1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * OMAP2/3/4 DPLL clock functions
4 *
5 * Copyright (C) 2005-2008 Texas Instruments, Inc.
6 * Copyright (C) 2004-2010 Nokia Corporation
7 *
8 * Contacts:
9 * Richard Woodruff <r-woodruff2@ti.com>
10 * Paul Walmsley
11 */
12#undef DEBUG
13
14#include <linux/kernel.h>
15#include <linux/errno.h>
16#include <linux/clk.h>
17#include <linux/clk-provider.h>
18#include <linux/io.h>
19#include <linux/clk/ti.h>
20
21#include <asm/div64.h>
22
23#include "clock.h"
24
25/* DPLL rate rounding: minimum DPLL multiplier, divider values */
26#define DPLL_MIN_MULTIPLIER		2
27#define DPLL_MIN_DIVIDER		1
28
29/* Possible error results from _dpll_test_mult */
30#define DPLL_MULT_UNDERFLOW		-1
31
32/*
33 * Scale factor to mitigate roundoff errors in DPLL rate rounding.
34 * The higher the scale factor, the greater the risk of arithmetic overflow,
35 * but the closer the rounded rate to the target rate.  DPLL_SCALE_FACTOR
36 * must be a power of DPLL_SCALE_BASE.
37 */
38#define DPLL_SCALE_FACTOR		64
39#define DPLL_SCALE_BASE			2
40#define DPLL_ROUNDING_VAL		((DPLL_SCALE_BASE / 2) * \
41					 (DPLL_SCALE_FACTOR / DPLL_SCALE_BASE))
42
43/*
44 * DPLL valid Fint frequency range for OMAP36xx and OMAP4xxx.
45 * From device data manual section 4.3 "DPLL and DLL Specifications".
46 */
47#define OMAP3PLUS_DPLL_FINT_JTYPE_MIN	500000
48#define OMAP3PLUS_DPLL_FINT_JTYPE_MAX	2500000
49
50/* _dpll_test_fint() return codes */
51#define DPLL_FINT_UNDERFLOW		-1
52#define DPLL_FINT_INVALID		-2
53
54/* Private functions */
55
56/*
57 * _dpll_test_fint - test whether an Fint value is valid for the DPLL
58 * @clk: DPLL struct clk to test
59 * @n: divider value (N) to test
60 *
61 * Tests whether a particular divider @n will result in a valid DPLL
62 * internal clock frequency Fint. See the 34xx TRM 4.7.6.2 "DPLL Jitter
63 * Correction".  Returns 0 if OK, -1 if the enclosing loop can terminate
64 * (assuming that it is counting N upwards), or -2 if the enclosing loop
65 * should skip to the next iteration (again assuming N is increasing).
66 */
67static int _dpll_test_fint(struct clk_hw_omap *clk, unsigned int n)
68{
69	struct dpll_data *dd;
70	long fint, fint_min, fint_max;
71	int ret = 0;
72
73	dd = clk->dpll_data;
74
75	/* DPLL divider must result in a valid jitter correction val */
76	fint = clk_hw_get_rate(clk_hw_get_parent(&clk->hw)) / n;
77
78	if (dd->flags & DPLL_J_TYPE) {
79		fint_min = OMAP3PLUS_DPLL_FINT_JTYPE_MIN;
80		fint_max = OMAP3PLUS_DPLL_FINT_JTYPE_MAX;
81	} else {
82		fint_min = ti_clk_get_features()->fint_min;
83		fint_max = ti_clk_get_features()->fint_max;
84	}
85
86	if (!fint_min || !fint_max) {
87		WARN(1, "No fint limits available!\n");
88		return DPLL_FINT_INVALID;
89	}
90
91	if (fint < ti_clk_get_features()->fint_min) {
92		pr_debug("rejecting n=%d due to Fint failure, lowering max_divider\n",
93			 n);
94		dd->max_divider = n;
95		ret = DPLL_FINT_UNDERFLOW;
96	} else if (fint > ti_clk_get_features()->fint_max) {
97		pr_debug("rejecting n=%d due to Fint failure, boosting min_divider\n",
98			 n);
99		dd->min_divider = n;
100		ret = DPLL_FINT_INVALID;
101	} else if (fint > ti_clk_get_features()->fint_band1_max &&
102		   fint < ti_clk_get_features()->fint_band2_min) {
103		pr_debug("rejecting n=%d due to Fint failure\n", n);
104		ret = DPLL_FINT_INVALID;
105	}
106
107	return ret;
108}
109
110static unsigned long _dpll_compute_new_rate(unsigned long parent_rate,
111					    unsigned int m, unsigned int n)
112{
113	unsigned long long num;
114
115	num = (unsigned long long)parent_rate * m;
116	do_div(num, n);
117	return num;
118}
119
120/*
121 * _dpll_test_mult - test a DPLL multiplier value
122 * @m: pointer to the DPLL m (multiplier) value under test
123 * @n: current DPLL n (divider) value under test
124 * @new_rate: pointer to storage for the resulting rounded rate
125 * @target_rate: the desired DPLL rate
126 * @parent_rate: the DPLL's parent clock rate
127 *
128 * This code tests a DPLL multiplier value, ensuring that the
129 * resulting rate will not be higher than the target_rate, and that
130 * the multiplier value itself is valid for the DPLL.  Initially, the
131 * integer pointed to by the m argument should be prescaled by
132 * multiplying by DPLL_SCALE_FACTOR.  The code will replace this with
133 * a non-scaled m upon return.  This non-scaled m will result in a
134 * new_rate as close as possible to target_rate (but not greater than
135 * target_rate) given the current (parent_rate, n, prescaled m)
136 * triple. Returns DPLL_MULT_UNDERFLOW in the event that the
137 * non-scaled m attempted to underflow, which can allow the calling
138 * function to bail out early; or 0 upon success.
139 */
140static int _dpll_test_mult(int *m, int n, unsigned long *new_rate,
141			   unsigned long target_rate,
142			   unsigned long parent_rate)
143{
144	int r = 0, carry = 0;
145
146	/* Unscale m and round if necessary */
147	if (*m % DPLL_SCALE_FACTOR >= DPLL_ROUNDING_VAL)
148		carry = 1;
149	*m = (*m / DPLL_SCALE_FACTOR) + carry;
150
151	/*
152	 * The new rate must be <= the target rate to avoid programming
153	 * a rate that is impossible for the hardware to handle
154	 */
155	*new_rate = _dpll_compute_new_rate(parent_rate, *m, n);
156	if (*new_rate > target_rate) {
157		(*m)--;
158		*new_rate = 0;
159	}
160
161	/* Guard against m underflow */
162	if (*m < DPLL_MIN_MULTIPLIER) {
163		*m = DPLL_MIN_MULTIPLIER;
164		*new_rate = 0;
165		r = DPLL_MULT_UNDERFLOW;
166	}
167
168	if (*new_rate == 0)
169		*new_rate = _dpll_compute_new_rate(parent_rate, *m, n);
170
171	return r;
172}
173
174/**
175 * _omap2_dpll_is_in_bypass - check if DPLL is in bypass mode or not
176 * @v: bitfield value of the DPLL enable
177 *
178 * Checks given DPLL enable bitfield to see whether the DPLL is in bypass
179 * mode or not. Returns 1 if the DPLL is in bypass, 0 otherwise.
180 */
181static int _omap2_dpll_is_in_bypass(u32 v)
182{
183	u8 mask, val;
184
185	mask = ti_clk_get_features()->dpll_bypass_vals;
186
187	/*
188	 * Each set bit in the mask corresponds to a bypass value equal
189	 * to the bitshift. Go through each set-bit in the mask and
190	 * compare against the given register value.
191	 */
192	while (mask) {
193		val = __ffs(mask);
194		mask ^= (1 << val);
195		if (v == val)
196			return 1;
197	}
198
199	return 0;
200}
201
202/* Public functions */
203u8 omap2_init_dpll_parent(struct clk_hw *hw)
204{
205	struct clk_hw_omap *clk = to_clk_hw_omap(hw);
206	u32 v;
207	struct dpll_data *dd;
208
209	dd = clk->dpll_data;
210	if (!dd)
211		return -EINVAL;
212
213	v = ti_clk_ll_ops->clk_readl(&dd->control_reg);
214	v &= dd->enable_mask;
215	v >>= __ffs(dd->enable_mask);
216
217	/* Reparent the struct clk in case the dpll is in bypass */
218	if (_omap2_dpll_is_in_bypass(v))
219		return 1;
220
221	return 0;
222}
223
224/**
225 * omap2_get_dpll_rate - returns the current DPLL CLKOUT rate
226 * @clk: struct clk * of a DPLL
227 *
228 * DPLLs can be locked or bypassed - basically, enabled or disabled.
229 * When locked, the DPLL output depends on the M and N values.  When
230 * bypassed, on OMAP2xxx, the output rate is either the 32KiHz clock
231 * or sys_clk.  Bypass rates on OMAP3 depend on the DPLL: DPLLs 1 and
232 * 2 are bypassed with dpll1_fclk and dpll2_fclk respectively
233 * (generated by DPLL3), while DPLL 3, 4, and 5 bypass rates are sys_clk.
234 * Returns the current DPLL CLKOUT rate (*not* CLKOUTX2) if the DPLL is
235 * locked, or the appropriate bypass rate if the DPLL is bypassed, or 0
236 * if the clock @clk is not a DPLL.
237 */
238unsigned long omap2_get_dpll_rate(struct clk_hw_omap *clk)
239{
240	u64 dpll_clk;
241	u32 dpll_mult, dpll_div, v;
242	struct dpll_data *dd;
243
244	dd = clk->dpll_data;
245	if (!dd)
246		return 0;
247
248	/* Return bypass rate if DPLL is bypassed */
249	v = ti_clk_ll_ops->clk_readl(&dd->control_reg);
250	v &= dd->enable_mask;
251	v >>= __ffs(dd->enable_mask);
252
253	if (_omap2_dpll_is_in_bypass(v))
254		return clk_hw_get_rate(dd->clk_bypass);
255
256	v = ti_clk_ll_ops->clk_readl(&dd->mult_div1_reg);
257	dpll_mult = v & dd->mult_mask;
258	dpll_mult >>= __ffs(dd->mult_mask);
259	dpll_div = v & dd->div1_mask;
260	dpll_div >>= __ffs(dd->div1_mask);
261
262	dpll_clk = (u64)clk_hw_get_rate(dd->clk_ref) * dpll_mult;
263	do_div(dpll_clk, dpll_div + 1);
264
265	return dpll_clk;
266}
267
268/* DPLL rate rounding code */
269
270/**
271 * omap2_dpll_round_rate - round a target rate for an OMAP DPLL
272 * @hw: struct clk_hw containing the struct clk * for a DPLL
273 * @target_rate: desired DPLL clock rate
274 * @parent_rate: parent's DPLL clock rate
275 *
276 * Given a DPLL and a desired target rate, round the target rate to a
277 * possible, programmable rate for this DPLL.  Attempts to select the
278 * minimum possible n.  Stores the computed (m, n) in the DPLL's
279 * dpll_data structure so set_rate() will not need to call this
280 * (expensive) function again.  Returns ~0 if the target rate cannot
281 * be rounded, or the rounded rate upon success.
282 */
283long omap2_dpll_round_rate(struct clk_hw *hw, unsigned long target_rate,
284			   unsigned long *parent_rate)
285{
286	struct clk_hw_omap *clk = to_clk_hw_omap(hw);
287	int m, n, r, scaled_max_m;
288	int min_delta_m = INT_MAX, min_delta_n = INT_MAX;
289	unsigned long scaled_rt_rp;
290	unsigned long new_rate = 0;
291	struct dpll_data *dd;
292	unsigned long ref_rate;
293	long delta;
294	long prev_min_delta = LONG_MAX;
295	const char *clk_name;
296
297	if (!clk || !clk->dpll_data)
298		return ~0;
299
300	dd = clk->dpll_data;
301
302	if (dd->max_rate && target_rate > dd->max_rate)
303		target_rate = dd->max_rate;
304
305	ref_rate = clk_hw_get_rate(dd->clk_ref);
306	clk_name = clk_hw_get_name(hw);
307	pr_debug("clock: %s: starting DPLL round_rate, target rate %lu\n",
308		 clk_name, target_rate);
309
310	scaled_rt_rp = target_rate / (ref_rate / DPLL_SCALE_FACTOR);
311	scaled_max_m = dd->max_multiplier * DPLL_SCALE_FACTOR;
312
313	dd->last_rounded_rate = 0;
314
315	for (n = dd->min_divider; n <= dd->max_divider; n++) {
316		/* Is the (input clk, divider) pair valid for the DPLL? */
317		r = _dpll_test_fint(clk, n);
318		if (r == DPLL_FINT_UNDERFLOW)
319			break;
320		else if (r == DPLL_FINT_INVALID)
321			continue;
322
323		/* Compute the scaled DPLL multiplier, based on the divider */
324		m = scaled_rt_rp * n;
325
326		/*
327		 * Since we're counting n up, a m overflow means we
328		 * can bail out completely (since as n increases in
329		 * the next iteration, there's no way that m can
330		 * increase beyond the current m)
331		 */
332		if (m > scaled_max_m)
333			break;
334
335		r = _dpll_test_mult(&m, n, &new_rate, target_rate,
336				    ref_rate);
337
338		/* m can't be set low enough for this n - try with a larger n */
339		if (r == DPLL_MULT_UNDERFLOW)
340			continue;
341
342		/* skip rates above our target rate */
343		delta = target_rate - new_rate;
344		if (delta < 0)
345			continue;
346
347		if (delta < prev_min_delta) {
348			prev_min_delta = delta;
349			min_delta_m = m;
350			min_delta_n = n;
351		}
352
353		pr_debug("clock: %s: m = %d: n = %d: new_rate = %lu\n",
354			 clk_name, m, n, new_rate);
355
356		if (delta == 0)
357			break;
358	}
359
360	if (prev_min_delta == LONG_MAX) {
361		pr_debug("clock: %s: cannot round to rate %lu\n",
362			 clk_name, target_rate);
363		return ~0;
364	}
365
366	dd->last_rounded_m = min_delta_m;
367	dd->last_rounded_n = min_delta_n;
368	dd->last_rounded_rate = target_rate - prev_min_delta;
369
370	return dd->last_rounded_rate;
371}
372