1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 2013 Freescale Semiconductor, Inc.
4 */
5
6#include <linux/clk.h>
7#include <linux/cpu.h>
8#include <linux/cpufreq.h>
9#include <linux/err.h>
10#include <linux/module.h>
11#include <linux/nvmem-consumer.h>
12#include <linux/of.h>
13#include <linux/of_address.h>
14#include <linux/pm_opp.h>
15#include <linux/platform_device.h>
16#include <linux/regulator/consumer.h>
17#include <linux/mfd/syscon.h>
18#include <linux/regmap.h>
19
20#define PU_SOC_VOLTAGE_NORMAL	1250000
21#define PU_SOC_VOLTAGE_HIGH	1275000
22#define FREQ_1P2_GHZ		1200000000
23
24static struct regulator *arm_reg;
25static struct regulator *pu_reg;
26static struct regulator *soc_reg;
27
28enum IMX6_CPUFREQ_CLKS {
29	ARM,
30	PLL1_SYS,
31	STEP,
32	PLL1_SW,
33	PLL2_PFD2_396M,
34	/* MX6UL requires two more clks */
35	PLL2_BUS,
36	SECONDARY_SEL,
37};
38#define IMX6Q_CPUFREQ_CLK_NUM		5
39#define IMX6UL_CPUFREQ_CLK_NUM		7
40
41static int num_clks;
42static struct clk_bulk_data clks[] = {
43	{ .id = "arm" },
44	{ .id = "pll1_sys" },
45	{ .id = "step" },
46	{ .id = "pll1_sw" },
47	{ .id = "pll2_pfd2_396m" },
48	{ .id = "pll2_bus" },
49	{ .id = "secondary_sel" },
50};
51
52static struct device *cpu_dev;
53static struct cpufreq_frequency_table *freq_table;
54static unsigned int max_freq;
55static unsigned int transition_latency;
56
57static u32 *imx6_soc_volt;
58static u32 soc_opp_count;
59
60static int imx6q_set_target(struct cpufreq_policy *policy, unsigned int index)
61{
62	struct dev_pm_opp *opp;
63	unsigned long freq_hz, volt, volt_old;
64	unsigned int old_freq, new_freq;
65	bool pll1_sys_temp_enabled = false;
66	int ret;
67
68	new_freq = freq_table[index].frequency;
69	freq_hz = new_freq * 1000;
70	old_freq = clk_get_rate(clks[ARM].clk) / 1000;
71
72	opp = dev_pm_opp_find_freq_ceil(cpu_dev, &freq_hz);
73	if (IS_ERR(opp)) {
74		dev_err(cpu_dev, "failed to find OPP for %ld\n", freq_hz);
75		return PTR_ERR(opp);
76	}
77
78	volt = dev_pm_opp_get_voltage(opp);
79	dev_pm_opp_put(opp);
80
81	volt_old = regulator_get_voltage(arm_reg);
82
83	dev_dbg(cpu_dev, "%u MHz, %ld mV --> %u MHz, %ld mV\n",
84		old_freq / 1000, volt_old / 1000,
85		new_freq / 1000, volt / 1000);
86
87	/* scaling up?  scale voltage before frequency */
88	if (new_freq > old_freq) {
89		if (!IS_ERR(pu_reg)) {
90			ret = regulator_set_voltage_tol(pu_reg, imx6_soc_volt[index], 0);
91			if (ret) {
92				dev_err(cpu_dev, "failed to scale vddpu up: %d\n", ret);
93				return ret;
94			}
95		}
96		ret = regulator_set_voltage_tol(soc_reg, imx6_soc_volt[index], 0);
97		if (ret) {
98			dev_err(cpu_dev, "failed to scale vddsoc up: %d\n", ret);
99			return ret;
100		}
101		ret = regulator_set_voltage_tol(arm_reg, volt, 0);
102		if (ret) {
103			dev_err(cpu_dev,
104				"failed to scale vddarm up: %d\n", ret);
105			return ret;
106		}
107	}
108
109	/*
110	 * The setpoints are selected per PLL/PDF frequencies, so we need to
111	 * reprogram PLL for frequency scaling.  The procedure of reprogramming
112	 * PLL1 is as below.
113	 * For i.MX6UL, it has a secondary clk mux, the cpu frequency change
114	 * flow is slightly different from other i.MX6 OSC.
115	 * The cpu frequeny change flow for i.MX6(except i.MX6UL) is as below:
116	 *  - Enable pll2_pfd2_396m_clk and reparent pll1_sw_clk to it
117	 *  - Reprogram pll1_sys_clk and reparent pll1_sw_clk back to it
118	 *  - Disable pll2_pfd2_396m_clk
119	 */
120	if (of_machine_is_compatible("fsl,imx6ul") ||
121	    of_machine_is_compatible("fsl,imx6ull")) {
122		/*
123		 * When changing pll1_sw_clk's parent to pll1_sys_clk,
124		 * CPU may run at higher than 528MHz, this will lead to
125		 * the system unstable if the voltage is lower than the
126		 * voltage of 528MHz, so lower the CPU frequency to one
127		 * half before changing CPU frequency.
128		 */
129		clk_set_rate(clks[ARM].clk, (old_freq >> 1) * 1000);
130		clk_set_parent(clks[PLL1_SW].clk, clks[PLL1_SYS].clk);
131		if (freq_hz > clk_get_rate(clks[PLL2_PFD2_396M].clk))
132			clk_set_parent(clks[SECONDARY_SEL].clk,
133				       clks[PLL2_BUS].clk);
134		else
135			clk_set_parent(clks[SECONDARY_SEL].clk,
136				       clks[PLL2_PFD2_396M].clk);
137		clk_set_parent(clks[STEP].clk, clks[SECONDARY_SEL].clk);
138		clk_set_parent(clks[PLL1_SW].clk, clks[STEP].clk);
139		if (freq_hz > clk_get_rate(clks[PLL2_BUS].clk)) {
140			clk_set_rate(clks[PLL1_SYS].clk, new_freq * 1000);
141			clk_set_parent(clks[PLL1_SW].clk, clks[PLL1_SYS].clk);
142		}
143	} else {
144		clk_set_parent(clks[STEP].clk, clks[PLL2_PFD2_396M].clk);
145		clk_set_parent(clks[PLL1_SW].clk, clks[STEP].clk);
146		if (freq_hz > clk_get_rate(clks[PLL2_PFD2_396M].clk)) {
147			clk_set_rate(clks[PLL1_SYS].clk, new_freq * 1000);
148			clk_set_parent(clks[PLL1_SW].clk, clks[PLL1_SYS].clk);
149		} else {
150			/* pll1_sys needs to be enabled for divider rate change to work. */
151			pll1_sys_temp_enabled = true;
152			clk_prepare_enable(clks[PLL1_SYS].clk);
153		}
154	}
155
156	/* Ensure the arm clock divider is what we expect */
157	ret = clk_set_rate(clks[ARM].clk, new_freq * 1000);
158	if (ret) {
159		int ret1;
160
161		dev_err(cpu_dev, "failed to set clock rate: %d\n", ret);
162		ret1 = regulator_set_voltage_tol(arm_reg, volt_old, 0);
163		if (ret1)
164			dev_warn(cpu_dev,
165				 "failed to restore vddarm voltage: %d\n", ret1);
166		return ret;
167	}
168
169	/* PLL1 is only needed until after ARM-PODF is set. */
170	if (pll1_sys_temp_enabled)
171		clk_disable_unprepare(clks[PLL1_SYS].clk);
172
173	/* scaling down?  scale voltage after frequency */
174	if (new_freq < old_freq) {
175		ret = regulator_set_voltage_tol(arm_reg, volt, 0);
176		if (ret)
177			dev_warn(cpu_dev,
178				 "failed to scale vddarm down: %d\n", ret);
179		ret = regulator_set_voltage_tol(soc_reg, imx6_soc_volt[index], 0);
180		if (ret)
181			dev_warn(cpu_dev, "failed to scale vddsoc down: %d\n", ret);
182		if (!IS_ERR(pu_reg)) {
183			ret = regulator_set_voltage_tol(pu_reg, imx6_soc_volt[index], 0);
184			if (ret)
185				dev_warn(cpu_dev, "failed to scale vddpu down: %d\n", ret);
186		}
187	}
188
189	return 0;
190}
191
192static int imx6q_cpufreq_init(struct cpufreq_policy *policy)
193{
194	policy->clk = clks[ARM].clk;
195	cpufreq_generic_init(policy, freq_table, transition_latency);
196	policy->suspend_freq = max_freq;
197
198	return 0;
199}
200
201static struct cpufreq_driver imx6q_cpufreq_driver = {
202	.flags = CPUFREQ_NEED_INITIAL_FREQ_CHECK |
203		 CPUFREQ_IS_COOLING_DEV,
204	.verify = cpufreq_generic_frequency_table_verify,
205	.target_index = imx6q_set_target,
206	.get = cpufreq_generic_get,
207	.init = imx6q_cpufreq_init,
208	.register_em = cpufreq_register_em_with_opp,
209	.name = "imx6q-cpufreq",
210	.attr = cpufreq_generic_attr,
211	.suspend = cpufreq_generic_suspend,
212};
213
214static void imx6x_disable_freq_in_opp(struct device *dev, unsigned long freq)
215{
216	int ret = dev_pm_opp_disable(dev, freq);
217
218	if (ret < 0 && ret != -ENODEV)
219		dev_warn(dev, "failed to disable %ldMHz OPP\n", freq / 1000000);
220}
221
222#define OCOTP_CFG3			0x440
223#define OCOTP_CFG3_SPEED_SHIFT		16
224#define OCOTP_CFG3_SPEED_1P2GHZ		0x3
225#define OCOTP_CFG3_SPEED_996MHZ		0x2
226#define OCOTP_CFG3_SPEED_852MHZ		0x1
227
228static int imx6q_opp_check_speed_grading(struct device *dev)
229{
230	u32 val;
231	int ret;
232
233	if (of_property_present(dev->of_node, "nvmem-cells")) {
234		ret = nvmem_cell_read_u32(dev, "speed_grade", &val);
235		if (ret)
236			return ret;
237	} else {
238		struct regmap *ocotp;
239
240		ocotp = syscon_regmap_lookup_by_compatible("fsl,imx6q-ocotp");
241		if (IS_ERR(ocotp))
242			return -ENOENT;
243
244		/*
245		 * SPEED_GRADING[1:0] defines the max speed of ARM:
246		 * 2b'11: 1200000000Hz;
247		 * 2b'10: 996000000Hz;
248		 * 2b'01: 852000000Hz; -- i.MX6Q Only, exclusive with 996MHz.
249		 * 2b'00: 792000000Hz;
250		 * We need to set the max speed of ARM according to fuse map.
251		 */
252		regmap_read(ocotp, OCOTP_CFG3, &val);
253	}
254
255	val >>= OCOTP_CFG3_SPEED_SHIFT;
256	val &= 0x3;
257
258	if (val < OCOTP_CFG3_SPEED_996MHZ)
259		imx6x_disable_freq_in_opp(dev, 996000000);
260
261	if (of_machine_is_compatible("fsl,imx6q") ||
262	    of_machine_is_compatible("fsl,imx6qp")) {
263		if (val != OCOTP_CFG3_SPEED_852MHZ)
264			imx6x_disable_freq_in_opp(dev, 852000000);
265
266		if (val != OCOTP_CFG3_SPEED_1P2GHZ)
267			imx6x_disable_freq_in_opp(dev, 1200000000);
268	}
269
270	return 0;
271}
272
273#define OCOTP_CFG3_6UL_SPEED_696MHZ	0x2
274#define OCOTP_CFG3_6ULL_SPEED_792MHZ	0x2
275#define OCOTP_CFG3_6ULL_SPEED_900MHZ	0x3
276
277static int imx6ul_opp_check_speed_grading(struct device *dev)
278{
279	u32 val;
280	int ret = 0;
281
282	if (of_property_present(dev->of_node, "nvmem-cells")) {
283		ret = nvmem_cell_read_u32(dev, "speed_grade", &val);
284		if (ret)
285			return ret;
286	} else {
287		struct regmap *ocotp;
288
289		ocotp = syscon_regmap_lookup_by_compatible("fsl,imx6ul-ocotp");
290		if (IS_ERR(ocotp))
291			ocotp = syscon_regmap_lookup_by_compatible("fsl,imx6ull-ocotp");
292
293		if (IS_ERR(ocotp))
294			return -ENOENT;
295
296		regmap_read(ocotp, OCOTP_CFG3, &val);
297	}
298
299	/*
300	 * Speed GRADING[1:0] defines the max speed of ARM:
301	 * 2b'00: Reserved;
302	 * 2b'01: 528000000Hz;
303	 * 2b'10: 696000000Hz on i.MX6UL, 792000000Hz on i.MX6ULL;
304	 * 2b'11: 900000000Hz on i.MX6ULL only;
305	 * We need to set the max speed of ARM according to fuse map.
306	 */
307	val >>= OCOTP_CFG3_SPEED_SHIFT;
308	val &= 0x3;
309
310	if (of_machine_is_compatible("fsl,imx6ul"))
311		if (val != OCOTP_CFG3_6UL_SPEED_696MHZ)
312			imx6x_disable_freq_in_opp(dev, 696000000);
313
314	if (of_machine_is_compatible("fsl,imx6ull")) {
315		if (val < OCOTP_CFG3_6ULL_SPEED_792MHZ)
316			imx6x_disable_freq_in_opp(dev, 792000000);
317
318		if (val != OCOTP_CFG3_6ULL_SPEED_900MHZ)
319			imx6x_disable_freq_in_opp(dev, 900000000);
320	}
321
322	return ret;
323}
324
325static int imx6q_cpufreq_probe(struct platform_device *pdev)
326{
327	struct device_node *np;
328	struct dev_pm_opp *opp;
329	unsigned long min_volt, max_volt;
330	int num, ret;
331	const struct property *prop;
332	const __be32 *val;
333	u32 nr, i, j;
334
335	cpu_dev = get_cpu_device(0);
336	if (!cpu_dev) {
337		pr_err("failed to get cpu0 device\n");
338		return -ENODEV;
339	}
340
341	np = of_node_get(cpu_dev->of_node);
342	if (!np) {
343		dev_err(cpu_dev, "failed to find cpu0 node\n");
344		return -ENOENT;
345	}
346
347	if (of_machine_is_compatible("fsl,imx6ul") ||
348	    of_machine_is_compatible("fsl,imx6ull"))
349		num_clks = IMX6UL_CPUFREQ_CLK_NUM;
350	else
351		num_clks = IMX6Q_CPUFREQ_CLK_NUM;
352
353	ret = clk_bulk_get(cpu_dev, num_clks, clks);
354	if (ret)
355		goto put_node;
356
357	arm_reg = regulator_get(cpu_dev, "arm");
358	pu_reg = regulator_get_optional(cpu_dev, "pu");
359	soc_reg = regulator_get(cpu_dev, "soc");
360	if (PTR_ERR(arm_reg) == -EPROBE_DEFER ||
361			PTR_ERR(soc_reg) == -EPROBE_DEFER ||
362			PTR_ERR(pu_reg) == -EPROBE_DEFER) {
363		ret = -EPROBE_DEFER;
364		dev_dbg(cpu_dev, "regulators not ready, defer\n");
365		goto put_reg;
366	}
367	if (IS_ERR(arm_reg) || IS_ERR(soc_reg)) {
368		dev_err(cpu_dev, "failed to get regulators\n");
369		ret = -ENOENT;
370		goto put_reg;
371	}
372
373	ret = dev_pm_opp_of_add_table(cpu_dev);
374	if (ret < 0) {
375		dev_err(cpu_dev, "failed to init OPP table: %d\n", ret);
376		goto put_reg;
377	}
378
379	if (of_machine_is_compatible("fsl,imx6ul") ||
380	    of_machine_is_compatible("fsl,imx6ull")) {
381		ret = imx6ul_opp_check_speed_grading(cpu_dev);
382	} else {
383		ret = imx6q_opp_check_speed_grading(cpu_dev);
384	}
385	if (ret) {
386		dev_err_probe(cpu_dev, ret, "failed to read ocotp\n");
387		goto out_free_opp;
388	}
389
390	num = dev_pm_opp_get_opp_count(cpu_dev);
391	if (num < 0) {
392		ret = num;
393		dev_err(cpu_dev, "no OPP table is found: %d\n", ret);
394		goto out_free_opp;
395	}
396
397	ret = dev_pm_opp_init_cpufreq_table(cpu_dev, &freq_table);
398	if (ret) {
399		dev_err(cpu_dev, "failed to init cpufreq table: %d\n", ret);
400		goto out_free_opp;
401	}
402
403	/* Make imx6_soc_volt array's size same as arm opp number */
404	imx6_soc_volt = devm_kcalloc(cpu_dev, num, sizeof(*imx6_soc_volt),
405				     GFP_KERNEL);
406	if (imx6_soc_volt == NULL) {
407		ret = -ENOMEM;
408		goto free_freq_table;
409	}
410
411	prop = of_find_property(np, "fsl,soc-operating-points", NULL);
412	if (!prop || !prop->value)
413		goto soc_opp_out;
414
415	/*
416	 * Each OPP is a set of tuples consisting of frequency and
417	 * voltage like <freq-kHz vol-uV>.
418	 */
419	nr = prop->length / sizeof(u32);
420	if (nr % 2 || (nr / 2) < num)
421		goto soc_opp_out;
422
423	for (j = 0; j < num; j++) {
424		val = prop->value;
425		for (i = 0; i < nr / 2; i++) {
426			unsigned long freq = be32_to_cpup(val++);
427			unsigned long volt = be32_to_cpup(val++);
428			if (freq_table[j].frequency == freq) {
429				imx6_soc_volt[soc_opp_count++] = volt;
430				break;
431			}
432		}
433	}
434
435soc_opp_out:
436	/* use fixed soc opp volt if no valid soc opp info found in dtb */
437	if (soc_opp_count != num) {
438		dev_warn(cpu_dev, "can NOT find valid fsl,soc-operating-points property in dtb, use default value!\n");
439		for (j = 0; j < num; j++)
440			imx6_soc_volt[j] = PU_SOC_VOLTAGE_NORMAL;
441		if (freq_table[num - 1].frequency * 1000 == FREQ_1P2_GHZ)
442			imx6_soc_volt[num - 1] = PU_SOC_VOLTAGE_HIGH;
443	}
444
445	if (of_property_read_u32(np, "clock-latency", &transition_latency))
446		transition_latency = CPUFREQ_ETERNAL;
447
448	/*
449	 * Calculate the ramp time for max voltage change in the
450	 * VDDSOC and VDDPU regulators.
451	 */
452	ret = regulator_set_voltage_time(soc_reg, imx6_soc_volt[0], imx6_soc_volt[num - 1]);
453	if (ret > 0)
454		transition_latency += ret * 1000;
455	if (!IS_ERR(pu_reg)) {
456		ret = regulator_set_voltage_time(pu_reg, imx6_soc_volt[0], imx6_soc_volt[num - 1]);
457		if (ret > 0)
458			transition_latency += ret * 1000;
459	}
460
461	/*
462	 * OPP is maintained in order of increasing frequency, and
463	 * freq_table initialised from OPP is therefore sorted in the
464	 * same order.
465	 */
466	max_freq = freq_table[--num].frequency;
467	opp = dev_pm_opp_find_freq_exact(cpu_dev,
468				  freq_table[0].frequency * 1000, true);
469	min_volt = dev_pm_opp_get_voltage(opp);
470	dev_pm_opp_put(opp);
471	opp = dev_pm_opp_find_freq_exact(cpu_dev, max_freq * 1000, true);
472	max_volt = dev_pm_opp_get_voltage(opp);
473	dev_pm_opp_put(opp);
474
475	ret = regulator_set_voltage_time(arm_reg, min_volt, max_volt);
476	if (ret > 0)
477		transition_latency += ret * 1000;
478
479	ret = cpufreq_register_driver(&imx6q_cpufreq_driver);
480	if (ret) {
481		dev_err(cpu_dev, "failed register driver: %d\n", ret);
482		goto free_freq_table;
483	}
484
485	of_node_put(np);
486	return 0;
487
488free_freq_table:
489	dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table);
490out_free_opp:
491	dev_pm_opp_of_remove_table(cpu_dev);
492put_reg:
493	if (!IS_ERR(arm_reg))
494		regulator_put(arm_reg);
495	if (!IS_ERR(pu_reg))
496		regulator_put(pu_reg);
497	if (!IS_ERR(soc_reg))
498		regulator_put(soc_reg);
499
500	clk_bulk_put(num_clks, clks);
501put_node:
502	of_node_put(np);
503
504	return ret;
505}
506
507static void imx6q_cpufreq_remove(struct platform_device *pdev)
508{
509	cpufreq_unregister_driver(&imx6q_cpufreq_driver);
510	dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table);
511	dev_pm_opp_of_remove_table(cpu_dev);
512	regulator_put(arm_reg);
513	if (!IS_ERR(pu_reg))
514		regulator_put(pu_reg);
515	regulator_put(soc_reg);
516
517	clk_bulk_put(num_clks, clks);
518}
519
520static struct platform_driver imx6q_cpufreq_platdrv = {
521	.driver = {
522		.name	= "imx6q-cpufreq",
523	},
524	.probe		= imx6q_cpufreq_probe,
525	.remove_new	= imx6q_cpufreq_remove,
526};
527module_platform_driver(imx6q_cpufreq_platdrv);
528
529MODULE_ALIAS("platform:imx6q-cpufreq");
530MODULE_AUTHOR("Shawn Guo <shawn.guo@linaro.org>");
531MODULE_DESCRIPTION("Freescale i.MX6Q cpufreq driver");
532MODULE_LICENSE("GPL");
533