1// SPDX-License-Identifier: GPL-2.0-only OR MIT
2/*
3 * Driver for an SoC block (Numerically Controlled Oscillator)
4 * found on t8103 (M1) and other Apple chips
5 *
6 * Copyright (C) The Asahi Linux Contributors
7 */
8
9#include <linux/bits.h>
10#include <linux/bitfield.h>
11#include <linux/clk-provider.h>
12#include <linux/io.h>
13#include <linux/kernel.h>
14#include <linux/math64.h>
15#include <linux/module.h>
16#include <linux/of.h>
17#include <linux/platform_device.h>
18#include <linux/spinlock.h>
19
20#define NCO_CHANNEL_STRIDE	0x4000
21#define NCO_CHANNEL_REGSIZE	20
22
23#define REG_CTRL	0
24#define CTRL_ENABLE	BIT(31)
25#define REG_DIV		4
26#define DIV_FINE	GENMASK(1, 0)
27#define DIV_COARSE	GENMASK(12, 2)
28#define REG_INC1	8
29#define REG_INC2	12
30#define REG_ACCINIT	16
31
32/*
33 * Theory of operation (postulated)
34 *
35 * The REG_DIV register indirectly expresses a base integer divisor, roughly
36 * corresponding to twice the desired ratio of input to output clock. This
37 * base divisor is adjusted on a cycle-by-cycle basis based on the state of a
38 * 32-bit phase accumulator to achieve a desired precise clock ratio over the
39 * long term.
40 *
41 * Specifically an output clock cycle is produced after (REG_DIV divisor)/2
42 * or (REG_DIV divisor + 1)/2 input cycles, the latter taking effect when top
43 * bit of the 32-bit accumulator is set. The accumulator is incremented each
44 * produced output cycle, by the value from either REG_INC1 or REG_INC2, which
45 * of the two is selected depending again on the accumulator's current top bit.
46 *
47 * Because the NCO hardware implements counting of input clock cycles in part
48 * in a Galois linear-feedback shift register, the higher bits of divisor
49 * are programmed into REG_DIV by picking an appropriate LFSR state. See
50 * applnco_compute_tables/applnco_div_translate for details on this.
51 */
52
53#define LFSR_POLY	0xa01
54#define LFSR_INIT	0x7ff
55#define LFSR_LEN	11
56#define LFSR_PERIOD	((1 << LFSR_LEN) - 1)
57#define LFSR_TBLSIZE	(1 << LFSR_LEN)
58
59/* The minimal attainable coarse divisor (first value in table) */
60#define COARSE_DIV_OFFSET 2
61
62struct applnco_tables {
63	u16 fwd[LFSR_TBLSIZE];
64	u16 inv[LFSR_TBLSIZE];
65};
66
67struct applnco_channel {
68	void __iomem *base;
69	struct applnco_tables *tbl;
70	struct clk_hw hw;
71
72	spinlock_t lock;
73};
74
75#define to_applnco_channel(_hw) container_of(_hw, struct applnco_channel, hw)
76
77static void applnco_enable_nolock(struct clk_hw *hw)
78{
79	struct applnco_channel *chan = to_applnco_channel(hw);
80	u32 val;
81
82	val = readl_relaxed(chan->base + REG_CTRL);
83	writel_relaxed(val | CTRL_ENABLE, chan->base + REG_CTRL);
84}
85
86static void applnco_disable_nolock(struct clk_hw *hw)
87{
88	struct applnco_channel *chan = to_applnco_channel(hw);
89	u32 val;
90
91	val = readl_relaxed(chan->base + REG_CTRL);
92	writel_relaxed(val & ~CTRL_ENABLE, chan->base + REG_CTRL);
93}
94
95static int applnco_is_enabled(struct clk_hw *hw)
96{
97	struct applnco_channel *chan = to_applnco_channel(hw);
98
99	return (readl_relaxed(chan->base + REG_CTRL) & CTRL_ENABLE) != 0;
100}
101
102static void applnco_compute_tables(struct applnco_tables *tbl)
103{
104	int i;
105	u32 state = LFSR_INIT;
106
107	/*
108	 * Go through the states of a Galois LFSR and build
109	 * a coarse divisor translation table.
110	 */
111	for (i = LFSR_PERIOD; i > 0; i--) {
112		if (state & 1)
113			state = (state >> 1) ^ (LFSR_POLY >> 1);
114		else
115			state = (state >> 1);
116		tbl->fwd[i] = state;
117		tbl->inv[state] = i;
118	}
119
120	/* Zero value is special-cased */
121	tbl->fwd[0] = 0;
122	tbl->inv[0] = 0;
123}
124
125static bool applnco_div_out_of_range(unsigned int div)
126{
127	unsigned int coarse = div / 4;
128
129	return coarse < COARSE_DIV_OFFSET ||
130		coarse >= COARSE_DIV_OFFSET + LFSR_TBLSIZE;
131}
132
133static u32 applnco_div_translate(struct applnco_tables *tbl, unsigned int div)
134{
135	unsigned int coarse = div / 4;
136
137	if (WARN_ON(applnco_div_out_of_range(div)))
138		return 0;
139
140	return FIELD_PREP(DIV_COARSE, tbl->fwd[coarse - COARSE_DIV_OFFSET]) |
141			FIELD_PREP(DIV_FINE, div % 4);
142}
143
144static unsigned int applnco_div_translate_inv(struct applnco_tables *tbl, u32 regval)
145{
146	unsigned int coarse, fine;
147
148	coarse = tbl->inv[FIELD_GET(DIV_COARSE, regval)] + COARSE_DIV_OFFSET;
149	fine = FIELD_GET(DIV_FINE, regval);
150
151	return coarse * 4 + fine;
152}
153
154static int applnco_set_rate(struct clk_hw *hw, unsigned long rate,
155				unsigned long parent_rate)
156{
157	struct applnco_channel *chan = to_applnco_channel(hw);
158	unsigned long flags;
159	u32 div, inc1, inc2;
160	bool was_enabled;
161
162	div = 2 * parent_rate / rate;
163	inc1 = 2 * parent_rate - div * rate;
164	inc2 = inc1 - rate;
165
166	if (applnco_div_out_of_range(div))
167		return -EINVAL;
168
169	div = applnco_div_translate(chan->tbl, div);
170
171	spin_lock_irqsave(&chan->lock, flags);
172	was_enabled = applnco_is_enabled(hw);
173	applnco_disable_nolock(hw);
174
175	writel_relaxed(div,  chan->base + REG_DIV);
176	writel_relaxed(inc1, chan->base + REG_INC1);
177	writel_relaxed(inc2, chan->base + REG_INC2);
178
179	/* Presumably a neutral initial value for accumulator */
180	writel_relaxed(1 << 31, chan->base + REG_ACCINIT);
181
182	if (was_enabled)
183		applnco_enable_nolock(hw);
184	spin_unlock_irqrestore(&chan->lock, flags);
185
186	return 0;
187}
188
189static unsigned long applnco_recalc_rate(struct clk_hw *hw,
190				unsigned long parent_rate)
191{
192	struct applnco_channel *chan = to_applnco_channel(hw);
193	u32 div, inc1, inc2, incbase;
194
195	div = applnco_div_translate_inv(chan->tbl,
196			readl_relaxed(chan->base + REG_DIV));
197
198	inc1 = readl_relaxed(chan->base + REG_INC1);
199	inc2 = readl_relaxed(chan->base + REG_INC2);
200
201	/*
202	 * We don't support wraparound of accumulator
203	 * nor the edge case of both increments being zero
204	 */
205	if (inc1 >= (1 << 31) || inc2 < (1 << 31) || (inc1 == 0 && inc2 == 0))
206		return 0;
207
208	/* Scale both sides of division by incbase to maintain precision */
209	incbase = inc1 - inc2;
210
211	return div64_u64(((u64) parent_rate) * 2 * incbase,
212			((u64) div) * incbase + inc1);
213}
214
215static long applnco_round_rate(struct clk_hw *hw, unsigned long rate,
216				unsigned long *parent_rate)
217{
218	unsigned long lo = *parent_rate / (COARSE_DIV_OFFSET + LFSR_TBLSIZE) + 1;
219	unsigned long hi = *parent_rate / COARSE_DIV_OFFSET;
220
221	return clamp(rate, lo, hi);
222}
223
224static int applnco_enable(struct clk_hw *hw)
225{
226	struct applnco_channel *chan = to_applnco_channel(hw);
227	unsigned long flags;
228
229	spin_lock_irqsave(&chan->lock, flags);
230	applnco_enable_nolock(hw);
231	spin_unlock_irqrestore(&chan->lock, flags);
232
233	return 0;
234}
235
236static void applnco_disable(struct clk_hw *hw)
237{
238	struct applnco_channel *chan = to_applnco_channel(hw);
239	unsigned long flags;
240
241	spin_lock_irqsave(&chan->lock, flags);
242	applnco_disable_nolock(hw);
243	spin_unlock_irqrestore(&chan->lock, flags);
244}
245
246static const struct clk_ops applnco_ops = {
247	.set_rate = applnco_set_rate,
248	.recalc_rate = applnco_recalc_rate,
249	.round_rate = applnco_round_rate,
250	.enable = applnco_enable,
251	.disable = applnco_disable,
252	.is_enabled = applnco_is_enabled,
253};
254
255static int applnco_probe(struct platform_device *pdev)
256{
257	struct device_node *np = pdev->dev.of_node;
258	struct clk_parent_data pdata = { .index = 0 };
259	struct clk_init_data init;
260	struct clk_hw_onecell_data *onecell_data;
261	void __iomem *base;
262	struct resource *res;
263	struct applnco_tables *tbl;
264	unsigned int nchannels;
265	int ret, i;
266
267	base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
268	if (IS_ERR(base))
269		return PTR_ERR(base);
270
271	if (resource_size(res) < NCO_CHANNEL_REGSIZE)
272		return -EINVAL;
273	nchannels = (resource_size(res) - NCO_CHANNEL_REGSIZE)
274			/ NCO_CHANNEL_STRIDE + 1;
275
276	onecell_data = devm_kzalloc(&pdev->dev, struct_size(onecell_data, hws,
277							nchannels), GFP_KERNEL);
278	if (!onecell_data)
279		return -ENOMEM;
280	onecell_data->num = nchannels;
281
282	tbl = devm_kzalloc(&pdev->dev, sizeof(*tbl), GFP_KERNEL);
283	if (!tbl)
284		return -ENOMEM;
285	applnco_compute_tables(tbl);
286
287	for (i = 0; i < nchannels; i++) {
288		struct applnco_channel *chan;
289
290		chan = devm_kzalloc(&pdev->dev, sizeof(*chan), GFP_KERNEL);
291		if (!chan)
292			return -ENOMEM;
293		chan->base = base + NCO_CHANNEL_STRIDE * i;
294		chan->tbl = tbl;
295		spin_lock_init(&chan->lock);
296
297		memset(&init, 0, sizeof(init));
298		init.name = devm_kasprintf(&pdev->dev, GFP_KERNEL,
299						"%s-%d", np->name, i);
300		init.ops = &applnco_ops;
301		init.parent_data = &pdata;
302		init.num_parents = 1;
303		init.flags = 0;
304
305		chan->hw.init = &init;
306		ret = devm_clk_hw_register(&pdev->dev, &chan->hw);
307		if (ret)
308			return ret;
309
310		onecell_data->hws[i] = &chan->hw;
311	}
312
313	return devm_of_clk_add_hw_provider(&pdev->dev, of_clk_hw_onecell_get,
314							onecell_data);
315}
316
317static const struct of_device_id applnco_ids[] = {
318	{ .compatible = "apple,nco" },
319	{ }
320};
321MODULE_DEVICE_TABLE(of, applnco_ids);
322
323static struct platform_driver applnco_driver = {
324	.driver = {
325		.name = "apple-nco",
326		.of_match_table = applnco_ids,
327	},
328	.probe = applnco_probe,
329};
330module_platform_driver(applnco_driver);
331
332MODULE_AUTHOR("Martin Povi��er <povik+lin@cutebit.org>");
333MODULE_DESCRIPTION("Clock driver for NCO blocks on Apple SoCs");
334MODULE_LICENSE("GPL");
335