base.key, key, keylen/2);
1695	memcpy(ctx->key2, key + keylen/2, keylen/2);
1696	ctx->base.keylen = keylen/2;
1697
1698	return 0;
1699}
1700
1701static int atmel_aes_xts_encrypt(struct skcipher_request *req)
1702{
1703	return atmel_aes_crypt(req, AES_FLAGS_XTS | AES_FLAGS_ENCRYPT);
1704}
1705
1706static int atmel_aes_xts_decrypt(struct skcipher_request *req)
1707{
1708	return atmel_aes_crypt(req, AES_FLAGS_XTS);
1709}
1710
1711static int atmel_aes_xts_init_tfm(struct crypto_skcipher *tfm)
1712{
1713	struct atmel_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
1714	struct atmel_aes_dev *dd;
1715	const char *tfm_name = crypto_tfm_alg_name(&tfm->base);
1716
1717	dd = atmel_aes_dev_alloc(&ctx->base);
1718	if (!dd)
1719		return -ENODEV;
1720
1721	ctx->fallback_tfm = crypto_alloc_skcipher(tfm_name, 0,
1722						  CRYPTO_ALG_NEED_FALLBACK);
1723	if (IS_ERR(ctx->fallback_tfm))
1724		return PTR_ERR(ctx->fallback_tfm);
1725
1726	crypto_skcipher_set_reqsize(tfm, sizeof(struct atmel_aes_reqctx) +
1727				    crypto_skcipher_reqsize(ctx->fallback_tfm));
1728	ctx->base.dd = dd;
1729	ctx->base.start = atmel_aes_xts_start;
1730
1731	return 0;
1732}
1733
1734static void atmel_aes_xts_exit_tfm(struct crypto_skcipher *tfm)
1735{
1736	struct atmel_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
1737
1738	crypto_free_skcipher(ctx->fallback_tfm);
1739}
1740
1741static struct skcipher_alg aes_xts_alg = {
1742	.base.cra_name		= "xts(aes)",
1743	.base.cra_driver_name	= "atmel-xts-aes",
1744	.base.cra_blocksize	= AES_BLOCK_SIZE,
1745	.base.cra_ctxsize	= sizeof(struct atmel_aes_xts_ctx),
1746	.base.cra_flags		= CRYPTO_ALG_NEED_FALLBACK,
1747
1748	.min_keysize		= 2 * AES_MIN_KEY_SIZE,
1749	.max_keysize		= 2 * AES_MAX_KEY_SIZE,
1750	.ivsize			= AES_BLOCK_SIZE,
1751	.setkey			= atmel_aes_xts_setkey,
1752	.encrypt		= atmel_aes_xts_encrypt,
1753	.decrypt		= atmel_aes_xts_decrypt,
1754	.init			= atmel_aes_xts_init_tfm,
1755	.exit			= atmel_aes_xts_exit_tfm,
1756};
1757
1758#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
1759/* authenc aead functions */
1760
1761static int atmel_aes_authenc_start(struct atmel_aes_dev *dd);
1762static int atmel_aes_authenc_init(struct atmel_aes_dev *dd, int err,
1763				  bool is_async);
1764static int atmel_aes_authenc_transfer(struct atmel_aes_dev *dd, int err,
1765				      bool is_async);
1766static int atmel_aes_authenc_digest(struct atmel_aes_dev *dd);
1767static int atmel_aes_authenc_final(struct atmel_aes_dev *dd, int err,
1768				   bool is_async);
1769
1770static void atmel_aes_authenc_complete(struct atmel_aes_dev *dd, int err)
1771{
1772	struct aead_request *req = aead_request_cast(dd->areq);
1773	struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
1774
1775	if (err && (dd->flags & AES_FLAGS_OWN_SHA))
1776		atmel_sha_authenc_abort(&rctx->auth_req);
1777	dd->flags &= ~AES_FLAGS_OWN_SHA;
1778}
1779
1780static int atmel_aes_authenc_start(struct atmel_aes_dev *dd)
1781{
1782	struct aead_request *req = aead_request_cast(dd->areq);
1783	struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
1784	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1785	struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
1786	int err;
1787
1788	atmel_aes_set_mode(dd, &rctx->base);
1789
1790	err = atmel_aes_hw_init(dd);
1791	if (err)
1792		return atmel_aes_complete(dd, err);
1793
1794	return atmel_sha_authenc_schedule(&rctx->auth_req, ctx->auth,
1795					  atmel_aes_authenc_init, dd);
1796}
1797
1798static int atmel_aes_authenc_init(struct atmel_aes_dev *dd, int err,
1799				  bool is_async)
1800{
1801	struct aead_request *req = aead_request_cast(dd->areq);
1802	struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
1803
1804	if (is_async)
1805		dd->is_async = true;
1806	if (err)
1807		return atmel_aes_complete(dd, err);
1808
1809	/* If here, we've got the ownership of the SHA device. */
1810	dd->flags |= AES_FLAGS_OWN_SHA;
1811
1812	/* Configure the SHA device. */
1813	return atmel_sha_authenc_init(&rctx->auth_req,
1814				      req->src, req->assoclen,
1815				      rctx->textlen,
1816				      atmel_aes_authenc_transfer, dd);
1817}
1818
1819static int atmel_aes_authenc_transfer(struct atmel_aes_dev *dd, int err,
1820				      bool is_async)
1821{
1822	struct aead_request *req = aead_request_cast(dd->areq);
1823	struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
1824	bool enc = atmel_aes_is_encrypt(dd);
1825	struct scatterlist *src, *dst;
1826	__be32 iv[AES_BLOCK_SIZE / sizeof(u32)];
1827	u32 emr;
1828
1829	if (is_async)
1830		dd->is_async = true;
1831	if (err)
1832		return atmel_aes_complete(dd, err);
1833
1834	/* Prepare src and dst scatter-lists to transfer cipher/plain texts. */
1835	src = scatterwalk_ffwd(rctx->src, req->src, req->assoclen);
1836	dst = src;
1837
1838	if (req->src != req->dst)
1839		dst = scatterwalk_ffwd(rctx->dst, req->dst, req->assoclen);
1840
1841	/* Configure the AES device. */
1842	memcpy(iv, req->iv, sizeof(iv));
1843
1844	/*
1845	 * Here we always set the 2nd parameter of atmel_aes_write_ctrl() to
1846	 * 'true' even if the data transfer is actually performed by the CPU (so
1847	 * not by the DMA) because we must force the AES_MR_SMOD bitfield to the
1848	 * value AES_MR_SMOD_IDATAR0. Indeed, both AES_MR_SMOD and SHA_MR_SMOD
1849	 * must be set to *_MR_SMOD_IDATAR0.
1850	 */
1851	atmel_aes_write_ctrl(dd, true, iv);
1852	emr = AES_EMR_PLIPEN;
1853	if (!enc)
1854		emr |= AES_EMR_PLIPD;
1855	atmel_aes_write(dd, AES_EMR, emr);
1856
1857	/* Transfer data. */
1858	return atmel_aes_dma_start(dd, src, dst, rctx->textlen,
1859				   atmel_aes_authenc_digest);
1860}
1861
1862static int atmel_aes_authenc_digest(struct atmel_aes_dev *dd)
1863{
1864	struct aead_request *req = aead_request_cast(dd->areq);
1865	struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
1866
1867	/* atmel_sha_authenc_final() releases the SHA device. */
1868	dd->flags &= ~AES_FLAGS_OWN_SHA;
1869	return atmel_sha_authenc_final(&rctx->auth_req,
1870				       rctx->digest, sizeof(rctx->digest),
1871				       atmel_aes_authenc_final, dd);
1872}
1873
1874static int atmel_aes_authenc_final(struct atmel_aes_dev *dd, int err,
1875				   bool is_async)
1876{
1877	struct aead_request *req = aead_request_cast(dd->areq);
1878	struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
1879	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1880	bool enc = atmel_aes_is_encrypt(dd);
1881	u32 idigest[SHA512_DIGEST_SIZE / sizeof(u32)], *odigest = rctx->digest;
1882	u32 offs, authsize;
1883
1884	if (is_async)
1885		dd->is_async = true;
1886	if (err)
1887		goto complete;
1888
1889	offs = req->assoclen + rctx->textlen;
1890	authsize = crypto_aead_authsize(tfm);
1891	if (enc) {
1892		scatterwalk_map_and_copy(odigest, req->dst, offs, authsize, 1);
1893	} else {
1894		scatterwalk_map_and_copy(idigest, req->src, offs, authsize, 0);
1895		if (crypto_memneq(idigest, odigest, authsize))
1896			err = -EBADMSG;
1897	}
1898
1899complete:
1900	return atmel_aes_complete(dd, err);
1901}
1902
1903static int atmel_aes_authenc_setkey(struct crypto_aead *tfm, const u8 *key,
1904				    unsigned int keylen)
1905{
1906	struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
1907	struct crypto_authenc_keys keys;
1908	int err;
1909
1910	if (crypto_authenc_extractkeys(&keys, key, keylen) != 0)
1911		goto badkey;
1912
1913	if (keys.enckeylen > sizeof(ctx->base.key))
1914		goto badkey;
1915
1916	/* Save auth key. */
1917	err = atmel_sha_authenc_setkey(ctx->auth,
1918				       keys.authkey, keys.authkeylen,
1919				       crypto_aead_get_flags(tfm));
1920	if (err) {
1921		memzero_explicit(&keys, sizeof(keys));
1922		return err;
1923	}
1924
1925	/* Save enc key. */
1926	ctx->base.keylen = keys.enckeylen;
1927	memcpy(ctx->base.key, keys.enckey, keys.enckeylen);
1928
1929	memzero_explicit(&keys, sizeof(keys));
1930	return 0;
1931
1932badkey:
1933	memzero_explicit(&keys, sizeof(keys));
1934	return -EINVAL;
1935}
1936
1937static int atmel_aes_authenc_init_tfm(struct crypto_aead *tfm,
1938				      unsigned long auth_mode)
1939{
1940	struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
1941	unsigned int auth_reqsize = atmel_sha_authenc_get_reqsize();
1942	struct atmel_aes_dev *dd;
1943
1944	dd = atmel_aes_dev_alloc(&ctx->base);
1945	if (!dd)
1946		return -ENODEV;
1947
1948	ctx->auth = atmel_sha_authenc_spawn(auth_mode);
1949	if (IS_ERR(ctx->auth))
1950		return PTR_ERR(ctx->auth);
1951
1952	crypto_aead_set_reqsize(tfm, (sizeof(struct atmel_aes_authenc_reqctx) +
1953				      auth_reqsize));
1954	ctx->base.dd = dd;
1955	ctx->base.start = atmel_aes_authenc_start;
1956
1957	return 0;
1958}
1959
1960static int atmel_aes_authenc_hmac_sha1_init_tfm(struct crypto_aead *tfm)
1961{
1962	return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA1);
1963}
1964
1965static int atmel_aes_authenc_hmac_sha224_init_tfm(struct crypto_aead *tfm)
1966{
1967	return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA224);
1968}
1969
1970static int atmel_aes_authenc_hmac_sha256_init_tfm(struct crypto_aead *tfm)
1971{
1972	return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA256);
1973}
1974
1975static int atmel_aes_authenc_hmac_sha384_init_tfm(struct crypto_aead *tfm)
1976{
1977	return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA384);
1978}
1979
1980static int atmel_aes_authenc_hmac_sha512_init_tfm(struct crypto_aead *tfm)
1981{
1982	return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA512);
1983}
1984
1985static void atmel_aes_authenc_exit_tfm(struct crypto_aead *tfm)
1986{
1987	struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
1988
1989	atmel_sha_authenc_free(ctx->auth);
1990}
1991
1992static int atmel_aes_authenc_crypt(struct aead_request *req,
1993				   unsigned long mode)
1994{
1995	struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
1996	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1997	struct atmel_aes_base_ctx *ctx = crypto_aead_ctx(tfm);
1998	u32 authsize = crypto_aead_authsize(tfm);
1999	bool enc = (mode & AES_FLAGS_ENCRYPT);
2000
2001	/* Compute text length. */
2002	if (!enc && req->cryptlen < authsize)
2003		return -EINVAL;
2004	rctx->textlen = req->cryptlen - (enc ? 0 : authsize);
2005
2006	/*
2007	 * Currently, empty messages are not supported yet:
2008	 * the SHA auto-padding can be used only on non-empty messages.
2009	 * Hence a special case needs to be implemented for empty message.
2010	 */
2011	if (!rctx->textlen && !req->assoclen)
2012		return -EINVAL;
2013
2014	rctx->base.mode = mode;
2015	ctx->block_size = AES_BLOCK_SIZE;
2016	ctx->is_aead = true;
2017
2018	return atmel_aes_handle_queue(ctx->dd, &req->base);
2019}
2020
2021static int atmel_aes_authenc_cbc_aes_encrypt(struct aead_request *req)
2022{
2023	return atmel_aes_authenc_crypt(req, AES_FLAGS_CBC | AES_FLAGS_ENCRYPT);
2024}
2025
2026static int atmel_aes_authenc_cbc_aes_decrypt(struct aead_request *req)
2027{
2028	return atmel_aes_authenc_crypt(req, AES_FLAGS_CBC);
2029}
2030
2031static struct aead_alg aes_authenc_algs[] = {
2032{
2033	.setkey		= atmel_aes_authenc_setkey,
2034	.encrypt	= atmel_aes_authenc_cbc_aes_encrypt,
2035	.decrypt	= atmel_aes_authenc_cbc_aes_decrypt,
2036	.init		= atmel_aes_authenc_hmac_sha1_init_tfm,
2037	.exit		= atmel_aes_authenc_exit_tfm,
2038	.ivsize		= AES_BLOCK_SIZE,
2039	.maxauthsize	= SHA1_DIGEST_SIZE,
2040
2041	.base = {
2042		.cra_name		= "authenc(hmac(sha1),cbc(aes))",
2043		.cra_driver_name	= "atmel-authenc-hmac-sha1-cbc-aes",
2044		.cra_blocksize		= AES_BLOCK_SIZE,
2045		.cra_ctxsize		= sizeof(struct atmel_aes_authenc_ctx),
2046	},
2047},
2048{
2049	.setkey		= atmel_aes_authenc_setkey,
2050	.encrypt	= atmel_aes_authenc_cbc_aes_encrypt,
2051	.decrypt	= atmel_aes_authenc_cbc_aes_decrypt,
2052	.init		= atmel_aes_authenc_hmac_sha224_init_tfm,
2053	.exit		= atmel_aes_authenc_exit_tfm,
2054	.ivsize		= AES_BLOCK_SIZE,
2055	.maxauthsize	= SHA224_DIGEST_SIZE,
2056
2057	.base = {
2058		.cra_name		= "authenc(hmac(sha224),cbc(aes))",
2059		.cra_driver_name	= "atmel-authenc-hmac-sha224-cbc-aes",
2060		.cra_blocksize		= AES_BLOCK_SIZE,
2061		.cra_ctxsize		= sizeof(struct atmel_aes_authenc_ctx),
2062	},
2063},
2064{
2065	.setkey		= atmel_aes_authenc_setkey,
2066	.encrypt	= atmel_aes_authenc_cbc_aes_encrypt,
2067	.decrypt	= atmel_aes_authenc_cbc_aes_decrypt,
2068	.init		= atmel_aes_authenc_hmac_sha256_init_tfm,
2069	.exit		= atmel_aes_authenc_exit_tfm,
2070	.ivsize		= AES_BLOCK_SIZE,
2071	.maxauthsize	= SHA256_DIGEST_SIZE,
2072
2073	.base = {
2074		.cra_name		= "authenc(hmac(sha256),cbc(aes))",
2075		.cra_driver_name	= "atmel-authenc-hmac-sha256-cbc-aes",
2076		.cra_blocksize		= AES_BLOCK_SIZE,
2077		.cra_ctxsize		= sizeof(struct atmel_aes_authenc_ctx),
2078	},
2079},
2080{
2081	.setkey		= atmel_aes_authenc_setkey,
2082	.encrypt	= atmel_aes_authenc_cbc_aes_encrypt,
2083	.decrypt	= atmel_aes_authenc_cbc_aes_decrypt,
2084	.init		= atmel_aes_authenc_hmac_sha384_init_tfm,
2085	.exit		= atmel_aes_authenc_exit_tfm,
2086	.ivsize		= AES_BLOCK_SIZE,
2087	.maxauthsize	= SHA384_DIGEST_SIZE,
2088
2089	.base = {
2090		.cra_name		= "authenc(hmac(sha384),cbc(aes))",
2091		.cra_driver_name	= "atmel-authenc-hmac-sha384-cbc-aes",
2092		.cra_blocksize		= AES_BLOCK_SIZE,
2093		.cra_ctxsize		= sizeof(struct atmel_aes_authenc_ctx),
2094	},
2095},
2096{
2097	.setkey		= atmel_aes_authenc_setkey,
2098	.encrypt	= atmel_aes_authenc_cbc_aes_encrypt,
2099	.decrypt	= atmel_aes_authenc_cbc_aes_decrypt,
2100	.init		= atmel_aes_authenc_hmac_sha512_init_tfm,
2101	.exit		= atmel_aes_authenc_exit_tfm,
2102	.ivsize		= AES_BLOCK_SIZE,
2103	.maxauthsize	= SHA512_DIGEST_SIZE,
2104
2105	.base = {
2106		.cra_name		= "authenc(hmac(sha512),cbc(aes))",
2107		.cra_driver_name	= "atmel-authenc-hmac-sha512-cbc-aes",
2108		.cra_blocksize		= AES_BLOCK_SIZE,
2109		.cra_ctxsize		= sizeof(struct atmel_aes_authenc_ctx),
2110	},
2111},
2112};
2113#endif /* CONFIG_CRYPTO_DEV_ATMEL_AUTHENC */
2114
2115/* Probe functions */
2116
2117static int atmel_aes_buff_init(struct atmel_aes_dev *dd)
2118{
2119	dd->buf = (void *)__get_free_pages(GFP_KERNEL, ATMEL_AES_BUFFER_ORDER);
2120	dd->buflen = ATMEL_AES_BUFFER_SIZE;
2121	dd->buflen &= ~(AES_BLOCK_SIZE - 1);
2122
2123	if (!dd->buf) {
2124		dev_err(dd->dev, "unable to alloc pages.\n");
2125		return -ENOMEM;
2126	}
2127
2128	return 0;
2129}
2130
2131static void atmel_aes_buff_cleanup(struct atmel_aes_dev *dd)
2132{
2133	free_page((unsigned long)dd->buf);
2134}
2135
2136static int atmel_aes_dma_init(struct atmel_aes_dev *dd)
2137{
2138	int ret;
2139
2140	/* Try to grab 2 DMA channels */
2141	dd->src.chan = dma_request_chan(dd->dev, "tx");
2142	if (IS_ERR(dd->src.chan)) {
2143		ret = PTR_ERR(dd->src.chan);
2144		goto err_dma_in;
2145	}
2146
2147	dd->dst.chan = dma_request_chan(dd->dev, "rx");
2148	if (IS_ERR(dd->dst.chan)) {
2149		ret = PTR_ERR(dd->dst.chan);
2150		goto err_dma_out;
2151	}
2152
2153	return 0;
2154
2155err_dma_out:
2156	dma_release_channel(dd->src.chan);
2157err_dma_in:
2158	dev_err(dd->dev, "no DMA channel available\n");
2159	return ret;
2160}
2161
2162static void atmel_aes_dma_cleanup(struct atmel_aes_dev *dd)
2163{
2164	dma_release_channel(dd->dst.chan);
2165	dma_release_channel(dd->src.chan);
2166}
2167
2168static void atmel_aes_queue_task(unsigned long data)
2169{
2170	struct atmel_aes_dev *dd = (struct atmel_aes_dev *)data;
2171
2172	atmel_aes_handle_queue(dd, NULL);
2173}
2174
2175static void atmel_aes_done_task(unsigned long data)
2176{
2177	struct atmel_aes_dev *dd = (struct atmel_aes_dev *)data;
2178
2179	dd->is_async = true;
2180	(void)dd->resume(dd);
2181}
2182
2183static irqreturn_t atmel_aes_irq(int irq, void *dev_id)
2184{
2185	struct atmel_aes_dev *aes_dd = dev_id;
2186	u32 reg;
2187
2188	reg = atmel_aes_read(aes_dd, AES_ISR);
2189	if (reg & atmel_aes_read(aes_dd, AES_IMR)) {
2190		atmel_aes_write(aes_dd, AES_IDR, reg);
2191		if (AES_FLAGS_BUSY & aes_dd->flags)
2192			tasklet_schedule(&aes_dd->done_task);
2193		else
2194			dev_warn(aes_dd->dev, "AES interrupt when no active requests.\n");
2195		return IRQ_HANDLED;
2196	}
2197
2198	return IRQ_NONE;
2199}
2200
2201static void atmel_aes_unregister_algs(struct atmel_aes_dev *dd)
2202{
2203	int i;
2204
2205#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
2206	if (dd->caps.has_authenc)
2207		for (i = 0; i < ARRAY_SIZE(aes_authenc_algs); i++)
2208			crypto_unregister_aead(&aes_authenc_algs[i]);
2209#endif
2210
2211	if (dd->caps.has_xts)
2212		crypto_unregister_skcipher(&aes_xts_alg);
2213
2214	if (dd->caps.has_gcm)
2215		crypto_unregister_aead(&aes_gcm_alg);
2216
2217	for (i = 0; i < ARRAY_SIZE(aes_algs); i++)
2218		crypto_unregister_skcipher(&aes_algs[i]);
2219}
2220
2221static void atmel_aes_crypto_alg_init(struct crypto_alg *alg)
2222{
2223	alg->cra_flags |= CRYPTO_ALG_ASYNC;
2224	alg->cra_alignmask = 0xf;
2225	alg->cra_priority = ATMEL_AES_PRIORITY;
2226	alg->cra_module = THIS_MODULE;
2227}
2228
2229static int atmel_aes_register_algs(struct atmel_aes_dev *dd)
2230{
2231	int err, i, j;
2232
2233	for (i = 0; i < ARRAY_SIZE(aes_algs); i++) {
2234		atmel_aes_crypto_alg_init(&aes_algs[i].base);
2235
2236		err = crypto_register_skcipher(&aes_algs[i]);
2237		if (err)
2238			goto err_aes_algs;
2239	}
2240
2241	if (dd->caps.has_gcm) {
2242		atmel_aes_crypto_alg_init(&aes_gcm_alg.base);
2243
2244		err = crypto_register_aead(&aes_gcm_alg);
2245		if (err)
2246			goto err_aes_gcm_alg;
2247	}
2248
2249	if (dd->caps.has_xts) {
2250		atmel_aes_crypto_alg_init(&aes_xts_alg.base);
2251
2252		err = crypto_register_skcipher(&aes_xts_alg);
2253		if (err)
2254			goto err_aes_xts_alg;
2255	}
2256
2257#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
2258	if (dd->caps.has_authenc) {
2259		for (i = 0; i < ARRAY_SIZE(aes_authenc_algs); i++) {
2260			atmel_aes_crypto_alg_init(&aes_authenc_algs[i].base);
2261
2262			err = crypto_register_aead(&aes_authenc_algs[i]);
2263			if (err)
2264				goto err_aes_authenc_alg;
2265		}
2266	}
2267#endif
2268
2269	return 0;
2270
2271#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
2272	/* i = ARRAY_SIZE(aes_authenc_algs); */
2273err_aes_authenc_alg:
2274	for (j = 0; j < i; j++)
2275		crypto_unregister_aead(&aes_authenc_algs[j]);
2276	crypto_unregister_skcipher(&aes_xts_alg);
2277#endif
2278err_aes_xts_alg:
2279	crypto_unregister_aead(&aes_gcm_alg);
2280err_aes_gcm_alg:
2281	i = ARRAY_SIZE(aes_algs);
2282err_aes_algs:
2283	for (j = 0; j < i; j++)
2284		crypto_unregister_skcipher(&aes_algs[j]);
2285
2286	return err;
2287}
2288
2289static void atmel_aes_get_cap(struct atmel_aes_dev *dd)
2290{
2291	dd->caps.has_dualbuff = 0;
2292	dd->caps.has_gcm = 0;
2293	dd->caps.has_xts = 0;
2294	dd->caps.has_authenc = 0;
2295	dd->caps.max_burst_size = 1;
2296
2297	/* keep only major version number */
2298	switch (dd->hw_version & 0xff0) {
2299	case 0x700:
2300	case 0x600:
2301	case 0x500:
2302		dd->caps.has_dualbuff = 1;
2303		dd->caps.has_gcm = 1;
2304		dd->caps.has_xts = 1;
2305		dd->caps.has_authenc = 1;
2306		dd->caps.max_burst_size = 4;
2307		break;
2308	case 0x200:
2309		dd->caps.has_dualbuff = 1;
2310		dd->caps.has_gcm = 1;
2311		dd->caps.max_burst_size = 4;
2312		break;
2313	case 0x130:
2314		dd->caps.has_dualbuff = 1;
2315		dd->caps.max_burst_size = 4;
2316		break;
2317	case 0x120:
2318		break;
2319	default:
2320		dev_warn(dd->dev,
2321				"Unmanaged aes version, set minimum capabilities\n");
2322		break;
2323	}
2324}
2325
2326static const struct of_device_id atmel_aes_dt_ids[] = {
2327	{ .compatible = "atmel,at91sam9g46-aes" },
2328	{ /* sentinel */ }
2329};
2330MODULE_DEVICE_TABLE(of, atmel_aes_dt_ids);
2331
2332static int atmel_aes_probe(struct platform_device *pdev)
2333{
2334	struct atmel_aes_dev *aes_dd;
2335	struct device *dev = &pdev->dev;
2336	struct resource *aes_res;
2337	int err;
2338
2339	aes_dd = devm_kzalloc(&pdev->dev, sizeof(*aes_dd), GFP_KERNEL);
2340	if (!aes_dd)
2341		return -ENOMEM;
2342
2343	aes_dd->dev = dev;
2344
2345	platform_set_drvdata(pdev, aes_dd);
2346
2347	INIT_LIST_HEAD(&aes_dd->list);
2348	spin_lock_init(&aes_dd->lock);
2349
2350	tasklet_init(&aes_dd->done_task, atmel_aes_done_task,
2351					(unsigned long)aes_dd);
2352	tasklet_init(&aes_dd->queue_task, atmel_aes_queue_task,
2353					(unsigned long)aes_dd);
2354
2355	crypto_init_queue(&aes_dd->queue, ATMEL_AES_QUEUE_LENGTH);
2356
2357	aes_dd->io_base = devm_platform_get_and_ioremap_resource(pdev, 0, &aes_res);
2358	if (IS_ERR(aes_dd->io_base)) {
2359		err = PTR_ERR(aes_dd->io_base);
2360		goto err_tasklet_kill;
2361	}
2362	aes_dd->phys_base = aes_res->start;
2363
2364	/* Get the IRQ */
2365	aes_dd->irq = platform_get_irq(pdev,  0);
2366	if (aes_dd->irq < 0) {
2367		err = aes_dd->irq;
2368		goto err_tasklet_kill;
2369	}
2370
2371	err = devm_request_irq(&pdev->dev, aes_dd->irq, atmel_aes_irq,
2372			       IRQF_SHARED, "atmel-aes", aes_dd);
2373	if (err) {
2374		dev_err(dev, "unable to request aes irq.\n");
2375		goto err_tasklet_kill;
2376	}
2377
2378	/* Initializing the clock */
2379	aes_dd->iclk = devm_clk_get(&pdev->dev, "aes_clk");
2380	if (IS_ERR(aes_dd->iclk)) {
2381		dev_err(dev, "clock initialization failed.\n");
2382		err = PTR_ERR(aes_dd->iclk);
2383		goto err_tasklet_kill;
2384	}
2385
2386	err = clk_prepare(aes_dd->iclk);
2387	if (err)
2388		goto err_tasklet_kill;
2389
2390	err = atmel_aes_hw_version_init(aes_dd);
2391	if (err)
2392		goto err_iclk_unprepare;
2393
2394	atmel_aes_get_cap(aes_dd);
2395
2396#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
2397	if (aes_dd->caps.has_authenc && !atmel_sha_authenc_is_ready()) {
2398		err = -EPROBE_DEFER;
2399		goto err_iclk_unprepare;
2400	}
2401#endif
2402
2403	err = atmel_aes_buff_init(aes_dd);
2404	if (err)
2405		goto err_iclk_unprepare;
2406
2407	err = atmel_aes_dma_init(aes_dd);
2408	if (err)
2409		goto err_buff_cleanup;
2410
2411	spin_lock(&atmel_aes.lock);
2412	list_add_tail(&aes_dd->list, &atmel_aes.dev_list);
2413	spin_unlock(&atmel_aes.lock);
2414
2415	err = atmel_aes_register_algs(aes_dd);
2416	if (err)
2417		goto err_algs;
2418
2419	dev_info(dev, "Atmel AES - Using %s, %s for DMA transfers\n",
2420			dma_chan_name(aes_dd->src.chan),
2421			dma_chan_name(aes_dd->dst.chan));
2422
2423	return 0;
2424
2425err_algs:
2426	spin_lock(&atmel_aes.lock);
2427	list_del(&aes_dd->list);
2428	spin_unlock(&atmel_aes.lock);
2429	atmel_aes_dma_cleanup(aes_dd);
2430err_buff_cleanup:
2431	atmel_aes_buff_cleanup(aes_dd);
2432err_iclk_unprepare:
2433	clk_unprepare(aes_dd->iclk);
2434err_tasklet_kill:
2435	tasklet_kill(&aes_dd->done_task);
2436	tasklet_kill(&aes_dd->queue_task);
2437
2438	return err;
2439}
2440
2441static void atmel_aes_remove(struct platform_device *pdev)
2442{
2443	struct atmel_aes_dev *aes_dd;
2444
2445	aes_dd = platform_get_drvdata(pdev);
2446
2447	spin_lock(&atmel_aes.lock);
2448	list_del(&aes_dd->list);
2449	spin_unlock(&atmel_aes.lock);
2450
2451	atmel_aes_unregister_algs(aes_dd);
2452
2453	tasklet_kill(&aes_dd->done_task);
2454	tasklet_kill(&aes_dd->queue_task);
2455
2456	atmel_aes_dma_cleanup(aes_dd);
2457	atmel_aes_buff_cleanup(aes_dd);
2458
2459	clk_unprepare(aes_dd->iclk);
2460}
2461
2462static struct platform_driver atmel_aes_driver = {
2463	.probe		= atmel_aes_probe,
2464	.remove_new	= atmel_aes_remove,
2465	.driver		= {
2466		.name	= "atmel_aes",
2467		.of_match_table = atmel_aes_dt_ids,
2468	},
2469};
2470
2471module_platform_driver(atmel_aes_driver);
2472
2473MODULE_DESCRIPTION("Atmel AES hw acceleration support.");
2474MODULE_LICENSE("GPL v2");
2475MODULE_AUTHOR("Nicolas Royer - Eukr��a Electromatique");
2476