1// SPDX-License-Identifier: GPL-2.0
2/*
3 * SuperH Timer Support - CMT
4 *
5 *  Copyright (C) 2008 Magnus Damm
6 */
7
8#include <linux/clk.h>
9#include <linux/clockchips.h>
10#include <linux/clocksource.h>
11#include <linux/delay.h>
12#include <linux/err.h>
13#include <linux/init.h>
14#include <linux/interrupt.h>
15#include <linux/io.h>
16#include <linux/iopoll.h>
17#include <linux/ioport.h>
18#include <linux/irq.h>
19#include <linux/module.h>
20#include <linux/of.h>
21#include <linux/platform_device.h>
22#include <linux/pm_domain.h>
23#include <linux/pm_runtime.h>
24#include <linux/sh_timer.h>
25#include <linux/slab.h>
26#include <linux/spinlock.h>
27
28#ifdef CONFIG_SUPERH
29#include <asm/platform_early.h>
30#endif
31
32struct sh_cmt_device;
33
34/*
35 * The CMT comes in 5 different identified flavours, depending not only on the
36 * SoC but also on the particular instance. The following table lists the main
37 * characteristics of those flavours.
38 *
39 *			16B	32B	32B-F	48B	R-Car Gen2
40 * -----------------------------------------------------------------------------
41 * Channels		2	1/4	1	6	2/8
42 * Control Width	16	16	16	16	32
43 * Counter Width	16	32	32	32/48	32/48
44 * Shared Start/Stop	Y	Y	Y	Y	N
45 *
46 * The r8a73a4 / R-Car Gen2 version has a per-channel start/stop register
47 * located in the channel registers block. All other versions have a shared
48 * start/stop register located in the global space.
49 *
50 * Channels are indexed from 0 to N-1 in the documentation. The channel index
51 * infers the start/stop bit position in the control register and the channel
52 * registers block address. Some CMT instances have a subset of channels
53 * available, in which case the index in the documentation doesn't match the
54 * "real" index as implemented in hardware. This is for instance the case with
55 * CMT0 on r8a7740, which is a 32-bit variant with a single channel numbered 0
56 * in the documentation but using start/stop bit 5 and having its registers
57 * block at 0x60.
58 *
59 * Similarly CMT0 on r8a73a4, r8a7790 and r8a7791, while implementing 32-bit
60 * channels only, is a 48-bit gen2 CMT with the 48-bit channels unavailable.
61 */
62
63enum sh_cmt_model {
64	SH_CMT_16BIT,
65	SH_CMT_32BIT,
66	SH_CMT_48BIT,
67	SH_CMT0_RCAR_GEN2,
68	SH_CMT1_RCAR_GEN2,
69};
70
71struct sh_cmt_info {
72	enum sh_cmt_model model;
73
74	unsigned int channels_mask;
75
76	unsigned long width; /* 16 or 32 bit version of hardware block */
77	u32 overflow_bit;
78	u32 clear_bits;
79
80	/* callbacks for CMSTR and CMCSR access */
81	u32 (*read_control)(void __iomem *base, unsigned long offs);
82	void (*write_control)(void __iomem *base, unsigned long offs,
83			      u32 value);
84
85	/* callbacks for CMCNT and CMCOR access */
86	u32 (*read_count)(void __iomem *base, unsigned long offs);
87	void (*write_count)(void __iomem *base, unsigned long offs, u32 value);
88};
89
90struct sh_cmt_channel {
91	struct sh_cmt_device *cmt;
92
93	unsigned int index;	/* Index in the documentation */
94	unsigned int hwidx;	/* Real hardware index */
95
96	void __iomem *iostart;
97	void __iomem *ioctrl;
98
99	unsigned int timer_bit;
100	unsigned long flags;
101	u32 match_value;
102	u32 next_match_value;
103	u32 max_match_value;
104	raw_spinlock_t lock;
105	struct clock_event_device ced;
106	struct clocksource cs;
107	u64 total_cycles;
108	bool cs_enabled;
109};
110
111struct sh_cmt_device {
112	struct platform_device *pdev;
113
114	const struct sh_cmt_info *info;
115
116	void __iomem *mapbase;
117	struct clk *clk;
118	unsigned long rate;
119	unsigned int reg_delay;
120
121	raw_spinlock_t lock; /* Protect the shared start/stop register */
122
123	struct sh_cmt_channel *channels;
124	unsigned int num_channels;
125	unsigned int hw_channels;
126
127	bool has_clockevent;
128	bool has_clocksource;
129};
130
131#define SH_CMT16_CMCSR_CMF		(1 << 7)
132#define SH_CMT16_CMCSR_CMIE		(1 << 6)
133#define SH_CMT16_CMCSR_CKS8		(0 << 0)
134#define SH_CMT16_CMCSR_CKS32		(1 << 0)
135#define SH_CMT16_CMCSR_CKS128		(2 << 0)
136#define SH_CMT16_CMCSR_CKS512		(3 << 0)
137#define SH_CMT16_CMCSR_CKS_MASK		(3 << 0)
138
139#define SH_CMT32_CMCSR_CMF		(1 << 15)
140#define SH_CMT32_CMCSR_OVF		(1 << 14)
141#define SH_CMT32_CMCSR_WRFLG		(1 << 13)
142#define SH_CMT32_CMCSR_STTF		(1 << 12)
143#define SH_CMT32_CMCSR_STPF		(1 << 11)
144#define SH_CMT32_CMCSR_SSIE		(1 << 10)
145#define SH_CMT32_CMCSR_CMS		(1 << 9)
146#define SH_CMT32_CMCSR_CMM		(1 << 8)
147#define SH_CMT32_CMCSR_CMTOUT_IE	(1 << 7)
148#define SH_CMT32_CMCSR_CMR_NONE		(0 << 4)
149#define SH_CMT32_CMCSR_CMR_DMA		(1 << 4)
150#define SH_CMT32_CMCSR_CMR_IRQ		(2 << 4)
151#define SH_CMT32_CMCSR_CMR_MASK		(3 << 4)
152#define SH_CMT32_CMCSR_DBGIVD		(1 << 3)
153#define SH_CMT32_CMCSR_CKS_RCLK8	(4 << 0)
154#define SH_CMT32_CMCSR_CKS_RCLK32	(5 << 0)
155#define SH_CMT32_CMCSR_CKS_RCLK128	(6 << 0)
156#define SH_CMT32_CMCSR_CKS_RCLK1	(7 << 0)
157#define SH_CMT32_CMCSR_CKS_MASK		(7 << 0)
158
159static u32 sh_cmt_read16(void __iomem *base, unsigned long offs)
160{
161	return ioread16(base + (offs << 1));
162}
163
164static u32 sh_cmt_read32(void __iomem *base, unsigned long offs)
165{
166	return ioread32(base + (offs << 2));
167}
168
169static void sh_cmt_write16(void __iomem *base, unsigned long offs, u32 value)
170{
171	iowrite16(value, base + (offs << 1));
172}
173
174static void sh_cmt_write32(void __iomem *base, unsigned long offs, u32 value)
175{
176	iowrite32(value, base + (offs << 2));
177}
178
179static const struct sh_cmt_info sh_cmt_info[] = {
180	[SH_CMT_16BIT] = {
181		.model = SH_CMT_16BIT,
182		.width = 16,
183		.overflow_bit = SH_CMT16_CMCSR_CMF,
184		.clear_bits = ~SH_CMT16_CMCSR_CMF,
185		.read_control = sh_cmt_read16,
186		.write_control = sh_cmt_write16,
187		.read_count = sh_cmt_read16,
188		.write_count = sh_cmt_write16,
189	},
190	[SH_CMT_32BIT] = {
191		.model = SH_CMT_32BIT,
192		.width = 32,
193		.overflow_bit = SH_CMT32_CMCSR_CMF,
194		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
195		.read_control = sh_cmt_read16,
196		.write_control = sh_cmt_write16,
197		.read_count = sh_cmt_read32,
198		.write_count = sh_cmt_write32,
199	},
200	[SH_CMT_48BIT] = {
201		.model = SH_CMT_48BIT,
202		.channels_mask = 0x3f,
203		.width = 32,
204		.overflow_bit = SH_CMT32_CMCSR_CMF,
205		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
206		.read_control = sh_cmt_read32,
207		.write_control = sh_cmt_write32,
208		.read_count = sh_cmt_read32,
209		.write_count = sh_cmt_write32,
210	},
211	[SH_CMT0_RCAR_GEN2] = {
212		.model = SH_CMT0_RCAR_GEN2,
213		.channels_mask = 0x60,
214		.width = 32,
215		.overflow_bit = SH_CMT32_CMCSR_CMF,
216		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
217		.read_control = sh_cmt_read32,
218		.write_control = sh_cmt_write32,
219		.read_count = sh_cmt_read32,
220		.write_count = sh_cmt_write32,
221	},
222	[SH_CMT1_RCAR_GEN2] = {
223		.model = SH_CMT1_RCAR_GEN2,
224		.channels_mask = 0xff,
225		.width = 32,
226		.overflow_bit = SH_CMT32_CMCSR_CMF,
227		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
228		.read_control = sh_cmt_read32,
229		.write_control = sh_cmt_write32,
230		.read_count = sh_cmt_read32,
231		.write_count = sh_cmt_write32,
232	},
233};
234
235#define CMCSR 0 /* channel register */
236#define CMCNT 1 /* channel register */
237#define CMCOR 2 /* channel register */
238
239#define CMCLKE	0x1000	/* CLK Enable Register (R-Car Gen2) */
240
241static inline u32 sh_cmt_read_cmstr(struct sh_cmt_channel *ch)
242{
243	if (ch->iostart)
244		return ch->cmt->info->read_control(ch->iostart, 0);
245	else
246		return ch->cmt->info->read_control(ch->cmt->mapbase, 0);
247}
248
249static inline void sh_cmt_write_cmstr(struct sh_cmt_channel *ch, u32 value)
250{
251	u32 old_value = sh_cmt_read_cmstr(ch);
252
253	if (value != old_value) {
254		if (ch->iostart) {
255			ch->cmt->info->write_control(ch->iostart, 0, value);
256			udelay(ch->cmt->reg_delay);
257		} else {
258			ch->cmt->info->write_control(ch->cmt->mapbase, 0, value);
259			udelay(ch->cmt->reg_delay);
260		}
261	}
262}
263
264static inline u32 sh_cmt_read_cmcsr(struct sh_cmt_channel *ch)
265{
266	return ch->cmt->info->read_control(ch->ioctrl, CMCSR);
267}
268
269static inline void sh_cmt_write_cmcsr(struct sh_cmt_channel *ch, u32 value)
270{
271	u32 old_value = sh_cmt_read_cmcsr(ch);
272
273	if (value != old_value) {
274		ch->cmt->info->write_control(ch->ioctrl, CMCSR, value);
275		udelay(ch->cmt->reg_delay);
276	}
277}
278
279static inline u32 sh_cmt_read_cmcnt(struct sh_cmt_channel *ch)
280{
281	return ch->cmt->info->read_count(ch->ioctrl, CMCNT);
282}
283
284static inline int sh_cmt_write_cmcnt(struct sh_cmt_channel *ch, u32 value)
285{
286	/* Tests showed that we need to wait 3 clocks here */
287	unsigned int cmcnt_delay = DIV_ROUND_UP(3 * ch->cmt->reg_delay, 2);
288	u32 reg;
289
290	if (ch->cmt->info->model > SH_CMT_16BIT) {
291		int ret = read_poll_timeout_atomic(sh_cmt_read_cmcsr, reg,
292						   !(reg & SH_CMT32_CMCSR_WRFLG),
293						   1, cmcnt_delay, false, ch);
294		if (ret < 0)
295			return ret;
296	}
297
298	ch->cmt->info->write_count(ch->ioctrl, CMCNT, value);
299	udelay(cmcnt_delay);
300	return 0;
301}
302
303static inline void sh_cmt_write_cmcor(struct sh_cmt_channel *ch, u32 value)
304{
305	u32 old_value = ch->cmt->info->read_count(ch->ioctrl, CMCOR);
306
307	if (value != old_value) {
308		ch->cmt->info->write_count(ch->ioctrl, CMCOR, value);
309		udelay(ch->cmt->reg_delay);
310	}
311}
312
313static u32 sh_cmt_get_counter(struct sh_cmt_channel *ch, u32 *has_wrapped)
314{
315	u32 v1, v2, v3;
316	u32 o1, o2;
317
318	o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
319
320	/* Make sure the timer value is stable. Stolen from acpi_pm.c */
321	do {
322		o2 = o1;
323		v1 = sh_cmt_read_cmcnt(ch);
324		v2 = sh_cmt_read_cmcnt(ch);
325		v3 = sh_cmt_read_cmcnt(ch);
326		o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
327	} while (unlikely((o1 != o2) || (v1 > v2 && v1 < v3)
328			  || (v2 > v3 && v2 < v1) || (v3 > v1 && v3 < v2)));
329
330	*has_wrapped = o1;
331	return v2;
332}
333
334static void sh_cmt_start_stop_ch(struct sh_cmt_channel *ch, int start)
335{
336	unsigned long flags;
337	u32 value;
338
339	/* start stop register shared by multiple timer channels */
340	raw_spin_lock_irqsave(&ch->cmt->lock, flags);
341	value = sh_cmt_read_cmstr(ch);
342
343	if (start)
344		value |= 1 << ch->timer_bit;
345	else
346		value &= ~(1 << ch->timer_bit);
347
348	sh_cmt_write_cmstr(ch, value);
349	raw_spin_unlock_irqrestore(&ch->cmt->lock, flags);
350}
351
352static int sh_cmt_enable(struct sh_cmt_channel *ch)
353{
354	int ret;
355
356	dev_pm_syscore_device(&ch->cmt->pdev->dev, true);
357
358	/* enable clock */
359	ret = clk_enable(ch->cmt->clk);
360	if (ret) {
361		dev_err(&ch->cmt->pdev->dev, "ch%u: cannot enable clock\n",
362			ch->index);
363		goto err0;
364	}
365
366	/* make sure channel is disabled */
367	sh_cmt_start_stop_ch(ch, 0);
368
369	/* configure channel, periodic mode and maximum timeout */
370	if (ch->cmt->info->width == 16) {
371		sh_cmt_write_cmcsr(ch, SH_CMT16_CMCSR_CMIE |
372				   SH_CMT16_CMCSR_CKS512);
373	} else {
374		u32 cmtout = ch->cmt->info->model <= SH_CMT_48BIT ?
375			      SH_CMT32_CMCSR_CMTOUT_IE : 0;
376		sh_cmt_write_cmcsr(ch, cmtout | SH_CMT32_CMCSR_CMM |
377				   SH_CMT32_CMCSR_CMR_IRQ |
378				   SH_CMT32_CMCSR_CKS_RCLK8);
379	}
380
381	sh_cmt_write_cmcor(ch, 0xffffffff);
382	ret = sh_cmt_write_cmcnt(ch, 0);
383
384	if (ret || sh_cmt_read_cmcnt(ch)) {
385		dev_err(&ch->cmt->pdev->dev, "ch%u: cannot clear CMCNT\n",
386			ch->index);
387		ret = -ETIMEDOUT;
388		goto err1;
389	}
390
391	/* enable channel */
392	sh_cmt_start_stop_ch(ch, 1);
393	return 0;
394 err1:
395	/* stop clock */
396	clk_disable(ch->cmt->clk);
397
398 err0:
399	return ret;
400}
401
402static void sh_cmt_disable(struct sh_cmt_channel *ch)
403{
404	/* disable channel */
405	sh_cmt_start_stop_ch(ch, 0);
406
407	/* disable interrupts in CMT block */
408	sh_cmt_write_cmcsr(ch, 0);
409
410	/* stop clock */
411	clk_disable(ch->cmt->clk);
412
413	dev_pm_syscore_device(&ch->cmt->pdev->dev, false);
414}
415
416/* private flags */
417#define FLAG_CLOCKEVENT (1 << 0)
418#define FLAG_CLOCKSOURCE (1 << 1)
419#define FLAG_REPROGRAM (1 << 2)
420#define FLAG_SKIPEVENT (1 << 3)
421#define FLAG_IRQCONTEXT (1 << 4)
422
423static void sh_cmt_clock_event_program_verify(struct sh_cmt_channel *ch,
424					      int absolute)
425{
426	u32 value = ch->next_match_value;
427	u32 new_match;
428	u32 delay = 0;
429	u32 now = 0;
430	u32 has_wrapped;
431
432	now = sh_cmt_get_counter(ch, &has_wrapped);
433	ch->flags |= FLAG_REPROGRAM; /* force reprogram */
434
435	if (has_wrapped) {
436		/* we're competing with the interrupt handler.
437		 *  -> let the interrupt handler reprogram the timer.
438		 *  -> interrupt number two handles the event.
439		 */
440		ch->flags |= FLAG_SKIPEVENT;
441		return;
442	}
443
444	if (absolute)
445		now = 0;
446
447	do {
448		/* reprogram the timer hardware,
449		 * but don't save the new match value yet.
450		 */
451		new_match = now + value + delay;
452		if (new_match > ch->max_match_value)
453			new_match = ch->max_match_value;
454
455		sh_cmt_write_cmcor(ch, new_match);
456
457		now = sh_cmt_get_counter(ch, &has_wrapped);
458		if (has_wrapped && (new_match > ch->match_value)) {
459			/* we are changing to a greater match value,
460			 * so this wrap must be caused by the counter
461			 * matching the old value.
462			 * -> first interrupt reprograms the timer.
463			 * -> interrupt number two handles the event.
464			 */
465			ch->flags |= FLAG_SKIPEVENT;
466			break;
467		}
468
469		if (has_wrapped) {
470			/* we are changing to a smaller match value,
471			 * so the wrap must be caused by the counter
472			 * matching the new value.
473			 * -> save programmed match value.
474			 * -> let isr handle the event.
475			 */
476			ch->match_value = new_match;
477			break;
478		}
479
480		/* be safe: verify hardware settings */
481		if (now < new_match) {
482			/* timer value is below match value, all good.
483			 * this makes sure we won't miss any match events.
484			 * -> save programmed match value.
485			 * -> let isr handle the event.
486			 */
487			ch->match_value = new_match;
488			break;
489		}
490
491		/* the counter has reached a value greater
492		 * than our new match value. and since the
493		 * has_wrapped flag isn't set we must have
494		 * programmed a too close event.
495		 * -> increase delay and retry.
496		 */
497		if (delay)
498			delay <<= 1;
499		else
500			delay = 1;
501
502		if (!delay)
503			dev_warn(&ch->cmt->pdev->dev, "ch%u: too long delay\n",
504				 ch->index);
505
506	} while (delay);
507}
508
509static void __sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
510{
511	if (delta > ch->max_match_value)
512		dev_warn(&ch->cmt->pdev->dev, "ch%u: delta out of range\n",
513			 ch->index);
514
515	ch->next_match_value = delta;
516	sh_cmt_clock_event_program_verify(ch, 0);
517}
518
519static void sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
520{
521	unsigned long flags;
522
523	raw_spin_lock_irqsave(&ch->lock, flags);
524	__sh_cmt_set_next(ch, delta);
525	raw_spin_unlock_irqrestore(&ch->lock, flags);
526}
527
528static irqreturn_t sh_cmt_interrupt(int irq, void *dev_id)
529{
530	struct sh_cmt_channel *ch = dev_id;
531
532	/* clear flags */
533	sh_cmt_write_cmcsr(ch, sh_cmt_read_cmcsr(ch) &
534			   ch->cmt->info->clear_bits);
535
536	/* update clock source counter to begin with if enabled
537	 * the wrap flag should be cleared by the timer specific
538	 * isr before we end up here.
539	 */
540	if (ch->flags & FLAG_CLOCKSOURCE)
541		ch->total_cycles += ch->match_value + 1;
542
543	if (!(ch->flags & FLAG_REPROGRAM))
544		ch->next_match_value = ch->max_match_value;
545
546	ch->flags |= FLAG_IRQCONTEXT;
547
548	if (ch->flags & FLAG_CLOCKEVENT) {
549		if (!(ch->flags & FLAG_SKIPEVENT)) {
550			if (clockevent_state_oneshot(&ch->ced)) {
551				ch->next_match_value = ch->max_match_value;
552				ch->flags |= FLAG_REPROGRAM;
553			}
554
555			ch->ced.event_handler(&ch->ced);
556		}
557	}
558
559	ch->flags &= ~FLAG_SKIPEVENT;
560
561	if (ch->flags & FLAG_REPROGRAM) {
562		ch->flags &= ~FLAG_REPROGRAM;
563		sh_cmt_clock_event_program_verify(ch, 1);
564
565		if (ch->flags & FLAG_CLOCKEVENT)
566			if ((clockevent_state_shutdown(&ch->ced))
567			    || (ch->match_value == ch->next_match_value))
568				ch->flags &= ~FLAG_REPROGRAM;
569	}
570
571	ch->flags &= ~FLAG_IRQCONTEXT;
572
573	return IRQ_HANDLED;
574}
575
576static int sh_cmt_start(struct sh_cmt_channel *ch, unsigned long flag)
577{
578	int ret = 0;
579	unsigned long flags;
580
581	if (flag & FLAG_CLOCKSOURCE)
582		pm_runtime_get_sync(&ch->cmt->pdev->dev);
583
584	raw_spin_lock_irqsave(&ch->lock, flags);
585
586	if (!(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE))) {
587		if (flag & FLAG_CLOCKEVENT)
588			pm_runtime_get_sync(&ch->cmt->pdev->dev);
589		ret = sh_cmt_enable(ch);
590	}
591
592	if (ret)
593		goto out;
594	ch->flags |= flag;
595
596	/* setup timeout if no clockevent */
597	if (ch->cmt->num_channels == 1 &&
598	    flag == FLAG_CLOCKSOURCE && (!(ch->flags & FLAG_CLOCKEVENT)))
599		__sh_cmt_set_next(ch, ch->max_match_value);
600 out:
601	raw_spin_unlock_irqrestore(&ch->lock, flags);
602
603	return ret;
604}
605
606static void sh_cmt_stop(struct sh_cmt_channel *ch, unsigned long flag)
607{
608	unsigned long flags;
609	unsigned long f;
610
611	raw_spin_lock_irqsave(&ch->lock, flags);
612
613	f = ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE);
614	ch->flags &= ~flag;
615
616	if (f && !(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE))) {
617		sh_cmt_disable(ch);
618		if (flag & FLAG_CLOCKEVENT)
619			pm_runtime_put(&ch->cmt->pdev->dev);
620	}
621
622	/* adjust the timeout to maximum if only clocksource left */
623	if ((flag == FLAG_CLOCKEVENT) && (ch->flags & FLAG_CLOCKSOURCE))
624		__sh_cmt_set_next(ch, ch->max_match_value);
625
626	raw_spin_unlock_irqrestore(&ch->lock, flags);
627
628	if (flag & FLAG_CLOCKSOURCE)
629		pm_runtime_put(&ch->cmt->pdev->dev);
630}
631
632static struct sh_cmt_channel *cs_to_sh_cmt(struct clocksource *cs)
633{
634	return container_of(cs, struct sh_cmt_channel, cs);
635}
636
637static u64 sh_cmt_clocksource_read(struct clocksource *cs)
638{
639	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
640	u32 has_wrapped;
641
642	if (ch->cmt->num_channels == 1) {
643		unsigned long flags;
644		u64 value;
645		u32 raw;
646
647		raw_spin_lock_irqsave(&ch->lock, flags);
648		value = ch->total_cycles;
649		raw = sh_cmt_get_counter(ch, &has_wrapped);
650
651		if (unlikely(has_wrapped))
652			raw += ch->match_value + 1;
653		raw_spin_unlock_irqrestore(&ch->lock, flags);
654
655		return value + raw;
656	}
657
658	return sh_cmt_get_counter(ch, &has_wrapped);
659}
660
661static int sh_cmt_clocksource_enable(struct clocksource *cs)
662{
663	int ret;
664	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
665
666	WARN_ON(ch->cs_enabled);
667
668	ch->total_cycles = 0;
669
670	ret = sh_cmt_start(ch, FLAG_CLOCKSOURCE);
671	if (!ret)
672		ch->cs_enabled = true;
673
674	return ret;
675}
676
677static void sh_cmt_clocksource_disable(struct clocksource *cs)
678{
679	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
680
681	WARN_ON(!ch->cs_enabled);
682
683	sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
684	ch->cs_enabled = false;
685}
686
687static void sh_cmt_clocksource_suspend(struct clocksource *cs)
688{
689	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
690
691	if (!ch->cs_enabled)
692		return;
693
694	sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
695	dev_pm_genpd_suspend(&ch->cmt->pdev->dev);
696}
697
698static void sh_cmt_clocksource_resume(struct clocksource *cs)
699{
700	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
701
702	if (!ch->cs_enabled)
703		return;
704
705	dev_pm_genpd_resume(&ch->cmt->pdev->dev);
706	sh_cmt_start(ch, FLAG_CLOCKSOURCE);
707}
708
709static int sh_cmt_register_clocksource(struct sh_cmt_channel *ch,
710				       const char *name)
711{
712	struct clocksource *cs = &ch->cs;
713
714	cs->name = name;
715	cs->rating = 125;
716	cs->read = sh_cmt_clocksource_read;
717	cs->enable = sh_cmt_clocksource_enable;
718	cs->disable = sh_cmt_clocksource_disable;
719	cs->suspend = sh_cmt_clocksource_suspend;
720	cs->resume = sh_cmt_clocksource_resume;
721	cs->mask = CLOCKSOURCE_MASK(ch->cmt->info->width);
722	cs->flags = CLOCK_SOURCE_IS_CONTINUOUS;
723
724	dev_info(&ch->cmt->pdev->dev, "ch%u: used as clock source\n",
725		 ch->index);
726
727	clocksource_register_hz(cs, ch->cmt->rate);
728	return 0;
729}
730
731static struct sh_cmt_channel *ced_to_sh_cmt(struct clock_event_device *ced)
732{
733	return container_of(ced, struct sh_cmt_channel, ced);
734}
735
736static void sh_cmt_clock_event_start(struct sh_cmt_channel *ch, int periodic)
737{
738	sh_cmt_start(ch, FLAG_CLOCKEVENT);
739
740	if (periodic)
741		sh_cmt_set_next(ch, ((ch->cmt->rate + HZ/2) / HZ) - 1);
742	else
743		sh_cmt_set_next(ch, ch->max_match_value);
744}
745
746static int sh_cmt_clock_event_shutdown(struct clock_event_device *ced)
747{
748	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
749
750	sh_cmt_stop(ch, FLAG_CLOCKEVENT);
751	return 0;
752}
753
754static int sh_cmt_clock_event_set_state(struct clock_event_device *ced,
755					int periodic)
756{
757	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
758
759	/* deal with old setting first */
760	if (clockevent_state_oneshot(ced) || clockevent_state_periodic(ced))
761		sh_cmt_stop(ch, FLAG_CLOCKEVENT);
762
763	dev_info(&ch->cmt->pdev->dev, "ch%u: used for %s clock events\n",
764		 ch->index, periodic ? "periodic" : "oneshot");
765	sh_cmt_clock_event_start(ch, periodic);
766	return 0;
767}
768
769static int sh_cmt_clock_event_set_oneshot(struct clock_event_device *ced)
770{
771	return sh_cmt_clock_event_set_state(ced, 0);
772}
773
774static int sh_cmt_clock_event_set_periodic(struct clock_event_device *ced)
775{
776	return sh_cmt_clock_event_set_state(ced, 1);
777}
778
779static int sh_cmt_clock_event_next(unsigned long delta,
780				   struct clock_event_device *ced)
781{
782	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
783
784	BUG_ON(!clockevent_state_oneshot(ced));
785	if (likely(ch->flags & FLAG_IRQCONTEXT))
786		ch->next_match_value = delta - 1;
787	else
788		sh_cmt_set_next(ch, delta - 1);
789
790	return 0;
791}
792
793static void sh_cmt_clock_event_suspend(struct clock_event_device *ced)
794{
795	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
796
797	dev_pm_genpd_suspend(&ch->cmt->pdev->dev);
798	clk_unprepare(ch->cmt->clk);
799}
800
801static void sh_cmt_clock_event_resume(struct clock_event_device *ced)
802{
803	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
804
805	clk_prepare(ch->cmt->clk);
806	dev_pm_genpd_resume(&ch->cmt->pdev->dev);
807}
808
809static int sh_cmt_register_clockevent(struct sh_cmt_channel *ch,
810				      const char *name)
811{
812	struct clock_event_device *ced = &ch->ced;
813	int irq;
814	int ret;
815
816	irq = platform_get_irq(ch->cmt->pdev, ch->index);
817	if (irq < 0)
818		return irq;
819
820	ret = request_irq(irq, sh_cmt_interrupt,
821			  IRQF_TIMER | IRQF_IRQPOLL | IRQF_NOBALANCING,
822			  dev_name(&ch->cmt->pdev->dev), ch);
823	if (ret) {
824		dev_err(&ch->cmt->pdev->dev, "ch%u: failed to request irq %d\n",
825			ch->index, irq);
826		return ret;
827	}
828
829	ced->name = name;
830	ced->features = CLOCK_EVT_FEAT_PERIODIC;
831	ced->features |= CLOCK_EVT_FEAT_ONESHOT;
832	ced->rating = 125;
833	ced->cpumask = cpu_possible_mask;
834	ced->set_next_event = sh_cmt_clock_event_next;
835	ced->set_state_shutdown = sh_cmt_clock_event_shutdown;
836	ced->set_state_periodic = sh_cmt_clock_event_set_periodic;
837	ced->set_state_oneshot = sh_cmt_clock_event_set_oneshot;
838	ced->suspend = sh_cmt_clock_event_suspend;
839	ced->resume = sh_cmt_clock_event_resume;
840
841	/* TODO: calculate good shift from rate and counter bit width */
842	ced->shift = 32;
843	ced->mult = div_sc(ch->cmt->rate, NSEC_PER_SEC, ced->shift);
844	ced->max_delta_ns = clockevent_delta2ns(ch->max_match_value, ced);
845	ced->max_delta_ticks = ch->max_match_value;
846	ced->min_delta_ns = clockevent_delta2ns(0x1f, ced);
847	ced->min_delta_ticks = 0x1f;
848
849	dev_info(&ch->cmt->pdev->dev, "ch%u: used for clock events\n",
850		 ch->index);
851	clockevents_register_device(ced);
852
853	return 0;
854}
855
856static int sh_cmt_register(struct sh_cmt_channel *ch, const char *name,
857			   bool clockevent, bool clocksource)
858{
859	int ret;
860
861	if (clockevent) {
862		ch->cmt->has_clockevent = true;
863		ret = sh_cmt_register_clockevent(ch, name);
864		if (ret < 0)
865			return ret;
866	}
867
868	if (clocksource) {
869		ch->cmt->has_clocksource = true;
870		sh_cmt_register_clocksource(ch, name);
871	}
872
873	return 0;
874}
875
876static int sh_cmt_setup_channel(struct sh_cmt_channel *ch, unsigned int index,
877				unsigned int hwidx, bool clockevent,
878				bool clocksource, struct sh_cmt_device *cmt)
879{
880	u32 value;
881	int ret;
882
883	/* Skip unused channels. */
884	if (!clockevent && !clocksource)
885		return 0;
886
887	ch->cmt = cmt;
888	ch->index = index;
889	ch->hwidx = hwidx;
890	ch->timer_bit = hwidx;
891
892	/*
893	 * Compute the address of the channel control register block. For the
894	 * timers with a per-channel start/stop register, compute its address
895	 * as well.
896	 */
897	switch (cmt->info->model) {
898	case SH_CMT_16BIT:
899		ch->ioctrl = cmt->mapbase + 2 + ch->hwidx * 6;
900		break;
901	case SH_CMT_32BIT:
902	case SH_CMT_48BIT:
903		ch->ioctrl = cmt->mapbase + 0x10 + ch->hwidx * 0x10;
904		break;
905	case SH_CMT0_RCAR_GEN2:
906	case SH_CMT1_RCAR_GEN2:
907		ch->iostart = cmt->mapbase + ch->hwidx * 0x100;
908		ch->ioctrl = ch->iostart + 0x10;
909		ch->timer_bit = 0;
910
911		/* Enable the clock supply to the channel */
912		value = ioread32(cmt->mapbase + CMCLKE);
913		value |= BIT(hwidx);
914		iowrite32(value, cmt->mapbase + CMCLKE);
915		break;
916	}
917
918	if (cmt->info->width == (sizeof(ch->max_match_value) * 8))
919		ch->max_match_value = ~0;
920	else
921		ch->max_match_value = (1 << cmt->info->width) - 1;
922
923	ch->match_value = ch->max_match_value;
924	raw_spin_lock_init(&ch->lock);
925
926	ret = sh_cmt_register(ch, dev_name(&cmt->pdev->dev),
927			      clockevent, clocksource);
928	if (ret) {
929		dev_err(&cmt->pdev->dev, "ch%u: registration failed\n",
930			ch->index);
931		return ret;
932	}
933	ch->cs_enabled = false;
934
935	return 0;
936}
937
938static int sh_cmt_map_memory(struct sh_cmt_device *cmt)
939{
940	struct resource *mem;
941
942	mem = platform_get_resource(cmt->pdev, IORESOURCE_MEM, 0);
943	if (!mem) {
944		dev_err(&cmt->pdev->dev, "failed to get I/O memory\n");
945		return -ENXIO;
946	}
947
948	cmt->mapbase = ioremap(mem->start, resource_size(mem));
949	if (cmt->mapbase == NULL) {
950		dev_err(&cmt->pdev->dev, "failed to remap I/O memory\n");
951		return -ENXIO;
952	}
953
954	return 0;
955}
956
957static const struct platform_device_id sh_cmt_id_table[] = {
958	{ "sh-cmt-16", (kernel_ulong_t)&sh_cmt_info[SH_CMT_16BIT] },
959	{ "sh-cmt-32", (kernel_ulong_t)&sh_cmt_info[SH_CMT_32BIT] },
960	{ }
961};
962MODULE_DEVICE_TABLE(platform, sh_cmt_id_table);
963
964static const struct of_device_id sh_cmt_of_table[] __maybe_unused = {
965	{
966		/* deprecated, preserved for backward compatibility */
967		.compatible = "renesas,cmt-48",
968		.data = &sh_cmt_info[SH_CMT_48BIT]
969	},
970	{
971		/* deprecated, preserved for backward compatibility */
972		.compatible = "renesas,cmt-48-gen2",
973		.data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
974	},
975	{
976		.compatible = "renesas,r8a7740-cmt1",
977		.data = &sh_cmt_info[SH_CMT_48BIT]
978	},
979	{
980		.compatible = "renesas,sh73a0-cmt1",
981		.data = &sh_cmt_info[SH_CMT_48BIT]
982	},
983	{
984		.compatible = "renesas,rcar-gen2-cmt0",
985		.data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
986	},
987	{
988		.compatible = "renesas,rcar-gen2-cmt1",
989		.data = &sh_cmt_info[SH_CMT1_RCAR_GEN2]
990	},
991	{
992		.compatible = "renesas,rcar-gen3-cmt0",
993		.data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
994	},
995	{
996		.compatible = "renesas,rcar-gen3-cmt1",
997		.data = &sh_cmt_info[SH_CMT1_RCAR_GEN2]
998	},
999	{
1000		.compatible = "renesas,rcar-gen4-cmt0",
1001		.data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
1002	},
1003	{
1004		.compatible = "renesas,rcar-gen4-cmt1",
1005		.data = &sh_cmt_info[SH_CMT1_RCAR_GEN2]
1006	},
1007	{ }
1008};
1009MODULE_DEVICE_TABLE(of, sh_cmt_of_table);
1010
1011static int sh_cmt_setup(struct sh_cmt_device *cmt, struct platform_device *pdev)
1012{
1013	unsigned int mask, i;
1014	unsigned long rate;
1015	int ret;
1016
1017	cmt->pdev = pdev;
1018	raw_spin_lock_init(&cmt->lock);
1019
1020	if (IS_ENABLED(CONFIG_OF) && pdev->dev.of_node) {
1021		cmt->info = of_device_get_match_data(&pdev->dev);
1022		cmt->hw_channels = cmt->info->channels_mask;
1023	} else if (pdev->dev.platform_data) {
1024		struct sh_timer_config *cfg = pdev->dev.platform_data;
1025		const struct platform_device_id *id = pdev->id_entry;
1026
1027		cmt->info = (const struct sh_cmt_info *)id->driver_data;
1028		cmt->hw_channels = cfg->channels_mask;
1029	} else {
1030		dev_err(&cmt->pdev->dev, "missing platform data\n");
1031		return -ENXIO;
1032	}
1033
1034	/* Get hold of clock. */
1035	cmt->clk = clk_get(&cmt->pdev->dev, "fck");
1036	if (IS_ERR(cmt->clk)) {
1037		dev_err(&cmt->pdev->dev, "cannot get clock\n");
1038		return PTR_ERR(cmt->clk);
1039	}
1040
1041	ret = clk_prepare(cmt->clk);
1042	if (ret < 0)
1043		goto err_clk_put;
1044
1045	/* Determine clock rate. */
1046	ret = clk_enable(cmt->clk);
1047	if (ret < 0)
1048		goto err_clk_unprepare;
1049
1050	rate = clk_get_rate(cmt->clk);
1051	if (!rate) {
1052		ret = -EINVAL;
1053		goto err_clk_disable;
1054	}
1055
1056	/* We shall wait 2 input clks after register writes */
1057	if (cmt->info->model >= SH_CMT_48BIT)
1058		cmt->reg_delay = DIV_ROUND_UP(2UL * USEC_PER_SEC, rate);
1059	cmt->rate = rate / (cmt->info->width == 16 ? 512 : 8);
1060
1061	/* Map the memory resource(s). */
1062	ret = sh_cmt_map_memory(cmt);
1063	if (ret < 0)
1064		goto err_clk_disable;
1065
1066	/* Allocate and setup the channels. */
1067	cmt->num_channels = hweight8(cmt->hw_channels);
1068	cmt->channels = kcalloc(cmt->num_channels, sizeof(*cmt->channels),
1069				GFP_KERNEL);
1070	if (cmt->channels == NULL) {
1071		ret = -ENOMEM;
1072		goto err_unmap;
1073	}
1074
1075	/*
1076	 * Use the first channel as a clock event device and the second channel
1077	 * as a clock source. If only one channel is available use it for both.
1078	 */
1079	for (i = 0, mask = cmt->hw_channels; i < cmt->num_channels; ++i) {
1080		unsigned int hwidx = ffs(mask) - 1;
1081		bool clocksource = i == 1 || cmt->num_channels == 1;
1082		bool clockevent = i == 0;
1083
1084		ret = sh_cmt_setup_channel(&cmt->channels[i], i, hwidx,
1085					   clockevent, clocksource, cmt);
1086		if (ret < 0)
1087			goto err_unmap;
1088
1089		mask &= ~(1 << hwidx);
1090	}
1091
1092	clk_disable(cmt->clk);
1093
1094	platform_set_drvdata(pdev, cmt);
1095
1096	return 0;
1097
1098err_unmap:
1099	kfree(cmt->channels);
1100	iounmap(cmt->mapbase);
1101err_clk_disable:
1102	clk_disable(cmt->clk);
1103err_clk_unprepare:
1104	clk_unprepare(cmt->clk);
1105err_clk_put:
1106	clk_put(cmt->clk);
1107	return ret;
1108}
1109
1110static int sh_cmt_probe(struct platform_device *pdev)
1111{
1112	struct sh_cmt_device *cmt = platform_get_drvdata(pdev);
1113	int ret;
1114
1115	if (!is_sh_early_platform_device(pdev)) {
1116		pm_runtime_set_active(&pdev->dev);
1117		pm_runtime_enable(&pdev->dev);
1118	}
1119
1120	if (cmt) {
1121		dev_info(&pdev->dev, "kept as earlytimer\n");
1122		goto out;
1123	}
1124
1125	cmt = kzalloc(sizeof(*cmt), GFP_KERNEL);
1126	if (cmt == NULL)
1127		return -ENOMEM;
1128
1129	ret = sh_cmt_setup(cmt, pdev);
1130	if (ret) {
1131		kfree(cmt);
1132		pm_runtime_idle(&pdev->dev);
1133		return ret;
1134	}
1135	if (is_sh_early_platform_device(pdev))
1136		return 0;
1137
1138 out:
1139	if (cmt->has_clockevent || cmt->has_clocksource)
1140		pm_runtime_irq_safe(&pdev->dev);
1141	else
1142		pm_runtime_idle(&pdev->dev);
1143
1144	return 0;
1145}
1146
1147static struct platform_driver sh_cmt_device_driver = {
1148	.probe		= sh_cmt_probe,
1149	.driver		= {
1150		.name	= "sh_cmt",
1151		.of_match_table = of_match_ptr(sh_cmt_of_table),
1152		.suppress_bind_attrs = true,
1153	},
1154	.id_table	= sh_cmt_id_table,
1155};
1156
1157static int __init sh_cmt_init(void)
1158{
1159	return platform_driver_register(&sh_cmt_device_driver);
1160}
1161
1162static void __exit sh_cmt_exit(void)
1163{
1164	platform_driver_unregister(&sh_cmt_device_driver);
1165}
1166
1167#ifdef CONFIG_SUPERH
1168sh_early_platform_init("earlytimer", &sh_cmt_device_driver);
1169#endif
1170
1171subsys_initcall(sh_cmt_init);
1172module_exit(sh_cmt_exit);
1173
1174MODULE_AUTHOR("Magnus Damm");
1175MODULE_DESCRIPTION("SuperH CMT Timer Driver");
1176