1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * drivers/cpufreq/cpufreq_governor.c
4 *
5 * CPUFREQ governors common code
6 *
7 * Copyright	(C) 2001 Russell King
8 *		(C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
9 *		(C) 2003 Jun Nakajima <jun.nakajima@intel.com>
10 *		(C) 2009 Alexander Clouter <alex@digriz.org.uk>
11 *		(c) 2012 Viresh Kumar <viresh.kumar@linaro.org>
12 */
13
14#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15
16#include <linux/export.h>
17#include <linux/kernel_stat.h>
18#include <linux/slab.h>
19
20#include "cpufreq_governor.h"
21
22#define CPUFREQ_DBS_MIN_SAMPLING_INTERVAL	(2 * TICK_NSEC / NSEC_PER_USEC)
23
24static DEFINE_PER_CPU(struct cpu_dbs_info, cpu_dbs);
25
26static DEFINE_MUTEX(gov_dbs_data_mutex);
27
28/* Common sysfs tunables */
29/*
30 * sampling_rate_store - update sampling rate effective immediately if needed.
31 *
32 * If new rate is smaller than the old, simply updating
33 * dbs.sampling_rate might not be appropriate. For example, if the
34 * original sampling_rate was 1 second and the requested new sampling rate is 10
35 * ms because the user needs immediate reaction from ondemand governor, but not
36 * sure if higher frequency will be required or not, then, the governor may
37 * change the sampling rate too late; up to 1 second later. Thus, if we are
38 * reducing the sampling rate, we need to make the new value effective
39 * immediately.
40 *
41 * This must be called with dbs_data->mutex held, otherwise traversing
42 * policy_dbs_list isn't safe.
43 */
44ssize_t sampling_rate_store(struct gov_attr_set *attr_set, const char *buf,
45			    size_t count)
46{
47	struct dbs_data *dbs_data = to_dbs_data(attr_set);
48	struct policy_dbs_info *policy_dbs;
49	unsigned int sampling_interval;
50	int ret;
51
52	ret = sscanf(buf, "%u", &sampling_interval);
53	if (ret != 1 || sampling_interval < CPUFREQ_DBS_MIN_SAMPLING_INTERVAL)
54		return -EINVAL;
55
56	dbs_data->sampling_rate = sampling_interval;
57
58	/*
59	 * We are operating under dbs_data->mutex and so the list and its
60	 * entries can't be freed concurrently.
61	 */
62	list_for_each_entry(policy_dbs, &attr_set->policy_list, list) {
63		mutex_lock(&policy_dbs->update_mutex);
64		/*
65		 * On 32-bit architectures this may race with the
66		 * sample_delay_ns read in dbs_update_util_handler(), but that
67		 * really doesn't matter.  If the read returns a value that's
68		 * too big, the sample will be skipped, but the next invocation
69		 * of dbs_update_util_handler() (when the update has been
70		 * completed) will take a sample.
71		 *
72		 * If this runs in parallel with dbs_work_handler(), we may end
73		 * up overwriting the sample_delay_ns value that it has just
74		 * written, but it will be corrected next time a sample is
75		 * taken, so it shouldn't be significant.
76		 */
77		gov_update_sample_delay(policy_dbs, 0);
78		mutex_unlock(&policy_dbs->update_mutex);
79	}
80
81	return count;
82}
83EXPORT_SYMBOL_GPL(sampling_rate_store);
84
85/**
86 * gov_update_cpu_data - Update CPU load data.
87 * @dbs_data: Top-level governor data pointer.
88 *
89 * Update CPU load data for all CPUs in the domain governed by @dbs_data
90 * (that may be a single policy or a bunch of them if governor tunables are
91 * system-wide).
92 *
93 * Call under the @dbs_data mutex.
94 */
95void gov_update_cpu_data(struct dbs_data *dbs_data)
96{
97	struct policy_dbs_info *policy_dbs;
98
99	list_for_each_entry(policy_dbs, &dbs_data->attr_set.policy_list, list) {
100		unsigned int j;
101
102		for_each_cpu(j, policy_dbs->policy->cpus) {
103			struct cpu_dbs_info *j_cdbs = &per_cpu(cpu_dbs, j);
104
105			j_cdbs->prev_cpu_idle = get_cpu_idle_time(j, &j_cdbs->prev_update_time,
106								  dbs_data->io_is_busy);
107			if (dbs_data->ignore_nice_load)
108				j_cdbs->prev_cpu_nice = kcpustat_field(&kcpustat_cpu(j), CPUTIME_NICE, j);
109		}
110	}
111}
112EXPORT_SYMBOL_GPL(gov_update_cpu_data);
113
114unsigned int dbs_update(struct cpufreq_policy *policy)
115{
116	struct policy_dbs_info *policy_dbs = policy->governor_data;
117	struct dbs_data *dbs_data = policy_dbs->dbs_data;
118	unsigned int ignore_nice = dbs_data->ignore_nice_load;
119	unsigned int max_load = 0, idle_periods = UINT_MAX;
120	unsigned int sampling_rate, io_busy, j;
121
122	/*
123	 * Sometimes governors may use an additional multiplier to increase
124	 * sample delays temporarily.  Apply that multiplier to sampling_rate
125	 * so as to keep the wake-up-from-idle detection logic a bit
126	 * conservative.
127	 */
128	sampling_rate = dbs_data->sampling_rate * policy_dbs->rate_mult;
129	/*
130	 * For the purpose of ondemand, waiting for disk IO is an indication
131	 * that you're performance critical, and not that the system is actually
132	 * idle, so do not add the iowait time to the CPU idle time then.
133	 */
134	io_busy = dbs_data->io_is_busy;
135
136	/* Get Absolute Load */
137	for_each_cpu(j, policy->cpus) {
138		struct cpu_dbs_info *j_cdbs = &per_cpu(cpu_dbs, j);
139		u64 update_time, cur_idle_time;
140		unsigned int idle_time, time_elapsed;
141		unsigned int load;
142
143		cur_idle_time = get_cpu_idle_time(j, &update_time, io_busy);
144
145		time_elapsed = update_time - j_cdbs->prev_update_time;
146		j_cdbs->prev_update_time = update_time;
147
148		idle_time = cur_idle_time - j_cdbs->prev_cpu_idle;
149		j_cdbs->prev_cpu_idle = cur_idle_time;
150
151		if (ignore_nice) {
152			u64 cur_nice = kcpustat_field(&kcpustat_cpu(j), CPUTIME_NICE, j);
153
154			idle_time += div_u64(cur_nice - j_cdbs->prev_cpu_nice, NSEC_PER_USEC);
155			j_cdbs->prev_cpu_nice = cur_nice;
156		}
157
158		if (unlikely(!time_elapsed)) {
159			/*
160			 * That can only happen when this function is called
161			 * twice in a row with a very short interval between the
162			 * calls, so the previous load value can be used then.
163			 */
164			load = j_cdbs->prev_load;
165		} else if (unlikely((int)idle_time > 2 * sampling_rate &&
166				    j_cdbs->prev_load)) {
167			/*
168			 * If the CPU had gone completely idle and a task has
169			 * just woken up on this CPU now, it would be unfair to
170			 * calculate 'load' the usual way for this elapsed
171			 * time-window, because it would show near-zero load,
172			 * irrespective of how CPU intensive that task actually
173			 * was. This is undesirable for latency-sensitive bursty
174			 * workloads.
175			 *
176			 * To avoid this, reuse the 'load' from the previous
177			 * time-window and give this task a chance to start with
178			 * a reasonably high CPU frequency. However, that
179			 * shouldn't be over-done, lest we get stuck at a high
180			 * load (high frequency) for too long, even when the
181			 * current system load has actually dropped down, so
182			 * clear prev_load to guarantee that the load will be
183			 * computed again next time.
184			 *
185			 * Detecting this situation is easy: an unusually large
186			 * 'idle_time' (as compared to the sampling rate)
187			 * indicates this scenario.
188			 */
189			load = j_cdbs->prev_load;
190			j_cdbs->prev_load = 0;
191		} else {
192			if (time_elapsed >= idle_time) {
193				load = 100 * (time_elapsed - idle_time) / time_elapsed;
194			} else {
195				/*
196				 * That can happen if idle_time is returned by
197				 * get_cpu_idle_time_jiffy().  In that case
198				 * idle_time is roughly equal to the difference
199				 * between time_elapsed and "busy time" obtained
200				 * from CPU statistics.  Then, the "busy time"
201				 * can end up being greater than time_elapsed
202				 * (for example, if jiffies_64 and the CPU
203				 * statistics are updated by different CPUs),
204				 * so idle_time may in fact be negative.  That
205				 * means, though, that the CPU was busy all
206				 * the time (on the rough average) during the
207				 * last sampling interval and 100 can be
208				 * returned as the load.
209				 */
210				load = (int)idle_time < 0 ? 100 : 0;
211			}
212			j_cdbs->prev_load = load;
213		}
214
215		if (unlikely((int)idle_time > 2 * sampling_rate)) {
216			unsigned int periods = idle_time / sampling_rate;
217
218			if (periods < idle_periods)
219				idle_periods = periods;
220		}
221
222		if (load > max_load)
223			max_load = load;
224	}
225
226	policy_dbs->idle_periods = idle_periods;
227
228	return max_load;
229}
230EXPORT_SYMBOL_GPL(dbs_update);
231
232static void dbs_work_handler(struct work_struct *work)
233{
234	struct policy_dbs_info *policy_dbs;
235	struct cpufreq_policy *policy;
236	struct dbs_governor *gov;
237
238	policy_dbs = container_of(work, struct policy_dbs_info, work);
239	policy = policy_dbs->policy;
240	gov = dbs_governor_of(policy);
241
242	/*
243	 * Make sure cpufreq_governor_limits() isn't evaluating load or the
244	 * ondemand governor isn't updating the sampling rate in parallel.
245	 */
246	mutex_lock(&policy_dbs->update_mutex);
247	gov_update_sample_delay(policy_dbs, gov->gov_dbs_update(policy));
248	mutex_unlock(&policy_dbs->update_mutex);
249
250	/* Allow the utilization update handler to queue up more work. */
251	atomic_set(&policy_dbs->work_count, 0);
252	/*
253	 * If the update below is reordered with respect to the sample delay
254	 * modification, the utilization update handler may end up using a stale
255	 * sample delay value.
256	 */
257	smp_wmb();
258	policy_dbs->work_in_progress = false;
259}
260
261static void dbs_irq_work(struct irq_work *irq_work)
262{
263	struct policy_dbs_info *policy_dbs;
264
265	policy_dbs = container_of(irq_work, struct policy_dbs_info, irq_work);
266	schedule_work_on(smp_processor_id(), &policy_dbs->work);
267}
268
269static void dbs_update_util_handler(struct update_util_data *data, u64 time,
270				    unsigned int flags)
271{
272	struct cpu_dbs_info *cdbs = container_of(data, struct cpu_dbs_info, update_util);
273	struct policy_dbs_info *policy_dbs = cdbs->policy_dbs;
274	u64 delta_ns, lst;
275
276	if (!cpufreq_this_cpu_can_update(policy_dbs->policy))
277		return;
278
279	/*
280	 * The work may not be allowed to be queued up right now.
281	 * Possible reasons:
282	 * - Work has already been queued up or is in progress.
283	 * - It is too early (too little time from the previous sample).
284	 */
285	if (policy_dbs->work_in_progress)
286		return;
287
288	/*
289	 * If the reads below are reordered before the check above, the value
290	 * of sample_delay_ns used in the computation may be stale.
291	 */
292	smp_rmb();
293	lst = READ_ONCE(policy_dbs->last_sample_time);
294	delta_ns = time - lst;
295	if ((s64)delta_ns < policy_dbs->sample_delay_ns)
296		return;
297
298	/*
299	 * If the policy is not shared, the irq_work may be queued up right away
300	 * at this point.  Otherwise, we need to ensure that only one of the
301	 * CPUs sharing the policy will do that.
302	 */
303	if (policy_dbs->is_shared) {
304		if (!atomic_add_unless(&policy_dbs->work_count, 1, 1))
305			return;
306
307		/*
308		 * If another CPU updated last_sample_time in the meantime, we
309		 * shouldn't be here, so clear the work counter and bail out.
310		 */
311		if (unlikely(lst != READ_ONCE(policy_dbs->last_sample_time))) {
312			atomic_set(&policy_dbs->work_count, 0);
313			return;
314		}
315	}
316
317	policy_dbs->last_sample_time = time;
318	policy_dbs->work_in_progress = true;
319	irq_work_queue(&policy_dbs->irq_work);
320}
321
322static void gov_set_update_util(struct policy_dbs_info *policy_dbs,
323				unsigned int delay_us)
324{
325	struct cpufreq_policy *policy = policy_dbs->policy;
326	int cpu;
327
328	gov_update_sample_delay(policy_dbs, delay_us);
329	policy_dbs->last_sample_time = 0;
330
331	for_each_cpu(cpu, policy->cpus) {
332		struct cpu_dbs_info *cdbs = &per_cpu(cpu_dbs, cpu);
333
334		cpufreq_add_update_util_hook(cpu, &cdbs->update_util,
335					     dbs_update_util_handler);
336	}
337}
338
339static inline void gov_clear_update_util(struct cpufreq_policy *policy)
340{
341	int i;
342
343	for_each_cpu(i, policy->cpus)
344		cpufreq_remove_update_util_hook(i);
345
346	synchronize_rcu();
347}
348
349static struct policy_dbs_info *alloc_policy_dbs_info(struct cpufreq_policy *policy,
350						     struct dbs_governor *gov)
351{
352	struct policy_dbs_info *policy_dbs;
353	int j;
354
355	/* Allocate memory for per-policy governor data. */
356	policy_dbs = gov->alloc();
357	if (!policy_dbs)
358		return NULL;
359
360	policy_dbs->policy = policy;
361	mutex_init(&policy_dbs->update_mutex);
362	atomic_set(&policy_dbs->work_count, 0);
363	init_irq_work(&policy_dbs->irq_work, dbs_irq_work);
364	INIT_WORK(&policy_dbs->work, dbs_work_handler);
365
366	/* Set policy_dbs for all CPUs, online+offline */
367	for_each_cpu(j, policy->related_cpus) {
368		struct cpu_dbs_info *j_cdbs = &per_cpu(cpu_dbs, j);
369
370		j_cdbs->policy_dbs = policy_dbs;
371	}
372	return policy_dbs;
373}
374
375static void free_policy_dbs_info(struct policy_dbs_info *policy_dbs,
376				 struct dbs_governor *gov)
377{
378	int j;
379
380	mutex_destroy(&policy_dbs->update_mutex);
381
382	for_each_cpu(j, policy_dbs->policy->related_cpus) {
383		struct cpu_dbs_info *j_cdbs = &per_cpu(cpu_dbs, j);
384
385		j_cdbs->policy_dbs = NULL;
386		j_cdbs->update_util.func = NULL;
387	}
388	gov->free(policy_dbs);
389}
390
391static void cpufreq_dbs_data_release(struct kobject *kobj)
392{
393	struct dbs_data *dbs_data = to_dbs_data(to_gov_attr_set(kobj));
394	struct dbs_governor *gov = dbs_data->gov;
395
396	gov->exit(dbs_data);
397	kfree(dbs_data);
398}
399
400int cpufreq_dbs_governor_init(struct cpufreq_policy *policy)
401{
402	struct dbs_governor *gov = dbs_governor_of(policy);
403	struct dbs_data *dbs_data;
404	struct policy_dbs_info *policy_dbs;
405	int ret = 0;
406
407	/* State should be equivalent to EXIT */
408	if (policy->governor_data)
409		return -EBUSY;
410
411	policy_dbs = alloc_policy_dbs_info(policy, gov);
412	if (!policy_dbs)
413		return -ENOMEM;
414
415	/* Protect gov->gdbs_data against concurrent updates. */
416	mutex_lock(&gov_dbs_data_mutex);
417
418	dbs_data = gov->gdbs_data;
419	if (dbs_data) {
420		if (WARN_ON(have_governor_per_policy())) {
421			ret = -EINVAL;
422			goto free_policy_dbs_info;
423		}
424		policy_dbs->dbs_data = dbs_data;
425		policy->governor_data = policy_dbs;
426
427		gov_attr_set_get(&dbs_data->attr_set, &policy_dbs->list);
428		goto out;
429	}
430
431	dbs_data = kzalloc(sizeof(*dbs_data), GFP_KERNEL);
432	if (!dbs_data) {
433		ret = -ENOMEM;
434		goto free_policy_dbs_info;
435	}
436
437	dbs_data->gov = gov;
438	gov_attr_set_init(&dbs_data->attr_set, &policy_dbs->list);
439
440	ret = gov->init(dbs_data);
441	if (ret)
442		goto free_dbs_data;
443
444	/*
445	 * The sampling interval should not be less than the transition latency
446	 * of the CPU and it also cannot be too small for dbs_update() to work
447	 * correctly.
448	 */
449	dbs_data->sampling_rate = max_t(unsigned int,
450					CPUFREQ_DBS_MIN_SAMPLING_INTERVAL,
451					cpufreq_policy_transition_delay_us(policy));
452
453	if (!have_governor_per_policy())
454		gov->gdbs_data = dbs_data;
455
456	policy_dbs->dbs_data = dbs_data;
457	policy->governor_data = policy_dbs;
458
459	gov->kobj_type.sysfs_ops = &governor_sysfs_ops;
460	gov->kobj_type.release = cpufreq_dbs_data_release;
461	ret = kobject_init_and_add(&dbs_data->attr_set.kobj, &gov->kobj_type,
462				   get_governor_parent_kobj(policy),
463				   "%s", gov->gov.name);
464	if (!ret)
465		goto out;
466
467	/* Failure, so roll back. */
468	pr_err("initialization failed (dbs_data kobject init error %d)\n", ret);
469
470	kobject_put(&dbs_data->attr_set.kobj);
471
472	policy->governor_data = NULL;
473
474	if (!have_governor_per_policy())
475		gov->gdbs_data = NULL;
476	gov->exit(dbs_data);
477
478free_dbs_data:
479	kfree(dbs_data);
480
481free_policy_dbs_info:
482	free_policy_dbs_info(policy_dbs, gov);
483
484out:
485	mutex_unlock(&gov_dbs_data_mutex);
486	return ret;
487}
488EXPORT_SYMBOL_GPL(cpufreq_dbs_governor_init);
489
490void cpufreq_dbs_governor_exit(struct cpufreq_policy *policy)
491{
492	struct dbs_governor *gov = dbs_governor_of(policy);
493	struct policy_dbs_info *policy_dbs = policy->governor_data;
494	struct dbs_data *dbs_data = policy_dbs->dbs_data;
495	unsigned int count;
496
497	/* Protect gov->gdbs_data against concurrent updates. */
498	mutex_lock(&gov_dbs_data_mutex);
499
500	count = gov_attr_set_put(&dbs_data->attr_set, &policy_dbs->list);
501
502	policy->governor_data = NULL;
503
504	if (!count && !have_governor_per_policy())
505		gov->gdbs_data = NULL;
506
507	free_policy_dbs_info(policy_dbs, gov);
508
509	mutex_unlock(&gov_dbs_data_mutex);
510}
511EXPORT_SYMBOL_GPL(cpufreq_dbs_governor_exit);
512
513int cpufreq_dbs_governor_start(struct cpufreq_policy *policy)
514{
515	struct dbs_governor *gov = dbs_governor_of(policy);
516	struct policy_dbs_info *policy_dbs = policy->governor_data;
517	struct dbs_data *dbs_data = policy_dbs->dbs_data;
518	unsigned int sampling_rate, ignore_nice, j;
519	unsigned int io_busy;
520
521	if (!policy->cur)
522		return -EINVAL;
523
524	policy_dbs->is_shared = policy_is_shared(policy);
525	policy_dbs->rate_mult = 1;
526
527	sampling_rate = dbs_data->sampling_rate;
528	ignore_nice = dbs_data->ignore_nice_load;
529	io_busy = dbs_data->io_is_busy;
530
531	for_each_cpu(j, policy->cpus) {
532		struct cpu_dbs_info *j_cdbs = &per_cpu(cpu_dbs, j);
533
534		j_cdbs->prev_cpu_idle = get_cpu_idle_time(j, &j_cdbs->prev_update_time, io_busy);
535		/*
536		 * Make the first invocation of dbs_update() compute the load.
537		 */
538		j_cdbs->prev_load = 0;
539
540		if (ignore_nice)
541			j_cdbs->prev_cpu_nice = kcpustat_field(&kcpustat_cpu(j), CPUTIME_NICE, j);
542	}
543
544	gov->start(policy);
545
546	gov_set_update_util(policy_dbs, sampling_rate);
547	return 0;
548}
549EXPORT_SYMBOL_GPL(cpufreq_dbs_governor_start);
550
551void cpufreq_dbs_governor_stop(struct cpufreq_policy *policy)
552{
553	struct policy_dbs_info *policy_dbs = policy->governor_data;
554
555	gov_clear_update_util(policy_dbs->policy);
556	irq_work_sync(&policy_dbs->irq_work);
557	cancel_work_sync(&policy_dbs->work);
558	atomic_set(&policy_dbs->work_count, 0);
559	policy_dbs->work_in_progress = false;
560}
561EXPORT_SYMBOL_GPL(cpufreq_dbs_governor_stop);
562
563void cpufreq_dbs_governor_limits(struct cpufreq_policy *policy)
564{
565	struct policy_dbs_info *policy_dbs;
566
567	/* Protect gov->gdbs_data against cpufreq_dbs_governor_exit() */
568	mutex_lock(&gov_dbs_data_mutex);
569	policy_dbs = policy->governor_data;
570	if (!policy_dbs)
571		goto out;
572
573	mutex_lock(&policy_dbs->update_mutex);
574	cpufreq_policy_apply_limits(policy);
575	gov_update_sample_delay(policy_dbs, 0);
576	mutex_unlock(&policy_dbs->update_mutex);
577
578out:
579	mutex_unlock(&gov_dbs_data_mutex);
580}
581EXPORT_SYMBOL_GPL(cpufreq_dbs_governor_limits);
582