1// SPDX-License-Identifier: GPL-2.0
2//
3// Register map access API - SPI AVMM support
4//
5// Copyright (C) 2018-2020 Intel Corporation. All rights reserved.
6
7#include <linux/module.h>
8#include <linux/regmap.h>
9#include <linux/spi/spi.h>
10#include <linux/swab.h>
11
12/*
13 * This driver implements the regmap operations for a generic SPI
14 * master to access the registers of the spi slave chip which has an
15 * Avalone bus in it.
16 *
17 * The "SPI slave to Avalon Master Bridge" (spi-avmm) IP should be integrated
18 * in the spi slave chip. The IP acts as a bridge to convert encoded streams of
19 * bytes from the host to the internal register read/write on Avalon bus. In
20 * order to issue register access requests to the slave chip, the host should
21 * send formatted bytes that conform to the transfer protocol.
22 * The transfer protocol contains 3 layers: transaction layer, packet layer
23 * and physical layer.
24 *
25 * Reference Documents could be found at:
26 * https://www.intel.com/content/www/us/en/programmable/documentation/sfo1400787952932.html
27 *
28 * Chapter "SPI Slave/JTAG to Avalon Master Bridge Cores" is a general
29 * introduction to the protocol.
30 *
31 * Chapter "Avalon Packets to Transactions Converter Core" describes
32 * the transaction layer.
33 *
34 * Chapter "Avalon-ST Bytes to Packets and Packets to Bytes Converter Cores"
35 * describes the packet layer.
36 *
37 * Chapter "Avalon-ST Serial Peripheral Interface Core" describes the
38 * physical layer.
39 *
40 *
41 * When host issues a regmap read/write, the driver will transform the request
42 * to byte stream layer by layer. It formats the register addr, value and
43 * length to the transaction layer request, then converts the request to packet
44 * layer bytes stream and then to physical layer bytes stream. Finally the
45 * driver sends the formatted byte stream over SPI bus to the slave chip.
46 *
47 * The spi-avmm IP on the slave chip decodes the byte stream and initiates
48 * register read/write on its internal Avalon bus, and then encodes the
49 * response to byte stream and sends back to host.
50 *
51 * The driver receives the byte stream, reverses the 3 layers transformation,
52 * and finally gets the response value (read out data for register read,
53 * successful written size for register write).
54 */
55
56#define PKT_SOP			0x7a
57#define PKT_EOP			0x7b
58#define PKT_CHANNEL		0x7c
59#define PKT_ESC			0x7d
60
61#define PHY_IDLE		0x4a
62#define PHY_ESC			0x4d
63
64#define TRANS_CODE_WRITE	0x0
65#define TRANS_CODE_SEQ_WRITE	0x4
66#define TRANS_CODE_READ		0x10
67#define TRANS_CODE_SEQ_READ	0x14
68#define TRANS_CODE_NO_TRANS	0x7f
69
70#define SPI_AVMM_XFER_TIMEOUT	(msecs_to_jiffies(200))
71
72/* slave's register addr is 32 bits */
73#define SPI_AVMM_REG_SIZE		4UL
74/* slave's register value is 32 bits */
75#define SPI_AVMM_VAL_SIZE		4UL
76
77/*
78 * max rx size could be larger. But considering the buffer consuming,
79 * it is proper that we limit 1KB xfer at max.
80 */
81#define MAX_READ_CNT		256UL
82#define MAX_WRITE_CNT		1UL
83
84struct trans_req_header {
85	u8 code;
86	u8 rsvd;
87	__be16 size;
88	__be32 addr;
89} __packed;
90
91struct trans_resp_header {
92	u8 r_code;
93	u8 rsvd;
94	__be16 size;
95} __packed;
96
97#define TRANS_REQ_HD_SIZE	(sizeof(struct trans_req_header))
98#define TRANS_RESP_HD_SIZE	(sizeof(struct trans_resp_header))
99
100/*
101 * In transaction layer,
102 * the write request format is: Transaction request header + data
103 * the read request format is: Transaction request header
104 * the write response format is: Transaction response header
105 * the read response format is: pure data, no Transaction response header
106 */
107#define TRANS_WR_TX_SIZE(n)	(TRANS_REQ_HD_SIZE + SPI_AVMM_VAL_SIZE * (n))
108#define TRANS_RD_TX_SIZE	TRANS_REQ_HD_SIZE
109#define TRANS_TX_MAX		TRANS_WR_TX_SIZE(MAX_WRITE_CNT)
110
111#define TRANS_RD_RX_SIZE(n)	(SPI_AVMM_VAL_SIZE * (n))
112#define TRANS_WR_RX_SIZE	TRANS_RESP_HD_SIZE
113#define TRANS_RX_MAX		TRANS_RD_RX_SIZE(MAX_READ_CNT)
114
115/* tx & rx share one transaction layer buffer */
116#define TRANS_BUF_SIZE		((TRANS_TX_MAX > TRANS_RX_MAX) ?	\
117				 TRANS_TX_MAX : TRANS_RX_MAX)
118
119/*
120 * In tx phase, the host prepares all the phy layer bytes of a request in the
121 * phy buffer and sends them in a batch.
122 *
123 * The packet layer and physical layer defines several special chars for
124 * various purpose, when a transaction layer byte hits one of these special
125 * chars, it should be escaped. The escape rule is, "Escape char first,
126 * following the byte XOR'ed with 0x20".
127 *
128 * This macro defines the max possible length of the phy data. In the worst
129 * case, all transaction layer bytes need to be escaped (so the data length
130 * doubles), plus 4 special chars (SOP, CHANNEL, CHANNEL_NUM, EOP). Finally
131 * we should make sure the length is aligned to SPI BPW.
132 */
133#define PHY_TX_MAX		ALIGN(2 * TRANS_TX_MAX + 4, 4)
134
135/*
136 * Unlike tx, phy rx is affected by possible PHY_IDLE bytes from slave, the max
137 * length of the rx bit stream is unpredictable. So the driver reads the words
138 * one by one, and parses each word immediately into transaction layer buffer.
139 * Only one word length of phy buffer is used for rx.
140 */
141#define PHY_BUF_SIZE		PHY_TX_MAX
142
143/**
144 * struct spi_avmm_bridge - SPI slave to AVMM bus master bridge
145 *
146 * @spi: spi slave associated with this bridge.
147 * @word_len: bytes of word for spi transfer.
148 * @trans_len: length of valid data in trans_buf.
149 * @phy_len: length of valid data in phy_buf.
150 * @trans_buf: the bridge buffer for transaction layer data.
151 * @phy_buf: the bridge buffer for physical layer data.
152 * @swap_words: the word swapping cb for phy data. NULL if not needed.
153 *
154 * As a device's registers are implemented on the AVMM bus address space, it
155 * requires the driver to issue formatted requests to spi slave to AVMM bus
156 * master bridge to perform register access.
157 */
158struct spi_avmm_bridge {
159	struct spi_device *spi;
160	unsigned char word_len;
161	unsigned int trans_len;
162	unsigned int phy_len;
163	/* bridge buffer used in translation between protocol layers */
164	char trans_buf[TRANS_BUF_SIZE];
165	char phy_buf[PHY_BUF_SIZE];
166	void (*swap_words)(void *buf, unsigned int len);
167};
168
169static void br_swap_words_32(void *buf, unsigned int len)
170{
171	swab32_array(buf, len / 4);
172}
173
174/*
175 * Format transaction layer data in br->trans_buf according to the register
176 * access request, Store valid transaction layer data length in br->trans_len.
177 */
178static int br_trans_tx_prepare(struct spi_avmm_bridge *br, bool is_read, u32 reg,
179			       u32 *wr_val, u32 count)
180{
181	struct trans_req_header *header;
182	unsigned int trans_len;
183	u8 code;
184	__le32 *data;
185	int i;
186
187	if (is_read) {
188		if (count == 1)
189			code = TRANS_CODE_READ;
190		else
191			code = TRANS_CODE_SEQ_READ;
192	} else {
193		if (count == 1)
194			code = TRANS_CODE_WRITE;
195		else
196			code = TRANS_CODE_SEQ_WRITE;
197	}
198
199	header = (struct trans_req_header *)br->trans_buf;
200	header->code = code;
201	header->rsvd = 0;
202	header->size = cpu_to_be16((u16)count * SPI_AVMM_VAL_SIZE);
203	header->addr = cpu_to_be32(reg);
204
205	trans_len = TRANS_REQ_HD_SIZE;
206
207	if (!is_read) {
208		trans_len += SPI_AVMM_VAL_SIZE * count;
209		if (trans_len > sizeof(br->trans_buf))
210			return -ENOMEM;
211
212		data = (__le32 *)(br->trans_buf + TRANS_REQ_HD_SIZE);
213
214		for (i = 0; i < count; i++)
215			*data++ = cpu_to_le32(*wr_val++);
216	}
217
218	/* Store valid trans data length for next layer */
219	br->trans_len = trans_len;
220
221	return 0;
222}
223
224/*
225 * Convert transaction layer data (in br->trans_buf) to phy layer data, store
226 * them in br->phy_buf. Pad the phy_buf aligned with SPI's BPW. Store valid phy
227 * layer data length in br->phy_len.
228 *
229 * phy_buf len should be aligned with SPI's BPW. Spare bytes should be padded
230 * with PHY_IDLE, then the slave will just drop them.
231 *
232 * The driver will not simply pad 4a at the tail. The concern is that driver
233 * will not store MISO data during tx phase, if the driver pads 4a at the tail,
234 * it is possible that if the slave is fast enough to response at the padding
235 * time. As a result these rx bytes are lost. In the following case, 7a,7c,00
236 * will lost.
237 * MOSI ...|7a|7c|00|10| |00|00|04|02| |4b|7d|5a|7b| |40|4a|4a|4a| |XX|XX|...
238 * MISO ...|4a|4a|4a|4a| |4a|4a|4a|4a| |4a|4a|4a|4a| |4a|7a|7c|00| |78|56|...
239 *
240 * So the driver moves EOP and bytes after EOP to the end of the aligned size,
241 * then fill the hole with PHY_IDLE. As following:
242 * before pad ...|7a|7c|00|10| |00|00|04|02| |4b|7d|5a|7b| |40|
243 * after pad  ...|7a|7c|00|10| |00|00|04|02| |4b|7d|5a|4a| |4a|4a|7b|40|
244 * Then if the slave will not get the entire packet before the tx phase is
245 * over, it can't responsed to anything either.
246 */
247static int br_pkt_phy_tx_prepare(struct spi_avmm_bridge *br)
248{
249	char *tb, *tb_end, *pb, *pb_limit, *pb_eop = NULL;
250	unsigned int aligned_phy_len, move_size;
251	bool need_esc = false;
252
253	tb = br->trans_buf;
254	tb_end = tb + br->trans_len;
255	pb = br->phy_buf;
256	pb_limit = pb + ARRAY_SIZE(br->phy_buf);
257
258	*pb++ = PKT_SOP;
259
260	/*
261	 * The driver doesn't support multiple channels so the channel number
262	 * is always 0.
263	 */
264	*pb++ = PKT_CHANNEL;
265	*pb++ = 0x0;
266
267	for (; pb < pb_limit && tb < tb_end; pb++) {
268		if (need_esc) {
269			*pb = *tb++ ^ 0x20;
270			need_esc = false;
271			continue;
272		}
273
274		/* EOP should be inserted before the last valid char */
275		if (tb == tb_end - 1 && !pb_eop) {
276			*pb = PKT_EOP;
277			pb_eop = pb;
278			continue;
279		}
280
281		/*
282		 * insert an ESCAPE char if the data value equals any special
283		 * char.
284		 */
285		switch (*tb) {
286		case PKT_SOP:
287		case PKT_EOP:
288		case PKT_CHANNEL:
289		case PKT_ESC:
290			*pb = PKT_ESC;
291			need_esc = true;
292			break;
293		case PHY_IDLE:
294		case PHY_ESC:
295			*pb = PHY_ESC;
296			need_esc = true;
297			break;
298		default:
299			*pb = *tb++;
300			break;
301		}
302	}
303
304	/* The phy buffer is used out but transaction layer data remains */
305	if (tb < tb_end)
306		return -ENOMEM;
307
308	/* Store valid phy data length for spi transfer */
309	br->phy_len = pb - br->phy_buf;
310
311	if (br->word_len == 1)
312		return 0;
313
314	/* Do phy buf padding if word_len > 1 byte. */
315	aligned_phy_len = ALIGN(br->phy_len, br->word_len);
316	if (aligned_phy_len > sizeof(br->phy_buf))
317		return -ENOMEM;
318
319	if (aligned_phy_len == br->phy_len)
320		return 0;
321
322	/* move EOP and bytes after EOP to the end of aligned size */
323	move_size = pb - pb_eop;
324	memmove(&br->phy_buf[aligned_phy_len - move_size], pb_eop, move_size);
325
326	/* fill the hole with PHY_IDLEs */
327	memset(pb_eop, PHY_IDLE, aligned_phy_len - br->phy_len);
328
329	/* update the phy data length */
330	br->phy_len = aligned_phy_len;
331
332	return 0;
333}
334
335/*
336 * In tx phase, the slave only returns PHY_IDLE (0x4a). So the driver will
337 * ignore rx in tx phase.
338 */
339static int br_do_tx(struct spi_avmm_bridge *br)
340{
341	/* reorder words for spi transfer */
342	if (br->swap_words)
343		br->swap_words(br->phy_buf, br->phy_len);
344
345	/* send all data in phy_buf  */
346	return spi_write(br->spi, br->phy_buf, br->phy_len);
347}
348
349/*
350 * This function read the rx byte stream from SPI word by word and convert
351 * them to transaction layer data in br->trans_buf. It also stores the length
352 * of rx transaction layer data in br->trans_len
353 *
354 * The slave may send an unknown number of PHY_IDLEs in rx phase, so we cannot
355 * prepare a fixed length buffer to receive all of the rx data in a batch. We
356 * have to read word by word and convert them to transaction layer data at
357 * once.
358 */
359static int br_do_rx_and_pkt_phy_parse(struct spi_avmm_bridge *br)
360{
361	bool eop_found = false, channel_found = false, esc_found = false;
362	bool valid_word = false, last_try = false;
363	struct device *dev = &br->spi->dev;
364	char *pb, *tb_limit, *tb = NULL;
365	unsigned long poll_timeout;
366	int ret, i;
367
368	tb_limit = br->trans_buf + ARRAY_SIZE(br->trans_buf);
369	pb = br->phy_buf;
370	poll_timeout = jiffies + SPI_AVMM_XFER_TIMEOUT;
371	while (tb < tb_limit) {
372		ret = spi_read(br->spi, pb, br->word_len);
373		if (ret)
374			return ret;
375
376		/* reorder the word back */
377		if (br->swap_words)
378			br->swap_words(pb, br->word_len);
379
380		valid_word = false;
381		for (i = 0; i < br->word_len; i++) {
382			/* drop everything before first SOP */
383			if (!tb && pb[i] != PKT_SOP)
384				continue;
385
386			/* drop PHY_IDLE */
387			if (pb[i] == PHY_IDLE)
388				continue;
389
390			valid_word = true;
391
392			/*
393			 * We don't support multiple channels, so error out if
394			 * a non-zero channel number is found.
395			 */
396			if (channel_found) {
397				if (pb[i] != 0) {
398					dev_err(dev, "%s channel num != 0\n",
399						__func__);
400					return -EFAULT;
401				}
402
403				channel_found = false;
404				continue;
405			}
406
407			switch (pb[i]) {
408			case PKT_SOP:
409				/*
410				 * reset the parsing if a second SOP appears.
411				 */
412				tb = br->trans_buf;
413				eop_found = false;
414				channel_found = false;
415				esc_found = false;
416				break;
417			case PKT_EOP:
418				/*
419				 * No special char is expected after ESC char.
420				 * No special char (except ESC & PHY_IDLE) is
421				 * expected after EOP char.
422				 *
423				 * The special chars are all dropped.
424				 */
425				if (esc_found || eop_found)
426					return -EFAULT;
427
428				eop_found = true;
429				break;
430			case PKT_CHANNEL:
431				if (esc_found || eop_found)
432					return -EFAULT;
433
434				channel_found = true;
435				break;
436			case PKT_ESC:
437			case PHY_ESC:
438				if (esc_found)
439					return -EFAULT;
440
441				esc_found = true;
442				break;
443			default:
444				/* Record the normal byte in trans_buf. */
445				if (esc_found) {
446					*tb++ = pb[i] ^ 0x20;
447					esc_found = false;
448				} else {
449					*tb++ = pb[i];
450				}
451
452				/*
453				 * We get the last normal byte after EOP, it is
454				 * time we finish. Normally the function should
455				 * return here.
456				 */
457				if (eop_found) {
458					br->trans_len = tb - br->trans_buf;
459					return 0;
460				}
461			}
462		}
463
464		if (valid_word) {
465			/* update poll timeout when we get valid word */
466			poll_timeout = jiffies + SPI_AVMM_XFER_TIMEOUT;
467			last_try = false;
468		} else {
469			/*
470			 * We timeout when rx keeps invalid for some time. But
471			 * it is possible we are scheduled out for long time
472			 * after a spi_read. So when we are scheduled in, a SW
473			 * timeout happens. But actually HW may have worked fine and
474			 * has been ready long time ago. So we need to do an extra
475			 * read, if we get a valid word then we could continue rx,
476			 * otherwise real a HW issue happens.
477			 */
478			if (last_try)
479				return -ETIMEDOUT;
480
481			if (time_after(jiffies, poll_timeout))
482				last_try = true;
483		}
484	}
485
486	/*
487	 * We have used out all transfer layer buffer but cannot find the end
488	 * of the byte stream.
489	 */
490	dev_err(dev, "%s transfer buffer is full but rx doesn't end\n",
491		__func__);
492
493	return -EFAULT;
494}
495
496/*
497 * For read transactions, the avmm bus will directly return register values
498 * without transaction response header.
499 */
500static int br_rd_trans_rx_parse(struct spi_avmm_bridge *br,
501				u32 *val, unsigned int expected_count)
502{
503	unsigned int i, trans_len = br->trans_len;
504	__le32 *data;
505
506	if (expected_count * SPI_AVMM_VAL_SIZE != trans_len)
507		return -EFAULT;
508
509	data = (__le32 *)br->trans_buf;
510	for (i = 0; i < expected_count; i++)
511		*val++ = le32_to_cpu(*data++);
512
513	return 0;
514}
515
516/*
517 * For write transactions, the slave will return a transaction response
518 * header.
519 */
520static int br_wr_trans_rx_parse(struct spi_avmm_bridge *br,
521				unsigned int expected_count)
522{
523	unsigned int trans_len = br->trans_len;
524	struct trans_resp_header *resp;
525	u8 code;
526	u16 val_len;
527
528	if (trans_len != TRANS_RESP_HD_SIZE)
529		return -EFAULT;
530
531	resp = (struct trans_resp_header *)br->trans_buf;
532
533	code = resp->r_code ^ 0x80;
534	val_len = be16_to_cpu(resp->size);
535	if (!val_len || val_len != expected_count * SPI_AVMM_VAL_SIZE)
536		return -EFAULT;
537
538	/* error out if the trans code doesn't align with the val size */
539	if ((val_len == SPI_AVMM_VAL_SIZE && code != TRANS_CODE_WRITE) ||
540	    (val_len > SPI_AVMM_VAL_SIZE && code != TRANS_CODE_SEQ_WRITE))
541		return -EFAULT;
542
543	return 0;
544}
545
546static int do_reg_access(void *context, bool is_read, unsigned int reg,
547			 unsigned int *value, unsigned int count)
548{
549	struct spi_avmm_bridge *br = context;
550	int ret;
551
552	/* invalidate bridge buffers first */
553	br->trans_len = 0;
554	br->phy_len = 0;
555
556	ret = br_trans_tx_prepare(br, is_read, reg, value, count);
557	if (ret)
558		return ret;
559
560	ret = br_pkt_phy_tx_prepare(br);
561	if (ret)
562		return ret;
563
564	ret = br_do_tx(br);
565	if (ret)
566		return ret;
567
568	ret = br_do_rx_and_pkt_phy_parse(br);
569	if (ret)
570		return ret;
571
572	if (is_read)
573		return br_rd_trans_rx_parse(br, value, count);
574	else
575		return br_wr_trans_rx_parse(br, count);
576}
577
578static int regmap_spi_avmm_gather_write(void *context,
579					const void *reg_buf, size_t reg_len,
580					const void *val_buf, size_t val_len)
581{
582	if (reg_len != SPI_AVMM_REG_SIZE)
583		return -EINVAL;
584
585	if (!IS_ALIGNED(val_len, SPI_AVMM_VAL_SIZE))
586		return -EINVAL;
587
588	return do_reg_access(context, false, *(u32 *)reg_buf, (u32 *)val_buf,
589			     val_len / SPI_AVMM_VAL_SIZE);
590}
591
592static int regmap_spi_avmm_write(void *context, const void *data, size_t bytes)
593{
594	if (bytes < SPI_AVMM_REG_SIZE + SPI_AVMM_VAL_SIZE)
595		return -EINVAL;
596
597	return regmap_spi_avmm_gather_write(context, data, SPI_AVMM_REG_SIZE,
598					    data + SPI_AVMM_REG_SIZE,
599					    bytes - SPI_AVMM_REG_SIZE);
600}
601
602static int regmap_spi_avmm_read(void *context,
603				const void *reg_buf, size_t reg_len,
604				void *val_buf, size_t val_len)
605{
606	if (reg_len != SPI_AVMM_REG_SIZE)
607		return -EINVAL;
608
609	if (!IS_ALIGNED(val_len, SPI_AVMM_VAL_SIZE))
610		return -EINVAL;
611
612	return do_reg_access(context, true, *(u32 *)reg_buf, val_buf,
613			     (val_len / SPI_AVMM_VAL_SIZE));
614}
615
616static struct spi_avmm_bridge *
617spi_avmm_bridge_ctx_gen(struct spi_device *spi)
618{
619	struct spi_avmm_bridge *br;
620
621	if (!spi)
622		return ERR_PTR(-ENODEV);
623
624	/* Only support BPW == 8 or 32 now. Try 32 BPW first. */
625	spi->mode = SPI_MODE_1;
626	spi->bits_per_word = 32;
627	if (spi_setup(spi)) {
628		spi->bits_per_word = 8;
629		if (spi_setup(spi))
630			return ERR_PTR(-EINVAL);
631	}
632
633	br = kzalloc(sizeof(*br), GFP_KERNEL);
634	if (!br)
635		return ERR_PTR(-ENOMEM);
636
637	br->spi = spi;
638	br->word_len = spi->bits_per_word / 8;
639	if (br->word_len == 4) {
640		/*
641		 * The protocol requires little endian byte order but MSB
642		 * first. So driver needs to swap the byte order word by word
643		 * if word length > 1.
644		 */
645		br->swap_words = br_swap_words_32;
646	}
647
648	return br;
649}
650
651static void spi_avmm_bridge_ctx_free(void *context)
652{
653	kfree(context);
654}
655
656static const struct regmap_bus regmap_spi_avmm_bus = {
657	.write = regmap_spi_avmm_write,
658	.gather_write = regmap_spi_avmm_gather_write,
659	.read = regmap_spi_avmm_read,
660	.reg_format_endian_default = REGMAP_ENDIAN_NATIVE,
661	.val_format_endian_default = REGMAP_ENDIAN_NATIVE,
662	.max_raw_read = SPI_AVMM_VAL_SIZE * MAX_READ_CNT,
663	.max_raw_write = SPI_AVMM_VAL_SIZE * MAX_WRITE_CNT,
664	.free_context = spi_avmm_bridge_ctx_free,
665};
666
667struct regmap *__regmap_init_spi_avmm(struct spi_device *spi,
668				      const struct regmap_config *config,
669				      struct lock_class_key *lock_key,
670				      const char *lock_name)
671{
672	struct spi_avmm_bridge *bridge;
673	struct regmap *map;
674
675	bridge = spi_avmm_bridge_ctx_gen(spi);
676	if (IS_ERR(bridge))
677		return ERR_CAST(bridge);
678
679	map = __regmap_init(&spi->dev, &regmap_spi_avmm_bus,
680			    bridge, config, lock_key, lock_name);
681	if (IS_ERR(map)) {
682		spi_avmm_bridge_ctx_free(bridge);
683		return ERR_CAST(map);
684	}
685
686	return map;
687}
688EXPORT_SYMBOL_GPL(__regmap_init_spi_avmm);
689
690struct regmap *__devm_regmap_init_spi_avmm(struct spi_device *spi,
691					   const struct regmap_config *config,
692					   struct lock_class_key *lock_key,
693					   const char *lock_name)
694{
695	struct spi_avmm_bridge *bridge;
696	struct regmap *map;
697
698	bridge = spi_avmm_bridge_ctx_gen(spi);
699	if (IS_ERR(bridge))
700		return ERR_CAST(bridge);
701
702	map = __devm_regmap_init(&spi->dev, &regmap_spi_avmm_bus,
703				 bridge, config, lock_key, lock_name);
704	if (IS_ERR(map)) {
705		spi_avmm_bridge_ctx_free(bridge);
706		return ERR_CAST(map);
707	}
708
709	return map;
710}
711EXPORT_SYMBOL_GPL(__devm_regmap_init_spi_avmm);
712
713MODULE_LICENSE("GPL v2");
714