1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * Copyright (C) 2010,2015 Broadcom
4 * Copyright (C) 2012 Stephen Warren
5 */
6
7/**
8 * DOC: BCM2835 CPRMAN (clock manager for the "audio" domain)
9 *
10 * The clock tree on the 2835 has several levels.  There's a root
11 * oscillator running at 19.2Mhz.  After the oscillator there are 5
12 * PLLs, roughly divided as "camera", "ARM", "core", "DSI displays",
13 * and "HDMI displays".  Those 5 PLLs each can divide their output to
14 * produce up to 4 channels.  Finally, there is the level of clocks to
15 * be consumed by other hardware components (like "H264" or "HDMI
16 * state machine"), which divide off of some subset of the PLL
17 * channels.
18 *
19 * All of the clocks in the tree are exposed in the DT, because the DT
20 * may want to make assignments of the final layer of clocks to the
21 * PLL channels, and some components of the hardware will actually
22 * skip layers of the tree (for example, the pixel clock comes
23 * directly from the PLLH PIX channel without using a CM_*CTL clock
24 * generator).
25 */
26
27#include <linux/clk-provider.h>
28#include <linux/clkdev.h>
29#include <linux/clk.h>
30#include <linux/debugfs.h>
31#include <linux/delay.h>
32#include <linux/io.h>
33#include <linux/math.h>
34#include <linux/module.h>
35#include <linux/of.h>
36#include <linux/platform_device.h>
37#include <linux/slab.h>
38#include <dt-bindings/clock/bcm2835.h>
39
40#define CM_PASSWORD		0x5a000000
41
42#define CM_GNRICCTL		0x000
43#define CM_GNRICDIV		0x004
44# define CM_DIV_FRAC_BITS	12
45# define CM_DIV_FRAC_MASK	GENMASK(CM_DIV_FRAC_BITS - 1, 0)
46
47#define CM_VPUCTL		0x008
48#define CM_VPUDIV		0x00c
49#define CM_SYSCTL		0x010
50#define CM_SYSDIV		0x014
51#define CM_PERIACTL		0x018
52#define CM_PERIADIV		0x01c
53#define CM_PERIICTL		0x020
54#define CM_PERIIDIV		0x024
55#define CM_H264CTL		0x028
56#define CM_H264DIV		0x02c
57#define CM_ISPCTL		0x030
58#define CM_ISPDIV		0x034
59#define CM_V3DCTL		0x038
60#define CM_V3DDIV		0x03c
61#define CM_CAM0CTL		0x040
62#define CM_CAM0DIV		0x044
63#define CM_CAM1CTL		0x048
64#define CM_CAM1DIV		0x04c
65#define CM_CCP2CTL		0x050
66#define CM_CCP2DIV		0x054
67#define CM_DSI0ECTL		0x058
68#define CM_DSI0EDIV		0x05c
69#define CM_DSI0PCTL		0x060
70#define CM_DSI0PDIV		0x064
71#define CM_DPICTL		0x068
72#define CM_DPIDIV		0x06c
73#define CM_GP0CTL		0x070
74#define CM_GP0DIV		0x074
75#define CM_GP1CTL		0x078
76#define CM_GP1DIV		0x07c
77#define CM_GP2CTL		0x080
78#define CM_GP2DIV		0x084
79#define CM_HSMCTL		0x088
80#define CM_HSMDIV		0x08c
81#define CM_OTPCTL		0x090
82#define CM_OTPDIV		0x094
83#define CM_PCMCTL		0x098
84#define CM_PCMDIV		0x09c
85#define CM_PWMCTL		0x0a0
86#define CM_PWMDIV		0x0a4
87#define CM_SLIMCTL		0x0a8
88#define CM_SLIMDIV		0x0ac
89#define CM_SMICTL		0x0b0
90#define CM_SMIDIV		0x0b4
91/* no definition for 0x0b8  and 0x0bc */
92#define CM_TCNTCTL		0x0c0
93# define CM_TCNT_SRC1_SHIFT		12
94#define CM_TCNTCNT		0x0c4
95#define CM_TECCTL		0x0c8
96#define CM_TECDIV		0x0cc
97#define CM_TD0CTL		0x0d0
98#define CM_TD0DIV		0x0d4
99#define CM_TD1CTL		0x0d8
100#define CM_TD1DIV		0x0dc
101#define CM_TSENSCTL		0x0e0
102#define CM_TSENSDIV		0x0e4
103#define CM_TIMERCTL		0x0e8
104#define CM_TIMERDIV		0x0ec
105#define CM_UARTCTL		0x0f0
106#define CM_UARTDIV		0x0f4
107#define CM_VECCTL		0x0f8
108#define CM_VECDIV		0x0fc
109#define CM_PULSECTL		0x190
110#define CM_PULSEDIV		0x194
111#define CM_SDCCTL		0x1a8
112#define CM_SDCDIV		0x1ac
113#define CM_ARMCTL		0x1b0
114#define CM_AVEOCTL		0x1b8
115#define CM_AVEODIV		0x1bc
116#define CM_EMMCCTL		0x1c0
117#define CM_EMMCDIV		0x1c4
118#define CM_EMMC2CTL		0x1d0
119#define CM_EMMC2DIV		0x1d4
120
121/* General bits for the CM_*CTL regs */
122# define CM_ENABLE			BIT(4)
123# define CM_KILL			BIT(5)
124# define CM_GATE_BIT			6
125# define CM_GATE			BIT(CM_GATE_BIT)
126# define CM_BUSY			BIT(7)
127# define CM_BUSYD			BIT(8)
128# define CM_FRAC			BIT(9)
129# define CM_SRC_SHIFT			0
130# define CM_SRC_BITS			4
131# define CM_SRC_MASK			0xf
132# define CM_SRC_GND			0
133# define CM_SRC_OSC			1
134# define CM_SRC_TESTDEBUG0		2
135# define CM_SRC_TESTDEBUG1		3
136# define CM_SRC_PLLA_CORE		4
137# define CM_SRC_PLLA_PER		4
138# define CM_SRC_PLLC_CORE0		5
139# define CM_SRC_PLLC_PER		5
140# define CM_SRC_PLLC_CORE1		8
141# define CM_SRC_PLLD_CORE		6
142# define CM_SRC_PLLD_PER		6
143# define CM_SRC_PLLH_AUX		7
144# define CM_SRC_PLLC_CORE1		8
145# define CM_SRC_PLLC_CORE2		9
146
147#define CM_OSCCOUNT		0x100
148
149#define CM_PLLA			0x104
150# define CM_PLL_ANARST			BIT(8)
151# define CM_PLLA_HOLDPER		BIT(7)
152# define CM_PLLA_LOADPER		BIT(6)
153# define CM_PLLA_HOLDCORE		BIT(5)
154# define CM_PLLA_LOADCORE		BIT(4)
155# define CM_PLLA_HOLDCCP2		BIT(3)
156# define CM_PLLA_LOADCCP2		BIT(2)
157# define CM_PLLA_HOLDDSI0		BIT(1)
158# define CM_PLLA_LOADDSI0		BIT(0)
159
160#define CM_PLLC			0x108
161# define CM_PLLC_HOLDPER		BIT(7)
162# define CM_PLLC_LOADPER		BIT(6)
163# define CM_PLLC_HOLDCORE2		BIT(5)
164# define CM_PLLC_LOADCORE2		BIT(4)
165# define CM_PLLC_HOLDCORE1		BIT(3)
166# define CM_PLLC_LOADCORE1		BIT(2)
167# define CM_PLLC_HOLDCORE0		BIT(1)
168# define CM_PLLC_LOADCORE0		BIT(0)
169
170#define CM_PLLD			0x10c
171# define CM_PLLD_HOLDPER		BIT(7)
172# define CM_PLLD_LOADPER		BIT(6)
173# define CM_PLLD_HOLDCORE		BIT(5)
174# define CM_PLLD_LOADCORE		BIT(4)
175# define CM_PLLD_HOLDDSI1		BIT(3)
176# define CM_PLLD_LOADDSI1		BIT(2)
177# define CM_PLLD_HOLDDSI0		BIT(1)
178# define CM_PLLD_LOADDSI0		BIT(0)
179
180#define CM_PLLH			0x110
181# define CM_PLLH_LOADRCAL		BIT(2)
182# define CM_PLLH_LOADAUX		BIT(1)
183# define CM_PLLH_LOADPIX		BIT(0)
184
185#define CM_LOCK			0x114
186# define CM_LOCK_FLOCKH			BIT(12)
187# define CM_LOCK_FLOCKD			BIT(11)
188# define CM_LOCK_FLOCKC			BIT(10)
189# define CM_LOCK_FLOCKB			BIT(9)
190# define CM_LOCK_FLOCKA			BIT(8)
191
192#define CM_EVENT		0x118
193#define CM_DSI1ECTL		0x158
194#define CM_DSI1EDIV		0x15c
195#define CM_DSI1PCTL		0x160
196#define CM_DSI1PDIV		0x164
197#define CM_DFTCTL		0x168
198#define CM_DFTDIV		0x16c
199
200#define CM_PLLB			0x170
201# define CM_PLLB_HOLDARM		BIT(1)
202# define CM_PLLB_LOADARM		BIT(0)
203
204#define A2W_PLLA_CTRL		0x1100
205#define A2W_PLLC_CTRL		0x1120
206#define A2W_PLLD_CTRL		0x1140
207#define A2W_PLLH_CTRL		0x1160
208#define A2W_PLLB_CTRL		0x11e0
209# define A2W_PLL_CTRL_PRST_DISABLE	BIT(17)
210# define A2W_PLL_CTRL_PWRDN		BIT(16)
211# define A2W_PLL_CTRL_PDIV_MASK		0x000007000
212# define A2W_PLL_CTRL_PDIV_SHIFT	12
213# define A2W_PLL_CTRL_NDIV_MASK		0x0000003ff
214# define A2W_PLL_CTRL_NDIV_SHIFT	0
215
216#define A2W_PLLA_ANA0		0x1010
217#define A2W_PLLC_ANA0		0x1030
218#define A2W_PLLD_ANA0		0x1050
219#define A2W_PLLH_ANA0		0x1070
220#define A2W_PLLB_ANA0		0x10f0
221
222#define A2W_PLL_KA_SHIFT	7
223#define A2W_PLL_KA_MASK		GENMASK(9, 7)
224#define A2W_PLL_KI_SHIFT	19
225#define A2W_PLL_KI_MASK		GENMASK(21, 19)
226#define A2W_PLL_KP_SHIFT	15
227#define A2W_PLL_KP_MASK		GENMASK(18, 15)
228
229#define A2W_PLLH_KA_SHIFT	19
230#define A2W_PLLH_KA_MASK	GENMASK(21, 19)
231#define A2W_PLLH_KI_LOW_SHIFT	22
232#define A2W_PLLH_KI_LOW_MASK	GENMASK(23, 22)
233#define A2W_PLLH_KI_HIGH_SHIFT	0
234#define A2W_PLLH_KI_HIGH_MASK	GENMASK(0, 0)
235#define A2W_PLLH_KP_SHIFT	1
236#define A2W_PLLH_KP_MASK	GENMASK(4, 1)
237
238#define A2W_XOSC_CTRL		0x1190
239# define A2W_XOSC_CTRL_PLLB_ENABLE	BIT(7)
240# define A2W_XOSC_CTRL_PLLA_ENABLE	BIT(6)
241# define A2W_XOSC_CTRL_PLLD_ENABLE	BIT(5)
242# define A2W_XOSC_CTRL_DDR_ENABLE	BIT(4)
243# define A2W_XOSC_CTRL_CPR1_ENABLE	BIT(3)
244# define A2W_XOSC_CTRL_USB_ENABLE	BIT(2)
245# define A2W_XOSC_CTRL_HDMI_ENABLE	BIT(1)
246# define A2W_XOSC_CTRL_PLLC_ENABLE	BIT(0)
247
248#define A2W_PLLA_FRAC		0x1200
249#define A2W_PLLC_FRAC		0x1220
250#define A2W_PLLD_FRAC		0x1240
251#define A2W_PLLH_FRAC		0x1260
252#define A2W_PLLB_FRAC		0x12e0
253# define A2W_PLL_FRAC_MASK		((1 << A2W_PLL_FRAC_BITS) - 1)
254# define A2W_PLL_FRAC_BITS		20
255
256#define A2W_PLL_CHANNEL_DISABLE		BIT(8)
257#define A2W_PLL_DIV_BITS		8
258#define A2W_PLL_DIV_SHIFT		0
259
260#define A2W_PLLA_DSI0		0x1300
261#define A2W_PLLA_CORE		0x1400
262#define A2W_PLLA_PER		0x1500
263#define A2W_PLLA_CCP2		0x1600
264
265#define A2W_PLLC_CORE2		0x1320
266#define A2W_PLLC_CORE1		0x1420
267#define A2W_PLLC_PER		0x1520
268#define A2W_PLLC_CORE0		0x1620
269
270#define A2W_PLLD_DSI0		0x1340
271#define A2W_PLLD_CORE		0x1440
272#define A2W_PLLD_PER		0x1540
273#define A2W_PLLD_DSI1		0x1640
274
275#define A2W_PLLH_AUX		0x1360
276#define A2W_PLLH_RCAL		0x1460
277#define A2W_PLLH_PIX		0x1560
278#define A2W_PLLH_STS		0x1660
279
280#define A2W_PLLH_CTRLR		0x1960
281#define A2W_PLLH_FRACR		0x1a60
282#define A2W_PLLH_AUXR		0x1b60
283#define A2W_PLLH_RCALR		0x1c60
284#define A2W_PLLH_PIXR		0x1d60
285#define A2W_PLLH_STSR		0x1e60
286
287#define A2W_PLLB_ARM		0x13e0
288#define A2W_PLLB_SP0		0x14e0
289#define A2W_PLLB_SP1		0x15e0
290#define A2W_PLLB_SP2		0x16e0
291
292#define LOCK_TIMEOUT_NS		100000000
293#define BCM2835_MAX_FB_RATE	1750000000u
294
295#define SOC_BCM2835		BIT(0)
296#define SOC_BCM2711		BIT(1)
297#define SOC_ALL			(SOC_BCM2835 | SOC_BCM2711)
298
299/*
300 * Names of clocks used within the driver that need to be replaced
301 * with an external parent's name.  This array is in the order that
302 * the clocks node in the DT references external clocks.
303 */
304static const char *const cprman_parent_names[] = {
305	"xosc",
306	"dsi0_byte",
307	"dsi0_ddr2",
308	"dsi0_ddr",
309	"dsi1_byte",
310	"dsi1_ddr2",
311	"dsi1_ddr",
312};
313
314struct bcm2835_cprman {
315	struct device *dev;
316	void __iomem *regs;
317	spinlock_t regs_lock; /* spinlock for all clocks */
318	unsigned int soc;
319
320	/*
321	 * Real names of cprman clock parents looked up through
322	 * of_clk_get_parent_name(), which will be used in the
323	 * parent_names[] arrays for clock registration.
324	 */
325	const char *real_parent_names[ARRAY_SIZE(cprman_parent_names)];
326
327	/* Must be last */
328	struct clk_hw_onecell_data onecell;
329};
330
331struct cprman_plat_data {
332	unsigned int soc;
333};
334
335static inline void cprman_write(struct bcm2835_cprman *cprman, u32 reg, u32 val)
336{
337	writel(CM_PASSWORD | val, cprman->regs + reg);
338}
339
340static inline u32 cprman_read(struct bcm2835_cprman *cprman, u32 reg)
341{
342	return readl(cprman->regs + reg);
343}
344
345/* Does a cycle of measuring a clock through the TCNT clock, which may
346 * source from many other clocks in the system.
347 */
348static unsigned long bcm2835_measure_tcnt_mux(struct bcm2835_cprman *cprman,
349					      u32 tcnt_mux)
350{
351	u32 osccount = 19200; /* 1ms */
352	u32 count;
353	ktime_t timeout;
354
355	spin_lock(&cprman->regs_lock);
356
357	cprman_write(cprman, CM_TCNTCTL, CM_KILL);
358
359	cprman_write(cprman, CM_TCNTCTL,
360		     (tcnt_mux & CM_SRC_MASK) |
361		     (tcnt_mux >> CM_SRC_BITS) << CM_TCNT_SRC1_SHIFT);
362
363	cprman_write(cprman, CM_OSCCOUNT, osccount);
364
365	/* do a kind delay at the start */
366	mdelay(1);
367
368	/* Finish off whatever is left of OSCCOUNT */
369	timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
370	while (cprman_read(cprman, CM_OSCCOUNT)) {
371		if (ktime_after(ktime_get(), timeout)) {
372			dev_err(cprman->dev, "timeout waiting for OSCCOUNT\n");
373			count = 0;
374			goto out;
375		}
376		cpu_relax();
377	}
378
379	/* Wait for BUSY to clear. */
380	timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
381	while (cprman_read(cprman, CM_TCNTCTL) & CM_BUSY) {
382		if (ktime_after(ktime_get(), timeout)) {
383			dev_err(cprman->dev, "timeout waiting for !BUSY\n");
384			count = 0;
385			goto out;
386		}
387		cpu_relax();
388	}
389
390	count = cprman_read(cprman, CM_TCNTCNT);
391
392	cprman_write(cprman, CM_TCNTCTL, 0);
393
394out:
395	spin_unlock(&cprman->regs_lock);
396
397	return count * 1000;
398}
399
400static void bcm2835_debugfs_regset(struct bcm2835_cprman *cprman, u32 base,
401				   const struct debugfs_reg32 *regs,
402				   size_t nregs, struct dentry *dentry)
403{
404	struct debugfs_regset32 *regset;
405
406	regset = devm_kzalloc(cprman->dev, sizeof(*regset), GFP_KERNEL);
407	if (!regset)
408		return;
409
410	regset->regs = regs;
411	regset->nregs = nregs;
412	regset->base = cprman->regs + base;
413
414	debugfs_create_regset32("regdump", S_IRUGO, dentry, regset);
415}
416
417struct bcm2835_pll_data {
418	const char *name;
419	u32 cm_ctrl_reg;
420	u32 a2w_ctrl_reg;
421	u32 frac_reg;
422	u32 ana_reg_base;
423	u32 reference_enable_mask;
424	/* Bit in CM_LOCK to indicate when the PLL has locked. */
425	u32 lock_mask;
426	u32 flags;
427
428	const struct bcm2835_pll_ana_bits *ana;
429
430	unsigned long min_rate;
431	unsigned long max_rate;
432	/*
433	 * Highest rate for the VCO before we have to use the
434	 * pre-divide-by-2.
435	 */
436	unsigned long max_fb_rate;
437};
438
439struct bcm2835_pll_ana_bits {
440	u32 mask0;
441	u32 set0;
442	u32 mask1;
443	u32 set1;
444	u32 mask3;
445	u32 set3;
446	u32 fb_prediv_mask;
447};
448
449static const struct bcm2835_pll_ana_bits bcm2835_ana_default = {
450	.mask0 = 0,
451	.set0 = 0,
452	.mask1 = A2W_PLL_KI_MASK | A2W_PLL_KP_MASK,
453	.set1 = (2 << A2W_PLL_KI_SHIFT) | (8 << A2W_PLL_KP_SHIFT),
454	.mask3 = A2W_PLL_KA_MASK,
455	.set3 = (2 << A2W_PLL_KA_SHIFT),
456	.fb_prediv_mask = BIT(14),
457};
458
459static const struct bcm2835_pll_ana_bits bcm2835_ana_pllh = {
460	.mask0 = A2W_PLLH_KA_MASK | A2W_PLLH_KI_LOW_MASK,
461	.set0 = (2 << A2W_PLLH_KA_SHIFT) | (2 << A2W_PLLH_KI_LOW_SHIFT),
462	.mask1 = A2W_PLLH_KI_HIGH_MASK | A2W_PLLH_KP_MASK,
463	.set1 = (6 << A2W_PLLH_KP_SHIFT),
464	.mask3 = 0,
465	.set3 = 0,
466	.fb_prediv_mask = BIT(11),
467};
468
469struct bcm2835_pll_divider_data {
470	const char *name;
471	const char *source_pll;
472
473	u32 cm_reg;
474	u32 a2w_reg;
475
476	u32 load_mask;
477	u32 hold_mask;
478	u32 fixed_divider;
479	u32 flags;
480};
481
482struct bcm2835_clock_data {
483	const char *name;
484
485	const char *const *parents;
486	int num_mux_parents;
487
488	/* Bitmap encoding which parents accept rate change propagation. */
489	unsigned int set_rate_parent;
490
491	u32 ctl_reg;
492	u32 div_reg;
493
494	/* Number of integer bits in the divider */
495	u32 int_bits;
496	/* Number of fractional bits in the divider */
497	u32 frac_bits;
498
499	u32 flags;
500
501	bool is_vpu_clock;
502	bool is_mash_clock;
503	bool low_jitter;
504
505	u32 tcnt_mux;
506
507	bool round_up;
508};
509
510struct bcm2835_gate_data {
511	const char *name;
512	const char *parent;
513
514	u32 ctl_reg;
515};
516
517struct bcm2835_pll {
518	struct clk_hw hw;
519	struct bcm2835_cprman *cprman;
520	const struct bcm2835_pll_data *data;
521};
522
523static int bcm2835_pll_is_on(struct clk_hw *hw)
524{
525	struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
526	struct bcm2835_cprman *cprman = pll->cprman;
527	const struct bcm2835_pll_data *data = pll->data;
528
529	return cprman_read(cprman, data->a2w_ctrl_reg) &
530		A2W_PLL_CTRL_PRST_DISABLE;
531}
532
533static u32 bcm2835_pll_get_prediv_mask(struct bcm2835_cprman *cprman,
534				       const struct bcm2835_pll_data *data)
535{
536	/*
537	 * On BCM2711 there isn't a pre-divisor available in the PLL feedback
538	 * loop. Bits 13:14 of ANA1 (PLLA,PLLB,PLLC,PLLD) have been re-purposed
539	 * for to for VCO RANGE bits.
540	 */
541	if (cprman->soc & SOC_BCM2711)
542		return 0;
543
544	return data->ana->fb_prediv_mask;
545}
546
547static void bcm2835_pll_choose_ndiv_and_fdiv(unsigned long rate,
548					     unsigned long parent_rate,
549					     u32 *ndiv, u32 *fdiv)
550{
551	u64 div;
552
553	div = (u64)rate << A2W_PLL_FRAC_BITS;
554	do_div(div, parent_rate);
555
556	*ndiv = div >> A2W_PLL_FRAC_BITS;
557	*fdiv = div & ((1 << A2W_PLL_FRAC_BITS) - 1);
558}
559
560static long bcm2835_pll_rate_from_divisors(unsigned long parent_rate,
561					   u32 ndiv, u32 fdiv, u32 pdiv)
562{
563	u64 rate;
564
565	if (pdiv == 0)
566		return 0;
567
568	rate = (u64)parent_rate * ((ndiv << A2W_PLL_FRAC_BITS) + fdiv);
569	do_div(rate, pdiv);
570	return rate >> A2W_PLL_FRAC_BITS;
571}
572
573static long bcm2835_pll_round_rate(struct clk_hw *hw, unsigned long rate,
574				   unsigned long *parent_rate)
575{
576	struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
577	const struct bcm2835_pll_data *data = pll->data;
578	u32 ndiv, fdiv;
579
580	rate = clamp(rate, data->min_rate, data->max_rate);
581
582	bcm2835_pll_choose_ndiv_and_fdiv(rate, *parent_rate, &ndiv, &fdiv);
583
584	return bcm2835_pll_rate_from_divisors(*parent_rate, ndiv, fdiv, 1);
585}
586
587static unsigned long bcm2835_pll_get_rate(struct clk_hw *hw,
588					  unsigned long parent_rate)
589{
590	struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
591	struct bcm2835_cprman *cprman = pll->cprman;
592	const struct bcm2835_pll_data *data = pll->data;
593	u32 a2wctrl = cprman_read(cprman, data->a2w_ctrl_reg);
594	u32 ndiv, pdiv, fdiv;
595	bool using_prediv;
596
597	if (parent_rate == 0)
598		return 0;
599
600	fdiv = cprman_read(cprman, data->frac_reg) & A2W_PLL_FRAC_MASK;
601	ndiv = (a2wctrl & A2W_PLL_CTRL_NDIV_MASK) >> A2W_PLL_CTRL_NDIV_SHIFT;
602	pdiv = (a2wctrl & A2W_PLL_CTRL_PDIV_MASK) >> A2W_PLL_CTRL_PDIV_SHIFT;
603	using_prediv = cprman_read(cprman, data->ana_reg_base + 4) &
604		       bcm2835_pll_get_prediv_mask(cprman, data);
605
606	if (using_prediv) {
607		ndiv *= 2;
608		fdiv *= 2;
609	}
610
611	return bcm2835_pll_rate_from_divisors(parent_rate, ndiv, fdiv, pdiv);
612}
613
614static void bcm2835_pll_off(struct clk_hw *hw)
615{
616	struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
617	struct bcm2835_cprman *cprman = pll->cprman;
618	const struct bcm2835_pll_data *data = pll->data;
619
620	spin_lock(&cprman->regs_lock);
621	cprman_write(cprman, data->cm_ctrl_reg, CM_PLL_ANARST);
622	cprman_write(cprman, data->a2w_ctrl_reg,
623		     cprman_read(cprman, data->a2w_ctrl_reg) |
624		     A2W_PLL_CTRL_PWRDN);
625	spin_unlock(&cprman->regs_lock);
626}
627
628static int bcm2835_pll_on(struct clk_hw *hw)
629{
630	struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
631	struct bcm2835_cprman *cprman = pll->cprman;
632	const struct bcm2835_pll_data *data = pll->data;
633	ktime_t timeout;
634
635	cprman_write(cprman, data->a2w_ctrl_reg,
636		     cprman_read(cprman, data->a2w_ctrl_reg) &
637		     ~A2W_PLL_CTRL_PWRDN);
638
639	/* Take the PLL out of reset. */
640	spin_lock(&cprman->regs_lock);
641	cprman_write(cprman, data->cm_ctrl_reg,
642		     cprman_read(cprman, data->cm_ctrl_reg) & ~CM_PLL_ANARST);
643	spin_unlock(&cprman->regs_lock);
644
645	/* Wait for the PLL to lock. */
646	timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
647	while (!(cprman_read(cprman, CM_LOCK) & data->lock_mask)) {
648		if (ktime_after(ktime_get(), timeout)) {
649			dev_err(cprman->dev, "%s: couldn't lock PLL\n",
650				clk_hw_get_name(hw));
651			return -ETIMEDOUT;
652		}
653
654		cpu_relax();
655	}
656
657	cprman_write(cprman, data->a2w_ctrl_reg,
658		     cprman_read(cprman, data->a2w_ctrl_reg) |
659		     A2W_PLL_CTRL_PRST_DISABLE);
660
661	return 0;
662}
663
664static void
665bcm2835_pll_write_ana(struct bcm2835_cprman *cprman, u32 ana_reg_base, u32 *ana)
666{
667	int i;
668
669	/*
670	 * ANA register setup is done as a series of writes to
671	 * ANA3-ANA0, in that order.  This lets us write all 4
672	 * registers as a single cycle of the serdes interface (taking
673	 * 100 xosc clocks), whereas if we were to update ana0, 1, and
674	 * 3 individually through their partial-write registers, each
675	 * would be their own serdes cycle.
676	 */
677	for (i = 3; i >= 0; i--)
678		cprman_write(cprman, ana_reg_base + i * 4, ana[i]);
679}
680
681static int bcm2835_pll_set_rate(struct clk_hw *hw,
682				unsigned long rate, unsigned long parent_rate)
683{
684	struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
685	struct bcm2835_cprman *cprman = pll->cprman;
686	const struct bcm2835_pll_data *data = pll->data;
687	u32 prediv_mask = bcm2835_pll_get_prediv_mask(cprman, data);
688	bool was_using_prediv, use_fb_prediv, do_ana_setup_first;
689	u32 ndiv, fdiv, a2w_ctl;
690	u32 ana[4];
691	int i;
692
693	if (rate > data->max_fb_rate) {
694		use_fb_prediv = true;
695		rate /= 2;
696	} else {
697		use_fb_prediv = false;
698	}
699
700	bcm2835_pll_choose_ndiv_and_fdiv(rate, parent_rate, &ndiv, &fdiv);
701
702	for (i = 3; i >= 0; i--)
703		ana[i] = cprman_read(cprman, data->ana_reg_base + i * 4);
704
705	was_using_prediv = ana[1] & prediv_mask;
706
707	ana[0] &= ~data->ana->mask0;
708	ana[0] |= data->ana->set0;
709	ana[1] &= ~data->ana->mask1;
710	ana[1] |= data->ana->set1;
711	ana[3] &= ~data->ana->mask3;
712	ana[3] |= data->ana->set3;
713
714	if (was_using_prediv && !use_fb_prediv) {
715		ana[1] &= ~prediv_mask;
716		do_ana_setup_first = true;
717	} else if (!was_using_prediv && use_fb_prediv) {
718		ana[1] |= prediv_mask;
719		do_ana_setup_first = false;
720	} else {
721		do_ana_setup_first = true;
722	}
723
724	/* Unmask the reference clock from the oscillator. */
725	spin_lock(&cprman->regs_lock);
726	cprman_write(cprman, A2W_XOSC_CTRL,
727		     cprman_read(cprman, A2W_XOSC_CTRL) |
728		     data->reference_enable_mask);
729	spin_unlock(&cprman->regs_lock);
730
731	if (do_ana_setup_first)
732		bcm2835_pll_write_ana(cprman, data->ana_reg_base, ana);
733
734	/* Set the PLL multiplier from the oscillator. */
735	cprman_write(cprman, data->frac_reg, fdiv);
736
737	a2w_ctl = cprman_read(cprman, data->a2w_ctrl_reg);
738	a2w_ctl &= ~A2W_PLL_CTRL_NDIV_MASK;
739	a2w_ctl |= ndiv << A2W_PLL_CTRL_NDIV_SHIFT;
740	a2w_ctl &= ~A2W_PLL_CTRL_PDIV_MASK;
741	a2w_ctl |= 1 << A2W_PLL_CTRL_PDIV_SHIFT;
742	cprman_write(cprman, data->a2w_ctrl_reg, a2w_ctl);
743
744	if (!do_ana_setup_first)
745		bcm2835_pll_write_ana(cprman, data->ana_reg_base, ana);
746
747	return 0;
748}
749
750static void bcm2835_pll_debug_init(struct clk_hw *hw,
751				  struct dentry *dentry)
752{
753	struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
754	struct bcm2835_cprman *cprman = pll->cprman;
755	const struct bcm2835_pll_data *data = pll->data;
756	struct debugfs_reg32 *regs;
757
758	regs = devm_kcalloc(cprman->dev, 7, sizeof(*regs), GFP_KERNEL);
759	if (!regs)
760		return;
761
762	regs[0].name = "cm_ctrl";
763	regs[0].offset = data->cm_ctrl_reg;
764	regs[1].name = "a2w_ctrl";
765	regs[1].offset = data->a2w_ctrl_reg;
766	regs[2].name = "frac";
767	regs[2].offset = data->frac_reg;
768	regs[3].name = "ana0";
769	regs[3].offset = data->ana_reg_base + 0 * 4;
770	regs[4].name = "ana1";
771	regs[4].offset = data->ana_reg_base + 1 * 4;
772	regs[5].name = "ana2";
773	regs[5].offset = data->ana_reg_base + 2 * 4;
774	regs[6].name = "ana3";
775	regs[6].offset = data->ana_reg_base + 3 * 4;
776
777	bcm2835_debugfs_regset(cprman, 0, regs, 7, dentry);
778}
779
780static const struct clk_ops bcm2835_pll_clk_ops = {
781	.is_prepared = bcm2835_pll_is_on,
782	.prepare = bcm2835_pll_on,
783	.unprepare = bcm2835_pll_off,
784	.recalc_rate = bcm2835_pll_get_rate,
785	.set_rate = bcm2835_pll_set_rate,
786	.round_rate = bcm2835_pll_round_rate,
787	.debug_init = bcm2835_pll_debug_init,
788};
789
790struct bcm2835_pll_divider {
791	struct clk_divider div;
792	struct bcm2835_cprman *cprman;
793	const struct bcm2835_pll_divider_data *data;
794};
795
796static struct bcm2835_pll_divider *
797bcm2835_pll_divider_from_hw(struct clk_hw *hw)
798{
799	return container_of(hw, struct bcm2835_pll_divider, div.hw);
800}
801
802static int bcm2835_pll_divider_is_on(struct clk_hw *hw)
803{
804	struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
805	struct bcm2835_cprman *cprman = divider->cprman;
806	const struct bcm2835_pll_divider_data *data = divider->data;
807
808	return !(cprman_read(cprman, data->a2w_reg) & A2W_PLL_CHANNEL_DISABLE);
809}
810
811static int bcm2835_pll_divider_determine_rate(struct clk_hw *hw,
812					      struct clk_rate_request *req)
813{
814	return clk_divider_ops.determine_rate(hw, req);
815}
816
817static unsigned long bcm2835_pll_divider_get_rate(struct clk_hw *hw,
818						  unsigned long parent_rate)
819{
820	return clk_divider_ops.recalc_rate(hw, parent_rate);
821}
822
823static void bcm2835_pll_divider_off(struct clk_hw *hw)
824{
825	struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
826	struct bcm2835_cprman *cprman = divider->cprman;
827	const struct bcm2835_pll_divider_data *data = divider->data;
828
829	spin_lock(&cprman->regs_lock);
830	cprman_write(cprman, data->cm_reg,
831		     (cprman_read(cprman, data->cm_reg) &
832		      ~data->load_mask) | data->hold_mask);
833	cprman_write(cprman, data->a2w_reg,
834		     cprman_read(cprman, data->a2w_reg) |
835		     A2W_PLL_CHANNEL_DISABLE);
836	spin_unlock(&cprman->regs_lock);
837}
838
839static int bcm2835_pll_divider_on(struct clk_hw *hw)
840{
841	struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
842	struct bcm2835_cprman *cprman = divider->cprman;
843	const struct bcm2835_pll_divider_data *data = divider->data;
844
845	spin_lock(&cprman->regs_lock);
846	cprman_write(cprman, data->a2w_reg,
847		     cprman_read(cprman, data->a2w_reg) &
848		     ~A2W_PLL_CHANNEL_DISABLE);
849
850	cprman_write(cprman, data->cm_reg,
851		     cprman_read(cprman, data->cm_reg) & ~data->hold_mask);
852	spin_unlock(&cprman->regs_lock);
853
854	return 0;
855}
856
857static int bcm2835_pll_divider_set_rate(struct clk_hw *hw,
858					unsigned long rate,
859					unsigned long parent_rate)
860{
861	struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
862	struct bcm2835_cprman *cprman = divider->cprman;
863	const struct bcm2835_pll_divider_data *data = divider->data;
864	u32 cm, div, max_div = 1 << A2W_PLL_DIV_BITS;
865
866	div = DIV_ROUND_UP_ULL(parent_rate, rate);
867
868	div = min(div, max_div);
869	if (div == max_div)
870		div = 0;
871
872	cprman_write(cprman, data->a2w_reg, div);
873	cm = cprman_read(cprman, data->cm_reg);
874	cprman_write(cprman, data->cm_reg, cm | data->load_mask);
875	cprman_write(cprman, data->cm_reg, cm & ~data->load_mask);
876
877	return 0;
878}
879
880static void bcm2835_pll_divider_debug_init(struct clk_hw *hw,
881					   struct dentry *dentry)
882{
883	struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
884	struct bcm2835_cprman *cprman = divider->cprman;
885	const struct bcm2835_pll_divider_data *data = divider->data;
886	struct debugfs_reg32 *regs;
887
888	regs = devm_kcalloc(cprman->dev, 7, sizeof(*regs), GFP_KERNEL);
889	if (!regs)
890		return;
891
892	regs[0].name = "cm";
893	regs[0].offset = data->cm_reg;
894	regs[1].name = "a2w";
895	regs[1].offset = data->a2w_reg;
896
897	bcm2835_debugfs_regset(cprman, 0, regs, 2, dentry);
898}
899
900static const struct clk_ops bcm2835_pll_divider_clk_ops = {
901	.is_prepared = bcm2835_pll_divider_is_on,
902	.prepare = bcm2835_pll_divider_on,
903	.unprepare = bcm2835_pll_divider_off,
904	.recalc_rate = bcm2835_pll_divider_get_rate,
905	.set_rate = bcm2835_pll_divider_set_rate,
906	.determine_rate = bcm2835_pll_divider_determine_rate,
907	.debug_init = bcm2835_pll_divider_debug_init,
908};
909
910/*
911 * The CM dividers do fixed-point division, so we can't use the
912 * generic integer divider code like the PLL dividers do (and we can't
913 * fake it by having some fixed shifts preceding it in the clock tree,
914 * because we'd run out of bits in a 32-bit unsigned long).
915 */
916struct bcm2835_clock {
917	struct clk_hw hw;
918	struct bcm2835_cprman *cprman;
919	const struct bcm2835_clock_data *data;
920};
921
922static struct bcm2835_clock *bcm2835_clock_from_hw(struct clk_hw *hw)
923{
924	return container_of(hw, struct bcm2835_clock, hw);
925}
926
927static int bcm2835_clock_is_on(struct clk_hw *hw)
928{
929	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
930	struct bcm2835_cprman *cprman = clock->cprman;
931	const struct bcm2835_clock_data *data = clock->data;
932
933	return (cprman_read(cprman, data->ctl_reg) & CM_ENABLE) != 0;
934}
935
936static u32 bcm2835_clock_choose_div(struct clk_hw *hw,
937				    unsigned long rate,
938				    unsigned long parent_rate)
939{
940	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
941	const struct bcm2835_clock_data *data = clock->data;
942	u32 unused_frac_mask =
943		GENMASK(CM_DIV_FRAC_BITS - data->frac_bits, 0) >> 1;
944	u64 temp = (u64)parent_rate << CM_DIV_FRAC_BITS;
945	u32 div, mindiv, maxdiv;
946
947	do_div(temp, rate);
948	div = temp;
949	div &= ~unused_frac_mask;
950
951	/* different clamping limits apply for a mash clock */
952	if (data->is_mash_clock) {
953		/* clamp to min divider of 2 */
954		mindiv = 2 << CM_DIV_FRAC_BITS;
955		/* clamp to the highest possible integer divider */
956		maxdiv = (BIT(data->int_bits) - 1) << CM_DIV_FRAC_BITS;
957	} else {
958		/* clamp to min divider of 1 */
959		mindiv = 1 << CM_DIV_FRAC_BITS;
960		/* clamp to the highest possible fractional divider */
961		maxdiv = GENMASK(data->int_bits + CM_DIV_FRAC_BITS - 1,
962				 CM_DIV_FRAC_BITS - data->frac_bits);
963	}
964
965	/* apply the clamping  limits */
966	div = max_t(u32, div, mindiv);
967	div = min_t(u32, div, maxdiv);
968
969	return div;
970}
971
972static unsigned long bcm2835_clock_rate_from_divisor(struct bcm2835_clock *clock,
973						     unsigned long parent_rate,
974						     u32 div)
975{
976	const struct bcm2835_clock_data *data = clock->data;
977	u64 temp;
978
979	if (data->int_bits == 0 && data->frac_bits == 0)
980		return parent_rate;
981
982	/*
983	 * The divisor is a 12.12 fixed point field, but only some of
984	 * the bits are populated in any given clock.
985	 */
986	div >>= CM_DIV_FRAC_BITS - data->frac_bits;
987	div &= (1 << (data->int_bits + data->frac_bits)) - 1;
988
989	if (div == 0)
990		return 0;
991
992	temp = (u64)parent_rate << data->frac_bits;
993
994	do_div(temp, div);
995
996	return temp;
997}
998
999static unsigned long bcm2835_round_rate(unsigned long rate)
1000{
1001	unsigned long scaler;
1002	unsigned long limit;
1003
1004	limit = rate / 100000;
1005
1006	scaler = 1;
1007	while (scaler < limit)
1008		scaler *= 10;
1009
1010	/*
1011	 * If increasing a clock by less than 0.1% changes it
1012	 * from ..999.. to ..000.., round up.
1013	 */
1014	if ((rate + scaler - 1) / scaler % 1000 == 0)
1015		rate = roundup(rate, scaler);
1016
1017	return rate;
1018}
1019
1020static unsigned long bcm2835_clock_get_rate(struct clk_hw *hw,
1021					    unsigned long parent_rate)
1022{
1023	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1024	struct bcm2835_cprman *cprman = clock->cprman;
1025	const struct bcm2835_clock_data *data = clock->data;
1026	unsigned long rate;
1027	u32 div;
1028
1029	if (data->int_bits == 0 && data->frac_bits == 0)
1030		return parent_rate;
1031
1032	div = cprman_read(cprman, data->div_reg);
1033
1034	rate = bcm2835_clock_rate_from_divisor(clock, parent_rate, div);
1035
1036	if (data->round_up)
1037		rate = bcm2835_round_rate(rate);
1038
1039	return rate;
1040}
1041
1042static void bcm2835_clock_wait_busy(struct bcm2835_clock *clock)
1043{
1044	struct bcm2835_cprman *cprman = clock->cprman;
1045	const struct bcm2835_clock_data *data = clock->data;
1046	ktime_t timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
1047
1048	while (cprman_read(cprman, data->ctl_reg) & CM_BUSY) {
1049		if (ktime_after(ktime_get(), timeout)) {
1050			dev_err(cprman->dev, "%s: couldn't lock PLL\n",
1051				clk_hw_get_name(&clock->hw));
1052			return;
1053		}
1054		cpu_relax();
1055	}
1056}
1057
1058static void bcm2835_clock_off(struct clk_hw *hw)
1059{
1060	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1061	struct bcm2835_cprman *cprman = clock->cprman;
1062	const struct bcm2835_clock_data *data = clock->data;
1063
1064	spin_lock(&cprman->regs_lock);
1065	cprman_write(cprman, data->ctl_reg,
1066		     cprman_read(cprman, data->ctl_reg) & ~CM_ENABLE);
1067	spin_unlock(&cprman->regs_lock);
1068
1069	/* BUSY will remain high until the divider completes its cycle. */
1070	bcm2835_clock_wait_busy(clock);
1071}
1072
1073static int bcm2835_clock_on(struct clk_hw *hw)
1074{
1075	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1076	struct bcm2835_cprman *cprman = clock->cprman;
1077	const struct bcm2835_clock_data *data = clock->data;
1078
1079	spin_lock(&cprman->regs_lock);
1080	cprman_write(cprman, data->ctl_reg,
1081		     cprman_read(cprman, data->ctl_reg) |
1082		     CM_ENABLE |
1083		     CM_GATE);
1084	spin_unlock(&cprman->regs_lock);
1085
1086	/* Debug code to measure the clock once it's turned on to see
1087	 * if it's ticking at the rate we expect.
1088	 */
1089	if (data->tcnt_mux && false) {
1090		dev_info(cprman->dev,
1091			 "clk %s: rate %ld, measure %ld\n",
1092			 data->name,
1093			 clk_hw_get_rate(hw),
1094			 bcm2835_measure_tcnt_mux(cprman, data->tcnt_mux));
1095	}
1096
1097	return 0;
1098}
1099
1100static int bcm2835_clock_set_rate(struct clk_hw *hw,
1101				  unsigned long rate, unsigned long parent_rate)
1102{
1103	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1104	struct bcm2835_cprman *cprman = clock->cprman;
1105	const struct bcm2835_clock_data *data = clock->data;
1106	u32 div = bcm2835_clock_choose_div(hw, rate, parent_rate);
1107	u32 ctl;
1108
1109	spin_lock(&cprman->regs_lock);
1110
1111	/*
1112	 * Setting up frac support
1113	 *
1114	 * In principle it is recommended to stop/start the clock first,
1115	 * but as we set CLK_SET_RATE_GATE during registration of the
1116	 * clock this requirement should be take care of by the
1117	 * clk-framework.
1118	 */
1119	ctl = cprman_read(cprman, data->ctl_reg) & ~CM_FRAC;
1120	ctl |= (div & CM_DIV_FRAC_MASK) ? CM_FRAC : 0;
1121	cprman_write(cprman, data->ctl_reg, ctl);
1122
1123	cprman_write(cprman, data->div_reg, div);
1124
1125	spin_unlock(&cprman->regs_lock);
1126
1127	return 0;
1128}
1129
1130static bool
1131bcm2835_clk_is_pllc(struct clk_hw *hw)
1132{
1133	if (!hw)
1134		return false;
1135
1136	return strncmp(clk_hw_get_name(hw), "pllc", 4) == 0;
1137}
1138
1139static unsigned long bcm2835_clock_choose_div_and_prate(struct clk_hw *hw,
1140							int parent_idx,
1141							unsigned long rate,
1142							u32 *div,
1143							unsigned long *prate,
1144							unsigned long *avgrate)
1145{
1146	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1147	struct bcm2835_cprman *cprman = clock->cprman;
1148	const struct bcm2835_clock_data *data = clock->data;
1149	unsigned long best_rate = 0;
1150	u32 curdiv, mindiv, maxdiv;
1151	struct clk_hw *parent;
1152
1153	parent = clk_hw_get_parent_by_index(hw, parent_idx);
1154
1155	if (!(BIT(parent_idx) & data->set_rate_parent)) {
1156		*prate = clk_hw_get_rate(parent);
1157		*div = bcm2835_clock_choose_div(hw, rate, *prate);
1158
1159		*avgrate = bcm2835_clock_rate_from_divisor(clock, *prate, *div);
1160
1161		if (data->low_jitter && (*div & CM_DIV_FRAC_MASK)) {
1162			unsigned long high, low;
1163			u32 int_div = *div & ~CM_DIV_FRAC_MASK;
1164
1165			high = bcm2835_clock_rate_from_divisor(clock, *prate,
1166							       int_div);
1167			int_div += CM_DIV_FRAC_MASK + 1;
1168			low = bcm2835_clock_rate_from_divisor(clock, *prate,
1169							      int_div);
1170
1171			/*
1172			 * Return a value which is the maximum deviation
1173			 * below the ideal rate, for use as a metric.
1174			 */
1175			return *avgrate - max(*avgrate - low, high - *avgrate);
1176		}
1177		return *avgrate;
1178	}
1179
1180	if (data->frac_bits)
1181		dev_warn(cprman->dev,
1182			"frac bits are not used when propagating rate change");
1183
1184	/* clamp to min divider of 2 if we're dealing with a mash clock */
1185	mindiv = data->is_mash_clock ? 2 : 1;
1186	maxdiv = BIT(data->int_bits) - 1;
1187
1188	/* TODO: Be smart, and only test a subset of the available divisors. */
1189	for (curdiv = mindiv; curdiv <= maxdiv; curdiv++) {
1190		unsigned long tmp_rate;
1191
1192		tmp_rate = clk_hw_round_rate(parent, rate * curdiv);
1193		tmp_rate /= curdiv;
1194		if (curdiv == mindiv ||
1195		    (tmp_rate > best_rate && tmp_rate <= rate))
1196			best_rate = tmp_rate;
1197
1198		if (best_rate == rate)
1199			break;
1200	}
1201
1202	*div = curdiv << CM_DIV_FRAC_BITS;
1203	*prate = curdiv * best_rate;
1204	*avgrate = best_rate;
1205
1206	return best_rate;
1207}
1208
1209static int bcm2835_clock_determine_rate(struct clk_hw *hw,
1210					struct clk_rate_request *req)
1211{
1212	struct clk_hw *parent, *best_parent = NULL;
1213	bool current_parent_is_pllc;
1214	unsigned long rate, best_rate = 0;
1215	unsigned long prate, best_prate = 0;
1216	unsigned long avgrate, best_avgrate = 0;
1217	size_t i;
1218	u32 div;
1219
1220	current_parent_is_pllc = bcm2835_clk_is_pllc(clk_hw_get_parent(hw));
1221
1222	/*
1223	 * Select parent clock that results in the closest but lower rate
1224	 */
1225	for (i = 0; i < clk_hw_get_num_parents(hw); ++i) {
1226		parent = clk_hw_get_parent_by_index(hw, i);
1227		if (!parent)
1228			continue;
1229
1230		/*
1231		 * Don't choose a PLLC-derived clock as our parent
1232		 * unless it had been manually set that way.  PLLC's
1233		 * frequency gets adjusted by the firmware due to
1234		 * over-temp or under-voltage conditions, without
1235		 * prior notification to our clock consumer.
1236		 */
1237		if (bcm2835_clk_is_pllc(parent) && !current_parent_is_pllc)
1238			continue;
1239
1240		rate = bcm2835_clock_choose_div_and_prate(hw, i, req->rate,
1241							  &div, &prate,
1242							  &avgrate);
1243		if (abs(req->rate - rate) < abs(req->rate - best_rate)) {
1244			best_parent = parent;
1245			best_prate = prate;
1246			best_rate = rate;
1247			best_avgrate = avgrate;
1248		}
1249	}
1250
1251	if (!best_parent)
1252		return -EINVAL;
1253
1254	req->best_parent_hw = best_parent;
1255	req->best_parent_rate = best_prate;
1256
1257	req->rate = best_avgrate;
1258
1259	return 0;
1260}
1261
1262static int bcm2835_clock_set_parent(struct clk_hw *hw, u8 index)
1263{
1264	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1265	struct bcm2835_cprman *cprman = clock->cprman;
1266	const struct bcm2835_clock_data *data = clock->data;
1267	u8 src = (index << CM_SRC_SHIFT) & CM_SRC_MASK;
1268
1269	cprman_write(cprman, data->ctl_reg, src);
1270	return 0;
1271}
1272
1273static u8 bcm2835_clock_get_parent(struct clk_hw *hw)
1274{
1275	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1276	struct bcm2835_cprman *cprman = clock->cprman;
1277	const struct bcm2835_clock_data *data = clock->data;
1278	u32 src = cprman_read(cprman, data->ctl_reg);
1279
1280	return (src & CM_SRC_MASK) >> CM_SRC_SHIFT;
1281}
1282
1283static const struct debugfs_reg32 bcm2835_debugfs_clock_reg32[] = {
1284	{
1285		.name = "ctl",
1286		.offset = 0,
1287	},
1288	{
1289		.name = "div",
1290		.offset = 4,
1291	},
1292};
1293
1294static void bcm2835_clock_debug_init(struct clk_hw *hw,
1295				    struct dentry *dentry)
1296{
1297	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1298	struct bcm2835_cprman *cprman = clock->cprman;
1299	const struct bcm2835_clock_data *data = clock->data;
1300
1301	bcm2835_debugfs_regset(cprman, data->ctl_reg,
1302		bcm2835_debugfs_clock_reg32,
1303		ARRAY_SIZE(bcm2835_debugfs_clock_reg32),
1304		dentry);
1305}
1306
1307static const struct clk_ops bcm2835_clock_clk_ops = {
1308	.is_prepared = bcm2835_clock_is_on,
1309	.prepare = bcm2835_clock_on,
1310	.unprepare = bcm2835_clock_off,
1311	.recalc_rate = bcm2835_clock_get_rate,
1312	.set_rate = bcm2835_clock_set_rate,
1313	.determine_rate = bcm2835_clock_determine_rate,
1314	.set_parent = bcm2835_clock_set_parent,
1315	.get_parent = bcm2835_clock_get_parent,
1316	.debug_init = bcm2835_clock_debug_init,
1317};
1318
1319static int bcm2835_vpu_clock_is_on(struct clk_hw *hw)
1320{
1321	return true;
1322}
1323
1324/*
1325 * The VPU clock can never be disabled (it doesn't have an ENABLE
1326 * bit), so it gets its own set of clock ops.
1327 */
1328static const struct clk_ops bcm2835_vpu_clock_clk_ops = {
1329	.is_prepared = bcm2835_vpu_clock_is_on,
1330	.recalc_rate = bcm2835_clock_get_rate,
1331	.set_rate = bcm2835_clock_set_rate,
1332	.determine_rate = bcm2835_clock_determine_rate,
1333	.set_parent = bcm2835_clock_set_parent,
1334	.get_parent = bcm2835_clock_get_parent,
1335	.debug_init = bcm2835_clock_debug_init,
1336};
1337
1338static struct clk_hw *bcm2835_register_pll(struct bcm2835_cprman *cprman,
1339					   const void *data)
1340{
1341	const struct bcm2835_pll_data *pll_data = data;
1342	struct bcm2835_pll *pll;
1343	struct clk_init_data init;
1344	int ret;
1345
1346	memset(&init, 0, sizeof(init));
1347
1348	/* All of the PLLs derive from the external oscillator. */
1349	init.parent_names = &cprman->real_parent_names[0];
1350	init.num_parents = 1;
1351	init.name = pll_data->name;
1352	init.ops = &bcm2835_pll_clk_ops;
1353	init.flags = pll_data->flags | CLK_IGNORE_UNUSED;
1354
1355	pll = kzalloc(sizeof(*pll), GFP_KERNEL);
1356	if (!pll)
1357		return NULL;
1358
1359	pll->cprman = cprman;
1360	pll->data = pll_data;
1361	pll->hw.init = &init;
1362
1363	ret = devm_clk_hw_register(cprman->dev, &pll->hw);
1364	if (ret) {
1365		kfree(pll);
1366		return NULL;
1367	}
1368	return &pll->hw;
1369}
1370
1371static struct clk_hw *
1372bcm2835_register_pll_divider(struct bcm2835_cprman *cprman,
1373			     const void *data)
1374{
1375	const struct bcm2835_pll_divider_data *divider_data = data;
1376	struct bcm2835_pll_divider *divider;
1377	struct clk_init_data init;
1378	const char *divider_name;
1379	int ret;
1380
1381	if (divider_data->fixed_divider != 1) {
1382		divider_name = devm_kasprintf(cprman->dev, GFP_KERNEL,
1383					      "%s_prediv", divider_data->name);
1384		if (!divider_name)
1385			return NULL;
1386	} else {
1387		divider_name = divider_data->name;
1388	}
1389
1390	memset(&init, 0, sizeof(init));
1391
1392	init.parent_names = &divider_data->source_pll;
1393	init.num_parents = 1;
1394	init.name = divider_name;
1395	init.ops = &bcm2835_pll_divider_clk_ops;
1396	init.flags = divider_data->flags | CLK_IGNORE_UNUSED;
1397
1398	divider = devm_kzalloc(cprman->dev, sizeof(*divider), GFP_KERNEL);
1399	if (!divider)
1400		return NULL;
1401
1402	divider->div.reg = cprman->regs + divider_data->a2w_reg;
1403	divider->div.shift = A2W_PLL_DIV_SHIFT;
1404	divider->div.width = A2W_PLL_DIV_BITS;
1405	divider->div.flags = CLK_DIVIDER_MAX_AT_ZERO;
1406	divider->div.lock = &cprman->regs_lock;
1407	divider->div.hw.init = &init;
1408	divider->div.table = NULL;
1409
1410	divider->cprman = cprman;
1411	divider->data = divider_data;
1412
1413	ret = devm_clk_hw_register(cprman->dev, &divider->div.hw);
1414	if (ret)
1415		return ERR_PTR(ret);
1416
1417	/*
1418	 * PLLH's channels have a fixed divide by 10 afterwards, which
1419	 * is what our consumers are actually using.
1420	 */
1421	if (divider_data->fixed_divider != 1) {
1422		return clk_hw_register_fixed_factor(cprman->dev,
1423						    divider_data->name,
1424						    divider_name,
1425						    CLK_SET_RATE_PARENT,
1426						    1,
1427						    divider_data->fixed_divider);
1428	}
1429
1430	return &divider->div.hw;
1431}
1432
1433static struct clk_hw *bcm2835_register_clock(struct bcm2835_cprman *cprman,
1434					     const void *data)
1435{
1436	const struct bcm2835_clock_data *clock_data = data;
1437	struct bcm2835_clock *clock;
1438	struct clk_init_data init;
1439	const char *parents[1 << CM_SRC_BITS];
1440	size_t i;
1441	int ret;
1442
1443	/*
1444	 * Replace our strings referencing parent clocks with the
1445	 * actual clock-output-name of the parent.
1446	 */
1447	for (i = 0; i < clock_data->num_mux_parents; i++) {
1448		parents[i] = clock_data->parents[i];
1449
1450		ret = match_string(cprman_parent_names,
1451				   ARRAY_SIZE(cprman_parent_names),
1452				   parents[i]);
1453		if (ret >= 0)
1454			parents[i] = cprman->real_parent_names[ret];
1455	}
1456
1457	memset(&init, 0, sizeof(init));
1458	init.parent_names = parents;
1459	init.num_parents = clock_data->num_mux_parents;
1460	init.name = clock_data->name;
1461	init.flags = clock_data->flags | CLK_IGNORE_UNUSED;
1462
1463	/*
1464	 * Pass the CLK_SET_RATE_PARENT flag if we are allowed to propagate
1465	 * rate changes on at least of the parents.
1466	 */
1467	if (clock_data->set_rate_parent)
1468		init.flags |= CLK_SET_RATE_PARENT;
1469
1470	if (clock_data->is_vpu_clock) {
1471		init.ops = &bcm2835_vpu_clock_clk_ops;
1472	} else {
1473		init.ops = &bcm2835_clock_clk_ops;
1474		init.flags |= CLK_SET_RATE_GATE | CLK_SET_PARENT_GATE;
1475
1476		/* If the clock wasn't actually enabled at boot, it's not
1477		 * critical.
1478		 */
1479		if (!(cprman_read(cprman, clock_data->ctl_reg) & CM_ENABLE))
1480			init.flags &= ~CLK_IS_CRITICAL;
1481	}
1482
1483	clock = devm_kzalloc(cprman->dev, sizeof(*clock), GFP_KERNEL);
1484	if (!clock)
1485		return NULL;
1486
1487	clock->cprman = cprman;
1488	clock->data = clock_data;
1489	clock->hw.init = &init;
1490
1491	ret = devm_clk_hw_register(cprman->dev, &clock->hw);
1492	if (ret)
1493		return ERR_PTR(ret);
1494	return &clock->hw;
1495}
1496
1497static struct clk_hw *bcm2835_register_gate(struct bcm2835_cprman *cprman,
1498					    const void *data)
1499{
1500	const struct bcm2835_gate_data *gate_data = data;
1501
1502	return clk_hw_register_gate(cprman->dev, gate_data->name,
1503				    gate_data->parent,
1504				    CLK_IGNORE_UNUSED | CLK_SET_RATE_GATE,
1505				    cprman->regs + gate_data->ctl_reg,
1506				    CM_GATE_BIT, 0, &cprman->regs_lock);
1507}
1508
1509struct bcm2835_clk_desc {
1510	struct clk_hw *(*clk_register)(struct bcm2835_cprman *cprman,
1511				       const void *data);
1512	unsigned int supported;
1513	const void *data;
1514};
1515
1516/* assignment helper macros for different clock types */
1517#define _REGISTER(f, s, ...) { .clk_register = f, \
1518			       .supported = s,				\
1519			       .data = __VA_ARGS__ }
1520#define REGISTER_PLL(s, ...)	_REGISTER(&bcm2835_register_pll,	\
1521					  s,				\
1522					  &(struct bcm2835_pll_data)	\
1523					  {__VA_ARGS__})
1524#define REGISTER_PLL_DIV(s, ...) _REGISTER(&bcm2835_register_pll_divider, \
1525					   s,				  \
1526					   &(struct bcm2835_pll_divider_data) \
1527					   {__VA_ARGS__})
1528#define REGISTER_CLK(s, ...)	_REGISTER(&bcm2835_register_clock,	\
1529					  s,				\
1530					  &(struct bcm2835_clock_data)	\
1531					  {__VA_ARGS__})
1532#define REGISTER_GATE(s, ...)	_REGISTER(&bcm2835_register_gate,	\
1533					  s,				\
1534					  &(struct bcm2835_gate_data)	\
1535					  {__VA_ARGS__})
1536
1537/* parent mux arrays plus helper macros */
1538
1539/* main oscillator parent mux */
1540static const char *const bcm2835_clock_osc_parents[] = {
1541	"gnd",
1542	"xosc",
1543	"testdebug0",
1544	"testdebug1"
1545};
1546
1547#define REGISTER_OSC_CLK(s, ...)	REGISTER_CLK(			\
1548	s,								\
1549	.num_mux_parents = ARRAY_SIZE(bcm2835_clock_osc_parents),	\
1550	.parents = bcm2835_clock_osc_parents,				\
1551	__VA_ARGS__)
1552
1553/* main peripherial parent mux */
1554static const char *const bcm2835_clock_per_parents[] = {
1555	"gnd",
1556	"xosc",
1557	"testdebug0",
1558	"testdebug1",
1559	"plla_per",
1560	"pllc_per",
1561	"plld_per",
1562	"pllh_aux",
1563};
1564
1565#define REGISTER_PER_CLK(s, ...)	REGISTER_CLK(			\
1566	s,								\
1567	.num_mux_parents = ARRAY_SIZE(bcm2835_clock_per_parents),	\
1568	.parents = bcm2835_clock_per_parents,				\
1569	__VA_ARGS__)
1570
1571/*
1572 * Restrict clock sources for the PCM peripheral to the oscillator and
1573 * PLLD_PER because other source may have varying rates or be switched
1574 * off.
1575 *
1576 * Prevent other sources from being selected by replacing their names in
1577 * the list of potential parents with dummy entries (entry index is
1578 * significant).
1579 */
1580static const char *const bcm2835_pcm_per_parents[] = {
1581	"-",
1582	"xosc",
1583	"-",
1584	"-",
1585	"-",
1586	"-",
1587	"plld_per",
1588	"-",
1589};
1590
1591#define REGISTER_PCM_CLK(s, ...)	REGISTER_CLK(			\
1592	s,								\
1593	.num_mux_parents = ARRAY_SIZE(bcm2835_pcm_per_parents),		\
1594	.parents = bcm2835_pcm_per_parents,				\
1595	__VA_ARGS__)
1596
1597/* main vpu parent mux */
1598static const char *const bcm2835_clock_vpu_parents[] = {
1599	"gnd",
1600	"xosc",
1601	"testdebug0",
1602	"testdebug1",
1603	"plla_core",
1604	"pllc_core0",
1605	"plld_core",
1606	"pllh_aux",
1607	"pllc_core1",
1608	"pllc_core2",
1609};
1610
1611#define REGISTER_VPU_CLK(s, ...)	REGISTER_CLK(			\
1612	s,								\
1613	.num_mux_parents = ARRAY_SIZE(bcm2835_clock_vpu_parents),	\
1614	.parents = bcm2835_clock_vpu_parents,				\
1615	__VA_ARGS__)
1616
1617/*
1618 * DSI parent clocks.  The DSI byte/DDR/DDR2 clocks come from the DSI
1619 * analog PHY.  The _inv variants are generated internally to cprman,
1620 * but we don't use them so they aren't hooked up.
1621 */
1622static const char *const bcm2835_clock_dsi0_parents[] = {
1623	"gnd",
1624	"xosc",
1625	"testdebug0",
1626	"testdebug1",
1627	"dsi0_ddr",
1628	"dsi0_ddr_inv",
1629	"dsi0_ddr2",
1630	"dsi0_ddr2_inv",
1631	"dsi0_byte",
1632	"dsi0_byte_inv",
1633};
1634
1635static const char *const bcm2835_clock_dsi1_parents[] = {
1636	"gnd",
1637	"xosc",
1638	"testdebug0",
1639	"testdebug1",
1640	"dsi1_ddr",
1641	"dsi1_ddr_inv",
1642	"dsi1_ddr2",
1643	"dsi1_ddr2_inv",
1644	"dsi1_byte",
1645	"dsi1_byte_inv",
1646};
1647
1648#define REGISTER_DSI0_CLK(s, ...)	REGISTER_CLK(			\
1649	s,								\
1650	.num_mux_parents = ARRAY_SIZE(bcm2835_clock_dsi0_parents),	\
1651	.parents = bcm2835_clock_dsi0_parents,				\
1652	__VA_ARGS__)
1653
1654#define REGISTER_DSI1_CLK(s, ...)	REGISTER_CLK(			\
1655	s,								\
1656	.num_mux_parents = ARRAY_SIZE(bcm2835_clock_dsi1_parents),	\
1657	.parents = bcm2835_clock_dsi1_parents,				\
1658	__VA_ARGS__)
1659
1660/*
1661 * the real definition of all the pll, pll_dividers and clocks
1662 * these make use of the above REGISTER_* macros
1663 */
1664static const struct bcm2835_clk_desc clk_desc_array[] = {
1665	/* the PLL + PLL dividers */
1666
1667	/*
1668	 * PLLA is the auxiliary PLL, used to drive the CCP2
1669	 * (Compact Camera Port 2) transmitter clock.
1670	 *
1671	 * It is in the PX LDO power domain, which is on when the
1672	 * AUDIO domain is on.
1673	 */
1674	[BCM2835_PLLA]		= REGISTER_PLL(
1675		SOC_ALL,
1676		.name = "plla",
1677		.cm_ctrl_reg = CM_PLLA,
1678		.a2w_ctrl_reg = A2W_PLLA_CTRL,
1679		.frac_reg = A2W_PLLA_FRAC,
1680		.ana_reg_base = A2W_PLLA_ANA0,
1681		.reference_enable_mask = A2W_XOSC_CTRL_PLLA_ENABLE,
1682		.lock_mask = CM_LOCK_FLOCKA,
1683
1684		.ana = &bcm2835_ana_default,
1685
1686		.min_rate = 600000000u,
1687		.max_rate = 2400000000u,
1688		.max_fb_rate = BCM2835_MAX_FB_RATE),
1689	[BCM2835_PLLA_CORE]	= REGISTER_PLL_DIV(
1690		SOC_ALL,
1691		.name = "plla_core",
1692		.source_pll = "plla",
1693		.cm_reg = CM_PLLA,
1694		.a2w_reg = A2W_PLLA_CORE,
1695		.load_mask = CM_PLLA_LOADCORE,
1696		.hold_mask = CM_PLLA_HOLDCORE,
1697		.fixed_divider = 1,
1698		.flags = CLK_SET_RATE_PARENT),
1699	[BCM2835_PLLA_PER]	= REGISTER_PLL_DIV(
1700		SOC_ALL,
1701		.name = "plla_per",
1702		.source_pll = "plla",
1703		.cm_reg = CM_PLLA,
1704		.a2w_reg = A2W_PLLA_PER,
1705		.load_mask = CM_PLLA_LOADPER,
1706		.hold_mask = CM_PLLA_HOLDPER,
1707		.fixed_divider = 1,
1708		.flags = CLK_SET_RATE_PARENT),
1709	[BCM2835_PLLA_DSI0]	= REGISTER_PLL_DIV(
1710		SOC_ALL,
1711		.name = "plla_dsi0",
1712		.source_pll = "plla",
1713		.cm_reg = CM_PLLA,
1714		.a2w_reg = A2W_PLLA_DSI0,
1715		.load_mask = CM_PLLA_LOADDSI0,
1716		.hold_mask = CM_PLLA_HOLDDSI0,
1717		.fixed_divider = 1),
1718	[BCM2835_PLLA_CCP2]	= REGISTER_PLL_DIV(
1719		SOC_ALL,
1720		.name = "plla_ccp2",
1721		.source_pll = "plla",
1722		.cm_reg = CM_PLLA,
1723		.a2w_reg = A2W_PLLA_CCP2,
1724		.load_mask = CM_PLLA_LOADCCP2,
1725		.hold_mask = CM_PLLA_HOLDCCP2,
1726		.fixed_divider = 1,
1727		.flags = CLK_SET_RATE_PARENT),
1728
1729	/* PLLB is used for the ARM's clock. */
1730	[BCM2835_PLLB]		= REGISTER_PLL(
1731		SOC_ALL,
1732		.name = "pllb",
1733		.cm_ctrl_reg = CM_PLLB,
1734		.a2w_ctrl_reg = A2W_PLLB_CTRL,
1735		.frac_reg = A2W_PLLB_FRAC,
1736		.ana_reg_base = A2W_PLLB_ANA0,
1737		.reference_enable_mask = A2W_XOSC_CTRL_PLLB_ENABLE,
1738		.lock_mask = CM_LOCK_FLOCKB,
1739
1740		.ana = &bcm2835_ana_default,
1741
1742		.min_rate = 600000000u,
1743		.max_rate = 3000000000u,
1744		.max_fb_rate = BCM2835_MAX_FB_RATE,
1745		.flags = CLK_GET_RATE_NOCACHE),
1746	[BCM2835_PLLB_ARM]	= REGISTER_PLL_DIV(
1747		SOC_ALL,
1748		.name = "pllb_arm",
1749		.source_pll = "pllb",
1750		.cm_reg = CM_PLLB,
1751		.a2w_reg = A2W_PLLB_ARM,
1752		.load_mask = CM_PLLB_LOADARM,
1753		.hold_mask = CM_PLLB_HOLDARM,
1754		.fixed_divider = 1,
1755		.flags = CLK_SET_RATE_PARENT | CLK_GET_RATE_NOCACHE),
1756
1757	/*
1758	 * PLLC is the core PLL, used to drive the core VPU clock.
1759	 *
1760	 * It is in the PX LDO power domain, which is on when the
1761	 * AUDIO domain is on.
1762	 */
1763	[BCM2835_PLLC]		= REGISTER_PLL(
1764		SOC_ALL,
1765		.name = "pllc",
1766		.cm_ctrl_reg = CM_PLLC,
1767		.a2w_ctrl_reg = A2W_PLLC_CTRL,
1768		.frac_reg = A2W_PLLC_FRAC,
1769		.ana_reg_base = A2W_PLLC_ANA0,
1770		.reference_enable_mask = A2W_XOSC_CTRL_PLLC_ENABLE,
1771		.lock_mask = CM_LOCK_FLOCKC,
1772
1773		.ana = &bcm2835_ana_default,
1774
1775		.min_rate = 600000000u,
1776		.max_rate = 3000000000u,
1777		.max_fb_rate = BCM2835_MAX_FB_RATE),
1778	[BCM2835_PLLC_CORE0]	= REGISTER_PLL_DIV(
1779		SOC_ALL,
1780		.name = "pllc_core0",
1781		.source_pll = "pllc",
1782		.cm_reg = CM_PLLC,
1783		.a2w_reg = A2W_PLLC_CORE0,
1784		.load_mask = CM_PLLC_LOADCORE0,
1785		.hold_mask = CM_PLLC_HOLDCORE0,
1786		.fixed_divider = 1,
1787		.flags = CLK_SET_RATE_PARENT),
1788	[BCM2835_PLLC_CORE1]	= REGISTER_PLL_DIV(
1789		SOC_ALL,
1790		.name = "pllc_core1",
1791		.source_pll = "pllc",
1792		.cm_reg = CM_PLLC,
1793		.a2w_reg = A2W_PLLC_CORE1,
1794		.load_mask = CM_PLLC_LOADCORE1,
1795		.hold_mask = CM_PLLC_HOLDCORE1,
1796		.fixed_divider = 1,
1797		.flags = CLK_SET_RATE_PARENT),
1798	[BCM2835_PLLC_CORE2]	= REGISTER_PLL_DIV(
1799		SOC_ALL,
1800		.name = "pllc_core2",
1801		.source_pll = "pllc",
1802		.cm_reg = CM_PLLC,
1803		.a2w_reg = A2W_PLLC_CORE2,
1804		.load_mask = CM_PLLC_LOADCORE2,
1805		.hold_mask = CM_PLLC_HOLDCORE2,
1806		.fixed_divider = 1,
1807		.flags = CLK_SET_RATE_PARENT),
1808	[BCM2835_PLLC_PER]	= REGISTER_PLL_DIV(
1809		SOC_ALL,
1810		.name = "pllc_per",
1811		.source_pll = "pllc",
1812		.cm_reg = CM_PLLC,
1813		.a2w_reg = A2W_PLLC_PER,
1814		.load_mask = CM_PLLC_LOADPER,
1815		.hold_mask = CM_PLLC_HOLDPER,
1816		.fixed_divider = 1,
1817		.flags = CLK_IS_CRITICAL | CLK_SET_RATE_PARENT),
1818
1819	/*
1820	 * PLLD is the display PLL, used to drive DSI display panels.
1821	 *
1822	 * It is in the PX LDO power domain, which is on when the
1823	 * AUDIO domain is on.
1824	 */
1825	[BCM2835_PLLD]		= REGISTER_PLL(
1826		SOC_ALL,
1827		.name = "plld",
1828		.cm_ctrl_reg = CM_PLLD,
1829		.a2w_ctrl_reg = A2W_PLLD_CTRL,
1830		.frac_reg = A2W_PLLD_FRAC,
1831		.ana_reg_base = A2W_PLLD_ANA0,
1832		.reference_enable_mask = A2W_XOSC_CTRL_DDR_ENABLE,
1833		.lock_mask = CM_LOCK_FLOCKD,
1834
1835		.ana = &bcm2835_ana_default,
1836
1837		.min_rate = 600000000u,
1838		.max_rate = 2400000000u,
1839		.max_fb_rate = BCM2835_MAX_FB_RATE),
1840	[BCM2835_PLLD_CORE]	= REGISTER_PLL_DIV(
1841		SOC_ALL,
1842		.name = "plld_core",
1843		.source_pll = "plld",
1844		.cm_reg = CM_PLLD,
1845		.a2w_reg = A2W_PLLD_CORE,
1846		.load_mask = CM_PLLD_LOADCORE,
1847		.hold_mask = CM_PLLD_HOLDCORE,
1848		.fixed_divider = 1,
1849		.flags = CLK_SET_RATE_PARENT),
1850	/*
1851	 * VPU firmware assumes that PLLD_PER isn't disabled by the ARM core.
1852	 * Otherwise this could cause firmware lookups. That's why we mark
1853	 * it as critical.
1854	 */
1855	[BCM2835_PLLD_PER]	= REGISTER_PLL_DIV(
1856		SOC_ALL,
1857		.name = "plld_per",
1858		.source_pll = "plld",
1859		.cm_reg = CM_PLLD,
1860		.a2w_reg = A2W_PLLD_PER,
1861		.load_mask = CM_PLLD_LOADPER,
1862		.hold_mask = CM_PLLD_HOLDPER,
1863		.fixed_divider = 1,
1864		.flags = CLK_IS_CRITICAL | CLK_SET_RATE_PARENT),
1865	[BCM2835_PLLD_DSI0]	= REGISTER_PLL_DIV(
1866		SOC_ALL,
1867		.name = "plld_dsi0",
1868		.source_pll = "plld",
1869		.cm_reg = CM_PLLD,
1870		.a2w_reg = A2W_PLLD_DSI0,
1871		.load_mask = CM_PLLD_LOADDSI0,
1872		.hold_mask = CM_PLLD_HOLDDSI0,
1873		.fixed_divider = 1),
1874	[BCM2835_PLLD_DSI1]	= REGISTER_PLL_DIV(
1875		SOC_ALL,
1876		.name = "plld_dsi1",
1877		.source_pll = "plld",
1878		.cm_reg = CM_PLLD,
1879		.a2w_reg = A2W_PLLD_DSI1,
1880		.load_mask = CM_PLLD_LOADDSI1,
1881		.hold_mask = CM_PLLD_HOLDDSI1,
1882		.fixed_divider = 1),
1883
1884	/*
1885	 * PLLH is used to supply the pixel clock or the AUX clock for the
1886	 * TV encoder.
1887	 *
1888	 * It is in the HDMI power domain.
1889	 */
1890	[BCM2835_PLLH]		= REGISTER_PLL(
1891		SOC_BCM2835,
1892		"pllh",
1893		.cm_ctrl_reg = CM_PLLH,
1894		.a2w_ctrl_reg = A2W_PLLH_CTRL,
1895		.frac_reg = A2W_PLLH_FRAC,
1896		.ana_reg_base = A2W_PLLH_ANA0,
1897		.reference_enable_mask = A2W_XOSC_CTRL_PLLC_ENABLE,
1898		.lock_mask = CM_LOCK_FLOCKH,
1899
1900		.ana = &bcm2835_ana_pllh,
1901
1902		.min_rate = 600000000u,
1903		.max_rate = 3000000000u,
1904		.max_fb_rate = BCM2835_MAX_FB_RATE),
1905	[BCM2835_PLLH_RCAL]	= REGISTER_PLL_DIV(
1906		SOC_BCM2835,
1907		.name = "pllh_rcal",
1908		.source_pll = "pllh",
1909		.cm_reg = CM_PLLH,
1910		.a2w_reg = A2W_PLLH_RCAL,
1911		.load_mask = CM_PLLH_LOADRCAL,
1912		.hold_mask = 0,
1913		.fixed_divider = 10,
1914		.flags = CLK_SET_RATE_PARENT),
1915	[BCM2835_PLLH_AUX]	= REGISTER_PLL_DIV(
1916		SOC_BCM2835,
1917		.name = "pllh_aux",
1918		.source_pll = "pllh",
1919		.cm_reg = CM_PLLH,
1920		.a2w_reg = A2W_PLLH_AUX,
1921		.load_mask = CM_PLLH_LOADAUX,
1922		.hold_mask = 0,
1923		.fixed_divider = 1,
1924		.flags = CLK_SET_RATE_PARENT),
1925	[BCM2835_PLLH_PIX]	= REGISTER_PLL_DIV(
1926		SOC_BCM2835,
1927		.name = "pllh_pix",
1928		.source_pll = "pllh",
1929		.cm_reg = CM_PLLH,
1930		.a2w_reg = A2W_PLLH_PIX,
1931		.load_mask = CM_PLLH_LOADPIX,
1932		.hold_mask = 0,
1933		.fixed_divider = 10,
1934		.flags = CLK_SET_RATE_PARENT),
1935
1936	/* the clocks */
1937
1938	/* clocks with oscillator parent mux */
1939
1940	/* One Time Programmable Memory clock.  Maximum 10Mhz. */
1941	[BCM2835_CLOCK_OTP]	= REGISTER_OSC_CLK(
1942		SOC_ALL,
1943		.name = "otp",
1944		.ctl_reg = CM_OTPCTL,
1945		.div_reg = CM_OTPDIV,
1946		.int_bits = 4,
1947		.frac_bits = 0,
1948		.tcnt_mux = 6),
1949	/*
1950	 * Used for a 1Mhz clock for the system clocksource, and also used
1951	 * bythe watchdog timer and the camera pulse generator.
1952	 */
1953	[BCM2835_CLOCK_TIMER]	= REGISTER_OSC_CLK(
1954		SOC_ALL,
1955		.name = "timer",
1956		.ctl_reg = CM_TIMERCTL,
1957		.div_reg = CM_TIMERDIV,
1958		.int_bits = 6,
1959		.frac_bits = 12),
1960	/*
1961	 * Clock for the temperature sensor.
1962	 * Generally run at 2Mhz, max 5Mhz.
1963	 */
1964	[BCM2835_CLOCK_TSENS]	= REGISTER_OSC_CLK(
1965		SOC_ALL,
1966		.name = "tsens",
1967		.ctl_reg = CM_TSENSCTL,
1968		.div_reg = CM_TSENSDIV,
1969		.int_bits = 5,
1970		.frac_bits = 0),
1971	[BCM2835_CLOCK_TEC]	= REGISTER_OSC_CLK(
1972		SOC_ALL,
1973		.name = "tec",
1974		.ctl_reg = CM_TECCTL,
1975		.div_reg = CM_TECDIV,
1976		.int_bits = 6,
1977		.frac_bits = 0),
1978
1979	/* clocks with vpu parent mux */
1980	[BCM2835_CLOCK_H264]	= REGISTER_VPU_CLK(
1981		SOC_ALL,
1982		.name = "h264",
1983		.ctl_reg = CM_H264CTL,
1984		.div_reg = CM_H264DIV,
1985		.int_bits = 4,
1986		.frac_bits = 8,
1987		.tcnt_mux = 1),
1988	[BCM2835_CLOCK_ISP]	= REGISTER_VPU_CLK(
1989		SOC_ALL,
1990		.name = "isp",
1991		.ctl_reg = CM_ISPCTL,
1992		.div_reg = CM_ISPDIV,
1993		.int_bits = 4,
1994		.frac_bits = 8,
1995		.tcnt_mux = 2),
1996
1997	/*
1998	 * Secondary SDRAM clock.  Used for low-voltage modes when the PLL
1999	 * in the SDRAM controller can't be used.
2000	 */
2001	[BCM2835_CLOCK_SDRAM]	= REGISTER_VPU_CLK(
2002		SOC_ALL,
2003		.name = "sdram",
2004		.ctl_reg = CM_SDCCTL,
2005		.div_reg = CM_SDCDIV,
2006		.int_bits = 6,
2007		.frac_bits = 0,
2008		.tcnt_mux = 3),
2009	[BCM2835_CLOCK_V3D]	= REGISTER_VPU_CLK(
2010		SOC_ALL,
2011		.name = "v3d",
2012		.ctl_reg = CM_V3DCTL,
2013		.div_reg = CM_V3DDIV,
2014		.int_bits = 4,
2015		.frac_bits = 8,
2016		.tcnt_mux = 4),
2017	/*
2018	 * VPU clock.  This doesn't have an enable bit, since it drives
2019	 * the bus for everything else, and is special so it doesn't need
2020	 * to be gated for rate changes.  It is also known as "clk_audio"
2021	 * in various hardware documentation.
2022	 */
2023	[BCM2835_CLOCK_VPU]	= REGISTER_VPU_CLK(
2024		SOC_ALL,
2025		.name = "vpu",
2026		.ctl_reg = CM_VPUCTL,
2027		.div_reg = CM_VPUDIV,
2028		.int_bits = 12,
2029		.frac_bits = 8,
2030		.flags = CLK_IS_CRITICAL,
2031		.is_vpu_clock = true,
2032		.tcnt_mux = 5),
2033
2034	/* clocks with per parent mux */
2035	[BCM2835_CLOCK_AVEO]	= REGISTER_PER_CLK(
2036		SOC_ALL,
2037		.name = "aveo",
2038		.ctl_reg = CM_AVEOCTL,
2039		.div_reg = CM_AVEODIV,
2040		.int_bits = 4,
2041		.frac_bits = 0,
2042		.tcnt_mux = 38),
2043	[BCM2835_CLOCK_CAM0]	= REGISTER_PER_CLK(
2044		SOC_ALL,
2045		.name = "cam0",
2046		.ctl_reg = CM_CAM0CTL,
2047		.div_reg = CM_CAM0DIV,
2048		.int_bits = 4,
2049		.frac_bits = 8,
2050		.tcnt_mux = 14),
2051	[BCM2835_CLOCK_CAM1]	= REGISTER_PER_CLK(
2052		SOC_ALL,
2053		.name = "cam1",
2054		.ctl_reg = CM_CAM1CTL,
2055		.div_reg = CM_CAM1DIV,
2056		.int_bits = 4,
2057		.frac_bits = 8,
2058		.tcnt_mux = 15),
2059	[BCM2835_CLOCK_DFT]	= REGISTER_PER_CLK(
2060		SOC_ALL,
2061		.name = "dft",
2062		.ctl_reg = CM_DFTCTL,
2063		.div_reg = CM_DFTDIV,
2064		.int_bits = 5,
2065		.frac_bits = 0),
2066	[BCM2835_CLOCK_DPI]	= REGISTER_PER_CLK(
2067		SOC_ALL,
2068		.name = "dpi",
2069		.ctl_reg = CM_DPICTL,
2070		.div_reg = CM_DPIDIV,
2071		.int_bits = 4,
2072		.frac_bits = 8,
2073		.tcnt_mux = 17),
2074
2075	/* Arasan EMMC clock */
2076	[BCM2835_CLOCK_EMMC]	= REGISTER_PER_CLK(
2077		SOC_ALL,
2078		.name = "emmc",
2079		.ctl_reg = CM_EMMCCTL,
2080		.div_reg = CM_EMMCDIV,
2081		.int_bits = 4,
2082		.frac_bits = 8,
2083		.tcnt_mux = 39),
2084
2085	/* EMMC2 clock (only available for BCM2711) */
2086	[BCM2711_CLOCK_EMMC2]	= REGISTER_PER_CLK(
2087		SOC_BCM2711,
2088		.name = "emmc2",
2089		.ctl_reg = CM_EMMC2CTL,
2090		.div_reg = CM_EMMC2DIV,
2091		.int_bits = 4,
2092		.frac_bits = 8,
2093		.tcnt_mux = 42),
2094
2095	/* General purpose (GPIO) clocks */
2096	[BCM2835_CLOCK_GP0]	= REGISTER_PER_CLK(
2097		SOC_ALL,
2098		.name = "gp0",
2099		.ctl_reg = CM_GP0CTL,
2100		.div_reg = CM_GP0DIV,
2101		.int_bits = 12,
2102		.frac_bits = 12,
2103		.is_mash_clock = true,
2104		.tcnt_mux = 20),
2105	[BCM2835_CLOCK_GP1]	= REGISTER_PER_CLK(
2106		SOC_ALL,
2107		.name = "gp1",
2108		.ctl_reg = CM_GP1CTL,
2109		.div_reg = CM_GP1DIV,
2110		.int_bits = 12,
2111		.frac_bits = 12,
2112		.flags = CLK_IS_CRITICAL,
2113		.is_mash_clock = true,
2114		.tcnt_mux = 21),
2115	[BCM2835_CLOCK_GP2]	= REGISTER_PER_CLK(
2116		SOC_ALL,
2117		.name = "gp2",
2118		.ctl_reg = CM_GP2CTL,
2119		.div_reg = CM_GP2DIV,
2120		.int_bits = 12,
2121		.frac_bits = 12,
2122		.flags = CLK_IS_CRITICAL),
2123
2124	/* HDMI state machine */
2125	[BCM2835_CLOCK_HSM]	= REGISTER_PER_CLK(
2126		SOC_ALL,
2127		.name = "hsm",
2128		.ctl_reg = CM_HSMCTL,
2129		.div_reg = CM_HSMDIV,
2130		.int_bits = 4,
2131		.frac_bits = 8,
2132		.tcnt_mux = 22),
2133	[BCM2835_CLOCK_PCM]	= REGISTER_PCM_CLK(
2134		SOC_ALL,
2135		.name = "pcm",
2136		.ctl_reg = CM_PCMCTL,
2137		.div_reg = CM_PCMDIV,
2138		.int_bits = 12,
2139		.frac_bits = 12,
2140		.is_mash_clock = true,
2141		.low_jitter = true,
2142		.tcnt_mux = 23),
2143	[BCM2835_CLOCK_PWM]	= REGISTER_PER_CLK(
2144		SOC_ALL,
2145		.name = "pwm",
2146		.ctl_reg = CM_PWMCTL,
2147		.div_reg = CM_PWMDIV,
2148		.int_bits = 12,
2149		.frac_bits = 12,
2150		.is_mash_clock = true,
2151		.tcnt_mux = 24),
2152	[BCM2835_CLOCK_SLIM]	= REGISTER_PER_CLK(
2153		SOC_ALL,
2154		.name = "slim",
2155		.ctl_reg = CM_SLIMCTL,
2156		.div_reg = CM_SLIMDIV,
2157		.int_bits = 12,
2158		.frac_bits = 12,
2159		.is_mash_clock = true,
2160		.tcnt_mux = 25),
2161	[BCM2835_CLOCK_SMI]	= REGISTER_PER_CLK(
2162		SOC_ALL,
2163		.name = "smi",
2164		.ctl_reg = CM_SMICTL,
2165		.div_reg = CM_SMIDIV,
2166		.int_bits = 4,
2167		.frac_bits = 8,
2168		.tcnt_mux = 27),
2169	[BCM2835_CLOCK_UART]	= REGISTER_PER_CLK(
2170		SOC_ALL,
2171		.name = "uart",
2172		.ctl_reg = CM_UARTCTL,
2173		.div_reg = CM_UARTDIV,
2174		.int_bits = 10,
2175		.frac_bits = 12,
2176		.tcnt_mux = 28,
2177		.round_up = true),
2178
2179	/* TV encoder clock.  Only operating frequency is 108Mhz.  */
2180	[BCM2835_CLOCK_VEC]	= REGISTER_PER_CLK(
2181		SOC_ALL,
2182		.name = "vec",
2183		.ctl_reg = CM_VECCTL,
2184		.div_reg = CM_VECDIV,
2185		.int_bits = 4,
2186		.frac_bits = 0,
2187		/*
2188		 * Allow rate change propagation only on PLLH_AUX which is
2189		 * assigned index 7 in the parent array.
2190		 */
2191		.set_rate_parent = BIT(7),
2192		.tcnt_mux = 29),
2193
2194	/* dsi clocks */
2195	[BCM2835_CLOCK_DSI0E]	= REGISTER_PER_CLK(
2196		SOC_ALL,
2197		.name = "dsi0e",
2198		.ctl_reg = CM_DSI0ECTL,
2199		.div_reg = CM_DSI0EDIV,
2200		.int_bits = 4,
2201		.frac_bits = 8,
2202		.tcnt_mux = 18),
2203	[BCM2835_CLOCK_DSI1E]	= REGISTER_PER_CLK(
2204		SOC_ALL,
2205		.name = "dsi1e",
2206		.ctl_reg = CM_DSI1ECTL,
2207		.div_reg = CM_DSI1EDIV,
2208		.int_bits = 4,
2209		.frac_bits = 8,
2210		.tcnt_mux = 19),
2211	[BCM2835_CLOCK_DSI0P]	= REGISTER_DSI0_CLK(
2212		SOC_ALL,
2213		.name = "dsi0p",
2214		.ctl_reg = CM_DSI0PCTL,
2215		.div_reg = CM_DSI0PDIV,
2216		.int_bits = 0,
2217		.frac_bits = 0,
2218		.tcnt_mux = 12),
2219	[BCM2835_CLOCK_DSI1P]	= REGISTER_DSI1_CLK(
2220		SOC_ALL,
2221		.name = "dsi1p",
2222		.ctl_reg = CM_DSI1PCTL,
2223		.div_reg = CM_DSI1PDIV,
2224		.int_bits = 0,
2225		.frac_bits = 0,
2226		.tcnt_mux = 13),
2227
2228	/* the gates */
2229
2230	/*
2231	 * CM_PERIICTL (and CM_PERIACTL, CM_SYSCTL and CM_VPUCTL if
2232	 * you have the debug bit set in the power manager, which we
2233	 * don't bother exposing) are individual gates off of the
2234	 * non-stop vpu clock.
2235	 */
2236	[BCM2835_CLOCK_PERI_IMAGE] = REGISTER_GATE(
2237		SOC_ALL,
2238		.name = "peri_image",
2239		.parent = "vpu",
2240		.ctl_reg = CM_PERIICTL),
2241};
2242
2243/*
2244 * Permanently take a reference on the parent of the SDRAM clock.
2245 *
2246 * While the SDRAM is being driven by its dedicated PLL most of the
2247 * time, there is a little loop running in the firmware that
2248 * periodically switches the SDRAM to using our CM clock to do PVT
2249 * recalibration, with the assumption that the previously configured
2250 * SDRAM parent is still enabled and running.
2251 */
2252static int bcm2835_mark_sdc_parent_critical(struct clk *sdc)
2253{
2254	struct clk *parent = clk_get_parent(sdc);
2255
2256	if (IS_ERR(parent))
2257		return PTR_ERR(parent);
2258
2259	return clk_prepare_enable(parent);
2260}
2261
2262static int bcm2835_clk_probe(struct platform_device *pdev)
2263{
2264	struct device *dev = &pdev->dev;
2265	struct clk_hw **hws;
2266	struct bcm2835_cprman *cprman;
2267	const struct bcm2835_clk_desc *desc;
2268	const size_t asize = ARRAY_SIZE(clk_desc_array);
2269	const struct cprman_plat_data *pdata;
2270	size_t i;
2271	int ret;
2272
2273	pdata = of_device_get_match_data(&pdev->dev);
2274	if (!pdata)
2275		return -ENODEV;
2276
2277	cprman = devm_kzalloc(dev,
2278			      struct_size(cprman, onecell.hws, asize),
2279			      GFP_KERNEL);
2280	if (!cprman)
2281		return -ENOMEM;
2282
2283	spin_lock_init(&cprman->regs_lock);
2284	cprman->dev = dev;
2285	cprman->regs = devm_platform_ioremap_resource(pdev, 0);
2286	if (IS_ERR(cprman->regs))
2287		return PTR_ERR(cprman->regs);
2288
2289	memcpy(cprman->real_parent_names, cprman_parent_names,
2290	       sizeof(cprman_parent_names));
2291	of_clk_parent_fill(dev->of_node, cprman->real_parent_names,
2292			   ARRAY_SIZE(cprman_parent_names));
2293
2294	/*
2295	 * Make sure the external oscillator has been registered.
2296	 *
2297	 * The other (DSI) clocks are not present on older device
2298	 * trees, which we still need to support for backwards
2299	 * compatibility.
2300	 */
2301	if (!cprman->real_parent_names[0])
2302		return -ENODEV;
2303
2304	platform_set_drvdata(pdev, cprman);
2305
2306	cprman->onecell.num = asize;
2307	cprman->soc = pdata->soc;
2308	hws = cprman->onecell.hws;
2309
2310	for (i = 0; i < asize; i++) {
2311		desc = &clk_desc_array[i];
2312		if (desc->clk_register && desc->data &&
2313		    (desc->supported & pdata->soc)) {
2314			hws[i] = desc->clk_register(cprman, desc->data);
2315		}
2316	}
2317
2318	ret = bcm2835_mark_sdc_parent_critical(hws[BCM2835_CLOCK_SDRAM]->clk);
2319	if (ret)
2320		return ret;
2321
2322	return of_clk_add_hw_provider(dev->of_node, of_clk_hw_onecell_get,
2323				      &cprman->onecell);
2324}
2325
2326static const struct cprman_plat_data cprman_bcm2835_plat_data = {
2327	.soc = SOC_BCM2835,
2328};
2329
2330static const struct cprman_plat_data cprman_bcm2711_plat_data = {
2331	.soc = SOC_BCM2711,
2332};
2333
2334static const struct of_device_id bcm2835_clk_of_match[] = {
2335	{ .compatible = "brcm,bcm2835-cprman", .data = &cprman_bcm2835_plat_data },
2336	{ .compatible = "brcm,bcm2711-cprman", .data = &cprman_bcm2711_plat_data },
2337	{}
2338};
2339MODULE_DEVICE_TABLE(of, bcm2835_clk_of_match);
2340
2341static struct platform_driver bcm2835_clk_driver = {
2342	.driver = {
2343		.name = "bcm2835-clk",
2344		.of_match_table = bcm2835_clk_of_match,
2345	},
2346	.probe          = bcm2835_clk_probe,
2347};
2348
2349builtin_platform_driver(bcm2835_clk_driver);
2350
2351MODULE_AUTHOR("Eric Anholt <eric@anholt.net>");
2352MODULE_DESCRIPTION("BCM2835 clock driver");
2353