1/*
2 * Driver for TI Multi PLL CDCE913/925/937/949 clock synthesizer
3 *
4 * This driver always connects the Y1 to the input clock, Y2/Y3 to PLL1,
5 * Y4/Y5 to PLL2, and so on. PLL frequency is set on a first-come-first-serve
6 * basis. Clients can directly request any frequency that the chip can
7 * deliver using the standard clk framework. In addition, the device can
8 * be configured and activated via the devicetree.
9 *
10 * Copyright (C) 2014, Topic Embedded Products
11 * Licenced under GPL
12 */
13#include <linux/clk.h>
14#include <linux/clk-provider.h>
15#include <linux/delay.h>
16#include <linux/module.h>
17#include <linux/i2c.h>
18#include <linux/regmap.h>
19#include <linux/regulator/consumer.h>
20#include <linux/slab.h>
21#include <linux/gcd.h>
22
23/* Each chip has different number of PLLs and outputs, for example:
24 * The CECE925 has 2 PLLs which can be routed through dividers to 5 outputs.
25 * Model this as 2 PLL clocks which are parents to the outputs.
26 */
27
28struct clk_cdce925_chip_info {
29	int num_plls;
30	int num_outputs;
31};
32
33#define MAX_NUMBER_OF_PLLS	4
34#define MAX_NUMBER_OF_OUTPUTS	9
35
36#define CDCE925_REG_GLOBAL1	0x01
37#define CDCE925_REG_Y1SPIPDIVH	0x02
38#define CDCE925_REG_PDIVL	0x03
39#define CDCE925_REG_XCSEL	0x05
40/* PLL parameters start at 0x10, steps of 0x10 */
41#define CDCE925_OFFSET_PLL	0x10
42/* Add CDCE925_OFFSET_PLL * (pll) to these registers before sending */
43#define CDCE925_PLL_MUX_OUTPUTS	0x14
44#define CDCE925_PLL_MULDIV	0x18
45
46#define CDCE925_PLL_FREQUENCY_MIN	 80000000ul
47#define CDCE925_PLL_FREQUENCY_MAX	230000000ul
48struct clk_cdce925_chip;
49
50struct clk_cdce925_output {
51	struct clk_hw hw;
52	struct clk_cdce925_chip *chip;
53	u8 index;
54	u16 pdiv; /* 1..127 for Y2-Y9; 1..1023 for Y1 */
55};
56#define to_clk_cdce925_output(_hw) \
57	container_of(_hw, struct clk_cdce925_output, hw)
58
59struct clk_cdce925_pll {
60	struct clk_hw hw;
61	struct clk_cdce925_chip *chip;
62	u8 index;
63	u16 m;   /* 1..511 */
64	u16 n;   /* 1..4095 */
65};
66#define to_clk_cdce925_pll(_hw)	container_of(_hw, struct clk_cdce925_pll, hw)
67
68struct clk_cdce925_chip {
69	struct regmap *regmap;
70	struct i2c_client *i2c_client;
71	const struct clk_cdce925_chip_info *chip_info;
72	struct clk_cdce925_pll pll[MAX_NUMBER_OF_PLLS];
73	struct clk_cdce925_output clk[MAX_NUMBER_OF_OUTPUTS];
74};
75
76/* ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** */
77
78static unsigned long cdce925_pll_calculate_rate(unsigned long parent_rate,
79	u16 n, u16 m)
80{
81	if ((!m || !n) || (m == n))
82		return parent_rate; /* In bypass mode runs at same frequency */
83	return mult_frac(parent_rate, (unsigned long)n, (unsigned long)m);
84}
85
86static unsigned long cdce925_pll_recalc_rate(struct clk_hw *hw,
87		unsigned long parent_rate)
88{
89	/* Output frequency of PLL is Fout = (Fin/Pdiv)*(N/M) */
90	struct clk_cdce925_pll *data = to_clk_cdce925_pll(hw);
91
92	return cdce925_pll_calculate_rate(parent_rate, data->n, data->m);
93}
94
95static void cdce925_pll_find_rate(unsigned long rate,
96		unsigned long parent_rate, u16 *n, u16 *m)
97{
98	unsigned long un;
99	unsigned long um;
100	unsigned long g;
101
102	if (rate <= parent_rate) {
103		/* Can always deliver parent_rate in bypass mode */
104		*n = 0;
105		*m = 0;
106	} else {
107		/* In PLL mode, need to apply min/max range */
108		if (rate < CDCE925_PLL_FREQUENCY_MIN)
109			rate = CDCE925_PLL_FREQUENCY_MIN;
110		else if (rate > CDCE925_PLL_FREQUENCY_MAX)
111			rate = CDCE925_PLL_FREQUENCY_MAX;
112
113		g = gcd(rate, parent_rate);
114		um = parent_rate / g;
115		un = rate / g;
116		/* When outside hw range, reduce to fit (rounding errors) */
117		while ((un > 4095) || (um > 511)) {
118			un >>= 1;
119			um >>= 1;
120		}
121		if (un == 0)
122			un = 1;
123		if (um == 0)
124			um = 1;
125
126		*n = un;
127		*m = um;
128	}
129}
130
131static long cdce925_pll_round_rate(struct clk_hw *hw, unsigned long rate,
132		unsigned long *parent_rate)
133{
134	u16 n, m;
135
136	cdce925_pll_find_rate(rate, *parent_rate, &n, &m);
137	return (long)cdce925_pll_calculate_rate(*parent_rate, n, m);
138}
139
140static int cdce925_pll_set_rate(struct clk_hw *hw, unsigned long rate,
141		unsigned long parent_rate)
142{
143	struct clk_cdce925_pll *data = to_clk_cdce925_pll(hw);
144
145	if (!rate || (rate == parent_rate)) {
146		data->m = 0; /* Bypass mode */
147		data->n = 0;
148		return 0;
149	}
150
151	if ((rate < CDCE925_PLL_FREQUENCY_MIN) ||
152		(rate > CDCE925_PLL_FREQUENCY_MAX)) {
153		pr_debug("%s: rate %lu outside PLL range.\n", __func__, rate);
154		return -EINVAL;
155	}
156
157	if (rate < parent_rate) {
158		pr_debug("%s: rate %lu less than parent rate %lu.\n", __func__,
159			rate, parent_rate);
160		return -EINVAL;
161	}
162
163	cdce925_pll_find_rate(rate, parent_rate, &data->n, &data->m);
164	return 0;
165}
166
167
168/* calculate p = max(0, 4 - int(log2 (n/m))) */
169static u8 cdce925_pll_calc_p(u16 n, u16 m)
170{
171	u8 p;
172	u16 r = n / m;
173
174	if (r >= 16)
175		return 0;
176	p = 4;
177	while (r > 1) {
178		r >>= 1;
179		--p;
180	}
181	return p;
182}
183
184/* Returns VCO range bits for VCO1_0_RANGE */
185static u8 cdce925_pll_calc_range_bits(struct clk_hw *hw, u16 n, u16 m)
186{
187	struct clk *parent = clk_get_parent(hw->clk);
188	unsigned long rate = clk_get_rate(parent);
189
190	rate = mult_frac(rate, (unsigned long)n, (unsigned long)m);
191	if (rate >= 175000000)
192		return 0x3;
193	if (rate >= 150000000)
194		return 0x02;
195	if (rate >= 125000000)
196		return 0x01;
197	return 0x00;
198}
199
200/* I2C clock, hence everything must happen in (un)prepare because this
201 * may sleep */
202static int cdce925_pll_prepare(struct clk_hw *hw)
203{
204	struct clk_cdce925_pll *data = to_clk_cdce925_pll(hw);
205	u16 n = data->n;
206	u16 m = data->m;
207	u16 r;
208	u8 q;
209	u8 p;
210	u16 nn;
211	u8 pll[4]; /* Bits are spread out over 4 byte registers */
212	u8 reg_ofs = data->index * CDCE925_OFFSET_PLL;
213	unsigned i;
214
215	if ((!m || !n) || (m == n)) {
216		/* Set PLL mux to bypass mode, leave the rest as is */
217		regmap_update_bits(data->chip->regmap,
218			reg_ofs + CDCE925_PLL_MUX_OUTPUTS, 0x80, 0x80);
219	} else {
220		/* According to data sheet: */
221		/* p = max(0, 4 - int(log2 (n/m))) */
222		p = cdce925_pll_calc_p(n, m);
223		/* nn = n * 2^p */
224		nn = n * BIT(p);
225		/* q = int(nn/m) */
226		q = nn / m;
227		if ((q < 16) || (q > 63)) {
228			pr_debug("%s invalid q=%d\n", __func__, q);
229			return -EINVAL;
230		}
231		r = nn - (m*q);
232		if (r > 511) {
233			pr_debug("%s invalid r=%d\n", __func__, r);
234			return -EINVAL;
235		}
236		pr_debug("%s n=%d m=%d p=%d q=%d r=%d\n", __func__,
237			n, m, p, q, r);
238		/* encode into register bits */
239		pll[0] = n >> 4;
240		pll[1] = ((n & 0x0F) << 4) | ((r >> 5) & 0x0F);
241		pll[2] = ((r & 0x1F) << 3) | ((q >> 3) & 0x07);
242		pll[3] = ((q & 0x07) << 5) | (p << 2) |
243				cdce925_pll_calc_range_bits(hw, n, m);
244		/* Write to registers */
245		for (i = 0; i < ARRAY_SIZE(pll); ++i)
246			regmap_write(data->chip->regmap,
247				reg_ofs + CDCE925_PLL_MULDIV + i, pll[i]);
248		/* Enable PLL */
249		regmap_update_bits(data->chip->regmap,
250			reg_ofs + CDCE925_PLL_MUX_OUTPUTS, 0x80, 0x00);
251	}
252
253	return 0;
254}
255
256static void cdce925_pll_unprepare(struct clk_hw *hw)
257{
258	struct clk_cdce925_pll *data = to_clk_cdce925_pll(hw);
259	u8 reg_ofs = data->index * CDCE925_OFFSET_PLL;
260
261	regmap_update_bits(data->chip->regmap,
262			reg_ofs + CDCE925_PLL_MUX_OUTPUTS, 0x80, 0x80);
263}
264
265static const struct clk_ops cdce925_pll_ops = {
266	.prepare = cdce925_pll_prepare,
267	.unprepare = cdce925_pll_unprepare,
268	.recalc_rate = cdce925_pll_recalc_rate,
269	.round_rate = cdce925_pll_round_rate,
270	.set_rate = cdce925_pll_set_rate,
271};
272
273
274static void cdce925_clk_set_pdiv(struct clk_cdce925_output *data, u16 pdiv)
275{
276	switch (data->index) {
277	case 0:
278		regmap_update_bits(data->chip->regmap,
279			CDCE925_REG_Y1SPIPDIVH,
280			0x03, (pdiv >> 8) & 0x03);
281		regmap_write(data->chip->regmap, 0x03, pdiv & 0xFF);
282		break;
283	case 1:
284		regmap_update_bits(data->chip->regmap, 0x16, 0x7F, pdiv);
285		break;
286	case 2:
287		regmap_update_bits(data->chip->regmap, 0x17, 0x7F, pdiv);
288		break;
289	case 3:
290		regmap_update_bits(data->chip->regmap, 0x26, 0x7F, pdiv);
291		break;
292	case 4:
293		regmap_update_bits(data->chip->regmap, 0x27, 0x7F, pdiv);
294		break;
295	case 5:
296		regmap_update_bits(data->chip->regmap, 0x36, 0x7F, pdiv);
297		break;
298	case 6:
299		regmap_update_bits(data->chip->regmap, 0x37, 0x7F, pdiv);
300		break;
301	case 7:
302		regmap_update_bits(data->chip->regmap, 0x46, 0x7F, pdiv);
303		break;
304	case 8:
305		regmap_update_bits(data->chip->regmap, 0x47, 0x7F, pdiv);
306		break;
307	}
308}
309
310static void cdce925_clk_activate(struct clk_cdce925_output *data)
311{
312	switch (data->index) {
313	case 0:
314		regmap_update_bits(data->chip->regmap,
315			CDCE925_REG_Y1SPIPDIVH, 0x0c, 0x0c);
316		break;
317	case 1:
318	case 2:
319		regmap_update_bits(data->chip->regmap, 0x14, 0x03, 0x03);
320		break;
321	case 3:
322	case 4:
323		regmap_update_bits(data->chip->regmap, 0x24, 0x03, 0x03);
324		break;
325	case 5:
326	case 6:
327		regmap_update_bits(data->chip->regmap, 0x34, 0x03, 0x03);
328		break;
329	case 7:
330	case 8:
331		regmap_update_bits(data->chip->regmap, 0x44, 0x03, 0x03);
332		break;
333	}
334}
335
336static int cdce925_clk_prepare(struct clk_hw *hw)
337{
338	struct clk_cdce925_output *data = to_clk_cdce925_output(hw);
339
340	cdce925_clk_set_pdiv(data, data->pdiv);
341	cdce925_clk_activate(data);
342	return 0;
343}
344
345static void cdce925_clk_unprepare(struct clk_hw *hw)
346{
347	struct clk_cdce925_output *data = to_clk_cdce925_output(hw);
348
349	/* Disable clock by setting divider to "0" */
350	cdce925_clk_set_pdiv(data, 0);
351}
352
353static unsigned long cdce925_clk_recalc_rate(struct clk_hw *hw,
354		unsigned long parent_rate)
355{
356	struct clk_cdce925_output *data = to_clk_cdce925_output(hw);
357
358	if (data->pdiv)
359		return parent_rate / data->pdiv;
360	return 0;
361}
362
363static u16 cdce925_calc_divider(unsigned long rate,
364		unsigned long parent_rate)
365{
366	unsigned long divider;
367
368	if (!rate)
369		return 0;
370	if (rate >= parent_rate)
371		return 1;
372
373	divider = DIV_ROUND_CLOSEST(parent_rate, rate);
374	if (divider > 0x7F)
375		divider = 0x7F;
376
377	return (u16)divider;
378}
379
380static unsigned long cdce925_clk_best_parent_rate(
381	struct clk_hw *hw, unsigned long rate)
382{
383	struct clk *pll = clk_get_parent(hw->clk);
384	struct clk *root = clk_get_parent(pll);
385	unsigned long root_rate = clk_get_rate(root);
386	unsigned long best_rate_error = rate;
387	u16 pdiv_min;
388	u16 pdiv_max;
389	u16 pdiv_best;
390	u16 pdiv_now;
391
392	if (root_rate % rate == 0)
393		return root_rate; /* Don't need the PLL, use bypass */
394
395	pdiv_min = (u16)max(1ul, DIV_ROUND_UP(CDCE925_PLL_FREQUENCY_MIN, rate));
396	pdiv_max = (u16)min(127ul, CDCE925_PLL_FREQUENCY_MAX / rate);
397
398	if (pdiv_min > pdiv_max)
399		return 0; /* No can do? */
400
401	pdiv_best = pdiv_min;
402	for (pdiv_now = pdiv_min; pdiv_now < pdiv_max; ++pdiv_now) {
403		unsigned long target_rate = rate * pdiv_now;
404		long pll_rate = clk_round_rate(pll, target_rate);
405		unsigned long actual_rate;
406		unsigned long rate_error;
407
408		if (pll_rate <= 0)
409			continue;
410		actual_rate = pll_rate / pdiv_now;
411		rate_error = abs((long)actual_rate - (long)rate);
412		if (rate_error < best_rate_error) {
413			pdiv_best = pdiv_now;
414			best_rate_error = rate_error;
415		}
416		/* TODO: Consider PLL frequency based on smaller n/m values
417		 * and pick the better one if the error is equal */
418	}
419
420	return rate * pdiv_best;
421}
422
423static long cdce925_clk_round_rate(struct clk_hw *hw, unsigned long rate,
424		unsigned long *parent_rate)
425{
426	unsigned long l_parent_rate = *parent_rate;
427	u16 divider = cdce925_calc_divider(rate, l_parent_rate);
428
429	if (l_parent_rate / divider != rate) {
430		l_parent_rate = cdce925_clk_best_parent_rate(hw, rate);
431		divider = cdce925_calc_divider(rate, l_parent_rate);
432		*parent_rate = l_parent_rate;
433	}
434
435	if (divider)
436		return (long)(l_parent_rate / divider);
437	return 0;
438}
439
440static int cdce925_clk_set_rate(struct clk_hw *hw, unsigned long rate,
441		unsigned long parent_rate)
442{
443	struct clk_cdce925_output *data = to_clk_cdce925_output(hw);
444
445	data->pdiv = cdce925_calc_divider(rate, parent_rate);
446
447	return 0;
448}
449
450static const struct clk_ops cdce925_clk_ops = {
451	.prepare = cdce925_clk_prepare,
452	.unprepare = cdce925_clk_unprepare,
453	.recalc_rate = cdce925_clk_recalc_rate,
454	.round_rate = cdce925_clk_round_rate,
455	.set_rate = cdce925_clk_set_rate,
456};
457
458
459static u16 cdce925_y1_calc_divider(unsigned long rate,
460		unsigned long parent_rate)
461{
462	unsigned long divider;
463
464	if (!rate)
465		return 0;
466	if (rate >= parent_rate)
467		return 1;
468
469	divider = DIV_ROUND_CLOSEST(parent_rate, rate);
470	if (divider > 0x3FF) /* Y1 has 10-bit divider */
471		divider = 0x3FF;
472
473	return (u16)divider;
474}
475
476static long cdce925_clk_y1_round_rate(struct clk_hw *hw, unsigned long rate,
477		unsigned long *parent_rate)
478{
479	unsigned long l_parent_rate = *parent_rate;
480	u16 divider = cdce925_y1_calc_divider(rate, l_parent_rate);
481
482	if (divider)
483		return (long)(l_parent_rate / divider);
484	return 0;
485}
486
487static int cdce925_clk_y1_set_rate(struct clk_hw *hw, unsigned long rate,
488		unsigned long parent_rate)
489{
490	struct clk_cdce925_output *data = to_clk_cdce925_output(hw);
491
492	data->pdiv = cdce925_y1_calc_divider(rate, parent_rate);
493
494	return 0;
495}
496
497static const struct clk_ops cdce925_clk_y1_ops = {
498	.prepare = cdce925_clk_prepare,
499	.unprepare = cdce925_clk_unprepare,
500	.recalc_rate = cdce925_clk_recalc_rate,
501	.round_rate = cdce925_clk_y1_round_rate,
502	.set_rate = cdce925_clk_y1_set_rate,
503};
504
505#define CDCE925_I2C_COMMAND_BLOCK_TRANSFER	0x00
506#define CDCE925_I2C_COMMAND_BYTE_TRANSFER	0x80
507
508static int cdce925_regmap_i2c_write(
509	void *context, const void *data, size_t count)
510{
511	struct device *dev = context;
512	struct i2c_client *i2c = to_i2c_client(dev);
513	int ret;
514	u8 reg_data[2];
515
516	if (count != 2)
517		return -ENOTSUPP;
518
519	/* First byte is command code */
520	reg_data[0] = CDCE925_I2C_COMMAND_BYTE_TRANSFER | ((u8 *)data)[0];
521	reg_data[1] = ((u8 *)data)[1];
522
523	dev_dbg(&i2c->dev, "%s(%zu) %#x %#x\n", __func__, count,
524			reg_data[0], reg_data[1]);
525
526	ret = i2c_master_send(i2c, reg_data, count);
527	if (likely(ret == count))
528		return 0;
529	else if (ret < 0)
530		return ret;
531	else
532		return -EIO;
533}
534
535static int cdce925_regmap_i2c_read(void *context,
536	   const void *reg, size_t reg_size, void *val, size_t val_size)
537{
538	struct device *dev = context;
539	struct i2c_client *i2c = to_i2c_client(dev);
540	struct i2c_msg xfer[2];
541	int ret;
542	u8 reg_data[2];
543
544	if (reg_size != 1)
545		return -ENOTSUPP;
546
547	xfer[0].addr = i2c->addr;
548	xfer[0].flags = 0;
549	xfer[0].buf = reg_data;
550	if (val_size == 1) {
551		reg_data[0] =
552			CDCE925_I2C_COMMAND_BYTE_TRANSFER | ((u8 *)reg)[0];
553		xfer[0].len = 1;
554	} else {
555		reg_data[0] =
556			CDCE925_I2C_COMMAND_BLOCK_TRANSFER | ((u8 *)reg)[0];
557		reg_data[1] = val_size;
558		xfer[0].len = 2;
559	}
560
561	xfer[1].addr = i2c->addr;
562	xfer[1].flags = I2C_M_RD;
563	xfer[1].len = val_size;
564	xfer[1].buf = val;
565
566	ret = i2c_transfer(i2c->adapter, xfer, 2);
567	if (likely(ret == 2)) {
568		dev_dbg(&i2c->dev, "%s(%zu, %zu) %#x %#x\n", __func__,
569				reg_size, val_size, reg_data[0], *((u8 *)val));
570		return 0;
571	} else if (ret < 0)
572		return ret;
573	else
574		return -EIO;
575}
576
577static struct clk_hw *
578of_clk_cdce925_get(struct of_phandle_args *clkspec, void *_data)
579{
580	struct clk_cdce925_chip *data = _data;
581	unsigned int idx = clkspec->args[0];
582
583	if (idx >= ARRAY_SIZE(data->clk)) {
584		pr_err("%s: invalid index %u\n", __func__, idx);
585		return ERR_PTR(-EINVAL);
586	}
587
588	return &data->clk[idx].hw;
589}
590
591static int cdce925_regulator_enable(struct device *dev, const char *name)
592{
593	int err;
594
595	err = devm_regulator_get_enable(dev, name);
596	if (err)
597		dev_err_probe(dev, err, "Failed to enable %s:\n", name);
598
599	return err;
600}
601
602/* The CDCE925 uses a funky way to read/write registers. Bulk mode is
603 * just weird, so just use the single byte mode exclusively. */
604static struct regmap_bus regmap_cdce925_bus = {
605	.write = cdce925_regmap_i2c_write,
606	.read = cdce925_regmap_i2c_read,
607};
608
609static int cdce925_probe(struct i2c_client *client)
610{
611	struct clk_cdce925_chip *data;
612	struct device_node *node = client->dev.of_node;
613	const char *parent_name;
614	const char *pll_clk_name[MAX_NUMBER_OF_PLLS] = {NULL,};
615	struct clk_init_data init;
616	u32 value;
617	int i;
618	int err;
619	struct device_node *np_output;
620	char child_name[6];
621	struct regmap_config config = {
622		.name = "configuration0",
623		.reg_bits = 8,
624		.val_bits = 8,
625		.cache_type = REGCACHE_MAPLE,
626	};
627
628	dev_dbg(&client->dev, "%s\n", __func__);
629
630	err = cdce925_regulator_enable(&client->dev, "vdd");
631	if (err)
632		return err;
633
634	err = cdce925_regulator_enable(&client->dev, "vddout");
635	if (err)
636		return err;
637
638	data = devm_kzalloc(&client->dev, sizeof(*data), GFP_KERNEL);
639	if (!data)
640		return -ENOMEM;
641
642	data->i2c_client = client;
643	data->chip_info = i2c_get_match_data(client);
644	config.max_register = CDCE925_OFFSET_PLL +
645		data->chip_info->num_plls * 0x10 - 1;
646	data->regmap = devm_regmap_init(&client->dev, &regmap_cdce925_bus,
647			&client->dev, &config);
648	if (IS_ERR(data->regmap)) {
649		dev_err(&client->dev, "failed to allocate register map\n");
650		return PTR_ERR(data->regmap);
651	}
652	i2c_set_clientdata(client, data);
653
654	parent_name = of_clk_get_parent_name(node, 0);
655	if (!parent_name) {
656		dev_err(&client->dev, "missing parent clock\n");
657		return -ENODEV;
658	}
659	dev_dbg(&client->dev, "parent is: %s\n", parent_name);
660
661	if (of_property_read_u32(node, "xtal-load-pf", &value) == 0)
662		regmap_write(data->regmap,
663			CDCE925_REG_XCSEL, (value << 3) & 0xF8);
664	/* PWDN bit */
665	regmap_update_bits(data->regmap, CDCE925_REG_GLOBAL1, BIT(4), 0);
666
667	/* Set input source for Y1 to be the XTAL */
668	regmap_update_bits(data->regmap, 0x02, BIT(7), 0);
669
670	init.ops = &cdce925_pll_ops;
671	init.flags = 0;
672	init.parent_names = &parent_name;
673	init.num_parents = 1;
674
675	/* Register PLL clocks */
676	for (i = 0; i < data->chip_info->num_plls; ++i) {
677		pll_clk_name[i] = kasprintf(GFP_KERNEL, "%pOFn.pll%d",
678			client->dev.of_node, i);
679		if (!pll_clk_name[i]) {
680			err = -ENOMEM;
681			goto error;
682		}
683		init.name = pll_clk_name[i];
684		data->pll[i].chip = data;
685		data->pll[i].hw.init = &init;
686		data->pll[i].index = i;
687		err = devm_clk_hw_register(&client->dev, &data->pll[i].hw);
688		if (err) {
689			dev_err(&client->dev, "Failed register PLL %d\n", i);
690			goto error;
691		}
692		sprintf(child_name, "PLL%d", i+1);
693		np_output = of_get_child_by_name(node, child_name);
694		if (!np_output)
695			continue;
696		if (!of_property_read_u32(np_output,
697			"clock-frequency", &value)) {
698			err = clk_set_rate(data->pll[i].hw.clk, value);
699			if (err)
700				dev_err(&client->dev,
701					"unable to set PLL frequency %ud\n",
702					value);
703		}
704		if (!of_property_read_u32(np_output,
705			"spread-spectrum", &value)) {
706			u8 flag = of_property_read_bool(np_output,
707				"spread-spectrum-center") ? 0x80 : 0x00;
708			regmap_update_bits(data->regmap,
709				0x16 + (i*CDCE925_OFFSET_PLL),
710				0x80, flag);
711			regmap_update_bits(data->regmap,
712				0x12 + (i*CDCE925_OFFSET_PLL),
713				0x07, value & 0x07);
714		}
715		of_node_put(np_output);
716	}
717
718	/* Register output clock Y1 */
719	init.ops = &cdce925_clk_y1_ops;
720	init.flags = 0;
721	init.num_parents = 1;
722	init.parent_names = &parent_name; /* Mux Y1 to input */
723	init.name = kasprintf(GFP_KERNEL, "%pOFn.Y1", client->dev.of_node);
724	if (!init.name) {
725		err = -ENOMEM;
726		goto error;
727	}
728	data->clk[0].chip = data;
729	data->clk[0].hw.init = &init;
730	data->clk[0].index = 0;
731	data->clk[0].pdiv = 1;
732	err = devm_clk_hw_register(&client->dev, &data->clk[0].hw);
733	kfree(init.name); /* clock framework made a copy of the name */
734	if (err) {
735		dev_err(&client->dev, "clock registration Y1 failed\n");
736		goto error;
737	}
738
739	/* Register output clocks Y2 .. Y5*/
740	init.ops = &cdce925_clk_ops;
741	init.flags = CLK_SET_RATE_PARENT;
742	init.num_parents = 1;
743	for (i = 1; i < data->chip_info->num_outputs; ++i) {
744		init.name = kasprintf(GFP_KERNEL, "%pOFn.Y%d",
745			client->dev.of_node, i+1);
746		if (!init.name) {
747			err = -ENOMEM;
748			goto error;
749		}
750		data->clk[i].chip = data;
751		data->clk[i].hw.init = &init;
752		data->clk[i].index = i;
753		data->clk[i].pdiv = 1;
754		switch (i) {
755		case 1:
756		case 2:
757			/* Mux Y2/3 to PLL1 */
758			init.parent_names = &pll_clk_name[0];
759			break;
760		case 3:
761		case 4:
762			/* Mux Y4/5 to PLL2 */
763			init.parent_names = &pll_clk_name[1];
764			break;
765		case 5:
766		case 6:
767			/* Mux Y6/7 to PLL3 */
768			init.parent_names = &pll_clk_name[2];
769			break;
770		case 7:
771		case 8:
772			/* Mux Y8/9 to PLL4 */
773			init.parent_names = &pll_clk_name[3];
774			break;
775		}
776		err = devm_clk_hw_register(&client->dev, &data->clk[i].hw);
777		kfree(init.name); /* clock framework made a copy of the name */
778		if (err) {
779			dev_err(&client->dev, "clock registration failed\n");
780			goto error;
781		}
782	}
783
784	/* Register the output clocks */
785	err = of_clk_add_hw_provider(client->dev.of_node, of_clk_cdce925_get,
786				  data);
787	if (err)
788		dev_err(&client->dev, "unable to add OF clock provider\n");
789
790	err = 0;
791
792error:
793	for (i = 0; i < data->chip_info->num_plls; ++i)
794		/* clock framework made a copy of the name */
795		kfree(pll_clk_name[i]);
796
797	return err;
798}
799
800static const struct clk_cdce925_chip_info clk_cdce913_info = {
801	.num_plls = 1,
802	.num_outputs = 3,
803};
804
805static const struct clk_cdce925_chip_info clk_cdce925_info = {
806	.num_plls = 2,
807	.num_outputs = 5,
808};
809
810static const struct clk_cdce925_chip_info clk_cdce937_info = {
811	.num_plls = 3,
812	.num_outputs = 7,
813};
814
815static const struct clk_cdce925_chip_info clk_cdce949_info = {
816	.num_plls = 4,
817	.num_outputs = 9,
818};
819
820static const struct i2c_device_id cdce925_id[] = {
821	{ "cdce913", (kernel_ulong_t)&clk_cdce913_info },
822	{ "cdce925", (kernel_ulong_t)&clk_cdce925_info },
823	{ "cdce937", (kernel_ulong_t)&clk_cdce937_info },
824	{ "cdce949", (kernel_ulong_t)&clk_cdce949_info },
825	{ }
826};
827MODULE_DEVICE_TABLE(i2c, cdce925_id);
828
829static const struct of_device_id clk_cdce925_of_match[] = {
830	{ .compatible = "ti,cdce913", .data = &clk_cdce913_info },
831	{ .compatible = "ti,cdce925", .data = &clk_cdce925_info },
832	{ .compatible = "ti,cdce937", .data = &clk_cdce937_info },
833	{ .compatible = "ti,cdce949", .data = &clk_cdce949_info },
834	{ }
835};
836MODULE_DEVICE_TABLE(of, clk_cdce925_of_match);
837
838static struct i2c_driver cdce925_driver = {
839	.driver = {
840		.name = "cdce925",
841		.of_match_table = clk_cdce925_of_match,
842	},
843	.probe		= cdce925_probe,
844	.id_table	= cdce925_id,
845};
846module_i2c_driver(cdce925_driver);
847
848MODULE_AUTHOR("Mike Looijmans <mike.looijmans@topic.nl>");
849MODULE_DESCRIPTION("TI CDCE913/925/937/949 driver");
850MODULE_LICENSE("GPL");
851