1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 2013 Broadcom Corporation
4 * Copyright 2013 Linaro Limited
5 */
6
7#include "clk-kona.h"
8
9#include <linux/delay.h>
10#include <linux/io.h>
11#include <linux/kernel.h>
12#include <linux/clk-provider.h>
13
14/*
15 * "Policies" affect the frequencies of bus clocks provided by a
16 * CCU.  (I believe these polices are named "Deep Sleep", "Economy",
17 * "Normal", and "Turbo".)  A lower policy number has lower power
18 * consumption, and policy 2 is the default.
19 */
20#define CCU_POLICY_COUNT	4
21
22#define CCU_ACCESS_PASSWORD      0xA5A500
23#define CLK_GATE_DELAY_LOOP      2000
24
25/* Bitfield operations */
26
27/* Produces a mask of set bits covering a range of a 32-bit value */
28static inline u32 bitfield_mask(u32 shift, u32 width)
29{
30	return ((1 << width) - 1) << shift;
31}
32
33/* Extract the value of a bitfield found within a given register value */
34static inline u32 bitfield_extract(u32 reg_val, u32 shift, u32 width)
35{
36	return (reg_val & bitfield_mask(shift, width)) >> shift;
37}
38
39/* Replace the value of a bitfield found within a given register value */
40static inline u32 bitfield_replace(u32 reg_val, u32 shift, u32 width, u32 val)
41{
42	u32 mask = bitfield_mask(shift, width);
43
44	return (reg_val & ~mask) | (val << shift);
45}
46
47/* Divider and scaling helpers */
48
49/* Convert a divider into the scaled divisor value it represents. */
50static inline u64 scaled_div_value(struct bcm_clk_div *div, u32 reg_div)
51{
52	return (u64)reg_div + ((u64)1 << div->u.s.frac_width);
53}
54
55/*
56 * Build a scaled divider value as close as possible to the
57 * given whole part (div_value) and fractional part (expressed
58 * in billionths).
59 */
60u64 scaled_div_build(struct bcm_clk_div *div, u32 div_value, u32 billionths)
61{
62	u64 combined;
63
64	BUG_ON(!div_value);
65	BUG_ON(billionths >= BILLION);
66
67	combined = (u64)div_value * BILLION + billionths;
68	combined <<= div->u.s.frac_width;
69
70	return DIV_ROUND_CLOSEST_ULL(combined, BILLION);
71}
72
73/* The scaled minimum divisor representable by a divider */
74static inline u64
75scaled_div_min(struct bcm_clk_div *div)
76{
77	if (divider_is_fixed(div))
78		return (u64)div->u.fixed;
79
80	return scaled_div_value(div, 0);
81}
82
83/* The scaled maximum divisor representable by a divider */
84u64 scaled_div_max(struct bcm_clk_div *div)
85{
86	u32 reg_div;
87
88	if (divider_is_fixed(div))
89		return (u64)div->u.fixed;
90
91	reg_div = ((u32)1 << div->u.s.width) - 1;
92
93	return scaled_div_value(div, reg_div);
94}
95
96/*
97 * Convert a scaled divisor into its divider representation as
98 * stored in a divider register field.
99 */
100static inline u32
101divider(struct bcm_clk_div *div, u64 scaled_div)
102{
103	BUG_ON(scaled_div < scaled_div_min(div));
104	BUG_ON(scaled_div > scaled_div_max(div));
105
106	return (u32)(scaled_div - ((u64)1 << div->u.s.frac_width));
107}
108
109/* Return a rate scaled for use when dividing by a scaled divisor. */
110static inline u64
111scale_rate(struct bcm_clk_div *div, u32 rate)
112{
113	if (divider_is_fixed(div))
114		return (u64)rate;
115
116	return (u64)rate << div->u.s.frac_width;
117}
118
119/* CCU access */
120
121/* Read a 32-bit register value from a CCU's address space. */
122static inline u32 __ccu_read(struct ccu_data *ccu, u32 reg_offset)
123{
124	return readl(ccu->base + reg_offset);
125}
126
127/* Write a 32-bit register value into a CCU's address space. */
128static inline void
129__ccu_write(struct ccu_data *ccu, u32 reg_offset, u32 reg_val)
130{
131	writel(reg_val, ccu->base + reg_offset);
132}
133
134static inline unsigned long ccu_lock(struct ccu_data *ccu)
135{
136	unsigned long flags;
137
138	spin_lock_irqsave(&ccu->lock, flags);
139
140	return flags;
141}
142static inline void ccu_unlock(struct ccu_data *ccu, unsigned long flags)
143{
144	spin_unlock_irqrestore(&ccu->lock, flags);
145}
146
147/*
148 * Enable/disable write access to CCU protected registers.  The
149 * WR_ACCESS register for all CCUs is at offset 0.
150 */
151static inline void __ccu_write_enable(struct ccu_data *ccu)
152{
153	if (ccu->write_enabled) {
154		pr_err("%s: access already enabled for %s\n", __func__,
155			ccu->name);
156		return;
157	}
158	ccu->write_enabled = true;
159	__ccu_write(ccu, 0, CCU_ACCESS_PASSWORD | 1);
160}
161
162static inline void __ccu_write_disable(struct ccu_data *ccu)
163{
164	if (!ccu->write_enabled) {
165		pr_err("%s: access wasn't enabled for %s\n", __func__,
166			ccu->name);
167		return;
168	}
169
170	__ccu_write(ccu, 0, CCU_ACCESS_PASSWORD);
171	ccu->write_enabled = false;
172}
173
174/*
175 * Poll a register in a CCU's address space, returning when the
176 * specified bit in that register's value is set (or clear).  Delay
177 * a microsecond after each read of the register.  Returns true if
178 * successful, or false if we gave up trying.
179 *
180 * Caller must ensure the CCU lock is held.
181 */
182static inline bool
183__ccu_wait_bit(struct ccu_data *ccu, u32 reg_offset, u32 bit, bool want)
184{
185	unsigned int tries;
186	u32 bit_mask = 1 << bit;
187
188	for (tries = 0; tries < CLK_GATE_DELAY_LOOP; tries++) {
189		u32 val;
190		bool bit_val;
191
192		val = __ccu_read(ccu, reg_offset);
193		bit_val = (val & bit_mask) != 0;
194		if (bit_val == want)
195			return true;
196		udelay(1);
197	}
198	pr_warn("%s: %s/0x%04x bit %u was never %s\n", __func__,
199		ccu->name, reg_offset, bit, want ? "set" : "clear");
200
201	return false;
202}
203
204/* Policy operations */
205
206static bool __ccu_policy_engine_start(struct ccu_data *ccu, bool sync)
207{
208	struct bcm_policy_ctl *control = &ccu->policy.control;
209	u32 offset;
210	u32 go_bit;
211	u32 mask;
212	bool ret;
213
214	/* If we don't need to control policy for this CCU, we're done. */
215	if (!policy_ctl_exists(control))
216		return true;
217
218	offset = control->offset;
219	go_bit = control->go_bit;
220
221	/* Ensure we're not busy before we start */
222	ret = __ccu_wait_bit(ccu, offset, go_bit, false);
223	if (!ret) {
224		pr_err("%s: ccu %s policy engine wouldn't go idle\n",
225			__func__, ccu->name);
226		return false;
227	}
228
229	/*
230	 * If it's a synchronous request, we'll wait for the voltage
231	 * and frequency of the active load to stabilize before
232	 * returning.  To do this we select the active load by
233	 * setting the ATL bit.
234	 *
235	 * An asynchronous request instead ramps the voltage in the
236	 * background, and when that process stabilizes, the target
237	 * load is copied to the active load and the CCU frequency
238	 * is switched.  We do this by selecting the target load
239	 * (ATL bit clear) and setting the request auto-copy (AC bit
240	 * set).
241	 *
242	 * Note, we do NOT read-modify-write this register.
243	 */
244	mask = (u32)1 << go_bit;
245	if (sync)
246		mask |= 1 << control->atl_bit;
247	else
248		mask |= 1 << control->ac_bit;
249	__ccu_write(ccu, offset, mask);
250
251	/* Wait for indication that operation is complete. */
252	ret = __ccu_wait_bit(ccu, offset, go_bit, false);
253	if (!ret)
254		pr_err("%s: ccu %s policy engine never started\n",
255			__func__, ccu->name);
256
257	return ret;
258}
259
260static bool __ccu_policy_engine_stop(struct ccu_data *ccu)
261{
262	struct bcm_lvm_en *enable = &ccu->policy.enable;
263	u32 offset;
264	u32 enable_bit;
265	bool ret;
266
267	/* If we don't need to control policy for this CCU, we're done. */
268	if (!policy_lvm_en_exists(enable))
269		return true;
270
271	/* Ensure we're not busy before we start */
272	offset = enable->offset;
273	enable_bit = enable->bit;
274	ret = __ccu_wait_bit(ccu, offset, enable_bit, false);
275	if (!ret) {
276		pr_err("%s: ccu %s policy engine already stopped\n",
277			__func__, ccu->name);
278		return false;
279	}
280
281	/* Now set the bit to stop the engine (NO read-modify-write) */
282	__ccu_write(ccu, offset, (u32)1 << enable_bit);
283
284	/* Wait for indication that it has stopped. */
285	ret = __ccu_wait_bit(ccu, offset, enable_bit, false);
286	if (!ret)
287		pr_err("%s: ccu %s policy engine never stopped\n",
288			__func__, ccu->name);
289
290	return ret;
291}
292
293/*
294 * A CCU has four operating conditions ("policies"), and some clocks
295 * can be disabled or enabled based on which policy is currently in
296 * effect.  Such clocks have a bit in a "policy mask" register for
297 * each policy indicating whether the clock is enabled for that
298 * policy or not.  The bit position for a clock is the same for all
299 * four registers, and the 32-bit registers are at consecutive
300 * addresses.
301 */
302static bool policy_init(struct ccu_data *ccu, struct bcm_clk_policy *policy)
303{
304	u32 offset;
305	u32 mask;
306	int i;
307	bool ret;
308
309	if (!policy_exists(policy))
310		return true;
311
312	/*
313	 * We need to stop the CCU policy engine to allow update
314	 * of our policy bits.
315	 */
316	if (!__ccu_policy_engine_stop(ccu)) {
317		pr_err("%s: unable to stop CCU %s policy engine\n",
318			__func__, ccu->name);
319		return false;
320	}
321
322	/*
323	 * For now, if a clock defines its policy bit we just mark
324	 * it "enabled" for all four policies.
325	 */
326	offset = policy->offset;
327	mask = (u32)1 << policy->bit;
328	for (i = 0; i < CCU_POLICY_COUNT; i++) {
329		u32 reg_val;
330
331		reg_val = __ccu_read(ccu, offset);
332		reg_val |= mask;
333		__ccu_write(ccu, offset, reg_val);
334		offset += sizeof(u32);
335	}
336
337	/* We're done updating; fire up the policy engine again. */
338	ret = __ccu_policy_engine_start(ccu, true);
339	if (!ret)
340		pr_err("%s: unable to restart CCU %s policy engine\n",
341			__func__, ccu->name);
342
343	return ret;
344}
345
346/* Gate operations */
347
348/* Determine whether a clock is gated.  CCU lock must be held.  */
349static bool
350__is_clk_gate_enabled(struct ccu_data *ccu, struct bcm_clk_gate *gate)
351{
352	u32 bit_mask;
353	u32 reg_val;
354
355	/* If there is no gate we can assume it's enabled. */
356	if (!gate_exists(gate))
357		return true;
358
359	bit_mask = 1 << gate->status_bit;
360	reg_val = __ccu_read(ccu, gate->offset);
361
362	return (reg_val & bit_mask) != 0;
363}
364
365/* Determine whether a clock is gated. */
366static bool
367is_clk_gate_enabled(struct ccu_data *ccu, struct bcm_clk_gate *gate)
368{
369	long flags;
370	bool ret;
371
372	/* Avoid taking the lock if we can */
373	if (!gate_exists(gate))
374		return true;
375
376	flags = ccu_lock(ccu);
377	ret = __is_clk_gate_enabled(ccu, gate);
378	ccu_unlock(ccu, flags);
379
380	return ret;
381}
382
383/*
384 * Commit our desired gate state to the hardware.
385 * Returns true if successful, false otherwise.
386 */
387static bool
388__gate_commit(struct ccu_data *ccu, struct bcm_clk_gate *gate)
389{
390	u32 reg_val;
391	u32 mask;
392	bool enabled = false;
393
394	BUG_ON(!gate_exists(gate));
395	if (!gate_is_sw_controllable(gate))
396		return true;		/* Nothing we can change */
397
398	reg_val = __ccu_read(ccu, gate->offset);
399
400	/* For a hardware/software gate, set which is in control */
401	if (gate_is_hw_controllable(gate)) {
402		mask = (u32)1 << gate->hw_sw_sel_bit;
403		if (gate_is_sw_managed(gate))
404			reg_val |= mask;
405		else
406			reg_val &= ~mask;
407	}
408
409	/*
410	 * If software is in control, enable or disable the gate.
411	 * If hardware is, clear the enabled bit for good measure.
412	 * If a software controlled gate can't be disabled, we're
413	 * required to write a 0 into the enable bit (but the gate
414	 * will be enabled).
415	 */
416	mask = (u32)1 << gate->en_bit;
417	if (gate_is_sw_managed(gate) && (enabled = gate_is_enabled(gate)) &&
418			!gate_is_no_disable(gate))
419		reg_val |= mask;
420	else
421		reg_val &= ~mask;
422
423	__ccu_write(ccu, gate->offset, reg_val);
424
425	/* For a hardware controlled gate, we're done */
426	if (!gate_is_sw_managed(gate))
427		return true;
428
429	/* Otherwise wait for the gate to be in desired state */
430	return __ccu_wait_bit(ccu, gate->offset, gate->status_bit, enabled);
431}
432
433/*
434 * Initialize a gate.  Our desired state (hardware/software select,
435 * and if software, its enable state) is committed to hardware
436 * without the usual checks to see if it's already set up that way.
437 * Returns true if successful, false otherwise.
438 */
439static bool gate_init(struct ccu_data *ccu, struct bcm_clk_gate *gate)
440{
441	if (!gate_exists(gate))
442		return true;
443	return __gate_commit(ccu, gate);
444}
445
446/*
447 * Set a gate to enabled or disabled state.  Does nothing if the
448 * gate is not currently under software control, or if it is already
449 * in the requested state.  Returns true if successful, false
450 * otherwise.  CCU lock must be held.
451 */
452static bool
453__clk_gate(struct ccu_data *ccu, struct bcm_clk_gate *gate, bool enable)
454{
455	bool ret;
456
457	if (!gate_exists(gate) || !gate_is_sw_managed(gate))
458		return true;	/* Nothing to do */
459
460	if (!enable && gate_is_no_disable(gate)) {
461		pr_warn("%s: invalid gate disable request (ignoring)\n",
462			__func__);
463		return true;
464	}
465
466	if (enable == gate_is_enabled(gate))
467		return true;	/* No change */
468
469	gate_flip_enabled(gate);
470	ret = __gate_commit(ccu, gate);
471	if (!ret)
472		gate_flip_enabled(gate);	/* Revert the change */
473
474	return ret;
475}
476
477/* Enable or disable a gate.  Returns 0 if successful, -EIO otherwise */
478static int clk_gate(struct ccu_data *ccu, const char *name,
479			struct bcm_clk_gate *gate, bool enable)
480{
481	unsigned long flags;
482	bool success;
483
484	/*
485	 * Avoid taking the lock if we can.  We quietly ignore
486	 * requests to change state that don't make sense.
487	 */
488	if (!gate_exists(gate) || !gate_is_sw_managed(gate))
489		return 0;
490	if (!enable && gate_is_no_disable(gate))
491		return 0;
492
493	flags = ccu_lock(ccu);
494	__ccu_write_enable(ccu);
495
496	success = __clk_gate(ccu, gate, enable);
497
498	__ccu_write_disable(ccu);
499	ccu_unlock(ccu, flags);
500
501	if (success)
502		return 0;
503
504	pr_err("%s: failed to %s gate for %s\n", __func__,
505		enable ? "enable" : "disable", name);
506
507	return -EIO;
508}
509
510/* Hysteresis operations */
511
512/*
513 * If a clock gate requires a turn-off delay it will have
514 * "hysteresis" register bits defined.  The first, if set, enables
515 * the delay; and if enabled, the second bit determines whether the
516 * delay is "low" or "high" (1 means high).  For now, if it's
517 * defined for a clock, we set it.
518 */
519static bool hyst_init(struct ccu_data *ccu, struct bcm_clk_hyst *hyst)
520{
521	u32 offset;
522	u32 reg_val;
523	u32 mask;
524
525	if (!hyst_exists(hyst))
526		return true;
527
528	offset = hyst->offset;
529	mask = (u32)1 << hyst->en_bit;
530	mask |= (u32)1 << hyst->val_bit;
531
532	reg_val = __ccu_read(ccu, offset);
533	reg_val |= mask;
534	__ccu_write(ccu, offset, reg_val);
535
536	return true;
537}
538
539/* Trigger operations */
540
541/*
542 * Caller must ensure CCU lock is held and access is enabled.
543 * Returns true if successful, false otherwise.
544 */
545static bool __clk_trigger(struct ccu_data *ccu, struct bcm_clk_trig *trig)
546{
547	/* Trigger the clock and wait for it to finish */
548	__ccu_write(ccu, trig->offset, 1 << trig->bit);
549
550	return __ccu_wait_bit(ccu, trig->offset, trig->bit, false);
551}
552
553/* Divider operations */
554
555/* Read a divider value and return the scaled divisor it represents. */
556static u64 divider_read_scaled(struct ccu_data *ccu, struct bcm_clk_div *div)
557{
558	unsigned long flags;
559	u32 reg_val;
560	u32 reg_div;
561
562	if (divider_is_fixed(div))
563		return (u64)div->u.fixed;
564
565	flags = ccu_lock(ccu);
566	reg_val = __ccu_read(ccu, div->u.s.offset);
567	ccu_unlock(ccu, flags);
568
569	/* Extract the full divider field from the register value */
570	reg_div = bitfield_extract(reg_val, div->u.s.shift, div->u.s.width);
571
572	/* Return the scaled divisor value it represents */
573	return scaled_div_value(div, reg_div);
574}
575
576/*
577 * Convert a divider's scaled divisor value into its recorded form
578 * and commit it into the hardware divider register.
579 *
580 * Returns 0 on success.  Returns -EINVAL for invalid arguments.
581 * Returns -ENXIO if gating failed, and -EIO if a trigger failed.
582 */
583static int __div_commit(struct ccu_data *ccu, struct bcm_clk_gate *gate,
584			struct bcm_clk_div *div, struct bcm_clk_trig *trig)
585{
586	bool enabled;
587	u32 reg_div;
588	u32 reg_val;
589	int ret = 0;
590
591	BUG_ON(divider_is_fixed(div));
592
593	/*
594	 * If we're just initializing the divider, and no initial
595	 * state was defined in the device tree, we just find out
596	 * what its current value is rather than updating it.
597	 */
598	if (div->u.s.scaled_div == BAD_SCALED_DIV_VALUE) {
599		reg_val = __ccu_read(ccu, div->u.s.offset);
600		reg_div = bitfield_extract(reg_val, div->u.s.shift,
601						div->u.s.width);
602		div->u.s.scaled_div = scaled_div_value(div, reg_div);
603
604		return 0;
605	}
606
607	/* Convert the scaled divisor to the value we need to record */
608	reg_div = divider(div, div->u.s.scaled_div);
609
610	/* Clock needs to be enabled before changing the rate */
611	enabled = __is_clk_gate_enabled(ccu, gate);
612	if (!enabled && !__clk_gate(ccu, gate, true)) {
613		ret = -ENXIO;
614		goto out;
615	}
616
617	/* Replace the divider value and record the result */
618	reg_val = __ccu_read(ccu, div->u.s.offset);
619	reg_val = bitfield_replace(reg_val, div->u.s.shift, div->u.s.width,
620					reg_div);
621	__ccu_write(ccu, div->u.s.offset, reg_val);
622
623	/* If the trigger fails we still want to disable the gate */
624	if (!__clk_trigger(ccu, trig))
625		ret = -EIO;
626
627	/* Disable the clock again if it was disabled to begin with */
628	if (!enabled && !__clk_gate(ccu, gate, false))
629		ret = ret ? ret : -ENXIO;	/* return first error */
630out:
631	return ret;
632}
633
634/*
635 * Initialize a divider by committing our desired state to hardware
636 * without the usual checks to see if it's already set up that way.
637 * Returns true if successful, false otherwise.
638 */
639static bool div_init(struct ccu_data *ccu, struct bcm_clk_gate *gate,
640			struct bcm_clk_div *div, struct bcm_clk_trig *trig)
641{
642	if (!divider_exists(div) || divider_is_fixed(div))
643		return true;
644	return !__div_commit(ccu, gate, div, trig);
645}
646
647static int divider_write(struct ccu_data *ccu, struct bcm_clk_gate *gate,
648			struct bcm_clk_div *div, struct bcm_clk_trig *trig,
649			u64 scaled_div)
650{
651	unsigned long flags;
652	u64 previous;
653	int ret;
654
655	BUG_ON(divider_is_fixed(div));
656
657	previous = div->u.s.scaled_div;
658	if (previous == scaled_div)
659		return 0;	/* No change */
660
661	div->u.s.scaled_div = scaled_div;
662
663	flags = ccu_lock(ccu);
664	__ccu_write_enable(ccu);
665
666	ret = __div_commit(ccu, gate, div, trig);
667
668	__ccu_write_disable(ccu);
669	ccu_unlock(ccu, flags);
670
671	if (ret)
672		div->u.s.scaled_div = previous;		/* Revert the change */
673
674	return ret;
675
676}
677
678/* Common clock rate helpers */
679
680/*
681 * Implement the common clock framework recalc_rate method, taking
682 * into account a divider and an optional pre-divider.  The
683 * pre-divider register pointer may be NULL.
684 */
685static unsigned long clk_recalc_rate(struct ccu_data *ccu,
686			struct bcm_clk_div *div, struct bcm_clk_div *pre_div,
687			unsigned long parent_rate)
688{
689	u64 scaled_parent_rate;
690	u64 scaled_div;
691	u64 result;
692
693	if (!divider_exists(div))
694		return parent_rate;
695
696	if (parent_rate > (unsigned long)LONG_MAX)
697		return 0;	/* actually this would be a caller bug */
698
699	/*
700	 * If there is a pre-divider, divide the scaled parent rate
701	 * by the pre-divider value first.  In this case--to improve
702	 * accuracy--scale the parent rate by *both* the pre-divider
703	 * value and the divider before actually computing the
704	 * result of the pre-divider.
705	 *
706	 * If there's only one divider, just scale the parent rate.
707	 */
708	if (pre_div && divider_exists(pre_div)) {
709		u64 scaled_rate;
710
711		scaled_rate = scale_rate(pre_div, parent_rate);
712		scaled_rate = scale_rate(div, scaled_rate);
713		scaled_div = divider_read_scaled(ccu, pre_div);
714		scaled_parent_rate = DIV_ROUND_CLOSEST_ULL(scaled_rate,
715							scaled_div);
716	} else  {
717		scaled_parent_rate = scale_rate(div, parent_rate);
718	}
719
720	/*
721	 * Get the scaled divisor value, and divide the scaled
722	 * parent rate by that to determine this clock's resulting
723	 * rate.
724	 */
725	scaled_div = divider_read_scaled(ccu, div);
726	result = DIV_ROUND_CLOSEST_ULL(scaled_parent_rate, scaled_div);
727
728	return (unsigned long)result;
729}
730
731/*
732 * Compute the output rate produced when a given parent rate is fed
733 * into two dividers.  The pre-divider can be NULL, and even if it's
734 * non-null it may be nonexistent.  It's also OK for the divider to
735 * be nonexistent, and in that case the pre-divider is also ignored.
736 *
737 * If scaled_div is non-null, it is used to return the scaled divisor
738 * value used by the (downstream) divider to produce that rate.
739 */
740static long round_rate(struct ccu_data *ccu, struct bcm_clk_div *div,
741				struct bcm_clk_div *pre_div,
742				unsigned long rate, unsigned long parent_rate,
743				u64 *scaled_div)
744{
745	u64 scaled_parent_rate;
746	u64 min_scaled_div;
747	u64 max_scaled_div;
748	u64 best_scaled_div;
749	u64 result;
750
751	BUG_ON(!divider_exists(div));
752	BUG_ON(!rate);
753	BUG_ON(parent_rate > (u64)LONG_MAX);
754
755	/*
756	 * If there is a pre-divider, divide the scaled parent rate
757	 * by the pre-divider value first.  In this case--to improve
758	 * accuracy--scale the parent rate by *both* the pre-divider
759	 * value and the divider before actually computing the
760	 * result of the pre-divider.
761	 *
762	 * If there's only one divider, just scale the parent rate.
763	 *
764	 * For simplicity we treat the pre-divider as fixed (for now).
765	 */
766	if (divider_exists(pre_div)) {
767		u64 scaled_rate;
768		u64 scaled_pre_div;
769
770		scaled_rate = scale_rate(pre_div, parent_rate);
771		scaled_rate = scale_rate(div, scaled_rate);
772		scaled_pre_div = divider_read_scaled(ccu, pre_div);
773		scaled_parent_rate = DIV_ROUND_CLOSEST_ULL(scaled_rate,
774							scaled_pre_div);
775	} else {
776		scaled_parent_rate = scale_rate(div, parent_rate);
777	}
778
779	/*
780	 * Compute the best possible divider and ensure it is in
781	 * range.  A fixed divider can't be changed, so just report
782	 * the best we can do.
783	 */
784	if (!divider_is_fixed(div)) {
785		best_scaled_div = DIV_ROUND_CLOSEST_ULL(scaled_parent_rate,
786							rate);
787		min_scaled_div = scaled_div_min(div);
788		max_scaled_div = scaled_div_max(div);
789		if (best_scaled_div > max_scaled_div)
790			best_scaled_div = max_scaled_div;
791		else if (best_scaled_div < min_scaled_div)
792			best_scaled_div = min_scaled_div;
793	} else {
794		best_scaled_div = divider_read_scaled(ccu, div);
795	}
796
797	/* OK, figure out the resulting rate */
798	result = DIV_ROUND_CLOSEST_ULL(scaled_parent_rate, best_scaled_div);
799
800	if (scaled_div)
801		*scaled_div = best_scaled_div;
802
803	return (long)result;
804}
805
806/* Common clock parent helpers */
807
808/*
809 * For a given parent selector (register field) value, find the
810 * index into a selector's parent_sel array that contains it.
811 * Returns the index, or BAD_CLK_INDEX if it's not found.
812 */
813static u8 parent_index(struct bcm_clk_sel *sel, u8 parent_sel)
814{
815	u8 i;
816
817	BUG_ON(sel->parent_count > (u32)U8_MAX);
818	for (i = 0; i < sel->parent_count; i++)
819		if (sel->parent_sel[i] == parent_sel)
820			return i;
821	return BAD_CLK_INDEX;
822}
823
824/*
825 * Fetch the current value of the selector, and translate that into
826 * its corresponding index in the parent array we registered with
827 * the clock framework.
828 *
829 * Returns parent array index that corresponds with the value found,
830 * or BAD_CLK_INDEX if the found value is out of range.
831 */
832static u8 selector_read_index(struct ccu_data *ccu, struct bcm_clk_sel *sel)
833{
834	unsigned long flags;
835	u32 reg_val;
836	u32 parent_sel;
837	u8 index;
838
839	/* If there's no selector, there's only one parent */
840	if (!selector_exists(sel))
841		return 0;
842
843	/* Get the value in the selector register */
844	flags = ccu_lock(ccu);
845	reg_val = __ccu_read(ccu, sel->offset);
846	ccu_unlock(ccu, flags);
847
848	parent_sel = bitfield_extract(reg_val, sel->shift, sel->width);
849
850	/* Look up that selector's parent array index and return it */
851	index = parent_index(sel, parent_sel);
852	if (index == BAD_CLK_INDEX)
853		pr_err("%s: out-of-range parent selector %u (%s 0x%04x)\n",
854			__func__, parent_sel, ccu->name, sel->offset);
855
856	return index;
857}
858
859/*
860 * Commit our desired selector value to the hardware.
861 *
862 * Returns 0 on success.  Returns -EINVAL for invalid arguments.
863 * Returns -ENXIO if gating failed, and -EIO if a trigger failed.
864 */
865static int
866__sel_commit(struct ccu_data *ccu, struct bcm_clk_gate *gate,
867			struct bcm_clk_sel *sel, struct bcm_clk_trig *trig)
868{
869	u32 parent_sel;
870	u32 reg_val;
871	bool enabled;
872	int ret = 0;
873
874	BUG_ON(!selector_exists(sel));
875
876	/*
877	 * If we're just initializing the selector, and no initial
878	 * state was defined in the device tree, we just find out
879	 * what its current value is rather than updating it.
880	 */
881	if (sel->clk_index == BAD_CLK_INDEX) {
882		u8 index;
883
884		reg_val = __ccu_read(ccu, sel->offset);
885		parent_sel = bitfield_extract(reg_val, sel->shift, sel->width);
886		index = parent_index(sel, parent_sel);
887		if (index == BAD_CLK_INDEX)
888			return -EINVAL;
889		sel->clk_index = index;
890
891		return 0;
892	}
893
894	BUG_ON((u32)sel->clk_index >= sel->parent_count);
895	parent_sel = sel->parent_sel[sel->clk_index];
896
897	/* Clock needs to be enabled before changing the parent */
898	enabled = __is_clk_gate_enabled(ccu, gate);
899	if (!enabled && !__clk_gate(ccu, gate, true))
900		return -ENXIO;
901
902	/* Replace the selector value and record the result */
903	reg_val = __ccu_read(ccu, sel->offset);
904	reg_val = bitfield_replace(reg_val, sel->shift, sel->width, parent_sel);
905	__ccu_write(ccu, sel->offset, reg_val);
906
907	/* If the trigger fails we still want to disable the gate */
908	if (!__clk_trigger(ccu, trig))
909		ret = -EIO;
910
911	/* Disable the clock again if it was disabled to begin with */
912	if (!enabled && !__clk_gate(ccu, gate, false))
913		ret = ret ? ret : -ENXIO;	/* return first error */
914
915	return ret;
916}
917
918/*
919 * Initialize a selector by committing our desired state to hardware
920 * without the usual checks to see if it's already set up that way.
921 * Returns true if successful, false otherwise.
922 */
923static bool sel_init(struct ccu_data *ccu, struct bcm_clk_gate *gate,
924			struct bcm_clk_sel *sel, struct bcm_clk_trig *trig)
925{
926	if (!selector_exists(sel))
927		return true;
928	return !__sel_commit(ccu, gate, sel, trig);
929}
930
931/*
932 * Write a new value into a selector register to switch to a
933 * different parent clock.  Returns 0 on success, or an error code
934 * (from __sel_commit()) otherwise.
935 */
936static int selector_write(struct ccu_data *ccu, struct bcm_clk_gate *gate,
937			struct bcm_clk_sel *sel, struct bcm_clk_trig *trig,
938			u8 index)
939{
940	unsigned long flags;
941	u8 previous;
942	int ret;
943
944	previous = sel->clk_index;
945	if (previous == index)
946		return 0;	/* No change */
947
948	sel->clk_index = index;
949
950	flags = ccu_lock(ccu);
951	__ccu_write_enable(ccu);
952
953	ret = __sel_commit(ccu, gate, sel, trig);
954
955	__ccu_write_disable(ccu);
956	ccu_unlock(ccu, flags);
957
958	if (ret)
959		sel->clk_index = previous;	/* Revert the change */
960
961	return ret;
962}
963
964/* Clock operations */
965
966static int kona_peri_clk_enable(struct clk_hw *hw)
967{
968	struct kona_clk *bcm_clk = to_kona_clk(hw);
969	struct bcm_clk_gate *gate = &bcm_clk->u.peri->gate;
970
971	return clk_gate(bcm_clk->ccu, bcm_clk->init_data.name, gate, true);
972}
973
974static void kona_peri_clk_disable(struct clk_hw *hw)
975{
976	struct kona_clk *bcm_clk = to_kona_clk(hw);
977	struct bcm_clk_gate *gate = &bcm_clk->u.peri->gate;
978
979	(void)clk_gate(bcm_clk->ccu, bcm_clk->init_data.name, gate, false);
980}
981
982static int kona_peri_clk_is_enabled(struct clk_hw *hw)
983{
984	struct kona_clk *bcm_clk = to_kona_clk(hw);
985	struct bcm_clk_gate *gate = &bcm_clk->u.peri->gate;
986
987	return is_clk_gate_enabled(bcm_clk->ccu, gate) ? 1 : 0;
988}
989
990static unsigned long kona_peri_clk_recalc_rate(struct clk_hw *hw,
991			unsigned long parent_rate)
992{
993	struct kona_clk *bcm_clk = to_kona_clk(hw);
994	struct peri_clk_data *data = bcm_clk->u.peri;
995
996	return clk_recalc_rate(bcm_clk->ccu, &data->div, &data->pre_div,
997				parent_rate);
998}
999
1000static long kona_peri_clk_round_rate(struct clk_hw *hw, unsigned long rate,
1001			unsigned long *parent_rate)
1002{
1003	struct kona_clk *bcm_clk = to_kona_clk(hw);
1004	struct bcm_clk_div *div = &bcm_clk->u.peri->div;
1005
1006	if (!divider_exists(div))
1007		return clk_hw_get_rate(hw);
1008
1009	/* Quietly avoid a zero rate */
1010	return round_rate(bcm_clk->ccu, div, &bcm_clk->u.peri->pre_div,
1011				rate ? rate : 1, *parent_rate, NULL);
1012}
1013
1014static int kona_peri_clk_determine_rate(struct clk_hw *hw,
1015					struct clk_rate_request *req)
1016{
1017	struct kona_clk *bcm_clk = to_kona_clk(hw);
1018	struct clk_hw *current_parent;
1019	unsigned long parent_rate;
1020	unsigned long best_delta;
1021	unsigned long best_rate;
1022	u32 parent_count;
1023	long rate;
1024	u32 which;
1025
1026	/*
1027	 * If there is no other parent to choose, use the current one.
1028	 * Note:  We don't honor (or use) CLK_SET_RATE_NO_REPARENT.
1029	 */
1030	WARN_ON_ONCE(bcm_clk->init_data.flags & CLK_SET_RATE_NO_REPARENT);
1031	parent_count = (u32)bcm_clk->init_data.num_parents;
1032	if (parent_count < 2) {
1033		rate = kona_peri_clk_round_rate(hw, req->rate,
1034						&req->best_parent_rate);
1035		if (rate < 0)
1036			return rate;
1037
1038		req->rate = rate;
1039		return 0;
1040	}
1041
1042	/* Unless we can do better, stick with current parent */
1043	current_parent = clk_hw_get_parent(hw);
1044	parent_rate = clk_hw_get_rate(current_parent);
1045	best_rate = kona_peri_clk_round_rate(hw, req->rate, &parent_rate);
1046	best_delta = abs(best_rate - req->rate);
1047
1048	/* Check whether any other parent clock can produce a better result */
1049	for (which = 0; which < parent_count; which++) {
1050		struct clk_hw *parent = clk_hw_get_parent_by_index(hw, which);
1051		unsigned long delta;
1052		unsigned long other_rate;
1053
1054		BUG_ON(!parent);
1055		if (parent == current_parent)
1056			continue;
1057
1058		/* We don't support CLK_SET_RATE_PARENT */
1059		parent_rate = clk_hw_get_rate(parent);
1060		other_rate = kona_peri_clk_round_rate(hw, req->rate,
1061						      &parent_rate);
1062		delta = abs(other_rate - req->rate);
1063		if (delta < best_delta) {
1064			best_delta = delta;
1065			best_rate = other_rate;
1066			req->best_parent_hw = parent;
1067			req->best_parent_rate = parent_rate;
1068		}
1069	}
1070
1071	req->rate = best_rate;
1072	return 0;
1073}
1074
1075static int kona_peri_clk_set_parent(struct clk_hw *hw, u8 index)
1076{
1077	struct kona_clk *bcm_clk = to_kona_clk(hw);
1078	struct peri_clk_data *data = bcm_clk->u.peri;
1079	struct bcm_clk_sel *sel = &data->sel;
1080	struct bcm_clk_trig *trig;
1081	int ret;
1082
1083	BUG_ON(index >= sel->parent_count);
1084
1085	/* If there's only one parent we don't require a selector */
1086	if (!selector_exists(sel))
1087		return 0;
1088
1089	/*
1090	 * The regular trigger is used by default, but if there's a
1091	 * pre-trigger we want to use that instead.
1092	 */
1093	trig = trigger_exists(&data->pre_trig) ? &data->pre_trig
1094					       : &data->trig;
1095
1096	ret = selector_write(bcm_clk->ccu, &data->gate, sel, trig, index);
1097	if (ret == -ENXIO) {
1098		pr_err("%s: gating failure for %s\n", __func__,
1099			bcm_clk->init_data.name);
1100		ret = -EIO;	/* Don't proliferate weird errors */
1101	} else if (ret == -EIO) {
1102		pr_err("%s: %strigger failed for %s\n", __func__,
1103			trig == &data->pre_trig ? "pre-" : "",
1104			bcm_clk->init_data.name);
1105	}
1106
1107	return ret;
1108}
1109
1110static u8 kona_peri_clk_get_parent(struct clk_hw *hw)
1111{
1112	struct kona_clk *bcm_clk = to_kona_clk(hw);
1113	struct peri_clk_data *data = bcm_clk->u.peri;
1114	u8 index;
1115
1116	index = selector_read_index(bcm_clk->ccu, &data->sel);
1117
1118	/* Not all callers would handle an out-of-range value gracefully */
1119	return index == BAD_CLK_INDEX ? 0 : index;
1120}
1121
1122static int kona_peri_clk_set_rate(struct clk_hw *hw, unsigned long rate,
1123			unsigned long parent_rate)
1124{
1125	struct kona_clk *bcm_clk = to_kona_clk(hw);
1126	struct peri_clk_data *data = bcm_clk->u.peri;
1127	struct bcm_clk_div *div = &data->div;
1128	u64 scaled_div = 0;
1129	int ret;
1130
1131	if (parent_rate > (unsigned long)LONG_MAX)
1132		return -EINVAL;
1133
1134	if (rate == clk_hw_get_rate(hw))
1135		return 0;
1136
1137	if (!divider_exists(div))
1138		return rate == parent_rate ? 0 : -EINVAL;
1139
1140	/*
1141	 * A fixed divider can't be changed.  (Nor can a fixed
1142	 * pre-divider be, but for now we never actually try to
1143	 * change that.)  Tolerate a request for a no-op change.
1144	 */
1145	if (divider_is_fixed(&data->div))
1146		return rate == parent_rate ? 0 : -EINVAL;
1147
1148	/*
1149	 * Get the scaled divisor value needed to achieve a clock
1150	 * rate as close as possible to what was requested, given
1151	 * the parent clock rate supplied.
1152	 */
1153	(void)round_rate(bcm_clk->ccu, div, &data->pre_div,
1154				rate ? rate : 1, parent_rate, &scaled_div);
1155
1156	/*
1157	 * We aren't updating any pre-divider at this point, so
1158	 * we'll use the regular trigger.
1159	 */
1160	ret = divider_write(bcm_clk->ccu, &data->gate, &data->div,
1161				&data->trig, scaled_div);
1162	if (ret == -ENXIO) {
1163		pr_err("%s: gating failure for %s\n", __func__,
1164			bcm_clk->init_data.name);
1165		ret = -EIO;	/* Don't proliferate weird errors */
1166	} else if (ret == -EIO) {
1167		pr_err("%s: trigger failed for %s\n", __func__,
1168			bcm_clk->init_data.name);
1169	}
1170
1171	return ret;
1172}
1173
1174struct clk_ops kona_peri_clk_ops = {
1175	.enable = kona_peri_clk_enable,
1176	.disable = kona_peri_clk_disable,
1177	.is_enabled = kona_peri_clk_is_enabled,
1178	.recalc_rate = kona_peri_clk_recalc_rate,
1179	.determine_rate = kona_peri_clk_determine_rate,
1180	.set_parent = kona_peri_clk_set_parent,
1181	.get_parent = kona_peri_clk_get_parent,
1182	.set_rate = kona_peri_clk_set_rate,
1183};
1184
1185/* Put a peripheral clock into its initial state */
1186static bool __peri_clk_init(struct kona_clk *bcm_clk)
1187{
1188	struct ccu_data *ccu = bcm_clk->ccu;
1189	struct peri_clk_data *peri = bcm_clk->u.peri;
1190	const char *name = bcm_clk->init_data.name;
1191	struct bcm_clk_trig *trig;
1192
1193	BUG_ON(bcm_clk->type != bcm_clk_peri);
1194
1195	if (!policy_init(ccu, &peri->policy)) {
1196		pr_err("%s: error initializing policy for %s\n",
1197			__func__, name);
1198		return false;
1199	}
1200	if (!gate_init(ccu, &peri->gate)) {
1201		pr_err("%s: error initializing gate for %s\n", __func__, name);
1202		return false;
1203	}
1204	if (!hyst_init(ccu, &peri->hyst)) {
1205		pr_err("%s: error initializing hyst for %s\n", __func__, name);
1206		return false;
1207	}
1208	if (!div_init(ccu, &peri->gate, &peri->div, &peri->trig)) {
1209		pr_err("%s: error initializing divider for %s\n", __func__,
1210			name);
1211		return false;
1212	}
1213
1214	/*
1215	 * For the pre-divider and selector, the pre-trigger is used
1216	 * if it's present, otherwise we just use the regular trigger.
1217	 */
1218	trig = trigger_exists(&peri->pre_trig) ? &peri->pre_trig
1219					       : &peri->trig;
1220
1221	if (!div_init(ccu, &peri->gate, &peri->pre_div, trig)) {
1222		pr_err("%s: error initializing pre-divider for %s\n", __func__,
1223			name);
1224		return false;
1225	}
1226
1227	if (!sel_init(ccu, &peri->gate, &peri->sel, trig)) {
1228		pr_err("%s: error initializing selector for %s\n", __func__,
1229			name);
1230		return false;
1231	}
1232
1233	return true;
1234}
1235
1236static bool __kona_clk_init(struct kona_clk *bcm_clk)
1237{
1238	switch (bcm_clk->type) {
1239	case bcm_clk_peri:
1240		return __peri_clk_init(bcm_clk);
1241	default:
1242		BUG();
1243	}
1244	return false;
1245}
1246
1247/* Set a CCU and all its clocks into their desired initial state */
1248bool __init kona_ccu_init(struct ccu_data *ccu)
1249{
1250	unsigned long flags;
1251	unsigned int which;
1252	struct kona_clk *kona_clks = ccu->kona_clks;
1253	bool success = true;
1254
1255	flags = ccu_lock(ccu);
1256	__ccu_write_enable(ccu);
1257
1258	for (which = 0; which < ccu->clk_num; which++) {
1259		struct kona_clk *bcm_clk = &kona_clks[which];
1260
1261		if (!bcm_clk->ccu)
1262			continue;
1263
1264		success &= __kona_clk_init(bcm_clk);
1265	}
1266
1267	__ccu_write_disable(ccu);
1268	ccu_unlock(ccu, flags);
1269	return success;
1270}
1271