1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Arch specific cpu topology information
4 *
5 * Copyright (C) 2016, ARM Ltd.
6 * Written by: Juri Lelli, ARM Ltd.
7 */
8
9#include <linux/acpi.h>
10#include <linux/cacheinfo.h>
11#include <linux/cpu.h>
12#include <linux/cpufreq.h>
13#include <linux/device.h>
14#include <linux/of.h>
15#include <linux/slab.h>
16#include <linux/sched/topology.h>
17#include <linux/cpuset.h>
18#include <linux/cpumask.h>
19#include <linux/init.h>
20#include <linux/rcupdate.h>
21#include <linux/sched.h>
22#include <linux/units.h>
23
24#define CREATE_TRACE_POINTS
25#include <trace/events/thermal_pressure.h>
26
27static DEFINE_PER_CPU(struct scale_freq_data __rcu *, sft_data);
28static struct cpumask scale_freq_counters_mask;
29static bool scale_freq_invariant;
30DEFINE_PER_CPU(unsigned long, capacity_freq_ref) = 1;
31EXPORT_PER_CPU_SYMBOL_GPL(capacity_freq_ref);
32
33static bool supports_scale_freq_counters(const struct cpumask *cpus)
34{
35	return cpumask_subset(cpus, &scale_freq_counters_mask);
36}
37
38bool topology_scale_freq_invariant(void)
39{
40	return cpufreq_supports_freq_invariance() ||
41	       supports_scale_freq_counters(cpu_online_mask);
42}
43
44static void update_scale_freq_invariant(bool status)
45{
46	if (scale_freq_invariant == status)
47		return;
48
49	/*
50	 * Task scheduler behavior depends on frequency invariance support,
51	 * either cpufreq or counter driven. If the support status changes as
52	 * a result of counter initialisation and use, retrigger the build of
53	 * scheduling domains to ensure the information is propagated properly.
54	 */
55	if (topology_scale_freq_invariant() == status) {
56		scale_freq_invariant = status;
57		rebuild_sched_domains_energy();
58	}
59}
60
61void topology_set_scale_freq_source(struct scale_freq_data *data,
62				    const struct cpumask *cpus)
63{
64	struct scale_freq_data *sfd;
65	int cpu;
66
67	/*
68	 * Avoid calling rebuild_sched_domains() unnecessarily if FIE is
69	 * supported by cpufreq.
70	 */
71	if (cpumask_empty(&scale_freq_counters_mask))
72		scale_freq_invariant = topology_scale_freq_invariant();
73
74	rcu_read_lock();
75
76	for_each_cpu(cpu, cpus) {
77		sfd = rcu_dereference(*per_cpu_ptr(&sft_data, cpu));
78
79		/* Use ARCH provided counters whenever possible */
80		if (!sfd || sfd->source != SCALE_FREQ_SOURCE_ARCH) {
81			rcu_assign_pointer(per_cpu(sft_data, cpu), data);
82			cpumask_set_cpu(cpu, &scale_freq_counters_mask);
83		}
84	}
85
86	rcu_read_unlock();
87
88	update_scale_freq_invariant(true);
89}
90EXPORT_SYMBOL_GPL(topology_set_scale_freq_source);
91
92void topology_clear_scale_freq_source(enum scale_freq_source source,
93				      const struct cpumask *cpus)
94{
95	struct scale_freq_data *sfd;
96	int cpu;
97
98	rcu_read_lock();
99
100	for_each_cpu(cpu, cpus) {
101		sfd = rcu_dereference(*per_cpu_ptr(&sft_data, cpu));
102
103		if (sfd && sfd->source == source) {
104			rcu_assign_pointer(per_cpu(sft_data, cpu), NULL);
105			cpumask_clear_cpu(cpu, &scale_freq_counters_mask);
106		}
107	}
108
109	rcu_read_unlock();
110
111	/*
112	 * Make sure all references to previous sft_data are dropped to avoid
113	 * use-after-free races.
114	 */
115	synchronize_rcu();
116
117	update_scale_freq_invariant(false);
118}
119EXPORT_SYMBOL_GPL(topology_clear_scale_freq_source);
120
121void topology_scale_freq_tick(void)
122{
123	struct scale_freq_data *sfd = rcu_dereference_sched(*this_cpu_ptr(&sft_data));
124
125	if (sfd)
126		sfd->set_freq_scale();
127}
128
129DEFINE_PER_CPU(unsigned long, arch_freq_scale) = SCHED_CAPACITY_SCALE;
130EXPORT_PER_CPU_SYMBOL_GPL(arch_freq_scale);
131
132void topology_set_freq_scale(const struct cpumask *cpus, unsigned long cur_freq,
133			     unsigned long max_freq)
134{
135	unsigned long scale;
136	int i;
137
138	if (WARN_ON_ONCE(!cur_freq || !max_freq))
139		return;
140
141	/*
142	 * If the use of counters for FIE is enabled, just return as we don't
143	 * want to update the scale factor with information from CPUFREQ.
144	 * Instead the scale factor will be updated from arch_scale_freq_tick.
145	 */
146	if (supports_scale_freq_counters(cpus))
147		return;
148
149	scale = (cur_freq << SCHED_CAPACITY_SHIFT) / max_freq;
150
151	for_each_cpu(i, cpus)
152		per_cpu(arch_freq_scale, i) = scale;
153}
154
155DEFINE_PER_CPU(unsigned long, cpu_scale) = SCHED_CAPACITY_SCALE;
156EXPORT_PER_CPU_SYMBOL_GPL(cpu_scale);
157
158void topology_set_cpu_scale(unsigned int cpu, unsigned long capacity)
159{
160	per_cpu(cpu_scale, cpu) = capacity;
161}
162
163DEFINE_PER_CPU(unsigned long, thermal_pressure);
164
165/**
166 * topology_update_thermal_pressure() - Update thermal pressure for CPUs
167 * @cpus        : The related CPUs for which capacity has been reduced
168 * @capped_freq : The maximum allowed frequency that CPUs can run at
169 *
170 * Update the value of thermal pressure for all @cpus in the mask. The
171 * cpumask should include all (online+offline) affected CPUs, to avoid
172 * operating on stale data when hot-plug is used for some CPUs. The
173 * @capped_freq reflects the currently allowed max CPUs frequency due to
174 * thermal capping. It might be also a boost frequency value, which is bigger
175 * than the internal 'capacity_freq_ref' max frequency. In such case the
176 * pressure value should simply be removed, since this is an indication that
177 * there is no thermal throttling. The @capped_freq must be provided in kHz.
178 */
179void topology_update_thermal_pressure(const struct cpumask *cpus,
180				      unsigned long capped_freq)
181{
182	unsigned long max_capacity, capacity, th_pressure;
183	u32 max_freq;
184	int cpu;
185
186	cpu = cpumask_first(cpus);
187	max_capacity = arch_scale_cpu_capacity(cpu);
188	max_freq = arch_scale_freq_ref(cpu);
189
190	/*
191	 * Handle properly the boost frequencies, which should simply clean
192	 * the thermal pressure value.
193	 */
194	if (max_freq <= capped_freq)
195		capacity = max_capacity;
196	else
197		capacity = mult_frac(max_capacity, capped_freq, max_freq);
198
199	th_pressure = max_capacity - capacity;
200
201	trace_thermal_pressure_update(cpu, th_pressure);
202
203	for_each_cpu(cpu, cpus)
204		WRITE_ONCE(per_cpu(thermal_pressure, cpu), th_pressure);
205}
206EXPORT_SYMBOL_GPL(topology_update_thermal_pressure);
207
208static ssize_t cpu_capacity_show(struct device *dev,
209				 struct device_attribute *attr,
210				 char *buf)
211{
212	struct cpu *cpu = container_of(dev, struct cpu, dev);
213
214	return sysfs_emit(buf, "%lu\n", topology_get_cpu_scale(cpu->dev.id));
215}
216
217static void update_topology_flags_workfn(struct work_struct *work);
218static DECLARE_WORK(update_topology_flags_work, update_topology_flags_workfn);
219
220static DEVICE_ATTR_RO(cpu_capacity);
221
222static int cpu_capacity_sysctl_add(unsigned int cpu)
223{
224	struct device *cpu_dev = get_cpu_device(cpu);
225
226	if (!cpu_dev)
227		return -ENOENT;
228
229	device_create_file(cpu_dev, &dev_attr_cpu_capacity);
230
231	return 0;
232}
233
234static int cpu_capacity_sysctl_remove(unsigned int cpu)
235{
236	struct device *cpu_dev = get_cpu_device(cpu);
237
238	if (!cpu_dev)
239		return -ENOENT;
240
241	device_remove_file(cpu_dev, &dev_attr_cpu_capacity);
242
243	return 0;
244}
245
246static int register_cpu_capacity_sysctl(void)
247{
248	cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "topology/cpu-capacity",
249			  cpu_capacity_sysctl_add, cpu_capacity_sysctl_remove);
250
251	return 0;
252}
253subsys_initcall(register_cpu_capacity_sysctl);
254
255static int update_topology;
256
257int topology_update_cpu_topology(void)
258{
259	return update_topology;
260}
261
262/*
263 * Updating the sched_domains can't be done directly from cpufreq callbacks
264 * due to locking, so queue the work for later.
265 */
266static void update_topology_flags_workfn(struct work_struct *work)
267{
268	update_topology = 1;
269	rebuild_sched_domains();
270	pr_debug("sched_domain hierarchy rebuilt, flags updated\n");
271	update_topology = 0;
272}
273
274static u32 *raw_capacity;
275
276static int free_raw_capacity(void)
277{
278	kfree(raw_capacity);
279	raw_capacity = NULL;
280
281	return 0;
282}
283
284void topology_normalize_cpu_scale(void)
285{
286	u64 capacity;
287	u64 capacity_scale;
288	int cpu;
289
290	if (!raw_capacity)
291		return;
292
293	capacity_scale = 1;
294	for_each_possible_cpu(cpu) {
295		capacity = raw_capacity[cpu] * per_cpu(capacity_freq_ref, cpu);
296		capacity_scale = max(capacity, capacity_scale);
297	}
298
299	pr_debug("cpu_capacity: capacity_scale=%llu\n", capacity_scale);
300	for_each_possible_cpu(cpu) {
301		capacity = raw_capacity[cpu] * per_cpu(capacity_freq_ref, cpu);
302		capacity = div64_u64(capacity << SCHED_CAPACITY_SHIFT,
303			capacity_scale);
304		topology_set_cpu_scale(cpu, capacity);
305		pr_debug("cpu_capacity: CPU%d cpu_capacity=%lu\n",
306			cpu, topology_get_cpu_scale(cpu));
307	}
308}
309
310bool __init topology_parse_cpu_capacity(struct device_node *cpu_node, int cpu)
311{
312	struct clk *cpu_clk;
313	static bool cap_parsing_failed;
314	int ret;
315	u32 cpu_capacity;
316
317	if (cap_parsing_failed)
318		return false;
319
320	ret = of_property_read_u32(cpu_node, "capacity-dmips-mhz",
321				   &cpu_capacity);
322	if (!ret) {
323		if (!raw_capacity) {
324			raw_capacity = kcalloc(num_possible_cpus(),
325					       sizeof(*raw_capacity),
326					       GFP_KERNEL);
327			if (!raw_capacity) {
328				cap_parsing_failed = true;
329				return false;
330			}
331		}
332		raw_capacity[cpu] = cpu_capacity;
333		pr_debug("cpu_capacity: %pOF cpu_capacity=%u (raw)\n",
334			cpu_node, raw_capacity[cpu]);
335
336		/*
337		 * Update capacity_freq_ref for calculating early boot CPU capacities.
338		 * For non-clk CPU DVFS mechanism, there's no way to get the
339		 * frequency value now, assuming they are running at the same
340		 * frequency (by keeping the initial capacity_freq_ref value).
341		 */
342		cpu_clk = of_clk_get(cpu_node, 0);
343		if (!PTR_ERR_OR_ZERO(cpu_clk)) {
344			per_cpu(capacity_freq_ref, cpu) =
345				clk_get_rate(cpu_clk) / HZ_PER_KHZ;
346			clk_put(cpu_clk);
347		}
348	} else {
349		if (raw_capacity) {
350			pr_err("cpu_capacity: missing %pOF raw capacity\n",
351				cpu_node);
352			pr_err("cpu_capacity: partial information: fallback to 1024 for all CPUs\n");
353		}
354		cap_parsing_failed = true;
355		free_raw_capacity();
356	}
357
358	return !ret;
359}
360
361void __weak freq_inv_set_max_ratio(int cpu, u64 max_rate)
362{
363}
364
365#ifdef CONFIG_ACPI_CPPC_LIB
366#include <acpi/cppc_acpi.h>
367
368void topology_init_cpu_capacity_cppc(void)
369{
370	u64 capacity, capacity_scale = 0;
371	struct cppc_perf_caps perf_caps;
372	int cpu;
373
374	if (likely(!acpi_cpc_valid()))
375		return;
376
377	raw_capacity = kcalloc(num_possible_cpus(), sizeof(*raw_capacity),
378			       GFP_KERNEL);
379	if (!raw_capacity)
380		return;
381
382	for_each_possible_cpu(cpu) {
383		if (!cppc_get_perf_caps(cpu, &perf_caps) &&
384		    (perf_caps.highest_perf >= perf_caps.nominal_perf) &&
385		    (perf_caps.highest_perf >= perf_caps.lowest_perf)) {
386			raw_capacity[cpu] = perf_caps.highest_perf;
387			capacity_scale = max_t(u64, capacity_scale, raw_capacity[cpu]);
388
389			per_cpu(capacity_freq_ref, cpu) = cppc_perf_to_khz(&perf_caps, raw_capacity[cpu]);
390
391			pr_debug("cpu_capacity: CPU%d cpu_capacity=%u (raw).\n",
392				 cpu, raw_capacity[cpu]);
393			continue;
394		}
395
396		pr_err("cpu_capacity: CPU%d missing/invalid highest performance.\n", cpu);
397		pr_err("cpu_capacity: partial information: fallback to 1024 for all CPUs\n");
398		goto exit;
399	}
400
401	for_each_possible_cpu(cpu) {
402		freq_inv_set_max_ratio(cpu,
403				       per_cpu(capacity_freq_ref, cpu) * HZ_PER_KHZ);
404
405		capacity = raw_capacity[cpu];
406		capacity = div64_u64(capacity << SCHED_CAPACITY_SHIFT,
407				     capacity_scale);
408		topology_set_cpu_scale(cpu, capacity);
409		pr_debug("cpu_capacity: CPU%d cpu_capacity=%lu\n",
410			cpu, topology_get_cpu_scale(cpu));
411	}
412
413	schedule_work(&update_topology_flags_work);
414	pr_debug("cpu_capacity: cpu_capacity initialization done\n");
415
416exit:
417	free_raw_capacity();
418}
419#endif
420
421#ifdef CONFIG_CPU_FREQ
422static cpumask_var_t cpus_to_visit;
423static void parsing_done_workfn(struct work_struct *work);
424static DECLARE_WORK(parsing_done_work, parsing_done_workfn);
425
426static int
427init_cpu_capacity_callback(struct notifier_block *nb,
428			   unsigned long val,
429			   void *data)
430{
431	struct cpufreq_policy *policy = data;
432	int cpu;
433
434	if (val != CPUFREQ_CREATE_POLICY)
435		return 0;
436
437	pr_debug("cpu_capacity: init cpu capacity for CPUs [%*pbl] (to_visit=%*pbl)\n",
438		 cpumask_pr_args(policy->related_cpus),
439		 cpumask_pr_args(cpus_to_visit));
440
441	cpumask_andnot(cpus_to_visit, cpus_to_visit, policy->related_cpus);
442
443	for_each_cpu(cpu, policy->related_cpus) {
444		per_cpu(capacity_freq_ref, cpu) = policy->cpuinfo.max_freq;
445		freq_inv_set_max_ratio(cpu,
446				       per_cpu(capacity_freq_ref, cpu) * HZ_PER_KHZ);
447	}
448
449	if (cpumask_empty(cpus_to_visit)) {
450		if (raw_capacity) {
451			topology_normalize_cpu_scale();
452			schedule_work(&update_topology_flags_work);
453			free_raw_capacity();
454		}
455		pr_debug("cpu_capacity: parsing done\n");
456		schedule_work(&parsing_done_work);
457	}
458
459	return 0;
460}
461
462static struct notifier_block init_cpu_capacity_notifier = {
463	.notifier_call = init_cpu_capacity_callback,
464};
465
466static int __init register_cpufreq_notifier(void)
467{
468	int ret;
469
470	/*
471	 * On ACPI-based systems skip registering cpufreq notifier as cpufreq
472	 * information is not needed for cpu capacity initialization.
473	 */
474	if (!acpi_disabled)
475		return -EINVAL;
476
477	if (!alloc_cpumask_var(&cpus_to_visit, GFP_KERNEL))
478		return -ENOMEM;
479
480	cpumask_copy(cpus_to_visit, cpu_possible_mask);
481
482	ret = cpufreq_register_notifier(&init_cpu_capacity_notifier,
483					CPUFREQ_POLICY_NOTIFIER);
484
485	if (ret)
486		free_cpumask_var(cpus_to_visit);
487
488	return ret;
489}
490core_initcall(register_cpufreq_notifier);
491
492static void parsing_done_workfn(struct work_struct *work)
493{
494	cpufreq_unregister_notifier(&init_cpu_capacity_notifier,
495					 CPUFREQ_POLICY_NOTIFIER);
496	free_cpumask_var(cpus_to_visit);
497}
498
499#else
500core_initcall(free_raw_capacity);
501#endif
502
503#if defined(CONFIG_ARM64) || defined(CONFIG_RISCV)
504/*
505 * This function returns the logic cpu number of the node.
506 * There are basically three kinds of return values:
507 * (1) logic cpu number which is > 0.
508 * (2) -ENODEV when the device tree(DT) node is valid and found in the DT but
509 * there is no possible logical CPU in the kernel to match. This happens
510 * when CONFIG_NR_CPUS is configure to be smaller than the number of
511 * CPU nodes in DT. We need to just ignore this case.
512 * (3) -1 if the node does not exist in the device tree
513 */
514static int __init get_cpu_for_node(struct device_node *node)
515{
516	struct device_node *cpu_node;
517	int cpu;
518
519	cpu_node = of_parse_phandle(node, "cpu", 0);
520	if (!cpu_node)
521		return -1;
522
523	cpu = of_cpu_node_to_id(cpu_node);
524	if (cpu >= 0)
525		topology_parse_cpu_capacity(cpu_node, cpu);
526	else
527		pr_info("CPU node for %pOF exist but the possible cpu range is :%*pbl\n",
528			cpu_node, cpumask_pr_args(cpu_possible_mask));
529
530	of_node_put(cpu_node);
531	return cpu;
532}
533
534static int __init parse_core(struct device_node *core, int package_id,
535			     int cluster_id, int core_id)
536{
537	char name[20];
538	bool leaf = true;
539	int i = 0;
540	int cpu;
541	struct device_node *t;
542
543	do {
544		snprintf(name, sizeof(name), "thread%d", i);
545		t = of_get_child_by_name(core, name);
546		if (t) {
547			leaf = false;
548			cpu = get_cpu_for_node(t);
549			if (cpu >= 0) {
550				cpu_topology[cpu].package_id = package_id;
551				cpu_topology[cpu].cluster_id = cluster_id;
552				cpu_topology[cpu].core_id = core_id;
553				cpu_topology[cpu].thread_id = i;
554			} else if (cpu != -ENODEV) {
555				pr_err("%pOF: Can't get CPU for thread\n", t);
556				of_node_put(t);
557				return -EINVAL;
558			}
559			of_node_put(t);
560		}
561		i++;
562	} while (t);
563
564	cpu = get_cpu_for_node(core);
565	if (cpu >= 0) {
566		if (!leaf) {
567			pr_err("%pOF: Core has both threads and CPU\n",
568			       core);
569			return -EINVAL;
570		}
571
572		cpu_topology[cpu].package_id = package_id;
573		cpu_topology[cpu].cluster_id = cluster_id;
574		cpu_topology[cpu].core_id = core_id;
575	} else if (leaf && cpu != -ENODEV) {
576		pr_err("%pOF: Can't get CPU for leaf core\n", core);
577		return -EINVAL;
578	}
579
580	return 0;
581}
582
583static int __init parse_cluster(struct device_node *cluster, int package_id,
584				int cluster_id, int depth)
585{
586	char name[20];
587	bool leaf = true;
588	bool has_cores = false;
589	struct device_node *c;
590	int core_id = 0;
591	int i, ret;
592
593	/*
594	 * First check for child clusters; we currently ignore any
595	 * information about the nesting of clusters and present the
596	 * scheduler with a flat list of them.
597	 */
598	i = 0;
599	do {
600		snprintf(name, sizeof(name), "cluster%d", i);
601		c = of_get_child_by_name(cluster, name);
602		if (c) {
603			leaf = false;
604			ret = parse_cluster(c, package_id, i, depth + 1);
605			if (depth > 0)
606				pr_warn("Topology for clusters of clusters not yet supported\n");
607			of_node_put(c);
608			if (ret != 0)
609				return ret;
610		}
611		i++;
612	} while (c);
613
614	/* Now check for cores */
615	i = 0;
616	do {
617		snprintf(name, sizeof(name), "core%d", i);
618		c = of_get_child_by_name(cluster, name);
619		if (c) {
620			has_cores = true;
621
622			if (depth == 0) {
623				pr_err("%pOF: cpu-map children should be clusters\n",
624				       c);
625				of_node_put(c);
626				return -EINVAL;
627			}
628
629			if (leaf) {
630				ret = parse_core(c, package_id, cluster_id,
631						 core_id++);
632			} else {
633				pr_err("%pOF: Non-leaf cluster with core %s\n",
634				       cluster, name);
635				ret = -EINVAL;
636			}
637
638			of_node_put(c);
639			if (ret != 0)
640				return ret;
641		}
642		i++;
643	} while (c);
644
645	if (leaf && !has_cores)
646		pr_warn("%pOF: empty cluster\n", cluster);
647
648	return 0;
649}
650
651static int __init parse_socket(struct device_node *socket)
652{
653	char name[20];
654	struct device_node *c;
655	bool has_socket = false;
656	int package_id = 0, ret;
657
658	do {
659		snprintf(name, sizeof(name), "socket%d", package_id);
660		c = of_get_child_by_name(socket, name);
661		if (c) {
662			has_socket = true;
663			ret = parse_cluster(c, package_id, -1, 0);
664			of_node_put(c);
665			if (ret != 0)
666				return ret;
667		}
668		package_id++;
669	} while (c);
670
671	if (!has_socket)
672		ret = parse_cluster(socket, 0, -1, 0);
673
674	return ret;
675}
676
677static int __init parse_dt_topology(void)
678{
679	struct device_node *cn, *map;
680	int ret = 0;
681	int cpu;
682
683	cn = of_find_node_by_path("/cpus");
684	if (!cn) {
685		pr_err("No CPU information found in DT\n");
686		return 0;
687	}
688
689	/*
690	 * When topology is provided cpu-map is essentially a root
691	 * cluster with restricted subnodes.
692	 */
693	map = of_get_child_by_name(cn, "cpu-map");
694	if (!map)
695		goto out;
696
697	ret = parse_socket(map);
698	if (ret != 0)
699		goto out_map;
700
701	topology_normalize_cpu_scale();
702
703	/*
704	 * Check that all cores are in the topology; the SMP code will
705	 * only mark cores described in the DT as possible.
706	 */
707	for_each_possible_cpu(cpu)
708		if (cpu_topology[cpu].package_id < 0) {
709			ret = -EINVAL;
710			break;
711		}
712
713out_map:
714	of_node_put(map);
715out:
716	of_node_put(cn);
717	return ret;
718}
719#endif
720
721/*
722 * cpu topology table
723 */
724struct cpu_topology cpu_topology[NR_CPUS];
725EXPORT_SYMBOL_GPL(cpu_topology);
726
727const struct cpumask *cpu_coregroup_mask(int cpu)
728{
729	const cpumask_t *core_mask = cpumask_of_node(cpu_to_node(cpu));
730
731	/* Find the smaller of NUMA, core or LLC siblings */
732	if (cpumask_subset(&cpu_topology[cpu].core_sibling, core_mask)) {
733		/* not numa in package, lets use the package siblings */
734		core_mask = &cpu_topology[cpu].core_sibling;
735	}
736
737	if (last_level_cache_is_valid(cpu)) {
738		if (cpumask_subset(&cpu_topology[cpu].llc_sibling, core_mask))
739			core_mask = &cpu_topology[cpu].llc_sibling;
740	}
741
742	/*
743	 * For systems with no shared cpu-side LLC but with clusters defined,
744	 * extend core_mask to cluster_siblings. The sched domain builder will
745	 * then remove MC as redundant with CLS if SCHED_CLUSTER is enabled.
746	 */
747	if (IS_ENABLED(CONFIG_SCHED_CLUSTER) &&
748	    cpumask_subset(core_mask, &cpu_topology[cpu].cluster_sibling))
749		core_mask = &cpu_topology[cpu].cluster_sibling;
750
751	return core_mask;
752}
753
754const struct cpumask *cpu_clustergroup_mask(int cpu)
755{
756	/*
757	 * Forbid cpu_clustergroup_mask() to span more or the same CPUs as
758	 * cpu_coregroup_mask().
759	 */
760	if (cpumask_subset(cpu_coregroup_mask(cpu),
761			   &cpu_topology[cpu].cluster_sibling))
762		return topology_sibling_cpumask(cpu);
763
764	return &cpu_topology[cpu].cluster_sibling;
765}
766
767void update_siblings_masks(unsigned int cpuid)
768{
769	struct cpu_topology *cpu_topo, *cpuid_topo = &cpu_topology[cpuid];
770	int cpu, ret;
771
772	ret = detect_cache_attributes(cpuid);
773	if (ret && ret != -ENOENT)
774		pr_info("Early cacheinfo allocation failed, ret = %d\n", ret);
775
776	/* update core and thread sibling masks */
777	for_each_online_cpu(cpu) {
778		cpu_topo = &cpu_topology[cpu];
779
780		if (last_level_cache_is_shared(cpu, cpuid)) {
781			cpumask_set_cpu(cpu, &cpuid_topo->llc_sibling);
782			cpumask_set_cpu(cpuid, &cpu_topo->llc_sibling);
783		}
784
785		if (cpuid_topo->package_id != cpu_topo->package_id)
786			continue;
787
788		cpumask_set_cpu(cpuid, &cpu_topo->core_sibling);
789		cpumask_set_cpu(cpu, &cpuid_topo->core_sibling);
790
791		if (cpuid_topo->cluster_id != cpu_topo->cluster_id)
792			continue;
793
794		if (cpuid_topo->cluster_id >= 0) {
795			cpumask_set_cpu(cpu, &cpuid_topo->cluster_sibling);
796			cpumask_set_cpu(cpuid, &cpu_topo->cluster_sibling);
797		}
798
799		if (cpuid_topo->core_id != cpu_topo->core_id)
800			continue;
801
802		cpumask_set_cpu(cpuid, &cpu_topo->thread_sibling);
803		cpumask_set_cpu(cpu, &cpuid_topo->thread_sibling);
804	}
805}
806
807static void clear_cpu_topology(int cpu)
808{
809	struct cpu_topology *cpu_topo = &cpu_topology[cpu];
810
811	cpumask_clear(&cpu_topo->llc_sibling);
812	cpumask_set_cpu(cpu, &cpu_topo->llc_sibling);
813
814	cpumask_clear(&cpu_topo->cluster_sibling);
815	cpumask_set_cpu(cpu, &cpu_topo->cluster_sibling);
816
817	cpumask_clear(&cpu_topo->core_sibling);
818	cpumask_set_cpu(cpu, &cpu_topo->core_sibling);
819	cpumask_clear(&cpu_topo->thread_sibling);
820	cpumask_set_cpu(cpu, &cpu_topo->thread_sibling);
821}
822
823void __init reset_cpu_topology(void)
824{
825	unsigned int cpu;
826
827	for_each_possible_cpu(cpu) {
828		struct cpu_topology *cpu_topo = &cpu_topology[cpu];
829
830		cpu_topo->thread_id = -1;
831		cpu_topo->core_id = -1;
832		cpu_topo->cluster_id = -1;
833		cpu_topo->package_id = -1;
834
835		clear_cpu_topology(cpu);
836	}
837}
838
839void remove_cpu_topology(unsigned int cpu)
840{
841	int sibling;
842
843	for_each_cpu(sibling, topology_core_cpumask(cpu))
844		cpumask_clear_cpu(cpu, topology_core_cpumask(sibling));
845	for_each_cpu(sibling, topology_sibling_cpumask(cpu))
846		cpumask_clear_cpu(cpu, topology_sibling_cpumask(sibling));
847	for_each_cpu(sibling, topology_cluster_cpumask(cpu))
848		cpumask_clear_cpu(cpu, topology_cluster_cpumask(sibling));
849	for_each_cpu(sibling, topology_llc_cpumask(cpu))
850		cpumask_clear_cpu(cpu, topology_llc_cpumask(sibling));
851
852	clear_cpu_topology(cpu);
853}
854
855__weak int __init parse_acpi_topology(void)
856{
857	return 0;
858}
859
860#if defined(CONFIG_ARM64) || defined(CONFIG_RISCV)
861void __init init_cpu_topology(void)
862{
863	int cpu, ret;
864
865	reset_cpu_topology();
866	ret = parse_acpi_topology();
867	if (!ret)
868		ret = of_have_populated_dt() && parse_dt_topology();
869
870	if (ret) {
871		/*
872		 * Discard anything that was parsed if we hit an error so we
873		 * don't use partial information. But do not return yet to give
874		 * arch-specific early cache level detection a chance to run.
875		 */
876		reset_cpu_topology();
877	}
878
879	for_each_possible_cpu(cpu) {
880		ret = fetch_cache_info(cpu);
881		if (!ret)
882			continue;
883		else if (ret != -ENOENT)
884			pr_err("Early cacheinfo failed, ret = %d\n", ret);
885		return;
886	}
887}
888
889void store_cpu_topology(unsigned int cpuid)
890{
891	struct cpu_topology *cpuid_topo = &cpu_topology[cpuid];
892
893	if (cpuid_topo->package_id != -1)
894		goto topology_populated;
895
896	cpuid_topo->thread_id = -1;
897	cpuid_topo->core_id = cpuid;
898	cpuid_topo->package_id = cpu_to_node(cpuid);
899
900	pr_debug("CPU%u: package %d core %d thread %d\n",
901		 cpuid, cpuid_topo->package_id, cpuid_topo->core_id,
902		 cpuid_topo->thread_id);
903
904topology_populated:
905	update_siblings_masks(cpuid);
906}
907#endif
908