1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * comedi/drivers/mite.c
4 * Hardware driver for NI Mite PCI interface chip
5 *
6 * COMEDI - Linux Control and Measurement Device Interface
7 * Copyright (C) 1997-2002 David A. Schleef <ds@schleef.org>
8 */
9
10/*
11 * The PCI-MIO E series driver was originally written by
12 * Tomasz Motylewski <...>, and ported to comedi by ds.
13 *
14 * References for specifications:
15 *
16 *    321747b.pdf  Register Level Programmer Manual (obsolete)
17 *    321747c.pdf  Register Level Programmer Manual (new)
18 *    DAQ-STC reference manual
19 *
20 * Other possibly relevant info:
21 *
22 *    320517c.pdf  User manual (obsolete)
23 *    320517f.pdf  User manual (new)
24 *    320889a.pdf  delete
25 *    320906c.pdf  maximum signal ratings
26 *    321066a.pdf  about 16x
27 *    321791a.pdf  discontinuation of at-mio-16e-10 rev. c
28 *    321808a.pdf  about at-mio-16e-10 rev P
29 *    321837a.pdf  discontinuation of at-mio-16de-10 rev d
30 *    321838a.pdf  about at-mio-16de-10 rev N
31 *
32 * ISSUES:
33 *
34 */
35
36#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
37
38#include <linux/module.h>
39#include <linux/slab.h>
40#include <linux/log2.h>
41#include <linux/comedi/comedi_pci.h>
42
43#include "mite.h"
44
45/*
46 * Mite registers
47 */
48#define MITE_UNKNOWN_DMA_BURST_REG	0x28
49#define UNKNOWN_DMA_BURST_ENABLE_BITS	0x600
50
51#define MITE_PCI_CONFIG_OFFSET	0x300
52#define MITE_CSIGR		0x460			/* chip signature */
53#define CSIGR_TO_IOWINS(x)	(((x) >> 29) & 0x7)
54#define CSIGR_TO_WINS(x)	(((x) >> 24) & 0x1f)
55#define CSIGR_TO_WPDEP(x)	(((x) >> 20) & 0x7)
56#define CSIGR_TO_DMAC(x)	(((x) >> 16) & 0xf)
57#define CSIGR_TO_IMODE(x)	(((x) >> 12) & 0x3)	/* pci=0x3 */
58#define CSIGR_TO_MMODE(x)	(((x) >> 8) & 0x3)	/* minimite=1 */
59#define CSIGR_TO_TYPE(x)	(((x) >> 4) & 0xf)	/* mite=0, minimite=1 */
60#define CSIGR_TO_VER(x)		(((x) >> 0) & 0xf)
61
62#define MITE_CHAN(x)		(0x500 + 0x100 * (x))
63#define MITE_CHOR(x)		(0x00 + MITE_CHAN(x))	/* channel operation */
64#define CHOR_DMARESET		BIT(31)
65#define CHOR_SET_SEND_TC	BIT(11)
66#define CHOR_CLR_SEND_TC	BIT(10)
67#define CHOR_SET_LPAUSE		BIT(9)
68#define CHOR_CLR_LPAUSE		BIT(8)
69#define CHOR_CLRDONE		BIT(7)
70#define CHOR_CLRRB		BIT(6)
71#define CHOR_CLRLC		BIT(5)
72#define CHOR_FRESET		BIT(4)
73#define CHOR_ABORT		BIT(3)	/* stop without emptying fifo */
74#define CHOR_STOP		BIT(2)	/* stop after emptying fifo */
75#define CHOR_CONT		BIT(1)
76#define CHOR_START		BIT(0)
77#define MITE_CHCR(x)		(0x04 + MITE_CHAN(x))	/* channel control */
78#define CHCR_SET_DMA_IE		BIT(31)
79#define CHCR_CLR_DMA_IE		BIT(30)
80#define CHCR_SET_LINKP_IE	BIT(29)
81#define CHCR_CLR_LINKP_IE	BIT(28)
82#define CHCR_SET_SAR_IE		BIT(27)
83#define CHCR_CLR_SAR_IE		BIT(26)
84#define CHCR_SET_DONE_IE	BIT(25)
85#define CHCR_CLR_DONE_IE	BIT(24)
86#define CHCR_SET_MRDY_IE	BIT(23)
87#define CHCR_CLR_MRDY_IE	BIT(22)
88#define CHCR_SET_DRDY_IE	BIT(21)
89#define CHCR_CLR_DRDY_IE	BIT(20)
90#define CHCR_SET_LC_IE		BIT(19)
91#define CHCR_CLR_LC_IE		BIT(18)
92#define CHCR_SET_CONT_RB_IE	BIT(17)
93#define CHCR_CLR_CONT_RB_IE	BIT(16)
94#define CHCR_FIFO(x)		(((x) & 0x1) << 15)
95#define CHCR_FIFODIS		CHCR_FIFO(1)
96#define CHCR_FIFO_ON		CHCR_FIFO(0)
97#define CHCR_BURST(x)		(((x) & 0x1) << 14)
98#define CHCR_BURSTEN		CHCR_BURST(1)
99#define CHCR_NO_BURSTEN		CHCR_BURST(0)
100#define CHCR_BYTE_SWAP_DEVICE	BIT(6)
101#define CHCR_BYTE_SWAP_MEMORY	BIT(4)
102#define CHCR_DIR(x)		(((x) & 0x1) << 3)
103#define CHCR_DEV_TO_MEM		CHCR_DIR(1)
104#define CHCR_MEM_TO_DEV		CHCR_DIR(0)
105#define CHCR_MODE(x)		(((x) & 0x7) << 0)
106#define CHCR_NORMAL		CHCR_MODE(0)
107#define CHCR_CONTINUE		CHCR_MODE(1)
108#define CHCR_RINGBUFF		CHCR_MODE(2)
109#define CHCR_LINKSHORT		CHCR_MODE(4)
110#define CHCR_LINKLONG		CHCR_MODE(5)
111#define MITE_TCR(x)		(0x08 + MITE_CHAN(x))	/* transfer count */
112#define MITE_MCR(x)		(0x0c + MITE_CHAN(x))	/* memory config */
113#define MITE_MAR(x)		(0x10 + MITE_CHAN(x))	/* memory address */
114#define MITE_DCR(x)		(0x14 + MITE_CHAN(x))	/* device config */
115#define DCR_NORMAL		BIT(29)
116#define MITE_DAR(x)		(0x18 + MITE_CHAN(x))	/* device address */
117#define MITE_LKCR(x)		(0x1c + MITE_CHAN(x))	/* link config */
118#define MITE_LKAR(x)		(0x20 + MITE_CHAN(x))	/* link address */
119#define MITE_LLKAR(x)		(0x24 + MITE_CHAN(x))	/* see tnt5002 manual */
120#define MITE_BAR(x)		(0x28 + MITE_CHAN(x))	/* base address */
121#define MITE_BCR(x)		(0x2c + MITE_CHAN(x))	/* base count */
122#define MITE_SAR(x)		(0x30 + MITE_CHAN(x))	/* ? address */
123#define MITE_WSCR(x)		(0x34 + MITE_CHAN(x))	/* ? */
124#define MITE_WSER(x)		(0x38 + MITE_CHAN(x))	/* ? */
125#define MITE_CHSR(x)		(0x3c + MITE_CHAN(x))	/* channel status */
126#define CHSR_INT		BIT(31)
127#define CHSR_LPAUSES		BIT(29)
128#define CHSR_SARS		BIT(27)
129#define CHSR_DONE		BIT(25)
130#define CHSR_MRDY		BIT(23)
131#define CHSR_DRDY		BIT(21)
132#define CHSR_LINKC		BIT(19)
133#define CHSR_CONTS_RB		BIT(17)
134#define CHSR_ERROR		BIT(15)
135#define CHSR_SABORT		BIT(14)
136#define CHSR_HABORT		BIT(13)
137#define CHSR_STOPS		BIT(12)
138#define CHSR_OPERR(x)		(((x) & 0x3) << 10)
139#define CHSR_OPERR_MASK		CHSR_OPERR(3)
140#define CHSR_OPERR_NOERROR	CHSR_OPERR(0)
141#define CHSR_OPERR_FIFOERROR	CHSR_OPERR(1)
142#define CHSR_OPERR_LINKERROR	CHSR_OPERR(1)	/* ??? */
143#define CHSR_XFERR		BIT(9)
144#define CHSR_END		BIT(8)
145#define CHSR_DRQ1		BIT(7)
146#define CHSR_DRQ0		BIT(6)
147#define CHSR_LERR(x)		(((x) & 0x3) << 4)
148#define CHSR_LERR_MASK		CHSR_LERR(3)
149#define CHSR_LBERR		CHSR_LERR(1)
150#define CHSR_LRERR		CHSR_LERR(2)
151#define CHSR_LOERR		CHSR_LERR(3)
152#define CHSR_MERR(x)		(((x) & 0x3) << 2)
153#define CHSR_MERR_MASK		CHSR_MERR(3)
154#define CHSR_MBERR		CHSR_MERR(1)
155#define CHSR_MRERR		CHSR_MERR(2)
156#define CHSR_MOERR		CHSR_MERR(3)
157#define CHSR_DERR(x)		(((x) & 0x3) << 0)
158#define CHSR_DERR_MASK		CHSR_DERR(3)
159#define CHSR_DBERR		CHSR_DERR(1)
160#define CHSR_DRERR		CHSR_DERR(2)
161#define CHSR_DOERR		CHSR_DERR(3)
162#define MITE_FCR(x)		(0x40 + MITE_CHAN(x))	/* fifo count */
163
164/* common bits for the memory/device/link config registers */
165#define CR_RL(x)		(((x) & 0x7) << 21)
166#define CR_REQS(x)		(((x) & 0x7) << 16)
167#define CR_REQS_MASK		CR_REQS(7)
168#define CR_ASEQ(x)		(((x) & 0x3) << 10)
169#define CR_ASEQDONT		CR_ASEQ(0)
170#define CR_ASEQUP		CR_ASEQ(1)
171#define CR_ASEQDOWN		CR_ASEQ(2)
172#define CR_ASEQ_MASK		CR_ASEQ(3)
173#define CR_PSIZE(x)		(((x) & 0x3) << 8)
174#define CR_PSIZE8		CR_PSIZE(1)
175#define CR_PSIZE16		CR_PSIZE(2)
176#define CR_PSIZE32		CR_PSIZE(3)
177#define CR_PORT(x)		(((x) & 0x3) << 6)
178#define CR_PORTCPU		CR_PORT(0)
179#define CR_PORTIO		CR_PORT(1)
180#define CR_PORTVXI		CR_PORT(2)
181#define CR_PORTMXI		CR_PORT(3)
182#define CR_AMDEVICE		BIT(0)
183
184static unsigned int MITE_IODWBSR_1_WSIZE_bits(unsigned int size)
185{
186	return (ilog2(size) - 1) & 0x1f;
187}
188
189static unsigned int mite_retry_limit(unsigned int retry_limit)
190{
191	unsigned int value = 0;
192
193	if (retry_limit)
194		value = 1 + ilog2(retry_limit);
195	if (value > 0x7)
196		value = 0x7;
197	return CR_RL(value);
198}
199
200static unsigned int mite_drq_reqs(unsigned int drq_line)
201{
202	/* This also works on m-series when using channels (drq_line) 4 or 5. */
203	return CR_REQS((drq_line & 0x3) | 0x4);
204}
205
206static unsigned int mite_fifo_size(struct mite *mite, unsigned int channel)
207{
208	unsigned int fcr_bits = readl(mite->mmio + MITE_FCR(channel));
209	unsigned int empty_count = (fcr_bits >> 16) & 0xff;
210	unsigned int full_count = fcr_bits & 0xff;
211
212	return empty_count + full_count;
213}
214
215static u32 mite_device_bytes_transferred(struct mite_channel *mite_chan)
216{
217	struct mite *mite = mite_chan->mite;
218
219	return readl(mite->mmio + MITE_DAR(mite_chan->channel));
220}
221
222/**
223 * mite_bytes_in_transit() - Returns the number of unread bytes in the fifo.
224 * @mite_chan: MITE dma channel.
225 */
226u32 mite_bytes_in_transit(struct mite_channel *mite_chan)
227{
228	struct mite *mite = mite_chan->mite;
229
230	return readl(mite->mmio + MITE_FCR(mite_chan->channel)) & 0xff;
231}
232EXPORT_SYMBOL_GPL(mite_bytes_in_transit);
233
234/* returns lower bound for number of bytes transferred from device to memory */
235static u32 mite_bytes_written_to_memory_lb(struct mite_channel *mite_chan)
236{
237	u32 device_byte_count;
238
239	device_byte_count = mite_device_bytes_transferred(mite_chan);
240	return device_byte_count - mite_bytes_in_transit(mite_chan);
241}
242
243/* returns upper bound for number of bytes transferred from device to memory */
244static u32 mite_bytes_written_to_memory_ub(struct mite_channel *mite_chan)
245{
246	u32 in_transit_count;
247
248	in_transit_count = mite_bytes_in_transit(mite_chan);
249	return mite_device_bytes_transferred(mite_chan) - in_transit_count;
250}
251
252/* returns lower bound for number of bytes read from memory to device */
253static u32 mite_bytes_read_from_memory_lb(struct mite_channel *mite_chan)
254{
255	u32 device_byte_count;
256
257	device_byte_count = mite_device_bytes_transferred(mite_chan);
258	return device_byte_count + mite_bytes_in_transit(mite_chan);
259}
260
261/* returns upper bound for number of bytes read from memory to device */
262static u32 mite_bytes_read_from_memory_ub(struct mite_channel *mite_chan)
263{
264	u32 in_transit_count;
265
266	in_transit_count = mite_bytes_in_transit(mite_chan);
267	return mite_device_bytes_transferred(mite_chan) + in_transit_count;
268}
269
270static void mite_sync_input_dma(struct mite_channel *mite_chan,
271				struct comedi_subdevice *s)
272{
273	struct comedi_async *async = s->async;
274	int count;
275	unsigned int nbytes, old_alloc_count;
276
277	old_alloc_count = async->buf_write_alloc_count;
278	/* write alloc as much as we can */
279	comedi_buf_write_alloc(s, async->prealloc_bufsz);
280
281	nbytes = mite_bytes_written_to_memory_lb(mite_chan);
282	if ((int)(mite_bytes_written_to_memory_ub(mite_chan) -
283		  old_alloc_count) > 0) {
284		dev_warn(s->device->class_dev,
285			 "mite: DMA overwrite of free area\n");
286		async->events |= COMEDI_CB_OVERFLOW;
287		return;
288	}
289
290	count = nbytes - async->buf_write_count;
291	/*
292	 * it's possible count will be negative due to conservative value
293	 * returned by mite_bytes_written_to_memory_lb
294	 */
295	if (count > 0) {
296		comedi_buf_write_free(s, count);
297		comedi_inc_scan_progress(s, count);
298		async->events |= COMEDI_CB_BLOCK;
299	}
300}
301
302static void mite_sync_output_dma(struct mite_channel *mite_chan,
303				 struct comedi_subdevice *s)
304{
305	struct comedi_async *async = s->async;
306	struct comedi_cmd *cmd = &async->cmd;
307	u32 stop_count = cmd->stop_arg * comedi_bytes_per_scan(s);
308	unsigned int old_alloc_count = async->buf_read_alloc_count;
309	u32 nbytes_ub, nbytes_lb;
310	int count;
311	bool finite_regen = (cmd->stop_src == TRIG_NONE && stop_count != 0);
312
313	/* read alloc as much as we can */
314	comedi_buf_read_alloc(s, async->prealloc_bufsz);
315	nbytes_lb = mite_bytes_read_from_memory_lb(mite_chan);
316	if (cmd->stop_src == TRIG_COUNT && (int)(nbytes_lb - stop_count) > 0)
317		nbytes_lb = stop_count;
318	nbytes_ub = mite_bytes_read_from_memory_ub(mite_chan);
319	if (cmd->stop_src == TRIG_COUNT && (int)(nbytes_ub - stop_count) > 0)
320		nbytes_ub = stop_count;
321
322	if ((!finite_regen || stop_count > old_alloc_count) &&
323	    ((int)(nbytes_ub - old_alloc_count) > 0)) {
324		dev_warn(s->device->class_dev, "mite: DMA underrun\n");
325		async->events |= COMEDI_CB_OVERFLOW;
326		return;
327	}
328
329	if (finite_regen) {
330		/*
331		 * This is a special case where we continuously output a finite
332		 * buffer.  In this case, we do not free any of the memory,
333		 * hence we expect that old_alloc_count will reach a maximum of
334		 * stop_count bytes.
335		 */
336		return;
337	}
338
339	count = nbytes_lb - async->buf_read_count;
340	if (count > 0) {
341		comedi_buf_read_free(s, count);
342		async->events |= COMEDI_CB_BLOCK;
343	}
344}
345
346/**
347 * mite_sync_dma() - Sync the MITE dma with the COMEDI async buffer.
348 * @mite_chan: MITE dma channel.
349 * @s: COMEDI subdevice.
350 */
351void mite_sync_dma(struct mite_channel *mite_chan, struct comedi_subdevice *s)
352{
353	if (mite_chan->dir == COMEDI_INPUT)
354		mite_sync_input_dma(mite_chan, s);
355	else
356		mite_sync_output_dma(mite_chan, s);
357}
358EXPORT_SYMBOL_GPL(mite_sync_dma);
359
360static unsigned int mite_get_status(struct mite_channel *mite_chan)
361{
362	struct mite *mite = mite_chan->mite;
363	unsigned int status;
364	unsigned long flags;
365
366	spin_lock_irqsave(&mite->lock, flags);
367	status = readl(mite->mmio + MITE_CHSR(mite_chan->channel));
368	if (status & CHSR_DONE) {
369		mite_chan->done = 1;
370		writel(CHOR_CLRDONE,
371		       mite->mmio + MITE_CHOR(mite_chan->channel));
372	}
373	spin_unlock_irqrestore(&mite->lock, flags);
374	return status;
375}
376
377/**
378 * mite_ack_linkc() - Check and ack the LINKC interrupt,
379 * @mite_chan: MITE dma channel.
380 * @s: COMEDI subdevice.
381 * @sync: flag to force a mite_sync_dma().
382 *
383 * This will also ack the DONE interrupt if active.
384 */
385void mite_ack_linkc(struct mite_channel *mite_chan,
386		    struct comedi_subdevice *s,
387		    bool sync)
388{
389	struct mite *mite = mite_chan->mite;
390	unsigned int status;
391
392	status = mite_get_status(mite_chan);
393	if (status & CHSR_LINKC) {
394		writel(CHOR_CLRLC, mite->mmio + MITE_CHOR(mite_chan->channel));
395		sync = true;
396	}
397	if (sync)
398		mite_sync_dma(mite_chan, s);
399
400	if (status & CHSR_XFERR) {
401		dev_err(s->device->class_dev,
402			"mite: transfer error %08x\n", status);
403		s->async->events |= COMEDI_CB_ERROR;
404	}
405}
406EXPORT_SYMBOL_GPL(mite_ack_linkc);
407
408/**
409 * mite_done() - Check is a MITE dma transfer is complete.
410 * @mite_chan: MITE dma channel.
411 *
412 * This will also ack the DONE interrupt if active.
413 */
414int mite_done(struct mite_channel *mite_chan)
415{
416	struct mite *mite = mite_chan->mite;
417	unsigned long flags;
418	int done;
419
420	mite_get_status(mite_chan);
421	spin_lock_irqsave(&mite->lock, flags);
422	done = mite_chan->done;
423	spin_unlock_irqrestore(&mite->lock, flags);
424	return done;
425}
426EXPORT_SYMBOL_GPL(mite_done);
427
428static void mite_dma_reset(struct mite_channel *mite_chan)
429{
430	writel(CHOR_DMARESET | CHOR_FRESET,
431	       mite_chan->mite->mmio + MITE_CHOR(mite_chan->channel));
432}
433
434/**
435 * mite_dma_arm() - Start a MITE dma transfer.
436 * @mite_chan: MITE dma channel.
437 */
438void mite_dma_arm(struct mite_channel *mite_chan)
439{
440	struct mite *mite = mite_chan->mite;
441	unsigned long flags;
442
443	/*
444	 * memory barrier is intended to insure any twiddling with the buffer
445	 * is done before writing to the mite to arm dma transfer
446	 */
447	smp_mb();
448	spin_lock_irqsave(&mite->lock, flags);
449	mite_chan->done = 0;
450	/* arm */
451	writel(CHOR_START, mite->mmio + MITE_CHOR(mite_chan->channel));
452	spin_unlock_irqrestore(&mite->lock, flags);
453}
454EXPORT_SYMBOL_GPL(mite_dma_arm);
455
456/**
457 * mite_dma_disarm() - Stop a MITE dma transfer.
458 * @mite_chan: MITE dma channel.
459 */
460void mite_dma_disarm(struct mite_channel *mite_chan)
461{
462	struct mite *mite = mite_chan->mite;
463
464	/* disarm */
465	writel(CHOR_ABORT, mite->mmio + MITE_CHOR(mite_chan->channel));
466}
467EXPORT_SYMBOL_GPL(mite_dma_disarm);
468
469/**
470 * mite_prep_dma() - Prepare a MITE dma channel for transfers.
471 * @mite_chan: MITE dma channel.
472 * @num_device_bits: device transfer size (8, 16, or 32-bits).
473 * @num_memory_bits: memory transfer size (8, 16, or 32-bits).
474 */
475void mite_prep_dma(struct mite_channel *mite_chan,
476		   unsigned int num_device_bits, unsigned int num_memory_bits)
477{
478	struct mite *mite = mite_chan->mite;
479	unsigned int chcr, mcr, dcr, lkcr;
480
481	mite_dma_reset(mite_chan);
482
483	/* short link chaining mode */
484	chcr = CHCR_SET_DMA_IE | CHCR_LINKSHORT | CHCR_SET_DONE_IE |
485	    CHCR_BURSTEN;
486	/*
487	 * Link Complete Interrupt: interrupt every time a link
488	 * in MITE_RING is completed. This can generate a lot of
489	 * extra interrupts, but right now we update the values
490	 * of buf_int_ptr and buf_int_count at each interrupt. A
491	 * better method is to poll the MITE before each user
492	 * "read()" to calculate the number of bytes available.
493	 */
494	chcr |= CHCR_SET_LC_IE;
495	if (num_memory_bits == 32 && num_device_bits == 16) {
496		/*
497		 * Doing a combined 32 and 16 bit byteswap gets the 16 bit
498		 * samples into the fifo in the right order. Tested doing 32 bit
499		 * memory to 16 bit device transfers to the analog out of a
500		 * pxi-6281, which has mite version = 1, type = 4. This also
501		 * works for dma reads from the counters on e-series boards.
502		 */
503		chcr |= CHCR_BYTE_SWAP_DEVICE | CHCR_BYTE_SWAP_MEMORY;
504	}
505	if (mite_chan->dir == COMEDI_INPUT)
506		chcr |= CHCR_DEV_TO_MEM;
507
508	writel(chcr, mite->mmio + MITE_CHCR(mite_chan->channel));
509
510	/* to/from memory */
511	mcr = mite_retry_limit(64) | CR_ASEQUP;
512	switch (num_memory_bits) {
513	case 8:
514		mcr |= CR_PSIZE8;
515		break;
516	case 16:
517		mcr |= CR_PSIZE16;
518		break;
519	case 32:
520		mcr |= CR_PSIZE32;
521		break;
522	default:
523		pr_warn("bug! invalid mem bit width for dma transfer\n");
524		break;
525	}
526	writel(mcr, mite->mmio + MITE_MCR(mite_chan->channel));
527
528	/* from/to device */
529	dcr = mite_retry_limit(64) | CR_ASEQUP;
530	dcr |= CR_PORTIO | CR_AMDEVICE | mite_drq_reqs(mite_chan->channel);
531	switch (num_device_bits) {
532	case 8:
533		dcr |= CR_PSIZE8;
534		break;
535	case 16:
536		dcr |= CR_PSIZE16;
537		break;
538	case 32:
539		dcr |= CR_PSIZE32;
540		break;
541	default:
542		pr_warn("bug! invalid dev bit width for dma transfer\n");
543		break;
544	}
545	writel(dcr, mite->mmio + MITE_DCR(mite_chan->channel));
546
547	/* reset the DAR */
548	writel(0, mite->mmio + MITE_DAR(mite_chan->channel));
549
550	/* the link is 32bits */
551	lkcr = mite_retry_limit(64) | CR_ASEQUP | CR_PSIZE32;
552	writel(lkcr, mite->mmio + MITE_LKCR(mite_chan->channel));
553
554	/* starting address for link chaining */
555	writel(mite_chan->ring->dma_addr,
556	       mite->mmio + MITE_LKAR(mite_chan->channel));
557}
558EXPORT_SYMBOL_GPL(mite_prep_dma);
559
560/**
561 * mite_request_channel_in_range() - Request a MITE dma channel.
562 * @mite: MITE device.
563 * @ring: MITE dma ring.
564 * @min_channel: minimum channel index to use.
565 * @max_channel: maximum channel index to use.
566 */
567struct mite_channel *mite_request_channel_in_range(struct mite *mite,
568						   struct mite_ring *ring,
569						   unsigned int min_channel,
570						   unsigned int max_channel)
571{
572	struct mite_channel *mite_chan = NULL;
573	unsigned long flags;
574	int i;
575
576	/*
577	 * spin lock so mite_release_channel can be called safely
578	 * from interrupts
579	 */
580	spin_lock_irqsave(&mite->lock, flags);
581	for (i = min_channel; i <= max_channel; ++i) {
582		mite_chan = &mite->channels[i];
583		if (!mite_chan->ring) {
584			mite_chan->ring = ring;
585			break;
586		}
587		mite_chan = NULL;
588	}
589	spin_unlock_irqrestore(&mite->lock, flags);
590	return mite_chan;
591}
592EXPORT_SYMBOL_GPL(mite_request_channel_in_range);
593
594/**
595 * mite_request_channel() - Request a MITE dma channel.
596 * @mite: MITE device.
597 * @ring: MITE dma ring.
598 */
599struct mite_channel *mite_request_channel(struct mite *mite,
600					  struct mite_ring *ring)
601{
602	return mite_request_channel_in_range(mite, ring, 0,
603					     mite->num_channels - 1);
604}
605EXPORT_SYMBOL_GPL(mite_request_channel);
606
607/**
608 * mite_release_channel() - Release a MITE dma channel.
609 * @mite_chan: MITE dma channel.
610 */
611void mite_release_channel(struct mite_channel *mite_chan)
612{
613	struct mite *mite = mite_chan->mite;
614	unsigned long flags;
615
616	/* spin lock to prevent races with mite_request_channel */
617	spin_lock_irqsave(&mite->lock, flags);
618	if (mite_chan->ring) {
619		mite_dma_disarm(mite_chan);
620		mite_dma_reset(mite_chan);
621		/*
622		 * disable all channel's interrupts (do it after disarm/reset so
623		 * MITE_CHCR reg isn't changed while dma is still active!)
624		 */
625		writel(CHCR_CLR_DMA_IE | CHCR_CLR_LINKP_IE |
626		       CHCR_CLR_SAR_IE | CHCR_CLR_DONE_IE |
627		       CHCR_CLR_MRDY_IE | CHCR_CLR_DRDY_IE |
628		       CHCR_CLR_LC_IE | CHCR_CLR_CONT_RB_IE,
629		       mite->mmio + MITE_CHCR(mite_chan->channel));
630		mite_chan->ring = NULL;
631	}
632	spin_unlock_irqrestore(&mite->lock, flags);
633}
634EXPORT_SYMBOL_GPL(mite_release_channel);
635
636/**
637 * mite_init_ring_descriptors() - Initialize a MITE dma ring descriptors.
638 * @ring: MITE dma ring.
639 * @s: COMEDI subdevice.
640 * @nbytes: the size of the dma ring (in bytes).
641 *
642 * Initializes the ring buffer descriptors to provide correct DMA transfer
643 * links to the exact amount of memory required. When the ring buffer is
644 * allocated by mite_buf_change(), the default is to initialize the ring
645 * to refer to the entire DMA data buffer. A command may call this function
646 * later to re-initialize and shorten the amount of memory that will be
647 * transferred.
648 */
649int mite_init_ring_descriptors(struct mite_ring *ring,
650			       struct comedi_subdevice *s,
651			       unsigned int nbytes)
652{
653	struct comedi_async *async = s->async;
654	struct mite_dma_desc *desc = NULL;
655	unsigned int n_full_links = nbytes >> PAGE_SHIFT;
656	unsigned int remainder = nbytes % PAGE_SIZE;
657	int i;
658
659	dev_dbg(s->device->class_dev,
660		"mite: init ring buffer to %u bytes\n", nbytes);
661
662	if ((n_full_links + (remainder > 0 ? 1 : 0)) > ring->n_links) {
663		dev_err(s->device->class_dev,
664			"mite: ring buffer too small for requested init\n");
665		return -ENOMEM;
666	}
667
668	/* We set the descriptors for all full links. */
669	for (i = 0; i < n_full_links; ++i) {
670		desc = &ring->descs[i];
671		desc->count = cpu_to_le32(PAGE_SIZE);
672		desc->addr = cpu_to_le32(async->buf_map->page_list[i].dma_addr);
673		desc->next = cpu_to_le32(ring->dma_addr +
674					 (i + 1) * sizeof(*desc));
675	}
676
677	/* the last link is either a remainder or was a full link. */
678	if (remainder > 0) {
679		desc = &ring->descs[i];
680		/* set the lesser count for the remainder link */
681		desc->count = cpu_to_le32(remainder);
682		desc->addr = cpu_to_le32(async->buf_map->page_list[i].dma_addr);
683	}
684
685	/* Assign the last link->next to point back to the head of the list. */
686	desc->next = cpu_to_le32(ring->dma_addr);
687
688	/*
689	 * barrier is meant to insure that all the writes to the dma descriptors
690	 * have completed before the dma controller is commanded to read them
691	 */
692	smp_wmb();
693	return 0;
694}
695EXPORT_SYMBOL_GPL(mite_init_ring_descriptors);
696
697static void mite_free_dma_descs(struct mite_ring *ring)
698{
699	struct mite_dma_desc *descs = ring->descs;
700
701	if (descs) {
702		dma_free_coherent(ring->hw_dev,
703				  ring->n_links * sizeof(*descs),
704				  descs, ring->dma_addr);
705		ring->descs = NULL;
706		ring->dma_addr = 0;
707		ring->n_links = 0;
708	}
709}
710
711/**
712 * mite_buf_change() - COMEDI subdevice (*buf_change) for a MITE dma ring.
713 * @ring: MITE dma ring.
714 * @s: COMEDI subdevice.
715 */
716int mite_buf_change(struct mite_ring *ring, struct comedi_subdevice *s)
717{
718	struct comedi_async *async = s->async;
719	struct mite_dma_desc *descs;
720	unsigned int n_links;
721
722	mite_free_dma_descs(ring);
723
724	if (async->prealloc_bufsz == 0)
725		return 0;
726
727	n_links = async->prealloc_bufsz >> PAGE_SHIFT;
728
729	descs = dma_alloc_coherent(ring->hw_dev,
730				   n_links * sizeof(*descs),
731				   &ring->dma_addr, GFP_KERNEL);
732	if (!descs) {
733		dev_err(s->device->class_dev,
734			"mite: ring buffer allocation failed\n");
735		return -ENOMEM;
736	}
737	ring->descs = descs;
738	ring->n_links = n_links;
739
740	return mite_init_ring_descriptors(ring, s, n_links << PAGE_SHIFT);
741}
742EXPORT_SYMBOL_GPL(mite_buf_change);
743
744/**
745 * mite_alloc_ring() - Allocate a MITE dma ring.
746 * @mite: MITE device.
747 */
748struct mite_ring *mite_alloc_ring(struct mite *mite)
749{
750	struct mite_ring *ring;
751
752	ring = kmalloc(sizeof(*ring), GFP_KERNEL);
753	if (!ring)
754		return NULL;
755	ring->hw_dev = get_device(&mite->pcidev->dev);
756	if (!ring->hw_dev) {
757		kfree(ring);
758		return NULL;
759	}
760	ring->n_links = 0;
761	ring->descs = NULL;
762	ring->dma_addr = 0;
763	return ring;
764}
765EXPORT_SYMBOL_GPL(mite_alloc_ring);
766
767/**
768 * mite_free_ring() - Free a MITE dma ring and its descriptors.
769 * @ring: MITE dma ring.
770 */
771void mite_free_ring(struct mite_ring *ring)
772{
773	if (ring) {
774		mite_free_dma_descs(ring);
775		put_device(ring->hw_dev);
776		kfree(ring);
777	}
778}
779EXPORT_SYMBOL_GPL(mite_free_ring);
780
781static int mite_setup(struct comedi_device *dev, struct mite *mite,
782		      bool use_win1)
783{
784	resource_size_t daq_phys_addr;
785	unsigned long length;
786	int i;
787	u32 csigr_bits;
788	unsigned int unknown_dma_burst_bits;
789	unsigned int wpdep;
790
791	pci_set_master(mite->pcidev);
792
793	mite->mmio = pci_ioremap_bar(mite->pcidev, 0);
794	if (!mite->mmio)
795		return -ENOMEM;
796
797	dev->mmio = pci_ioremap_bar(mite->pcidev, 1);
798	if (!dev->mmio)
799		return -ENOMEM;
800	daq_phys_addr = pci_resource_start(mite->pcidev, 1);
801	length = pci_resource_len(mite->pcidev, 1);
802
803	if (use_win1) {
804		writel(0, mite->mmio + MITE_IODWBSR);
805		dev_dbg(dev->class_dev,
806			"mite: using I/O Window Base Size register 1\n");
807		writel(daq_phys_addr | WENAB |
808		       MITE_IODWBSR_1_WSIZE_bits(length),
809		       mite->mmio + MITE_IODWBSR_1);
810		writel(0, mite->mmio + MITE_IODWCR_1);
811	} else {
812		writel(daq_phys_addr | WENAB, mite->mmio + MITE_IODWBSR);
813	}
814	/*
815	 * Make sure dma bursts work. I got this from running a bus analyzer
816	 * on a pxi-6281 and a pxi-6713. 6713 powered up with register value
817	 * of 0x61f and bursts worked. 6281 powered up with register value of
818	 * 0x1f and bursts didn't work. The NI windows driver reads the
819	 * register, then does a bitwise-or of 0x600 with it and writes it back.
820	 *
821	 * The bits 0x90180700 in MITE_UNKNOWN_DMA_BURST_REG can be
822	 * written and read back.  The bits 0x1f always read as 1.
823	 * The rest always read as zero.
824	 */
825	unknown_dma_burst_bits = readl(mite->mmio + MITE_UNKNOWN_DMA_BURST_REG);
826	unknown_dma_burst_bits |= UNKNOWN_DMA_BURST_ENABLE_BITS;
827	writel(unknown_dma_burst_bits, mite->mmio + MITE_UNKNOWN_DMA_BURST_REG);
828
829	csigr_bits = readl(mite->mmio + MITE_CSIGR);
830	mite->num_channels = CSIGR_TO_DMAC(csigr_bits);
831	if (mite->num_channels > MAX_MITE_DMA_CHANNELS) {
832		dev_warn(dev->class_dev,
833			 "mite: bug? chip claims to have %i dma channels. Setting to %i.\n",
834			 mite->num_channels, MAX_MITE_DMA_CHANNELS);
835		mite->num_channels = MAX_MITE_DMA_CHANNELS;
836	}
837
838	/* get the wpdep bits and convert it to the write port fifo depth */
839	wpdep = CSIGR_TO_WPDEP(csigr_bits);
840	if (wpdep)
841		wpdep = BIT(wpdep);
842
843	dev_dbg(dev->class_dev,
844		"mite: version = %i, type = %i, mite mode = %i, interface mode = %i\n",
845		CSIGR_TO_VER(csigr_bits), CSIGR_TO_TYPE(csigr_bits),
846		CSIGR_TO_MMODE(csigr_bits), CSIGR_TO_IMODE(csigr_bits));
847	dev_dbg(dev->class_dev,
848		"mite: num channels = %i, write post fifo depth = %i, wins = %i, iowins = %i\n",
849		CSIGR_TO_DMAC(csigr_bits), wpdep,
850		CSIGR_TO_WINS(csigr_bits), CSIGR_TO_IOWINS(csigr_bits));
851
852	for (i = 0; i < mite->num_channels; i++) {
853		writel(CHOR_DMARESET, mite->mmio + MITE_CHOR(i));
854		/* disable interrupts */
855		writel(CHCR_CLR_DMA_IE | CHCR_CLR_LINKP_IE | CHCR_CLR_SAR_IE |
856		       CHCR_CLR_DONE_IE | CHCR_CLR_MRDY_IE | CHCR_CLR_DRDY_IE |
857		       CHCR_CLR_LC_IE | CHCR_CLR_CONT_RB_IE,
858		       mite->mmio + MITE_CHCR(i));
859	}
860	mite->fifo_size = mite_fifo_size(mite, 0);
861	dev_dbg(dev->class_dev, "mite: fifo size is %i.\n", mite->fifo_size);
862	return 0;
863}
864
865/**
866 * mite_attach() - Allocate and initialize a MITE device for a comedi driver.
867 * @dev: COMEDI device.
868 * @use_win1: flag to use I/O Window 1 instead of I/O Window 0.
869 *
870 * Called by a COMEDI drivers (*auto_attach).
871 *
872 * Returns a pointer to the MITE device on success, or NULL if the MITE cannot
873 * be allocated or remapped.
874 */
875struct mite *mite_attach(struct comedi_device *dev, bool use_win1)
876{
877	struct pci_dev *pcidev = comedi_to_pci_dev(dev);
878	struct mite *mite;
879	unsigned int i;
880	int ret;
881
882	mite = kzalloc(sizeof(*mite), GFP_KERNEL);
883	if (!mite)
884		return NULL;
885
886	spin_lock_init(&mite->lock);
887	mite->pcidev = pcidev;
888	for (i = 0; i < MAX_MITE_DMA_CHANNELS; ++i) {
889		mite->channels[i].mite = mite;
890		mite->channels[i].channel = i;
891		mite->channels[i].done = 1;
892	}
893
894	ret = mite_setup(dev, mite, use_win1);
895	if (ret) {
896		if (mite->mmio)
897			iounmap(mite->mmio);
898		kfree(mite);
899		return NULL;
900	}
901
902	return mite;
903}
904EXPORT_SYMBOL_GPL(mite_attach);
905
906/**
907 * mite_detach() - Unmap and free a MITE device for a comedi driver.
908 * @mite: MITE device.
909 *
910 * Called by a COMEDI drivers (*detach).
911 */
912void mite_detach(struct mite *mite)
913{
914	if (!mite)
915		return;
916
917	if (mite->mmio)
918		iounmap(mite->mmio);
919
920	kfree(mite);
921}
922EXPORT_SYMBOL_GPL(mite_detach);
923
924static int __init mite_module_init(void)
925{
926	return 0;
927}
928module_init(mite_module_init);
929
930static void __exit mite_module_exit(void)
931{
932}
933module_exit(mite_module_exit);
934
935MODULE_AUTHOR("Comedi https://www.comedi.org");
936MODULE_DESCRIPTION("Comedi helper for NI Mite PCI interface chip");
937MODULE_LICENSE("GPL");
938