1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 *  libata-sff.c - helper library for PCI IDE BMDMA
4 *
5 *  Copyright 2003-2006 Red Hat, Inc.  All rights reserved.
6 *  Copyright 2003-2006 Jeff Garzik
7 *
8 *  libata documentation is available via 'make {ps|pdf}docs',
9 *  as Documentation/driver-api/libata.rst
10 *
11 *  Hardware documentation available from http://www.t13.org/ and
12 *  http://www.sata-io.org/
13 */
14
15#include <linux/kernel.h>
16#include <linux/gfp.h>
17#include <linux/pci.h>
18#include <linux/module.h>
19#include <linux/libata.h>
20#include <linux/highmem.h>
21#include <trace/events/libata.h>
22#include "libata.h"
23
24static struct workqueue_struct *ata_sff_wq;
25
26const struct ata_port_operations ata_sff_port_ops = {
27	.inherits		= &ata_base_port_ops,
28
29	.qc_prep		= ata_noop_qc_prep,
30	.qc_issue		= ata_sff_qc_issue,
31	.qc_fill_rtf		= ata_sff_qc_fill_rtf,
32
33	.freeze			= ata_sff_freeze,
34	.thaw			= ata_sff_thaw,
35	.prereset		= ata_sff_prereset,
36	.softreset		= ata_sff_softreset,
37	.hardreset		= sata_sff_hardreset,
38	.postreset		= ata_sff_postreset,
39	.error_handler		= ata_sff_error_handler,
40
41	.sff_dev_select		= ata_sff_dev_select,
42	.sff_check_status	= ata_sff_check_status,
43	.sff_tf_load		= ata_sff_tf_load,
44	.sff_tf_read		= ata_sff_tf_read,
45	.sff_exec_command	= ata_sff_exec_command,
46	.sff_data_xfer		= ata_sff_data_xfer,
47	.sff_drain_fifo		= ata_sff_drain_fifo,
48
49	.lost_interrupt		= ata_sff_lost_interrupt,
50};
51EXPORT_SYMBOL_GPL(ata_sff_port_ops);
52
53/**
54 *	ata_sff_check_status - Read device status reg & clear interrupt
55 *	@ap: port where the device is
56 *
57 *	Reads ATA taskfile status register for currently-selected device
58 *	and return its value. This also clears pending interrupts
59 *      from this device
60 *
61 *	LOCKING:
62 *	Inherited from caller.
63 */
64u8 ata_sff_check_status(struct ata_port *ap)
65{
66	return ioread8(ap->ioaddr.status_addr);
67}
68EXPORT_SYMBOL_GPL(ata_sff_check_status);
69
70/**
71 *	ata_sff_altstatus - Read device alternate status reg
72 *	@ap: port where the device is
73 *	@status: pointer to a status value
74 *
75 *	Reads ATA alternate status register for currently-selected device
76 *	and return its value.
77 *
78 *	RETURN:
79 *	true if the register exists, false if not.
80 *
81 *	LOCKING:
82 *	Inherited from caller.
83 */
84static bool ata_sff_altstatus(struct ata_port *ap, u8 *status)
85{
86	u8 tmp;
87
88	if (ap->ops->sff_check_altstatus) {
89		tmp = ap->ops->sff_check_altstatus(ap);
90		goto read;
91	}
92	if (ap->ioaddr.altstatus_addr) {
93		tmp = ioread8(ap->ioaddr.altstatus_addr);
94		goto read;
95	}
96	return false;
97
98read:
99	if (status)
100		*status = tmp;
101	return true;
102}
103
104/**
105 *	ata_sff_irq_status - Check if the device is busy
106 *	@ap: port where the device is
107 *
108 *	Determine if the port is currently busy. Uses altstatus
109 *	if available in order to avoid clearing shared IRQ status
110 *	when finding an IRQ source. Non ctl capable devices don't
111 *	share interrupt lines fortunately for us.
112 *
113 *	LOCKING:
114 *	Inherited from caller.
115 */
116static u8 ata_sff_irq_status(struct ata_port *ap)
117{
118	u8 status;
119
120	/* Not us: We are busy */
121	if (ata_sff_altstatus(ap, &status) && (status & ATA_BUSY))
122		return status;
123	/* Clear INTRQ latch */
124	status = ap->ops->sff_check_status(ap);
125	return status;
126}
127
128/**
129 *	ata_sff_sync - Flush writes
130 *	@ap: Port to wait for.
131 *
132 *	CAUTION:
133 *	If we have an mmio device with no ctl and no altstatus
134 *	method this will fail. No such devices are known to exist.
135 *
136 *	LOCKING:
137 *	Inherited from caller.
138 */
139
140static void ata_sff_sync(struct ata_port *ap)
141{
142	ata_sff_altstatus(ap, NULL);
143}
144
145/**
146 *	ata_sff_pause		-	Flush writes and wait 400nS
147 *	@ap: Port to pause for.
148 *
149 *	CAUTION:
150 *	If we have an mmio device with no ctl and no altstatus
151 *	method this will fail. No such devices are known to exist.
152 *
153 *	LOCKING:
154 *	Inherited from caller.
155 */
156
157void ata_sff_pause(struct ata_port *ap)
158{
159	ata_sff_sync(ap);
160	ndelay(400);
161}
162EXPORT_SYMBOL_GPL(ata_sff_pause);
163
164/**
165 *	ata_sff_dma_pause	-	Pause before commencing DMA
166 *	@ap: Port to pause for.
167 *
168 *	Perform I/O fencing and ensure sufficient cycle delays occur
169 *	for the HDMA1:0 transition
170 */
171
172void ata_sff_dma_pause(struct ata_port *ap)
173{
174	/*
175	 * An altstatus read will cause the needed delay without
176	 * messing up the IRQ status
177	 */
178	if (ata_sff_altstatus(ap, NULL))
179		return;
180	/* There are no DMA controllers without ctl. BUG here to ensure
181	   we never violate the HDMA1:0 transition timing and risk
182	   corruption. */
183	BUG();
184}
185EXPORT_SYMBOL_GPL(ata_sff_dma_pause);
186
187static int ata_sff_check_ready(struct ata_link *link)
188{
189	u8 status = link->ap->ops->sff_check_status(link->ap);
190
191	return ata_check_ready(status);
192}
193
194/**
195 *	ata_sff_wait_ready - sleep until BSY clears, or timeout
196 *	@link: SFF link to wait ready status for
197 *	@deadline: deadline jiffies for the operation
198 *
199 *	Sleep until ATA Status register bit BSY clears, or timeout
200 *	occurs.
201 *
202 *	LOCKING:
203 *	Kernel thread context (may sleep).
204 *
205 *	RETURNS:
206 *	0 on success, -errno otherwise.
207 */
208int ata_sff_wait_ready(struct ata_link *link, unsigned long deadline)
209{
210	return ata_wait_ready(link, deadline, ata_sff_check_ready);
211}
212EXPORT_SYMBOL_GPL(ata_sff_wait_ready);
213
214/**
215 *	ata_sff_set_devctl - Write device control reg
216 *	@ap: port where the device is
217 *	@ctl: value to write
218 *
219 *	Writes ATA device control register.
220 *
221 *	RETURN:
222 *	true if the register exists, false if not.
223 *
224 *	LOCKING:
225 *	Inherited from caller.
226 */
227static bool ata_sff_set_devctl(struct ata_port *ap, u8 ctl)
228{
229	if (ap->ops->sff_set_devctl) {
230		ap->ops->sff_set_devctl(ap, ctl);
231		return true;
232	}
233	if (ap->ioaddr.ctl_addr) {
234		iowrite8(ctl, ap->ioaddr.ctl_addr);
235		return true;
236	}
237
238	return false;
239}
240
241/**
242 *	ata_sff_dev_select - Select device 0/1 on ATA bus
243 *	@ap: ATA channel to manipulate
244 *	@device: ATA device (numbered from zero) to select
245 *
246 *	Use the method defined in the ATA specification to
247 *	make either device 0, or device 1, active on the
248 *	ATA channel.  Works with both PIO and MMIO.
249 *
250 *	May be used as the dev_select() entry in ata_port_operations.
251 *
252 *	LOCKING:
253 *	caller.
254 */
255void ata_sff_dev_select(struct ata_port *ap, unsigned int device)
256{
257	u8 tmp;
258
259	if (device == 0)
260		tmp = ATA_DEVICE_OBS;
261	else
262		tmp = ATA_DEVICE_OBS | ATA_DEV1;
263
264	iowrite8(tmp, ap->ioaddr.device_addr);
265	ata_sff_pause(ap);	/* needed; also flushes, for mmio */
266}
267EXPORT_SYMBOL_GPL(ata_sff_dev_select);
268
269/**
270 *	ata_dev_select - Select device 0/1 on ATA bus
271 *	@ap: ATA channel to manipulate
272 *	@device: ATA device (numbered from zero) to select
273 *	@wait: non-zero to wait for Status register BSY bit to clear
274 *	@can_sleep: non-zero if context allows sleeping
275 *
276 *	Use the method defined in the ATA specification to
277 *	make either device 0, or device 1, active on the
278 *	ATA channel.
279 *
280 *	This is a high-level version of ata_sff_dev_select(), which
281 *	additionally provides the services of inserting the proper
282 *	pauses and status polling, where needed.
283 *
284 *	LOCKING:
285 *	caller.
286 */
287static void ata_dev_select(struct ata_port *ap, unsigned int device,
288			   unsigned int wait, unsigned int can_sleep)
289{
290	if (wait)
291		ata_wait_idle(ap);
292
293	ap->ops->sff_dev_select(ap, device);
294
295	if (wait) {
296		if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI)
297			ata_msleep(ap, 150);
298		ata_wait_idle(ap);
299	}
300}
301
302/**
303 *	ata_sff_irq_on - Enable interrupts on a port.
304 *	@ap: Port on which interrupts are enabled.
305 *
306 *	Enable interrupts on a legacy IDE device using MMIO or PIO,
307 *	wait for idle, clear any pending interrupts.
308 *
309 *	Note: may NOT be used as the sff_irq_on() entry in
310 *	ata_port_operations.
311 *
312 *	LOCKING:
313 *	Inherited from caller.
314 */
315void ata_sff_irq_on(struct ata_port *ap)
316{
317	if (ap->ops->sff_irq_on) {
318		ap->ops->sff_irq_on(ap);
319		return;
320	}
321
322	ap->ctl &= ~ATA_NIEN;
323	ap->last_ctl = ap->ctl;
324
325	ata_sff_set_devctl(ap, ap->ctl);
326	ata_wait_idle(ap);
327
328	if (ap->ops->sff_irq_clear)
329		ap->ops->sff_irq_clear(ap);
330}
331EXPORT_SYMBOL_GPL(ata_sff_irq_on);
332
333/**
334 *	ata_sff_tf_load - send taskfile registers to host controller
335 *	@ap: Port to which output is sent
336 *	@tf: ATA taskfile register set
337 *
338 *	Outputs ATA taskfile to standard ATA host controller.
339 *
340 *	LOCKING:
341 *	Inherited from caller.
342 */
343void ata_sff_tf_load(struct ata_port *ap, const struct ata_taskfile *tf)
344{
345	struct ata_ioports *ioaddr = &ap->ioaddr;
346	unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
347
348	if (tf->ctl != ap->last_ctl) {
349		if (ioaddr->ctl_addr)
350			iowrite8(tf->ctl, ioaddr->ctl_addr);
351		ap->last_ctl = tf->ctl;
352		ata_wait_idle(ap);
353	}
354
355	if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
356		WARN_ON_ONCE(!ioaddr->ctl_addr);
357		iowrite8(tf->hob_feature, ioaddr->feature_addr);
358		iowrite8(tf->hob_nsect, ioaddr->nsect_addr);
359		iowrite8(tf->hob_lbal, ioaddr->lbal_addr);
360		iowrite8(tf->hob_lbam, ioaddr->lbam_addr);
361		iowrite8(tf->hob_lbah, ioaddr->lbah_addr);
362	}
363
364	if (is_addr) {
365		iowrite8(tf->feature, ioaddr->feature_addr);
366		iowrite8(tf->nsect, ioaddr->nsect_addr);
367		iowrite8(tf->lbal, ioaddr->lbal_addr);
368		iowrite8(tf->lbam, ioaddr->lbam_addr);
369		iowrite8(tf->lbah, ioaddr->lbah_addr);
370	}
371
372	if (tf->flags & ATA_TFLAG_DEVICE)
373		iowrite8(tf->device, ioaddr->device_addr);
374
375	ata_wait_idle(ap);
376}
377EXPORT_SYMBOL_GPL(ata_sff_tf_load);
378
379/**
380 *	ata_sff_tf_read - input device's ATA taskfile shadow registers
381 *	@ap: Port from which input is read
382 *	@tf: ATA taskfile register set for storing input
383 *
384 *	Reads ATA taskfile registers for currently-selected device
385 *	into @tf. Assumes the device has a fully SFF compliant task file
386 *	layout and behaviour. If you device does not (eg has a different
387 *	status method) then you will need to provide a replacement tf_read
388 *
389 *	LOCKING:
390 *	Inherited from caller.
391 */
392void ata_sff_tf_read(struct ata_port *ap, struct ata_taskfile *tf)
393{
394	struct ata_ioports *ioaddr = &ap->ioaddr;
395
396	tf->status = ata_sff_check_status(ap);
397	tf->error = ioread8(ioaddr->error_addr);
398	tf->nsect = ioread8(ioaddr->nsect_addr);
399	tf->lbal = ioread8(ioaddr->lbal_addr);
400	tf->lbam = ioread8(ioaddr->lbam_addr);
401	tf->lbah = ioread8(ioaddr->lbah_addr);
402	tf->device = ioread8(ioaddr->device_addr);
403
404	if (tf->flags & ATA_TFLAG_LBA48) {
405		if (likely(ioaddr->ctl_addr)) {
406			iowrite8(tf->ctl | ATA_HOB, ioaddr->ctl_addr);
407			tf->hob_feature = ioread8(ioaddr->error_addr);
408			tf->hob_nsect = ioread8(ioaddr->nsect_addr);
409			tf->hob_lbal = ioread8(ioaddr->lbal_addr);
410			tf->hob_lbam = ioread8(ioaddr->lbam_addr);
411			tf->hob_lbah = ioread8(ioaddr->lbah_addr);
412			iowrite8(tf->ctl, ioaddr->ctl_addr);
413			ap->last_ctl = tf->ctl;
414		} else
415			WARN_ON_ONCE(1);
416	}
417}
418EXPORT_SYMBOL_GPL(ata_sff_tf_read);
419
420/**
421 *	ata_sff_exec_command - issue ATA command to host controller
422 *	@ap: port to which command is being issued
423 *	@tf: ATA taskfile register set
424 *
425 *	Issues ATA command, with proper synchronization with interrupt
426 *	handler / other threads.
427 *
428 *	LOCKING:
429 *	spin_lock_irqsave(host lock)
430 */
431void ata_sff_exec_command(struct ata_port *ap, const struct ata_taskfile *tf)
432{
433	iowrite8(tf->command, ap->ioaddr.command_addr);
434	ata_sff_pause(ap);
435}
436EXPORT_SYMBOL_GPL(ata_sff_exec_command);
437
438/**
439 *	ata_tf_to_host - issue ATA taskfile to host controller
440 *	@ap: port to which command is being issued
441 *	@tf: ATA taskfile register set
442 *	@tag: tag of the associated command
443 *
444 *	Issues ATA taskfile register set to ATA host controller,
445 *	with proper synchronization with interrupt handler and
446 *	other threads.
447 *
448 *	LOCKING:
449 *	spin_lock_irqsave(host lock)
450 */
451static inline void ata_tf_to_host(struct ata_port *ap,
452				  const struct ata_taskfile *tf,
453				  unsigned int tag)
454{
455	trace_ata_tf_load(ap, tf);
456	ap->ops->sff_tf_load(ap, tf);
457	trace_ata_exec_command(ap, tf, tag);
458	ap->ops->sff_exec_command(ap, tf);
459}
460
461/**
462 *	ata_sff_data_xfer - Transfer data by PIO
463 *	@qc: queued command
464 *	@buf: data buffer
465 *	@buflen: buffer length
466 *	@rw: read/write
467 *
468 *	Transfer data from/to the device data register by PIO.
469 *
470 *	LOCKING:
471 *	Inherited from caller.
472 *
473 *	RETURNS:
474 *	Bytes consumed.
475 */
476unsigned int ata_sff_data_xfer(struct ata_queued_cmd *qc, unsigned char *buf,
477			       unsigned int buflen, int rw)
478{
479	struct ata_port *ap = qc->dev->link->ap;
480	void __iomem *data_addr = ap->ioaddr.data_addr;
481	unsigned int words = buflen >> 1;
482
483	/* Transfer multiple of 2 bytes */
484	if (rw == READ)
485		ioread16_rep(data_addr, buf, words);
486	else
487		iowrite16_rep(data_addr, buf, words);
488
489	/* Transfer trailing byte, if any. */
490	if (unlikely(buflen & 0x01)) {
491		unsigned char pad[2] = { };
492
493		/* Point buf to the tail of buffer */
494		buf += buflen - 1;
495
496		/*
497		 * Use io*16_rep() accessors here as well to avoid pointlessly
498		 * swapping bytes to and from on the big endian machines...
499		 */
500		if (rw == READ) {
501			ioread16_rep(data_addr, pad, 1);
502			*buf = pad[0];
503		} else {
504			pad[0] = *buf;
505			iowrite16_rep(data_addr, pad, 1);
506		}
507		words++;
508	}
509
510	return words << 1;
511}
512EXPORT_SYMBOL_GPL(ata_sff_data_xfer);
513
514/**
515 *	ata_sff_data_xfer32 - Transfer data by PIO
516 *	@qc: queued command
517 *	@buf: data buffer
518 *	@buflen: buffer length
519 *	@rw: read/write
520 *
521 *	Transfer data from/to the device data register by PIO using 32bit
522 *	I/O operations.
523 *
524 *	LOCKING:
525 *	Inherited from caller.
526 *
527 *	RETURNS:
528 *	Bytes consumed.
529 */
530
531unsigned int ata_sff_data_xfer32(struct ata_queued_cmd *qc, unsigned char *buf,
532			       unsigned int buflen, int rw)
533{
534	struct ata_device *dev = qc->dev;
535	struct ata_port *ap = dev->link->ap;
536	void __iomem *data_addr = ap->ioaddr.data_addr;
537	unsigned int words = buflen >> 2;
538	int slop = buflen & 3;
539
540	if (!(ap->pflags & ATA_PFLAG_PIO32))
541		return ata_sff_data_xfer(qc, buf, buflen, rw);
542
543	/* Transfer multiple of 4 bytes */
544	if (rw == READ)
545		ioread32_rep(data_addr, buf, words);
546	else
547		iowrite32_rep(data_addr, buf, words);
548
549	/* Transfer trailing bytes, if any */
550	if (unlikely(slop)) {
551		unsigned char pad[4] = { };
552
553		/* Point buf to the tail of buffer */
554		buf += buflen - slop;
555
556		/*
557		 * Use io*_rep() accessors here as well to avoid pointlessly
558		 * swapping bytes to and from on the big endian machines...
559		 */
560		if (rw == READ) {
561			if (slop < 3)
562				ioread16_rep(data_addr, pad, 1);
563			else
564				ioread32_rep(data_addr, pad, 1);
565			memcpy(buf, pad, slop);
566		} else {
567			memcpy(pad, buf, slop);
568			if (slop < 3)
569				iowrite16_rep(data_addr, pad, 1);
570			else
571				iowrite32_rep(data_addr, pad, 1);
572		}
573	}
574	return (buflen + 1) & ~1;
575}
576EXPORT_SYMBOL_GPL(ata_sff_data_xfer32);
577
578static void ata_pio_xfer(struct ata_queued_cmd *qc, struct page *page,
579		unsigned int offset, size_t xfer_size)
580{
581	bool do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
582	unsigned char *buf;
583
584	buf = kmap_atomic(page);
585	qc->ap->ops->sff_data_xfer(qc, buf + offset, xfer_size, do_write);
586	kunmap_atomic(buf);
587
588	if (!do_write && !PageSlab(page))
589		flush_dcache_page(page);
590}
591
592/**
593 *	ata_pio_sector - Transfer a sector of data.
594 *	@qc: Command on going
595 *
596 *	Transfer qc->sect_size bytes of data from/to the ATA device.
597 *
598 *	LOCKING:
599 *	Inherited from caller.
600 */
601static void ata_pio_sector(struct ata_queued_cmd *qc)
602{
603	struct ata_port *ap = qc->ap;
604	struct page *page;
605	unsigned int offset;
606
607	if (!qc->cursg) {
608		qc->curbytes = qc->nbytes;
609		return;
610	}
611	if (qc->curbytes == qc->nbytes - qc->sect_size)
612		ap->hsm_task_state = HSM_ST_LAST;
613
614	page = sg_page(qc->cursg);
615	offset = qc->cursg->offset + qc->cursg_ofs;
616
617	/* get the current page and offset */
618	page = nth_page(page, (offset >> PAGE_SHIFT));
619	offset %= PAGE_SIZE;
620
621	trace_ata_sff_pio_transfer_data(qc, offset, qc->sect_size);
622
623	/*
624	 * Split the transfer when it splits a page boundary.  Note that the
625	 * split still has to be dword aligned like all ATA data transfers.
626	 */
627	WARN_ON_ONCE(offset % 4);
628	if (offset + qc->sect_size > PAGE_SIZE) {
629		unsigned int split_len = PAGE_SIZE - offset;
630
631		ata_pio_xfer(qc, page, offset, split_len);
632		ata_pio_xfer(qc, nth_page(page, 1), 0,
633			     qc->sect_size - split_len);
634	} else {
635		ata_pio_xfer(qc, page, offset, qc->sect_size);
636	}
637
638	qc->curbytes += qc->sect_size;
639	qc->cursg_ofs += qc->sect_size;
640
641	if (qc->cursg_ofs == qc->cursg->length) {
642		qc->cursg = sg_next(qc->cursg);
643		if (!qc->cursg)
644			ap->hsm_task_state = HSM_ST_LAST;
645		qc->cursg_ofs = 0;
646	}
647}
648
649/**
650 *	ata_pio_sectors - Transfer one or many sectors.
651 *	@qc: Command on going
652 *
653 *	Transfer one or many sectors of data from/to the
654 *	ATA device for the DRQ request.
655 *
656 *	LOCKING:
657 *	Inherited from caller.
658 */
659static void ata_pio_sectors(struct ata_queued_cmd *qc)
660{
661	if (is_multi_taskfile(&qc->tf)) {
662		/* READ/WRITE MULTIPLE */
663		unsigned int nsect;
664
665		WARN_ON_ONCE(qc->dev->multi_count == 0);
666
667		nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
668			    qc->dev->multi_count);
669		while (nsect--)
670			ata_pio_sector(qc);
671	} else
672		ata_pio_sector(qc);
673
674	ata_sff_sync(qc->ap); /* flush */
675}
676
677/**
678 *	atapi_send_cdb - Write CDB bytes to hardware
679 *	@ap: Port to which ATAPI device is attached.
680 *	@qc: Taskfile currently active
681 *
682 *	When device has indicated its readiness to accept
683 *	a CDB, this function is called.  Send the CDB.
684 *
685 *	LOCKING:
686 *	caller.
687 */
688static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
689{
690	/* send SCSI cdb */
691	trace_atapi_send_cdb(qc, 0, qc->dev->cdb_len);
692	WARN_ON_ONCE(qc->dev->cdb_len < 12);
693
694	ap->ops->sff_data_xfer(qc, qc->cdb, qc->dev->cdb_len, 1);
695	ata_sff_sync(ap);
696	/* FIXME: If the CDB is for DMA do we need to do the transition delay
697	   or is bmdma_start guaranteed to do it ? */
698	switch (qc->tf.protocol) {
699	case ATAPI_PROT_PIO:
700		ap->hsm_task_state = HSM_ST;
701		break;
702	case ATAPI_PROT_NODATA:
703		ap->hsm_task_state = HSM_ST_LAST;
704		break;
705#ifdef CONFIG_ATA_BMDMA
706	case ATAPI_PROT_DMA:
707		ap->hsm_task_state = HSM_ST_LAST;
708		/* initiate bmdma */
709		trace_ata_bmdma_start(ap, &qc->tf, qc->tag);
710		ap->ops->bmdma_start(qc);
711		break;
712#endif /* CONFIG_ATA_BMDMA */
713	default:
714		BUG();
715	}
716}
717
718/**
719 *	__atapi_pio_bytes - Transfer data from/to the ATAPI device.
720 *	@qc: Command on going
721 *	@bytes: number of bytes
722 *
723 *	Transfer data from/to the ATAPI device.
724 *
725 *	LOCKING:
726 *	Inherited from caller.
727 *
728 */
729static int __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
730{
731	int rw = (qc->tf.flags & ATA_TFLAG_WRITE) ? WRITE : READ;
732	struct ata_port *ap = qc->ap;
733	struct ata_device *dev = qc->dev;
734	struct ata_eh_info *ehi = &dev->link->eh_info;
735	struct scatterlist *sg;
736	struct page *page;
737	unsigned char *buf;
738	unsigned int offset, count, consumed;
739
740next_sg:
741	sg = qc->cursg;
742	if (unlikely(!sg)) {
743		ata_ehi_push_desc(ehi, "unexpected or too much trailing data "
744				  "buf=%u cur=%u bytes=%u",
745				  qc->nbytes, qc->curbytes, bytes);
746		return -1;
747	}
748
749	page = sg_page(sg);
750	offset = sg->offset + qc->cursg_ofs;
751
752	/* get the current page and offset */
753	page = nth_page(page, (offset >> PAGE_SHIFT));
754	offset %= PAGE_SIZE;
755
756	/* don't overrun current sg */
757	count = min(sg->length - qc->cursg_ofs, bytes);
758
759	/* don't cross page boundaries */
760	count = min(count, (unsigned int)PAGE_SIZE - offset);
761
762	trace_atapi_pio_transfer_data(qc, offset, count);
763
764	/* do the actual data transfer */
765	buf = kmap_atomic(page);
766	consumed = ap->ops->sff_data_xfer(qc, buf + offset, count, rw);
767	kunmap_atomic(buf);
768
769	bytes -= min(bytes, consumed);
770	qc->curbytes += count;
771	qc->cursg_ofs += count;
772
773	if (qc->cursg_ofs == sg->length) {
774		qc->cursg = sg_next(qc->cursg);
775		qc->cursg_ofs = 0;
776	}
777
778	/*
779	 * There used to be a  WARN_ON_ONCE(qc->cursg && count != consumed);
780	 * Unfortunately __atapi_pio_bytes doesn't know enough to do the WARN
781	 * check correctly as it doesn't know if it is the last request being
782	 * made. Somebody should implement a proper sanity check.
783	 */
784	if (bytes)
785		goto next_sg;
786	return 0;
787}
788
789/**
790 *	atapi_pio_bytes - Transfer data from/to the ATAPI device.
791 *	@qc: Command on going
792 *
793 *	Transfer Transfer data from/to the ATAPI device.
794 *
795 *	LOCKING:
796 *	Inherited from caller.
797 */
798static void atapi_pio_bytes(struct ata_queued_cmd *qc)
799{
800	struct ata_port *ap = qc->ap;
801	struct ata_device *dev = qc->dev;
802	struct ata_eh_info *ehi = &dev->link->eh_info;
803	unsigned int ireason, bc_lo, bc_hi, bytes;
804	int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
805
806	/* Abuse qc->result_tf for temp storage of intermediate TF
807	 * here to save some kernel stack usage.
808	 * For normal completion, qc->result_tf is not relevant. For
809	 * error, qc->result_tf is later overwritten by ata_qc_complete().
810	 * So, the correctness of qc->result_tf is not affected.
811	 */
812	ap->ops->sff_tf_read(ap, &qc->result_tf);
813	ireason = qc->result_tf.nsect;
814	bc_lo = qc->result_tf.lbam;
815	bc_hi = qc->result_tf.lbah;
816	bytes = (bc_hi << 8) | bc_lo;
817
818	/* shall be cleared to zero, indicating xfer of data */
819	if (unlikely(ireason & ATAPI_COD))
820		goto atapi_check;
821
822	/* make sure transfer direction matches expected */
823	i_write = ((ireason & ATAPI_IO) == 0) ? 1 : 0;
824	if (unlikely(do_write != i_write))
825		goto atapi_check;
826
827	if (unlikely(!bytes))
828		goto atapi_check;
829
830	if (unlikely(__atapi_pio_bytes(qc, bytes)))
831		goto err_out;
832	ata_sff_sync(ap); /* flush */
833
834	return;
835
836 atapi_check:
837	ata_ehi_push_desc(ehi, "ATAPI check failed (ireason=0x%x bytes=%u)",
838			  ireason, bytes);
839 err_out:
840	qc->err_mask |= AC_ERR_HSM;
841	ap->hsm_task_state = HSM_ST_ERR;
842}
843
844/**
845 *	ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
846 *	@ap: the target ata_port
847 *	@qc: qc on going
848 *
849 *	RETURNS:
850 *	1 if ok in workqueue, 0 otherwise.
851 */
852static inline int ata_hsm_ok_in_wq(struct ata_port *ap,
853						struct ata_queued_cmd *qc)
854{
855	if (qc->tf.flags & ATA_TFLAG_POLLING)
856		return 1;
857
858	if (ap->hsm_task_state == HSM_ST_FIRST) {
859		if (qc->tf.protocol == ATA_PROT_PIO &&
860		   (qc->tf.flags & ATA_TFLAG_WRITE))
861		    return 1;
862
863		if (ata_is_atapi(qc->tf.protocol) &&
864		   !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
865			return 1;
866	}
867
868	return 0;
869}
870
871/**
872 *	ata_hsm_qc_complete - finish a qc running on standard HSM
873 *	@qc: Command to complete
874 *	@in_wq: 1 if called from workqueue, 0 otherwise
875 *
876 *	Finish @qc which is running on standard HSM.
877 *
878 *	LOCKING:
879 *	If @in_wq is zero, spin_lock_irqsave(host lock).
880 *	Otherwise, none on entry and grabs host lock.
881 */
882static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
883{
884	struct ata_port *ap = qc->ap;
885
886	if (in_wq) {
887		/* EH might have kicked in while host lock is released. */
888		qc = ata_qc_from_tag(ap, qc->tag);
889		if (qc) {
890			if (likely(!(qc->err_mask & AC_ERR_HSM))) {
891				ata_sff_irq_on(ap);
892				ata_qc_complete(qc);
893			} else
894				ata_port_freeze(ap);
895		}
896	} else {
897		if (likely(!(qc->err_mask & AC_ERR_HSM)))
898			ata_qc_complete(qc);
899		else
900			ata_port_freeze(ap);
901	}
902}
903
904/**
905 *	ata_sff_hsm_move - move the HSM to the next state.
906 *	@ap: the target ata_port
907 *	@qc: qc on going
908 *	@status: current device status
909 *	@in_wq: 1 if called from workqueue, 0 otherwise
910 *
911 *	RETURNS:
912 *	1 when poll next status needed, 0 otherwise.
913 */
914int ata_sff_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
915		     u8 status, int in_wq)
916{
917	struct ata_link *link = qc->dev->link;
918	struct ata_eh_info *ehi = &link->eh_info;
919	int poll_next;
920
921	lockdep_assert_held(ap->lock);
922
923	WARN_ON_ONCE((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
924
925	/* Make sure ata_sff_qc_issue() does not throw things
926	 * like DMA polling into the workqueue. Notice that
927	 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
928	 */
929	WARN_ON_ONCE(in_wq != ata_hsm_ok_in_wq(ap, qc));
930
931fsm_start:
932	trace_ata_sff_hsm_state(qc, status);
933
934	switch (ap->hsm_task_state) {
935	case HSM_ST_FIRST:
936		/* Send first data block or PACKET CDB */
937
938		/* If polling, we will stay in the work queue after
939		 * sending the data. Otherwise, interrupt handler
940		 * takes over after sending the data.
941		 */
942		poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
943
944		/* check device status */
945		if (unlikely((status & ATA_DRQ) == 0)) {
946			/* handle BSY=0, DRQ=0 as error */
947			if (likely(status & (ATA_ERR | ATA_DF)))
948				/* device stops HSM for abort/error */
949				qc->err_mask |= AC_ERR_DEV;
950			else {
951				/* HSM violation. Let EH handle this */
952				ata_ehi_push_desc(ehi,
953					"ST_FIRST: !(DRQ|ERR|DF)");
954				qc->err_mask |= AC_ERR_HSM;
955			}
956
957			ap->hsm_task_state = HSM_ST_ERR;
958			goto fsm_start;
959		}
960
961		/* Device should not ask for data transfer (DRQ=1)
962		 * when it finds something wrong.
963		 * We ignore DRQ here and stop the HSM by
964		 * changing hsm_task_state to HSM_ST_ERR and
965		 * let the EH abort the command or reset the device.
966		 */
967		if (unlikely(status & (ATA_ERR | ATA_DF))) {
968			/* Some ATAPI tape drives forget to clear the ERR bit
969			 * when doing the next command (mostly request sense).
970			 * We ignore ERR here to workaround and proceed sending
971			 * the CDB.
972			 */
973			if (!(qc->dev->horkage & ATA_HORKAGE_STUCK_ERR)) {
974				ata_ehi_push_desc(ehi, "ST_FIRST: "
975					"DRQ=1 with device error, "
976					"dev_stat 0x%X", status);
977				qc->err_mask |= AC_ERR_HSM;
978				ap->hsm_task_state = HSM_ST_ERR;
979				goto fsm_start;
980			}
981		}
982
983		if (qc->tf.protocol == ATA_PROT_PIO) {
984			/* PIO data out protocol.
985			 * send first data block.
986			 */
987
988			/* ata_pio_sectors() might change the state
989			 * to HSM_ST_LAST. so, the state is changed here
990			 * before ata_pio_sectors().
991			 */
992			ap->hsm_task_state = HSM_ST;
993			ata_pio_sectors(qc);
994		} else
995			/* send CDB */
996			atapi_send_cdb(ap, qc);
997
998		/* if polling, ata_sff_pio_task() handles the rest.
999		 * otherwise, interrupt handler takes over from here.
1000		 */
1001		break;
1002
1003	case HSM_ST:
1004		/* complete command or read/write the data register */
1005		if (qc->tf.protocol == ATAPI_PROT_PIO) {
1006			/* ATAPI PIO protocol */
1007			if ((status & ATA_DRQ) == 0) {
1008				/* No more data to transfer or device error.
1009				 * Device error will be tagged in HSM_ST_LAST.
1010				 */
1011				ap->hsm_task_state = HSM_ST_LAST;
1012				goto fsm_start;
1013			}
1014
1015			/* Device should not ask for data transfer (DRQ=1)
1016			 * when it finds something wrong.
1017			 * We ignore DRQ here and stop the HSM by
1018			 * changing hsm_task_state to HSM_ST_ERR and
1019			 * let the EH abort the command or reset the device.
1020			 */
1021			if (unlikely(status & (ATA_ERR | ATA_DF))) {
1022				ata_ehi_push_desc(ehi, "ST-ATAPI: "
1023					"DRQ=1 with device error, "
1024					"dev_stat 0x%X", status);
1025				qc->err_mask |= AC_ERR_HSM;
1026				ap->hsm_task_state = HSM_ST_ERR;
1027				goto fsm_start;
1028			}
1029
1030			atapi_pio_bytes(qc);
1031
1032			if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
1033				/* bad ireason reported by device */
1034				goto fsm_start;
1035
1036		} else {
1037			/* ATA PIO protocol */
1038			if (unlikely((status & ATA_DRQ) == 0)) {
1039				/* handle BSY=0, DRQ=0 as error */
1040				if (likely(status & (ATA_ERR | ATA_DF))) {
1041					/* device stops HSM for abort/error */
1042					qc->err_mask |= AC_ERR_DEV;
1043
1044					/* If diagnostic failed and this is
1045					 * IDENTIFY, it's likely a phantom
1046					 * device.  Mark hint.
1047					 */
1048					if (qc->dev->horkage &
1049					    ATA_HORKAGE_DIAGNOSTIC)
1050						qc->err_mask |=
1051							AC_ERR_NODEV_HINT;
1052				} else {
1053					/* HSM violation. Let EH handle this.
1054					 * Phantom devices also trigger this
1055					 * condition.  Mark hint.
1056					 */
1057					ata_ehi_push_desc(ehi, "ST-ATA: "
1058						"DRQ=0 without device error, "
1059						"dev_stat 0x%X", status);
1060					qc->err_mask |= AC_ERR_HSM |
1061							AC_ERR_NODEV_HINT;
1062				}
1063
1064				ap->hsm_task_state = HSM_ST_ERR;
1065				goto fsm_start;
1066			}
1067
1068			/* For PIO reads, some devices may ask for
1069			 * data transfer (DRQ=1) alone with ERR=1.
1070			 * We respect DRQ here and transfer one
1071			 * block of junk data before changing the
1072			 * hsm_task_state to HSM_ST_ERR.
1073			 *
1074			 * For PIO writes, ERR=1 DRQ=1 doesn't make
1075			 * sense since the data block has been
1076			 * transferred to the device.
1077			 */
1078			if (unlikely(status & (ATA_ERR | ATA_DF))) {
1079				/* data might be corrputed */
1080				qc->err_mask |= AC_ERR_DEV;
1081
1082				if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
1083					ata_pio_sectors(qc);
1084					status = ata_wait_idle(ap);
1085				}
1086
1087				if (status & (ATA_BUSY | ATA_DRQ)) {
1088					ata_ehi_push_desc(ehi, "ST-ATA: "
1089						"BUSY|DRQ persists on ERR|DF, "
1090						"dev_stat 0x%X", status);
1091					qc->err_mask |= AC_ERR_HSM;
1092				}
1093
1094				/* There are oddball controllers with
1095				 * status register stuck at 0x7f and
1096				 * lbal/m/h at zero which makes it
1097				 * pass all other presence detection
1098				 * mechanisms we have.  Set NODEV_HINT
1099				 * for it.  Kernel bz#7241.
1100				 */
1101				if (status == 0x7f)
1102					qc->err_mask |= AC_ERR_NODEV_HINT;
1103
1104				/* ata_pio_sectors() might change the
1105				 * state to HSM_ST_LAST. so, the state
1106				 * is changed after ata_pio_sectors().
1107				 */
1108				ap->hsm_task_state = HSM_ST_ERR;
1109				goto fsm_start;
1110			}
1111
1112			ata_pio_sectors(qc);
1113
1114			if (ap->hsm_task_state == HSM_ST_LAST &&
1115			    (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
1116				/* all data read */
1117				status = ata_wait_idle(ap);
1118				goto fsm_start;
1119			}
1120		}
1121
1122		poll_next = 1;
1123		break;
1124
1125	case HSM_ST_LAST:
1126		if (unlikely(!ata_ok(status))) {
1127			qc->err_mask |= __ac_err_mask(status);
1128			ap->hsm_task_state = HSM_ST_ERR;
1129			goto fsm_start;
1130		}
1131
1132		/* no more data to transfer */
1133		trace_ata_sff_hsm_command_complete(qc, status);
1134
1135		WARN_ON_ONCE(qc->err_mask & (AC_ERR_DEV | AC_ERR_HSM));
1136
1137		ap->hsm_task_state = HSM_ST_IDLE;
1138
1139		/* complete taskfile transaction */
1140		ata_hsm_qc_complete(qc, in_wq);
1141
1142		poll_next = 0;
1143		break;
1144
1145	case HSM_ST_ERR:
1146		ap->hsm_task_state = HSM_ST_IDLE;
1147
1148		/* complete taskfile transaction */
1149		ata_hsm_qc_complete(qc, in_wq);
1150
1151		poll_next = 0;
1152		break;
1153	default:
1154		poll_next = 0;
1155		WARN(true, "ata%d: SFF host state machine in invalid state %d",
1156		     ap->print_id, ap->hsm_task_state);
1157	}
1158
1159	return poll_next;
1160}
1161EXPORT_SYMBOL_GPL(ata_sff_hsm_move);
1162
1163void ata_sff_queue_work(struct work_struct *work)
1164{
1165	queue_work(ata_sff_wq, work);
1166}
1167EXPORT_SYMBOL_GPL(ata_sff_queue_work);
1168
1169void ata_sff_queue_delayed_work(struct delayed_work *dwork, unsigned long delay)
1170{
1171	queue_delayed_work(ata_sff_wq, dwork, delay);
1172}
1173EXPORT_SYMBOL_GPL(ata_sff_queue_delayed_work);
1174
1175void ata_sff_queue_pio_task(struct ata_link *link, unsigned long delay)
1176{
1177	struct ata_port *ap = link->ap;
1178
1179	WARN_ON((ap->sff_pio_task_link != NULL) &&
1180		(ap->sff_pio_task_link != link));
1181	ap->sff_pio_task_link = link;
1182
1183	/* may fail if ata_sff_flush_pio_task() in progress */
1184	ata_sff_queue_delayed_work(&ap->sff_pio_task, msecs_to_jiffies(delay));
1185}
1186EXPORT_SYMBOL_GPL(ata_sff_queue_pio_task);
1187
1188void ata_sff_flush_pio_task(struct ata_port *ap)
1189{
1190	trace_ata_sff_flush_pio_task(ap);
1191
1192	cancel_delayed_work_sync(&ap->sff_pio_task);
1193
1194	/*
1195	 * We wanna reset the HSM state to IDLE.  If we do so without
1196	 * grabbing the port lock, critical sections protected by it which
1197	 * expect the HSM state to stay stable may get surprised.  For
1198	 * example, we may set IDLE in between the time
1199	 * __ata_sff_port_intr() checks for HSM_ST_IDLE and before it calls
1200	 * ata_sff_hsm_move() causing ata_sff_hsm_move() to BUG().
1201	 */
1202	spin_lock_irq(ap->lock);
1203	ap->hsm_task_state = HSM_ST_IDLE;
1204	spin_unlock_irq(ap->lock);
1205
1206	ap->sff_pio_task_link = NULL;
1207}
1208
1209static void ata_sff_pio_task(struct work_struct *work)
1210{
1211	struct ata_port *ap =
1212		container_of(work, struct ata_port, sff_pio_task.work);
1213	struct ata_link *link = ap->sff_pio_task_link;
1214	struct ata_queued_cmd *qc;
1215	u8 status;
1216	int poll_next;
1217
1218	spin_lock_irq(ap->lock);
1219
1220	BUG_ON(ap->sff_pio_task_link == NULL);
1221	/* qc can be NULL if timeout occurred */
1222	qc = ata_qc_from_tag(ap, link->active_tag);
1223	if (!qc) {
1224		ap->sff_pio_task_link = NULL;
1225		goto out_unlock;
1226	}
1227
1228fsm_start:
1229	WARN_ON_ONCE(ap->hsm_task_state == HSM_ST_IDLE);
1230
1231	/*
1232	 * This is purely heuristic.  This is a fast path.
1233	 * Sometimes when we enter, BSY will be cleared in
1234	 * a chk-status or two.  If not, the drive is probably seeking
1235	 * or something.  Snooze for a couple msecs, then
1236	 * chk-status again.  If still busy, queue delayed work.
1237	 */
1238	status = ata_sff_busy_wait(ap, ATA_BUSY, 5);
1239	if (status & ATA_BUSY) {
1240		spin_unlock_irq(ap->lock);
1241		ata_msleep(ap, 2);
1242		spin_lock_irq(ap->lock);
1243
1244		status = ata_sff_busy_wait(ap, ATA_BUSY, 10);
1245		if (status & ATA_BUSY) {
1246			ata_sff_queue_pio_task(link, ATA_SHORT_PAUSE);
1247			goto out_unlock;
1248		}
1249	}
1250
1251	/*
1252	 * hsm_move() may trigger another command to be processed.
1253	 * clean the link beforehand.
1254	 */
1255	ap->sff_pio_task_link = NULL;
1256	/* move the HSM */
1257	poll_next = ata_sff_hsm_move(ap, qc, status, 1);
1258
1259	/* another command or interrupt handler
1260	 * may be running at this point.
1261	 */
1262	if (poll_next)
1263		goto fsm_start;
1264out_unlock:
1265	spin_unlock_irq(ap->lock);
1266}
1267
1268/**
1269 *	ata_sff_qc_issue - issue taskfile to a SFF controller
1270 *	@qc: command to issue to device
1271 *
1272 *	This function issues a PIO or NODATA command to a SFF
1273 *	controller.
1274 *
1275 *	LOCKING:
1276 *	spin_lock_irqsave(host lock)
1277 *
1278 *	RETURNS:
1279 *	Zero on success, AC_ERR_* mask on failure
1280 */
1281unsigned int ata_sff_qc_issue(struct ata_queued_cmd *qc)
1282{
1283	struct ata_port *ap = qc->ap;
1284	struct ata_link *link = qc->dev->link;
1285
1286	/* Use polling pio if the LLD doesn't handle
1287	 * interrupt driven pio and atapi CDB interrupt.
1288	 */
1289	if (ap->flags & ATA_FLAG_PIO_POLLING)
1290		qc->tf.flags |= ATA_TFLAG_POLLING;
1291
1292	/* select the device */
1293	ata_dev_select(ap, qc->dev->devno, 1, 0);
1294
1295	/* start the command */
1296	switch (qc->tf.protocol) {
1297	case ATA_PROT_NODATA:
1298		if (qc->tf.flags & ATA_TFLAG_POLLING)
1299			ata_qc_set_polling(qc);
1300
1301		ata_tf_to_host(ap, &qc->tf, qc->tag);
1302		ap->hsm_task_state = HSM_ST_LAST;
1303
1304		if (qc->tf.flags & ATA_TFLAG_POLLING)
1305			ata_sff_queue_pio_task(link, 0);
1306
1307		break;
1308
1309	case ATA_PROT_PIO:
1310		if (qc->tf.flags & ATA_TFLAG_POLLING)
1311			ata_qc_set_polling(qc);
1312
1313		ata_tf_to_host(ap, &qc->tf, qc->tag);
1314
1315		if (qc->tf.flags & ATA_TFLAG_WRITE) {
1316			/* PIO data out protocol */
1317			ap->hsm_task_state = HSM_ST_FIRST;
1318			ata_sff_queue_pio_task(link, 0);
1319
1320			/* always send first data block using the
1321			 * ata_sff_pio_task() codepath.
1322			 */
1323		} else {
1324			/* PIO data in protocol */
1325			ap->hsm_task_state = HSM_ST;
1326
1327			if (qc->tf.flags & ATA_TFLAG_POLLING)
1328				ata_sff_queue_pio_task(link, 0);
1329
1330			/* if polling, ata_sff_pio_task() handles the
1331			 * rest.  otherwise, interrupt handler takes
1332			 * over from here.
1333			 */
1334		}
1335
1336		break;
1337
1338	case ATAPI_PROT_PIO:
1339	case ATAPI_PROT_NODATA:
1340		if (qc->tf.flags & ATA_TFLAG_POLLING)
1341			ata_qc_set_polling(qc);
1342
1343		ata_tf_to_host(ap, &qc->tf, qc->tag);
1344
1345		ap->hsm_task_state = HSM_ST_FIRST;
1346
1347		/* send cdb by polling if no cdb interrupt */
1348		if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
1349		    (qc->tf.flags & ATA_TFLAG_POLLING))
1350			ata_sff_queue_pio_task(link, 0);
1351		break;
1352
1353	default:
1354		return AC_ERR_SYSTEM;
1355	}
1356
1357	return 0;
1358}
1359EXPORT_SYMBOL_GPL(ata_sff_qc_issue);
1360
1361/**
1362 *	ata_sff_qc_fill_rtf - fill result TF using ->sff_tf_read
1363 *	@qc: qc to fill result TF for
1364 *
1365 *	@qc is finished and result TF needs to be filled.  Fill it
1366 *	using ->sff_tf_read.
1367 *
1368 *	LOCKING:
1369 *	spin_lock_irqsave(host lock)
1370 */
1371void ata_sff_qc_fill_rtf(struct ata_queued_cmd *qc)
1372{
1373	qc->ap->ops->sff_tf_read(qc->ap, &qc->result_tf);
1374}
1375EXPORT_SYMBOL_GPL(ata_sff_qc_fill_rtf);
1376
1377static unsigned int ata_sff_idle_irq(struct ata_port *ap)
1378{
1379	ap->stats.idle_irq++;
1380
1381#ifdef ATA_IRQ_TRAP
1382	if ((ap->stats.idle_irq % 1000) == 0) {
1383		ap->ops->sff_check_status(ap);
1384		if (ap->ops->sff_irq_clear)
1385			ap->ops->sff_irq_clear(ap);
1386		ata_port_warn(ap, "irq trap\n");
1387		return 1;
1388	}
1389#endif
1390	return 0;	/* irq not handled */
1391}
1392
1393static unsigned int __ata_sff_port_intr(struct ata_port *ap,
1394					struct ata_queued_cmd *qc,
1395					bool hsmv_on_idle)
1396{
1397	u8 status;
1398
1399	trace_ata_sff_port_intr(qc, hsmv_on_idle);
1400
1401	/* Check whether we are expecting interrupt in this state */
1402	switch (ap->hsm_task_state) {
1403	case HSM_ST_FIRST:
1404		/* Some pre-ATAPI-4 devices assert INTRQ
1405		 * at this state when ready to receive CDB.
1406		 */
1407
1408		/* Check the ATA_DFLAG_CDB_INTR flag is enough here.
1409		 * The flag was turned on only for atapi devices.  No
1410		 * need to check ata_is_atapi(qc->tf.protocol) again.
1411		 */
1412		if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1413			return ata_sff_idle_irq(ap);
1414		break;
1415	case HSM_ST_IDLE:
1416		return ata_sff_idle_irq(ap);
1417	default:
1418		break;
1419	}
1420
1421	/* check main status, clearing INTRQ if needed */
1422	status = ata_sff_irq_status(ap);
1423	if (status & ATA_BUSY) {
1424		if (hsmv_on_idle) {
1425			/* BMDMA engine is already stopped, we're screwed */
1426			qc->err_mask |= AC_ERR_HSM;
1427			ap->hsm_task_state = HSM_ST_ERR;
1428		} else
1429			return ata_sff_idle_irq(ap);
1430	}
1431
1432	/* clear irq events */
1433	if (ap->ops->sff_irq_clear)
1434		ap->ops->sff_irq_clear(ap);
1435
1436	ata_sff_hsm_move(ap, qc, status, 0);
1437
1438	return 1;	/* irq handled */
1439}
1440
1441/**
1442 *	ata_sff_port_intr - Handle SFF port interrupt
1443 *	@ap: Port on which interrupt arrived (possibly...)
1444 *	@qc: Taskfile currently active in engine
1445 *
1446 *	Handle port interrupt for given queued command.
1447 *
1448 *	LOCKING:
1449 *	spin_lock_irqsave(host lock)
1450 *
1451 *	RETURNS:
1452 *	One if interrupt was handled, zero if not (shared irq).
1453 */
1454unsigned int ata_sff_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc)
1455{
1456	return __ata_sff_port_intr(ap, qc, false);
1457}
1458EXPORT_SYMBOL_GPL(ata_sff_port_intr);
1459
1460static inline irqreturn_t __ata_sff_interrupt(int irq, void *dev_instance,
1461	unsigned int (*port_intr)(struct ata_port *, struct ata_queued_cmd *))
1462{
1463	struct ata_host *host = dev_instance;
1464	bool retried = false;
1465	unsigned int i;
1466	unsigned int handled, idle, polling;
1467	unsigned long flags;
1468
1469	/* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
1470	spin_lock_irqsave(&host->lock, flags);
1471
1472retry:
1473	handled = idle = polling = 0;
1474	for (i = 0; i < host->n_ports; i++) {
1475		struct ata_port *ap = host->ports[i];
1476		struct ata_queued_cmd *qc;
1477
1478		qc = ata_qc_from_tag(ap, ap->link.active_tag);
1479		if (qc) {
1480			if (!(qc->tf.flags & ATA_TFLAG_POLLING))
1481				handled |= port_intr(ap, qc);
1482			else
1483				polling |= 1 << i;
1484		} else
1485			idle |= 1 << i;
1486	}
1487
1488	/*
1489	 * If no port was expecting IRQ but the controller is actually
1490	 * asserting IRQ line, nobody cared will ensue.  Check IRQ
1491	 * pending status if available and clear spurious IRQ.
1492	 */
1493	if (!handled && !retried) {
1494		bool retry = false;
1495
1496		for (i = 0; i < host->n_ports; i++) {
1497			struct ata_port *ap = host->ports[i];
1498
1499			if (polling & (1 << i))
1500				continue;
1501
1502			if (!ap->ops->sff_irq_check ||
1503			    !ap->ops->sff_irq_check(ap))
1504				continue;
1505
1506			if (idle & (1 << i)) {
1507				ap->ops->sff_check_status(ap);
1508				if (ap->ops->sff_irq_clear)
1509					ap->ops->sff_irq_clear(ap);
1510			} else {
1511				/* clear INTRQ and check if BUSY cleared */
1512				if (!(ap->ops->sff_check_status(ap) & ATA_BUSY))
1513					retry |= true;
1514				/*
1515				 * With command in flight, we can't do
1516				 * sff_irq_clear() w/o racing with completion.
1517				 */
1518			}
1519		}
1520
1521		if (retry) {
1522			retried = true;
1523			goto retry;
1524		}
1525	}
1526
1527	spin_unlock_irqrestore(&host->lock, flags);
1528
1529	return IRQ_RETVAL(handled);
1530}
1531
1532/**
1533 *	ata_sff_interrupt - Default SFF ATA host interrupt handler
1534 *	@irq: irq line (unused)
1535 *	@dev_instance: pointer to our ata_host information structure
1536 *
1537 *	Default interrupt handler for PCI IDE devices.  Calls
1538 *	ata_sff_port_intr() for each port that is not disabled.
1539 *
1540 *	LOCKING:
1541 *	Obtains host lock during operation.
1542 *
1543 *	RETURNS:
1544 *	IRQ_NONE or IRQ_HANDLED.
1545 */
1546irqreturn_t ata_sff_interrupt(int irq, void *dev_instance)
1547{
1548	return __ata_sff_interrupt(irq, dev_instance, ata_sff_port_intr);
1549}
1550EXPORT_SYMBOL_GPL(ata_sff_interrupt);
1551
1552/**
1553 *	ata_sff_lost_interrupt	-	Check for an apparent lost interrupt
1554 *	@ap: port that appears to have timed out
1555 *
1556 *	Called from the libata error handlers when the core code suspects
1557 *	an interrupt has been lost. If it has complete anything we can and
1558 *	then return. Interface must support altstatus for this faster
1559 *	recovery to occur.
1560 *
1561 *	Locking:
1562 *	Caller holds host lock
1563 */
1564
1565void ata_sff_lost_interrupt(struct ata_port *ap)
1566{
1567	u8 status = 0;
1568	struct ata_queued_cmd *qc;
1569
1570	/* Only one outstanding command per SFF channel */
1571	qc = ata_qc_from_tag(ap, ap->link.active_tag);
1572	/* We cannot lose an interrupt on a non-existent or polled command */
1573	if (!qc || qc->tf.flags & ATA_TFLAG_POLLING)
1574		return;
1575	/* See if the controller thinks it is still busy - if so the command
1576	   isn't a lost IRQ but is still in progress */
1577	if (WARN_ON_ONCE(!ata_sff_altstatus(ap, &status)))
1578		return;
1579	if (status & ATA_BUSY)
1580		return;
1581
1582	/* There was a command running, we are no longer busy and we have
1583	   no interrupt. */
1584	ata_port_warn(ap, "lost interrupt (Status 0x%x)\n", status);
1585	/* Run the host interrupt logic as if the interrupt had not been
1586	   lost */
1587	ata_sff_port_intr(ap, qc);
1588}
1589EXPORT_SYMBOL_GPL(ata_sff_lost_interrupt);
1590
1591/**
1592 *	ata_sff_freeze - Freeze SFF controller port
1593 *	@ap: port to freeze
1594 *
1595 *	Freeze SFF controller port.
1596 *
1597 *	LOCKING:
1598 *	Inherited from caller.
1599 */
1600void ata_sff_freeze(struct ata_port *ap)
1601{
1602	ap->ctl |= ATA_NIEN;
1603	ap->last_ctl = ap->ctl;
1604
1605	ata_sff_set_devctl(ap, ap->ctl);
1606
1607	/* Under certain circumstances, some controllers raise IRQ on
1608	 * ATA_NIEN manipulation.  Also, many controllers fail to mask
1609	 * previously pending IRQ on ATA_NIEN assertion.  Clear it.
1610	 */
1611	ap->ops->sff_check_status(ap);
1612
1613	if (ap->ops->sff_irq_clear)
1614		ap->ops->sff_irq_clear(ap);
1615}
1616EXPORT_SYMBOL_GPL(ata_sff_freeze);
1617
1618/**
1619 *	ata_sff_thaw - Thaw SFF controller port
1620 *	@ap: port to thaw
1621 *
1622 *	Thaw SFF controller port.
1623 *
1624 *	LOCKING:
1625 *	Inherited from caller.
1626 */
1627void ata_sff_thaw(struct ata_port *ap)
1628{
1629	/* clear & re-enable interrupts */
1630	ap->ops->sff_check_status(ap);
1631	if (ap->ops->sff_irq_clear)
1632		ap->ops->sff_irq_clear(ap);
1633	ata_sff_irq_on(ap);
1634}
1635EXPORT_SYMBOL_GPL(ata_sff_thaw);
1636
1637/**
1638 *	ata_sff_prereset - prepare SFF link for reset
1639 *	@link: SFF link to be reset
1640 *	@deadline: deadline jiffies for the operation
1641 *
1642 *	SFF link @link is about to be reset.  Initialize it.  It first
1643 *	calls ata_std_prereset() and wait for !BSY if the port is
1644 *	being softreset.
1645 *
1646 *	LOCKING:
1647 *	Kernel thread context (may sleep)
1648 *
1649 *	RETURNS:
1650 *	Always 0.
1651 */
1652int ata_sff_prereset(struct ata_link *link, unsigned long deadline)
1653{
1654	struct ata_eh_context *ehc = &link->eh_context;
1655	int rc;
1656
1657	/* The standard prereset is best-effort and always returns 0 */
1658	ata_std_prereset(link, deadline);
1659
1660	/* if we're about to do hardreset, nothing more to do */
1661	if (ehc->i.action & ATA_EH_HARDRESET)
1662		return 0;
1663
1664	/* wait for !BSY if we don't know that no device is attached */
1665	if (!ata_link_offline(link)) {
1666		rc = ata_sff_wait_ready(link, deadline);
1667		if (rc && rc != -ENODEV) {
1668			ata_link_warn(link,
1669				      "device not ready (errno=%d), forcing hardreset\n",
1670				      rc);
1671			ehc->i.action |= ATA_EH_HARDRESET;
1672		}
1673	}
1674
1675	return 0;
1676}
1677EXPORT_SYMBOL_GPL(ata_sff_prereset);
1678
1679/**
1680 *	ata_devchk - PATA device presence detection
1681 *	@ap: ATA channel to examine
1682 *	@device: Device to examine (starting at zero)
1683 *
1684 *	This technique was originally described in
1685 *	Hale Landis's ATADRVR (www.ata-atapi.com), and
1686 *	later found its way into the ATA/ATAPI spec.
1687 *
1688 *	Write a pattern to the ATA shadow registers,
1689 *	and if a device is present, it will respond by
1690 *	correctly storing and echoing back the
1691 *	ATA shadow register contents.
1692 *
1693 *	RETURN:
1694 *	true if device is present, false if not.
1695 *
1696 *	LOCKING:
1697 *	caller.
1698 */
1699static bool ata_devchk(struct ata_port *ap, unsigned int device)
1700{
1701	struct ata_ioports *ioaddr = &ap->ioaddr;
1702	u8 nsect, lbal;
1703
1704	ap->ops->sff_dev_select(ap, device);
1705
1706	iowrite8(0x55, ioaddr->nsect_addr);
1707	iowrite8(0xaa, ioaddr->lbal_addr);
1708
1709	iowrite8(0xaa, ioaddr->nsect_addr);
1710	iowrite8(0x55, ioaddr->lbal_addr);
1711
1712	iowrite8(0x55, ioaddr->nsect_addr);
1713	iowrite8(0xaa, ioaddr->lbal_addr);
1714
1715	nsect = ioread8(ioaddr->nsect_addr);
1716	lbal = ioread8(ioaddr->lbal_addr);
1717
1718	if ((nsect == 0x55) && (lbal == 0xaa))
1719		return true;	/* we found a device */
1720
1721	return false;		/* nothing found */
1722}
1723
1724/**
1725 *	ata_sff_dev_classify - Parse returned ATA device signature
1726 *	@dev: ATA device to classify (starting at zero)
1727 *	@present: device seems present
1728 *	@r_err: Value of error register on completion
1729 *
1730 *	After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
1731 *	an ATA/ATAPI-defined set of values is placed in the ATA
1732 *	shadow registers, indicating the results of device detection
1733 *	and diagnostics.
1734 *
1735 *	Select the ATA device, and read the values from the ATA shadow
1736 *	registers.  Then parse according to the Error register value,
1737 *	and the spec-defined values examined by ata_dev_classify().
1738 *
1739 *	LOCKING:
1740 *	caller.
1741 *
1742 *	RETURNS:
1743 *	Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1744 */
1745unsigned int ata_sff_dev_classify(struct ata_device *dev, int present,
1746				  u8 *r_err)
1747{
1748	struct ata_port *ap = dev->link->ap;
1749	struct ata_taskfile tf;
1750	unsigned int class;
1751	u8 err;
1752
1753	ap->ops->sff_dev_select(ap, dev->devno);
1754
1755	memset(&tf, 0, sizeof(tf));
1756
1757	ap->ops->sff_tf_read(ap, &tf);
1758	err = tf.error;
1759	if (r_err)
1760		*r_err = err;
1761
1762	/* see if device passed diags: continue and warn later */
1763	if (err == 0)
1764		/* diagnostic fail : do nothing _YET_ */
1765		dev->horkage |= ATA_HORKAGE_DIAGNOSTIC;
1766	else if (err == 1)
1767		/* do nothing */ ;
1768	else if ((dev->devno == 0) && (err == 0x81))
1769		/* do nothing */ ;
1770	else
1771		return ATA_DEV_NONE;
1772
1773	/* determine if device is ATA or ATAPI */
1774	class = ata_port_classify(ap, &tf);
1775	switch (class) {
1776	case ATA_DEV_UNKNOWN:
1777		/*
1778		 * If the device failed diagnostic, it's likely to
1779		 * have reported incorrect device signature too.
1780		 * Assume ATA device if the device seems present but
1781		 * device signature is invalid with diagnostic
1782		 * failure.
1783		 */
1784		if (present && (dev->horkage & ATA_HORKAGE_DIAGNOSTIC))
1785			class = ATA_DEV_ATA;
1786		else
1787			class = ATA_DEV_NONE;
1788		break;
1789	case ATA_DEV_ATA:
1790		if (ap->ops->sff_check_status(ap) == 0)
1791			class = ATA_DEV_NONE;
1792		break;
1793	}
1794	return class;
1795}
1796EXPORT_SYMBOL_GPL(ata_sff_dev_classify);
1797
1798/**
1799 *	ata_sff_wait_after_reset - wait for devices to become ready after reset
1800 *	@link: SFF link which is just reset
1801 *	@devmask: mask of present devices
1802 *	@deadline: deadline jiffies for the operation
1803 *
1804 *	Wait devices attached to SFF @link to become ready after
1805 *	reset.  It contains preceding 150ms wait to avoid accessing TF
1806 *	status register too early.
1807 *
1808 *	LOCKING:
1809 *	Kernel thread context (may sleep).
1810 *
1811 *	RETURNS:
1812 *	0 on success, -ENODEV if some or all of devices in @devmask
1813 *	don't seem to exist.  -errno on other errors.
1814 */
1815int ata_sff_wait_after_reset(struct ata_link *link, unsigned int devmask,
1816			     unsigned long deadline)
1817{
1818	struct ata_port *ap = link->ap;
1819	struct ata_ioports *ioaddr = &ap->ioaddr;
1820	unsigned int dev0 = devmask & (1 << 0);
1821	unsigned int dev1 = devmask & (1 << 1);
1822	int rc, ret = 0;
1823
1824	ata_msleep(ap, ATA_WAIT_AFTER_RESET);
1825
1826	/* always check readiness of the master device */
1827	rc = ata_sff_wait_ready(link, deadline);
1828	/* -ENODEV means the odd clown forgot the D7 pulldown resistor
1829	 * and TF status is 0xff, bail out on it too.
1830	 */
1831	if (rc)
1832		return rc;
1833
1834	/* if device 1 was found in ata_devchk, wait for register
1835	 * access briefly, then wait for BSY to clear.
1836	 */
1837	if (dev1) {
1838		int i;
1839
1840		ap->ops->sff_dev_select(ap, 1);
1841
1842		/* Wait for register access.  Some ATAPI devices fail
1843		 * to set nsect/lbal after reset, so don't waste too
1844		 * much time on it.  We're gonna wait for !BSY anyway.
1845		 */
1846		for (i = 0; i < 2; i++) {
1847			u8 nsect, lbal;
1848
1849			nsect = ioread8(ioaddr->nsect_addr);
1850			lbal = ioread8(ioaddr->lbal_addr);
1851			if ((nsect == 1) && (lbal == 1))
1852				break;
1853			ata_msleep(ap, 50);	/* give drive a breather */
1854		}
1855
1856		rc = ata_sff_wait_ready(link, deadline);
1857		if (rc) {
1858			if (rc != -ENODEV)
1859				return rc;
1860			ret = rc;
1861		}
1862	}
1863
1864	/* is all this really necessary? */
1865	ap->ops->sff_dev_select(ap, 0);
1866	if (dev1)
1867		ap->ops->sff_dev_select(ap, 1);
1868	if (dev0)
1869		ap->ops->sff_dev_select(ap, 0);
1870
1871	return ret;
1872}
1873EXPORT_SYMBOL_GPL(ata_sff_wait_after_reset);
1874
1875static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
1876			     unsigned long deadline)
1877{
1878	struct ata_ioports *ioaddr = &ap->ioaddr;
1879
1880	if (ap->ioaddr.ctl_addr) {
1881		/* software reset.  causes dev0 to be selected */
1882		iowrite8(ap->ctl, ioaddr->ctl_addr);
1883		udelay(20);	/* FIXME: flush */
1884		iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
1885		udelay(20);	/* FIXME: flush */
1886		iowrite8(ap->ctl, ioaddr->ctl_addr);
1887		ap->last_ctl = ap->ctl;
1888	}
1889
1890	/* wait the port to become ready */
1891	return ata_sff_wait_after_reset(&ap->link, devmask, deadline);
1892}
1893
1894/**
1895 *	ata_sff_softreset - reset host port via ATA SRST
1896 *	@link: ATA link to reset
1897 *	@classes: resulting classes of attached devices
1898 *	@deadline: deadline jiffies for the operation
1899 *
1900 *	Reset host port using ATA SRST.
1901 *
1902 *	LOCKING:
1903 *	Kernel thread context (may sleep)
1904 *
1905 *	RETURNS:
1906 *	0 on success, -errno otherwise.
1907 */
1908int ata_sff_softreset(struct ata_link *link, unsigned int *classes,
1909		      unsigned long deadline)
1910{
1911	struct ata_port *ap = link->ap;
1912	unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
1913	unsigned int devmask = 0;
1914	int rc;
1915	u8 err;
1916
1917	/* determine if device 0/1 are present */
1918	if (ata_devchk(ap, 0))
1919		devmask |= (1 << 0);
1920	if (slave_possible && ata_devchk(ap, 1))
1921		devmask |= (1 << 1);
1922
1923	/* select device 0 again */
1924	ap->ops->sff_dev_select(ap, 0);
1925
1926	/* issue bus reset */
1927	rc = ata_bus_softreset(ap, devmask, deadline);
1928	/* if link is occupied, -ENODEV too is an error */
1929	if (rc && (rc != -ENODEV || sata_scr_valid(link))) {
1930		ata_link_err(link, "SRST failed (errno=%d)\n", rc);
1931		return rc;
1932	}
1933
1934	/* determine by signature whether we have ATA or ATAPI devices */
1935	classes[0] = ata_sff_dev_classify(&link->device[0],
1936					  devmask & (1 << 0), &err);
1937	if (slave_possible && err != 0x81)
1938		classes[1] = ata_sff_dev_classify(&link->device[1],
1939						  devmask & (1 << 1), &err);
1940
1941	return 0;
1942}
1943EXPORT_SYMBOL_GPL(ata_sff_softreset);
1944
1945/**
1946 *	sata_sff_hardreset - reset host port via SATA phy reset
1947 *	@link: link to reset
1948 *	@class: resulting class of attached device
1949 *	@deadline: deadline jiffies for the operation
1950 *
1951 *	SATA phy-reset host port using DET bits of SControl register,
1952 *	wait for !BSY and classify the attached device.
1953 *
1954 *	LOCKING:
1955 *	Kernel thread context (may sleep)
1956 *
1957 *	RETURNS:
1958 *	0 on success, -errno otherwise.
1959 */
1960int sata_sff_hardreset(struct ata_link *link, unsigned int *class,
1961		       unsigned long deadline)
1962{
1963	struct ata_eh_context *ehc = &link->eh_context;
1964	const unsigned int *timing = sata_ehc_deb_timing(ehc);
1965	bool online;
1966	int rc;
1967
1968	rc = sata_link_hardreset(link, timing, deadline, &online,
1969				 ata_sff_check_ready);
1970	if (online)
1971		*class = ata_sff_dev_classify(link->device, 1, NULL);
1972
1973	return rc;
1974}
1975EXPORT_SYMBOL_GPL(sata_sff_hardreset);
1976
1977/**
1978 *	ata_sff_postreset - SFF postreset callback
1979 *	@link: the target SFF ata_link
1980 *	@classes: classes of attached devices
1981 *
1982 *	This function is invoked after a successful reset.  It first
1983 *	calls ata_std_postreset() and performs SFF specific postreset
1984 *	processing.
1985 *
1986 *	LOCKING:
1987 *	Kernel thread context (may sleep)
1988 */
1989void ata_sff_postreset(struct ata_link *link, unsigned int *classes)
1990{
1991	struct ata_port *ap = link->ap;
1992
1993	ata_std_postreset(link, classes);
1994
1995	/* is double-select really necessary? */
1996	if (classes[0] != ATA_DEV_NONE)
1997		ap->ops->sff_dev_select(ap, 1);
1998	if (classes[1] != ATA_DEV_NONE)
1999		ap->ops->sff_dev_select(ap, 0);
2000
2001	/* bail out if no device is present */
2002	if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE)
2003		return;
2004
2005	/* set up device control */
2006	if (ata_sff_set_devctl(ap, ap->ctl))
2007		ap->last_ctl = ap->ctl;
2008}
2009EXPORT_SYMBOL_GPL(ata_sff_postreset);
2010
2011/**
2012 *	ata_sff_drain_fifo - Stock FIFO drain logic for SFF controllers
2013 *	@qc: command
2014 *
2015 *	Drain the FIFO and device of any stuck data following a command
2016 *	failing to complete. In some cases this is necessary before a
2017 *	reset will recover the device.
2018 *
2019 */
2020
2021void ata_sff_drain_fifo(struct ata_queued_cmd *qc)
2022{
2023	int count;
2024	struct ata_port *ap;
2025
2026	/* We only need to flush incoming data when a command was running */
2027	if (qc == NULL || qc->dma_dir == DMA_TO_DEVICE)
2028		return;
2029
2030	ap = qc->ap;
2031	/* Drain up to 64K of data before we give up this recovery method */
2032	for (count = 0; (ap->ops->sff_check_status(ap) & ATA_DRQ)
2033						&& count < 65536; count += 2)
2034		ioread16(ap->ioaddr.data_addr);
2035
2036	if (count)
2037		ata_port_dbg(ap, "drained %d bytes to clear DRQ\n", count);
2038
2039}
2040EXPORT_SYMBOL_GPL(ata_sff_drain_fifo);
2041
2042/**
2043 *	ata_sff_error_handler - Stock error handler for SFF controller
2044 *	@ap: port to handle error for
2045 *
2046 *	Stock error handler for SFF controller.  It can handle both
2047 *	PATA and SATA controllers.  Many controllers should be able to
2048 *	use this EH as-is or with some added handling before and
2049 *	after.
2050 *
2051 *	LOCKING:
2052 *	Kernel thread context (may sleep)
2053 */
2054void ata_sff_error_handler(struct ata_port *ap)
2055{
2056	ata_reset_fn_t softreset = ap->ops->softreset;
2057	ata_reset_fn_t hardreset = ap->ops->hardreset;
2058	struct ata_queued_cmd *qc;
2059	unsigned long flags;
2060
2061	qc = __ata_qc_from_tag(ap, ap->link.active_tag);
2062	if (qc && !(qc->flags & ATA_QCFLAG_EH))
2063		qc = NULL;
2064
2065	spin_lock_irqsave(ap->lock, flags);
2066
2067	/*
2068	 * We *MUST* do FIFO draining before we issue a reset as
2069	 * several devices helpfully clear their internal state and
2070	 * will lock solid if we touch the data port post reset. Pass
2071	 * qc in case anyone wants to do different PIO/DMA recovery or
2072	 * has per command fixups
2073	 */
2074	if (ap->ops->sff_drain_fifo)
2075		ap->ops->sff_drain_fifo(qc);
2076
2077	spin_unlock_irqrestore(ap->lock, flags);
2078
2079	/* ignore built-in hardresets if SCR access is not available */
2080	if ((hardreset == sata_std_hardreset ||
2081	     hardreset == sata_sff_hardreset) && !sata_scr_valid(&ap->link))
2082		hardreset = NULL;
2083
2084	ata_do_eh(ap, ap->ops->prereset, softreset, hardreset,
2085		  ap->ops->postreset);
2086}
2087EXPORT_SYMBOL_GPL(ata_sff_error_handler);
2088
2089/**
2090 *	ata_sff_std_ports - initialize ioaddr with standard port offsets.
2091 *	@ioaddr: IO address structure to be initialized
2092 *
2093 *	Utility function which initializes data_addr, error_addr,
2094 *	feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
2095 *	device_addr, status_addr, and command_addr to standard offsets
2096 *	relative to cmd_addr.
2097 *
2098 *	Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
2099 */
2100void ata_sff_std_ports(struct ata_ioports *ioaddr)
2101{
2102	ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
2103	ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
2104	ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
2105	ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
2106	ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
2107	ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
2108	ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
2109	ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
2110	ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
2111	ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
2112}
2113EXPORT_SYMBOL_GPL(ata_sff_std_ports);
2114
2115#ifdef CONFIG_PCI
2116
2117static bool ata_resources_present(struct pci_dev *pdev, int port)
2118{
2119	int i;
2120
2121	/* Check the PCI resources for this channel are enabled */
2122	port *= 2;
2123	for (i = 0; i < 2; i++) {
2124		if (pci_resource_start(pdev, port + i) == 0 ||
2125		    pci_resource_len(pdev, port + i) == 0)
2126			return false;
2127	}
2128	return true;
2129}
2130
2131/**
2132 *	ata_pci_sff_init_host - acquire native PCI ATA resources and init host
2133 *	@host: target ATA host
2134 *
2135 *	Acquire native PCI ATA resources for @host and initialize the
2136 *	first two ports of @host accordingly.  Ports marked dummy are
2137 *	skipped and allocation failure makes the port dummy.
2138 *
2139 *	Note that native PCI resources are valid even for legacy hosts
2140 *	as we fix up pdev resources array early in boot, so this
2141 *	function can be used for both native and legacy SFF hosts.
2142 *
2143 *	LOCKING:
2144 *	Inherited from calling layer (may sleep).
2145 *
2146 *	RETURNS:
2147 *	0 if at least one port is initialized, -ENODEV if no port is
2148 *	available.
2149 */
2150int ata_pci_sff_init_host(struct ata_host *host)
2151{
2152	struct device *gdev = host->dev;
2153	struct pci_dev *pdev = to_pci_dev(gdev);
2154	unsigned int mask = 0;
2155	int i, rc;
2156
2157	/* request, iomap BARs and init port addresses accordingly */
2158	for (i = 0; i < 2; i++) {
2159		struct ata_port *ap = host->ports[i];
2160		int base = i * 2;
2161		void __iomem * const *iomap;
2162
2163		if (ata_port_is_dummy(ap))
2164			continue;
2165
2166		/* Discard disabled ports.  Some controllers show
2167		 * their unused channels this way.  Disabled ports are
2168		 * made dummy.
2169		 */
2170		if (!ata_resources_present(pdev, i)) {
2171			ap->ops = &ata_dummy_port_ops;
2172			continue;
2173		}
2174
2175		rc = pcim_iomap_regions(pdev, 0x3 << base,
2176					dev_driver_string(gdev));
2177		if (rc) {
2178			dev_warn(gdev,
2179				 "failed to request/iomap BARs for port %d (errno=%d)\n",
2180				 i, rc);
2181			if (rc == -EBUSY)
2182				pcim_pin_device(pdev);
2183			ap->ops = &ata_dummy_port_ops;
2184			continue;
2185		}
2186		host->iomap = iomap = pcim_iomap_table(pdev);
2187
2188		ap->ioaddr.cmd_addr = iomap[base];
2189		ap->ioaddr.altstatus_addr =
2190		ap->ioaddr.ctl_addr = (void __iomem *)
2191			((unsigned long)iomap[base + 1] | ATA_PCI_CTL_OFS);
2192		ata_sff_std_ports(&ap->ioaddr);
2193
2194		ata_port_desc(ap, "cmd 0x%llx ctl 0x%llx",
2195			(unsigned long long)pci_resource_start(pdev, base),
2196			(unsigned long long)pci_resource_start(pdev, base + 1));
2197
2198		mask |= 1 << i;
2199	}
2200
2201	if (!mask) {
2202		dev_err(gdev, "no available native port\n");
2203		return -ENODEV;
2204	}
2205
2206	return 0;
2207}
2208EXPORT_SYMBOL_GPL(ata_pci_sff_init_host);
2209
2210/**
2211 *	ata_pci_sff_prepare_host - helper to prepare PCI PIO-only SFF ATA host
2212 *	@pdev: target PCI device
2213 *	@ppi: array of port_info, must be enough for two ports
2214 *	@r_host: out argument for the initialized ATA host
2215 *
2216 *	Helper to allocate PIO-only SFF ATA host for @pdev, acquire
2217 *	all PCI resources and initialize it accordingly in one go.
2218 *
2219 *	LOCKING:
2220 *	Inherited from calling layer (may sleep).
2221 *
2222 *	RETURNS:
2223 *	0 on success, -errno otherwise.
2224 */
2225int ata_pci_sff_prepare_host(struct pci_dev *pdev,
2226			     const struct ata_port_info * const *ppi,
2227			     struct ata_host **r_host)
2228{
2229	struct ata_host *host;
2230	int rc;
2231
2232	if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL))
2233		return -ENOMEM;
2234
2235	host = ata_host_alloc_pinfo(&pdev->dev, ppi, 2);
2236	if (!host) {
2237		dev_err(&pdev->dev, "failed to allocate ATA host\n");
2238		rc = -ENOMEM;
2239		goto err_out;
2240	}
2241
2242	rc = ata_pci_sff_init_host(host);
2243	if (rc)
2244		goto err_out;
2245
2246	devres_remove_group(&pdev->dev, NULL);
2247	*r_host = host;
2248	return 0;
2249
2250err_out:
2251	devres_release_group(&pdev->dev, NULL);
2252	return rc;
2253}
2254EXPORT_SYMBOL_GPL(ata_pci_sff_prepare_host);
2255
2256/**
2257 *	ata_pci_sff_activate_host - start SFF host, request IRQ and register it
2258 *	@host: target SFF ATA host
2259 *	@irq_handler: irq_handler used when requesting IRQ(s)
2260 *	@sht: scsi_host_template to use when registering the host
2261 *
2262 *	This is the counterpart of ata_host_activate() for SFF ATA
2263 *	hosts.  This separate helper is necessary because SFF hosts
2264 *	use two separate interrupts in legacy mode.
2265 *
2266 *	LOCKING:
2267 *	Inherited from calling layer (may sleep).
2268 *
2269 *	RETURNS:
2270 *	0 on success, -errno otherwise.
2271 */
2272int ata_pci_sff_activate_host(struct ata_host *host,
2273			      irq_handler_t irq_handler,
2274			      const struct scsi_host_template *sht)
2275{
2276	struct device *dev = host->dev;
2277	struct pci_dev *pdev = to_pci_dev(dev);
2278	const char *drv_name = dev_driver_string(host->dev);
2279	int legacy_mode = 0, rc;
2280
2281	rc = ata_host_start(host);
2282	if (rc)
2283		return rc;
2284
2285	if ((pdev->class >> 8) == PCI_CLASS_STORAGE_IDE) {
2286		u8 tmp8, mask = 0;
2287
2288		/*
2289		 * ATA spec says we should use legacy mode when one
2290		 * port is in legacy mode, but disabled ports on some
2291		 * PCI hosts appear as fixed legacy ports, e.g SB600/700
2292		 * on which the secondary port is not wired, so
2293		 * ignore ports that are marked as 'dummy' during
2294		 * this check
2295		 */
2296		pci_read_config_byte(pdev, PCI_CLASS_PROG, &tmp8);
2297		if (!ata_port_is_dummy(host->ports[0]))
2298			mask |= (1 << 0);
2299		if (!ata_port_is_dummy(host->ports[1]))
2300			mask |= (1 << 2);
2301		if ((tmp8 & mask) != mask)
2302			legacy_mode = 1;
2303	}
2304
2305	if (!devres_open_group(dev, NULL, GFP_KERNEL))
2306		return -ENOMEM;
2307
2308	if (!legacy_mode && pdev->irq) {
2309		int i;
2310
2311		rc = devm_request_irq(dev, pdev->irq, irq_handler,
2312				      IRQF_SHARED, drv_name, host);
2313		if (rc)
2314			goto out;
2315
2316		for (i = 0; i < 2; i++) {
2317			if (ata_port_is_dummy(host->ports[i]))
2318				continue;
2319			ata_port_desc_misc(host->ports[i], pdev->irq);
2320		}
2321	} else if (legacy_mode) {
2322		if (!ata_port_is_dummy(host->ports[0])) {
2323			rc = devm_request_irq(dev, ATA_PRIMARY_IRQ(pdev),
2324					      irq_handler, IRQF_SHARED,
2325					      drv_name, host);
2326			if (rc)
2327				goto out;
2328
2329			ata_port_desc_misc(host->ports[0],
2330					   ATA_PRIMARY_IRQ(pdev));
2331		}
2332
2333		if (!ata_port_is_dummy(host->ports[1])) {
2334			rc = devm_request_irq(dev, ATA_SECONDARY_IRQ(pdev),
2335					      irq_handler, IRQF_SHARED,
2336					      drv_name, host);
2337			if (rc)
2338				goto out;
2339
2340			ata_port_desc_misc(host->ports[1],
2341					   ATA_SECONDARY_IRQ(pdev));
2342		}
2343	}
2344
2345	rc = ata_host_register(host, sht);
2346out:
2347	if (rc == 0)
2348		devres_remove_group(dev, NULL);
2349	else
2350		devres_release_group(dev, NULL);
2351
2352	return rc;
2353}
2354EXPORT_SYMBOL_GPL(ata_pci_sff_activate_host);
2355
2356static const struct ata_port_info *ata_sff_find_valid_pi(
2357					const struct ata_port_info * const *ppi)
2358{
2359	int i;
2360
2361	/* look up the first valid port_info */
2362	for (i = 0; i < 2 && ppi[i]; i++)
2363		if (ppi[i]->port_ops != &ata_dummy_port_ops)
2364			return ppi[i];
2365
2366	return NULL;
2367}
2368
2369static int ata_pci_init_one(struct pci_dev *pdev,
2370		const struct ata_port_info * const *ppi,
2371		const struct scsi_host_template *sht, void *host_priv,
2372		int hflags, bool bmdma)
2373{
2374	struct device *dev = &pdev->dev;
2375	const struct ata_port_info *pi;
2376	struct ata_host *host = NULL;
2377	int rc;
2378
2379	pi = ata_sff_find_valid_pi(ppi);
2380	if (!pi) {
2381		dev_err(&pdev->dev, "no valid port_info specified\n");
2382		return -EINVAL;
2383	}
2384
2385	if (!devres_open_group(dev, NULL, GFP_KERNEL))
2386		return -ENOMEM;
2387
2388	rc = pcim_enable_device(pdev);
2389	if (rc)
2390		goto out;
2391
2392#ifdef CONFIG_ATA_BMDMA
2393	if (bmdma)
2394		/* prepare and activate BMDMA host */
2395		rc = ata_pci_bmdma_prepare_host(pdev, ppi, &host);
2396	else
2397#endif
2398		/* prepare and activate SFF host */
2399		rc = ata_pci_sff_prepare_host(pdev, ppi, &host);
2400	if (rc)
2401		goto out;
2402	host->private_data = host_priv;
2403	host->flags |= hflags;
2404
2405#ifdef CONFIG_ATA_BMDMA
2406	if (bmdma) {
2407		pci_set_master(pdev);
2408		rc = ata_pci_sff_activate_host(host, ata_bmdma_interrupt, sht);
2409	} else
2410#endif
2411		rc = ata_pci_sff_activate_host(host, ata_sff_interrupt, sht);
2412out:
2413	if (rc == 0)
2414		devres_remove_group(&pdev->dev, NULL);
2415	else
2416		devres_release_group(&pdev->dev, NULL);
2417
2418	return rc;
2419}
2420
2421/**
2422 *	ata_pci_sff_init_one - Initialize/register PIO-only PCI IDE controller
2423 *	@pdev: Controller to be initialized
2424 *	@ppi: array of port_info, must be enough for two ports
2425 *	@sht: scsi_host_template to use when registering the host
2426 *	@host_priv: host private_data
2427 *	@hflag: host flags
2428 *
2429 *	This is a helper function which can be called from a driver's
2430 *	xxx_init_one() probe function if the hardware uses traditional
2431 *	IDE taskfile registers and is PIO only.
2432 *
2433 *	ASSUMPTION:
2434 *	Nobody makes a single channel controller that appears solely as
2435 *	the secondary legacy port on PCI.
2436 *
2437 *	LOCKING:
2438 *	Inherited from PCI layer (may sleep).
2439 *
2440 *	RETURNS:
2441 *	Zero on success, negative on errno-based value on error.
2442 */
2443int ata_pci_sff_init_one(struct pci_dev *pdev,
2444		 const struct ata_port_info * const *ppi,
2445		 const struct scsi_host_template *sht, void *host_priv, int hflag)
2446{
2447	return ata_pci_init_one(pdev, ppi, sht, host_priv, hflag, 0);
2448}
2449EXPORT_SYMBOL_GPL(ata_pci_sff_init_one);
2450
2451#endif /* CONFIG_PCI */
2452
2453/*
2454 *	BMDMA support
2455 */
2456
2457#ifdef CONFIG_ATA_BMDMA
2458
2459const struct ata_port_operations ata_bmdma_port_ops = {
2460	.inherits		= &ata_sff_port_ops,
2461
2462	.error_handler		= ata_bmdma_error_handler,
2463	.post_internal_cmd	= ata_bmdma_post_internal_cmd,
2464
2465	.qc_prep		= ata_bmdma_qc_prep,
2466	.qc_issue		= ata_bmdma_qc_issue,
2467
2468	.sff_irq_clear		= ata_bmdma_irq_clear,
2469	.bmdma_setup		= ata_bmdma_setup,
2470	.bmdma_start		= ata_bmdma_start,
2471	.bmdma_stop		= ata_bmdma_stop,
2472	.bmdma_status		= ata_bmdma_status,
2473
2474	.port_start		= ata_bmdma_port_start,
2475};
2476EXPORT_SYMBOL_GPL(ata_bmdma_port_ops);
2477
2478const struct ata_port_operations ata_bmdma32_port_ops = {
2479	.inherits		= &ata_bmdma_port_ops,
2480
2481	.sff_data_xfer		= ata_sff_data_xfer32,
2482	.port_start		= ata_bmdma_port_start32,
2483};
2484EXPORT_SYMBOL_GPL(ata_bmdma32_port_ops);
2485
2486/**
2487 *	ata_bmdma_fill_sg - Fill PCI IDE PRD table
2488 *	@qc: Metadata associated with taskfile to be transferred
2489 *
2490 *	Fill PCI IDE PRD (scatter-gather) table with segments
2491 *	associated with the current disk command.
2492 *
2493 *	LOCKING:
2494 *	spin_lock_irqsave(host lock)
2495 *
2496 */
2497static void ata_bmdma_fill_sg(struct ata_queued_cmd *qc)
2498{
2499	struct ata_port *ap = qc->ap;
2500	struct ata_bmdma_prd *prd = ap->bmdma_prd;
2501	struct scatterlist *sg;
2502	unsigned int si, pi;
2503
2504	pi = 0;
2505	for_each_sg(qc->sg, sg, qc->n_elem, si) {
2506		u32 addr, offset;
2507		u32 sg_len, len;
2508
2509		/* determine if physical DMA addr spans 64K boundary.
2510		 * Note h/w doesn't support 64-bit, so we unconditionally
2511		 * truncate dma_addr_t to u32.
2512		 */
2513		addr = (u32) sg_dma_address(sg);
2514		sg_len = sg_dma_len(sg);
2515
2516		while (sg_len) {
2517			offset = addr & 0xffff;
2518			len = sg_len;
2519			if ((offset + sg_len) > 0x10000)
2520				len = 0x10000 - offset;
2521
2522			prd[pi].addr = cpu_to_le32(addr);
2523			prd[pi].flags_len = cpu_to_le32(len & 0xffff);
2524
2525			pi++;
2526			sg_len -= len;
2527			addr += len;
2528		}
2529	}
2530
2531	prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
2532}
2533
2534/**
2535 *	ata_bmdma_fill_sg_dumb - Fill PCI IDE PRD table
2536 *	@qc: Metadata associated with taskfile to be transferred
2537 *
2538 *	Fill PCI IDE PRD (scatter-gather) table with segments
2539 *	associated with the current disk command. Perform the fill
2540 *	so that we avoid writing any length 64K records for
2541 *	controllers that don't follow the spec.
2542 *
2543 *	LOCKING:
2544 *	spin_lock_irqsave(host lock)
2545 *
2546 */
2547static void ata_bmdma_fill_sg_dumb(struct ata_queued_cmd *qc)
2548{
2549	struct ata_port *ap = qc->ap;
2550	struct ata_bmdma_prd *prd = ap->bmdma_prd;
2551	struct scatterlist *sg;
2552	unsigned int si, pi;
2553
2554	pi = 0;
2555	for_each_sg(qc->sg, sg, qc->n_elem, si) {
2556		u32 addr, offset;
2557		u32 sg_len, len, blen;
2558
2559		/* determine if physical DMA addr spans 64K boundary.
2560		 * Note h/w doesn't support 64-bit, so we unconditionally
2561		 * truncate dma_addr_t to u32.
2562		 */
2563		addr = (u32) sg_dma_address(sg);
2564		sg_len = sg_dma_len(sg);
2565
2566		while (sg_len) {
2567			offset = addr & 0xffff;
2568			len = sg_len;
2569			if ((offset + sg_len) > 0x10000)
2570				len = 0x10000 - offset;
2571
2572			blen = len & 0xffff;
2573			prd[pi].addr = cpu_to_le32(addr);
2574			if (blen == 0) {
2575				/* Some PATA chipsets like the CS5530 can't
2576				   cope with 0x0000 meaning 64K as the spec
2577				   says */
2578				prd[pi].flags_len = cpu_to_le32(0x8000);
2579				blen = 0x8000;
2580				prd[++pi].addr = cpu_to_le32(addr + 0x8000);
2581			}
2582			prd[pi].flags_len = cpu_to_le32(blen);
2583
2584			pi++;
2585			sg_len -= len;
2586			addr += len;
2587		}
2588	}
2589
2590	prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
2591}
2592
2593/**
2594 *	ata_bmdma_qc_prep - Prepare taskfile for submission
2595 *	@qc: Metadata associated with taskfile to be prepared
2596 *
2597 *	Prepare ATA taskfile for submission.
2598 *
2599 *	LOCKING:
2600 *	spin_lock_irqsave(host lock)
2601 */
2602enum ata_completion_errors ata_bmdma_qc_prep(struct ata_queued_cmd *qc)
2603{
2604	if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2605		return AC_ERR_OK;
2606
2607	ata_bmdma_fill_sg(qc);
2608
2609	return AC_ERR_OK;
2610}
2611EXPORT_SYMBOL_GPL(ata_bmdma_qc_prep);
2612
2613/**
2614 *	ata_bmdma_dumb_qc_prep - Prepare taskfile for submission
2615 *	@qc: Metadata associated with taskfile to be prepared
2616 *
2617 *	Prepare ATA taskfile for submission.
2618 *
2619 *	LOCKING:
2620 *	spin_lock_irqsave(host lock)
2621 */
2622enum ata_completion_errors ata_bmdma_dumb_qc_prep(struct ata_queued_cmd *qc)
2623{
2624	if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2625		return AC_ERR_OK;
2626
2627	ata_bmdma_fill_sg_dumb(qc);
2628
2629	return AC_ERR_OK;
2630}
2631EXPORT_SYMBOL_GPL(ata_bmdma_dumb_qc_prep);
2632
2633/**
2634 *	ata_bmdma_qc_issue - issue taskfile to a BMDMA controller
2635 *	@qc: command to issue to device
2636 *
2637 *	This function issues a PIO, NODATA or DMA command to a
2638 *	SFF/BMDMA controller.  PIO and NODATA are handled by
2639 *	ata_sff_qc_issue().
2640 *
2641 *	LOCKING:
2642 *	spin_lock_irqsave(host lock)
2643 *
2644 *	RETURNS:
2645 *	Zero on success, AC_ERR_* mask on failure
2646 */
2647unsigned int ata_bmdma_qc_issue(struct ata_queued_cmd *qc)
2648{
2649	struct ata_port *ap = qc->ap;
2650	struct ata_link *link = qc->dev->link;
2651
2652	/* defer PIO handling to sff_qc_issue */
2653	if (!ata_is_dma(qc->tf.protocol))
2654		return ata_sff_qc_issue(qc);
2655
2656	/* select the device */
2657	ata_dev_select(ap, qc->dev->devno, 1, 0);
2658
2659	/* start the command */
2660	switch (qc->tf.protocol) {
2661	case ATA_PROT_DMA:
2662		WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING);
2663
2664		trace_ata_tf_load(ap, &qc->tf);
2665		ap->ops->sff_tf_load(ap, &qc->tf);  /* load tf registers */
2666		trace_ata_bmdma_setup(ap, &qc->tf, qc->tag);
2667		ap->ops->bmdma_setup(qc);	    /* set up bmdma */
2668		trace_ata_bmdma_start(ap, &qc->tf, qc->tag);
2669		ap->ops->bmdma_start(qc);	    /* initiate bmdma */
2670		ap->hsm_task_state = HSM_ST_LAST;
2671		break;
2672
2673	case ATAPI_PROT_DMA:
2674		WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING);
2675
2676		trace_ata_tf_load(ap, &qc->tf);
2677		ap->ops->sff_tf_load(ap, &qc->tf);  /* load tf registers */
2678		trace_ata_bmdma_setup(ap, &qc->tf, qc->tag);
2679		ap->ops->bmdma_setup(qc);	    /* set up bmdma */
2680		ap->hsm_task_state = HSM_ST_FIRST;
2681
2682		/* send cdb by polling if no cdb interrupt */
2683		if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
2684			ata_sff_queue_pio_task(link, 0);
2685		break;
2686
2687	default:
2688		WARN_ON(1);
2689		return AC_ERR_SYSTEM;
2690	}
2691
2692	return 0;
2693}
2694EXPORT_SYMBOL_GPL(ata_bmdma_qc_issue);
2695
2696/**
2697 *	ata_bmdma_port_intr - Handle BMDMA port interrupt
2698 *	@ap: Port on which interrupt arrived (possibly...)
2699 *	@qc: Taskfile currently active in engine
2700 *
2701 *	Handle port interrupt for given queued command.
2702 *
2703 *	LOCKING:
2704 *	spin_lock_irqsave(host lock)
2705 *
2706 *	RETURNS:
2707 *	One if interrupt was handled, zero if not (shared irq).
2708 */
2709unsigned int ata_bmdma_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc)
2710{
2711	struct ata_eh_info *ehi = &ap->link.eh_info;
2712	u8 host_stat = 0;
2713	bool bmdma_stopped = false;
2714	unsigned int handled;
2715
2716	if (ap->hsm_task_state == HSM_ST_LAST && ata_is_dma(qc->tf.protocol)) {
2717		/* check status of DMA engine */
2718		host_stat = ap->ops->bmdma_status(ap);
2719		trace_ata_bmdma_status(ap, host_stat);
2720
2721		/* if it's not our irq... */
2722		if (!(host_stat & ATA_DMA_INTR))
2723			return ata_sff_idle_irq(ap);
2724
2725		/* before we do anything else, clear DMA-Start bit */
2726		trace_ata_bmdma_stop(ap, &qc->tf, qc->tag);
2727		ap->ops->bmdma_stop(qc);
2728		bmdma_stopped = true;
2729
2730		if (unlikely(host_stat & ATA_DMA_ERR)) {
2731			/* error when transferring data to/from memory */
2732			qc->err_mask |= AC_ERR_HOST_BUS;
2733			ap->hsm_task_state = HSM_ST_ERR;
2734		}
2735	}
2736
2737	handled = __ata_sff_port_intr(ap, qc, bmdma_stopped);
2738
2739	if (unlikely(qc->err_mask) && ata_is_dma(qc->tf.protocol))
2740		ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
2741
2742	return handled;
2743}
2744EXPORT_SYMBOL_GPL(ata_bmdma_port_intr);
2745
2746/**
2747 *	ata_bmdma_interrupt - Default BMDMA ATA host interrupt handler
2748 *	@irq: irq line (unused)
2749 *	@dev_instance: pointer to our ata_host information structure
2750 *
2751 *	Default interrupt handler for PCI IDE devices.  Calls
2752 *	ata_bmdma_port_intr() for each port that is not disabled.
2753 *
2754 *	LOCKING:
2755 *	Obtains host lock during operation.
2756 *
2757 *	RETURNS:
2758 *	IRQ_NONE or IRQ_HANDLED.
2759 */
2760irqreturn_t ata_bmdma_interrupt(int irq, void *dev_instance)
2761{
2762	return __ata_sff_interrupt(irq, dev_instance, ata_bmdma_port_intr);
2763}
2764EXPORT_SYMBOL_GPL(ata_bmdma_interrupt);
2765
2766/**
2767 *	ata_bmdma_error_handler - Stock error handler for BMDMA controller
2768 *	@ap: port to handle error for
2769 *
2770 *	Stock error handler for BMDMA controller.  It can handle both
2771 *	PATA and SATA controllers.  Most BMDMA controllers should be
2772 *	able to use this EH as-is or with some added handling before
2773 *	and after.
2774 *
2775 *	LOCKING:
2776 *	Kernel thread context (may sleep)
2777 */
2778void ata_bmdma_error_handler(struct ata_port *ap)
2779{
2780	struct ata_queued_cmd *qc;
2781	unsigned long flags;
2782	bool thaw = false;
2783
2784	qc = __ata_qc_from_tag(ap, ap->link.active_tag);
2785	if (qc && !(qc->flags & ATA_QCFLAG_EH))
2786		qc = NULL;
2787
2788	/* reset PIO HSM and stop DMA engine */
2789	spin_lock_irqsave(ap->lock, flags);
2790
2791	if (qc && ata_is_dma(qc->tf.protocol)) {
2792		u8 host_stat;
2793
2794		host_stat = ap->ops->bmdma_status(ap);
2795		trace_ata_bmdma_status(ap, host_stat);
2796
2797		/* BMDMA controllers indicate host bus error by
2798		 * setting DMA_ERR bit and timing out.  As it wasn't
2799		 * really a timeout event, adjust error mask and
2800		 * cancel frozen state.
2801		 */
2802		if (qc->err_mask == AC_ERR_TIMEOUT && (host_stat & ATA_DMA_ERR)) {
2803			qc->err_mask = AC_ERR_HOST_BUS;
2804			thaw = true;
2805		}
2806
2807		trace_ata_bmdma_stop(ap, &qc->tf, qc->tag);
2808		ap->ops->bmdma_stop(qc);
2809
2810		/* if we're gonna thaw, make sure IRQ is clear */
2811		if (thaw) {
2812			ap->ops->sff_check_status(ap);
2813			if (ap->ops->sff_irq_clear)
2814				ap->ops->sff_irq_clear(ap);
2815		}
2816	}
2817
2818	spin_unlock_irqrestore(ap->lock, flags);
2819
2820	if (thaw)
2821		ata_eh_thaw_port(ap);
2822
2823	ata_sff_error_handler(ap);
2824}
2825EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
2826
2827/**
2828 *	ata_bmdma_post_internal_cmd - Stock post_internal_cmd for BMDMA
2829 *	@qc: internal command to clean up
2830 *
2831 *	LOCKING:
2832 *	Kernel thread context (may sleep)
2833 */
2834void ata_bmdma_post_internal_cmd(struct ata_queued_cmd *qc)
2835{
2836	struct ata_port *ap = qc->ap;
2837	unsigned long flags;
2838
2839	if (ata_is_dma(qc->tf.protocol)) {
2840		spin_lock_irqsave(ap->lock, flags);
2841		trace_ata_bmdma_stop(ap, &qc->tf, qc->tag);
2842		ap->ops->bmdma_stop(qc);
2843		spin_unlock_irqrestore(ap->lock, flags);
2844	}
2845}
2846EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
2847
2848/**
2849 *	ata_bmdma_irq_clear - Clear PCI IDE BMDMA interrupt.
2850 *	@ap: Port associated with this ATA transaction.
2851 *
2852 *	Clear interrupt and error flags in DMA status register.
2853 *
2854 *	May be used as the irq_clear() entry in ata_port_operations.
2855 *
2856 *	LOCKING:
2857 *	spin_lock_irqsave(host lock)
2858 */
2859void ata_bmdma_irq_clear(struct ata_port *ap)
2860{
2861	void __iomem *mmio = ap->ioaddr.bmdma_addr;
2862
2863	if (!mmio)
2864		return;
2865
2866	iowrite8(ioread8(mmio + ATA_DMA_STATUS), mmio + ATA_DMA_STATUS);
2867}
2868EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
2869
2870/**
2871 *	ata_bmdma_setup - Set up PCI IDE BMDMA transaction
2872 *	@qc: Info associated with this ATA transaction.
2873 *
2874 *	LOCKING:
2875 *	spin_lock_irqsave(host lock)
2876 */
2877void ata_bmdma_setup(struct ata_queued_cmd *qc)
2878{
2879	struct ata_port *ap = qc->ap;
2880	unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
2881	u8 dmactl;
2882
2883	/* load PRD table addr. */
2884	mb();	/* make sure PRD table writes are visible to controller */
2885	iowrite32(ap->bmdma_prd_dma, ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS);
2886
2887	/* specify data direction, triple-check start bit is clear */
2888	dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2889	dmactl &= ~(ATA_DMA_WR | ATA_DMA_START);
2890	if (!rw)
2891		dmactl |= ATA_DMA_WR;
2892	iowrite8(dmactl, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2893
2894	/* issue r/w command */
2895	ap->ops->sff_exec_command(ap, &qc->tf);
2896}
2897EXPORT_SYMBOL_GPL(ata_bmdma_setup);
2898
2899/**
2900 *	ata_bmdma_start - Start a PCI IDE BMDMA transaction
2901 *	@qc: Info associated with this ATA transaction.
2902 *
2903 *	LOCKING:
2904 *	spin_lock_irqsave(host lock)
2905 */
2906void ata_bmdma_start(struct ata_queued_cmd *qc)
2907{
2908	struct ata_port *ap = qc->ap;
2909	u8 dmactl;
2910
2911	/* start host DMA transaction */
2912	dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2913	iowrite8(dmactl | ATA_DMA_START, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2914
2915	/* Strictly, one may wish to issue an ioread8() here, to
2916	 * flush the mmio write.  However, control also passes
2917	 * to the hardware at this point, and it will interrupt
2918	 * us when we are to resume control.  So, in effect,
2919	 * we don't care when the mmio write flushes.
2920	 * Further, a read of the DMA status register _immediately_
2921	 * following the write may not be what certain flaky hardware
2922	 * is expected, so I think it is best to not add a readb()
2923	 * without first all the MMIO ATA cards/mobos.
2924	 * Or maybe I'm just being paranoid.
2925	 *
2926	 * FIXME: The posting of this write means I/O starts are
2927	 * unnecessarily delayed for MMIO
2928	 */
2929}
2930EXPORT_SYMBOL_GPL(ata_bmdma_start);
2931
2932/**
2933 *	ata_bmdma_stop - Stop PCI IDE BMDMA transfer
2934 *	@qc: Command we are ending DMA for
2935 *
2936 *	Clears the ATA_DMA_START flag in the dma control register
2937 *
2938 *	May be used as the bmdma_stop() entry in ata_port_operations.
2939 *
2940 *	LOCKING:
2941 *	spin_lock_irqsave(host lock)
2942 */
2943void ata_bmdma_stop(struct ata_queued_cmd *qc)
2944{
2945	struct ata_port *ap = qc->ap;
2946	void __iomem *mmio = ap->ioaddr.bmdma_addr;
2947
2948	/* clear start/stop bit */
2949	iowrite8(ioread8(mmio + ATA_DMA_CMD) & ~ATA_DMA_START,
2950		 mmio + ATA_DMA_CMD);
2951
2952	/* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
2953	ata_sff_dma_pause(ap);
2954}
2955EXPORT_SYMBOL_GPL(ata_bmdma_stop);
2956
2957/**
2958 *	ata_bmdma_status - Read PCI IDE BMDMA status
2959 *	@ap: Port associated with this ATA transaction.
2960 *
2961 *	Read and return BMDMA status register.
2962 *
2963 *	May be used as the bmdma_status() entry in ata_port_operations.
2964 *
2965 *	LOCKING:
2966 *	spin_lock_irqsave(host lock)
2967 */
2968u8 ata_bmdma_status(struct ata_port *ap)
2969{
2970	return ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS);
2971}
2972EXPORT_SYMBOL_GPL(ata_bmdma_status);
2973
2974
2975/**
2976 *	ata_bmdma_port_start - Set port up for bmdma.
2977 *	@ap: Port to initialize
2978 *
2979 *	Called just after data structures for each port are
2980 *	initialized.  Allocates space for PRD table.
2981 *
2982 *	May be used as the port_start() entry in ata_port_operations.
2983 *
2984 *	LOCKING:
2985 *	Inherited from caller.
2986 */
2987int ata_bmdma_port_start(struct ata_port *ap)
2988{
2989	if (ap->mwdma_mask || ap->udma_mask) {
2990		ap->bmdma_prd =
2991			dmam_alloc_coherent(ap->host->dev, ATA_PRD_TBL_SZ,
2992					    &ap->bmdma_prd_dma, GFP_KERNEL);
2993		if (!ap->bmdma_prd)
2994			return -ENOMEM;
2995	}
2996
2997	return 0;
2998}
2999EXPORT_SYMBOL_GPL(ata_bmdma_port_start);
3000
3001/**
3002 *	ata_bmdma_port_start32 - Set port up for dma.
3003 *	@ap: Port to initialize
3004 *
3005 *	Called just after data structures for each port are
3006 *	initialized.  Enables 32bit PIO and allocates space for PRD
3007 *	table.
3008 *
3009 *	May be used as the port_start() entry in ata_port_operations for
3010 *	devices that are capable of 32bit PIO.
3011 *
3012 *	LOCKING:
3013 *	Inherited from caller.
3014 */
3015int ata_bmdma_port_start32(struct ata_port *ap)
3016{
3017	ap->pflags |= ATA_PFLAG_PIO32 | ATA_PFLAG_PIO32CHANGE;
3018	return ata_bmdma_port_start(ap);
3019}
3020EXPORT_SYMBOL_GPL(ata_bmdma_port_start32);
3021
3022#ifdef CONFIG_PCI
3023
3024/**
3025 *	ata_pci_bmdma_clear_simplex -	attempt to kick device out of simplex
3026 *	@pdev: PCI device
3027 *
3028 *	Some PCI ATA devices report simplex mode but in fact can be told to
3029 *	enter non simplex mode. This implements the necessary logic to
3030 *	perform the task on such devices. Calling it on other devices will
3031 *	have -undefined- behaviour.
3032 */
3033int ata_pci_bmdma_clear_simplex(struct pci_dev *pdev)
3034{
3035	unsigned long bmdma = pci_resource_start(pdev, 4);
3036	u8 simplex;
3037
3038	if (bmdma == 0)
3039		return -ENOENT;
3040
3041	simplex = inb(bmdma + 0x02);
3042	outb(simplex & 0x60, bmdma + 0x02);
3043	simplex = inb(bmdma + 0x02);
3044	if (simplex & 0x80)
3045		return -EOPNOTSUPP;
3046	return 0;
3047}
3048EXPORT_SYMBOL_GPL(ata_pci_bmdma_clear_simplex);
3049
3050static void ata_bmdma_nodma(struct ata_host *host, const char *reason)
3051{
3052	int i;
3053
3054	dev_err(host->dev, "BMDMA: %s, falling back to PIO\n", reason);
3055
3056	for (i = 0; i < 2; i++) {
3057		host->ports[i]->mwdma_mask = 0;
3058		host->ports[i]->udma_mask = 0;
3059	}
3060}
3061
3062/**
3063 *	ata_pci_bmdma_init - acquire PCI BMDMA resources and init ATA host
3064 *	@host: target ATA host
3065 *
3066 *	Acquire PCI BMDMA resources and initialize @host accordingly.
3067 *
3068 *	LOCKING:
3069 *	Inherited from calling layer (may sleep).
3070 */
3071void ata_pci_bmdma_init(struct ata_host *host)
3072{
3073	struct device *gdev = host->dev;
3074	struct pci_dev *pdev = to_pci_dev(gdev);
3075	int i, rc;
3076
3077	/* No BAR4 allocation: No DMA */
3078	if (pci_resource_start(pdev, 4) == 0) {
3079		ata_bmdma_nodma(host, "BAR4 is zero");
3080		return;
3081	}
3082
3083	/*
3084	 * Some controllers require BMDMA region to be initialized
3085	 * even if DMA is not in use to clear IRQ status via
3086	 * ->sff_irq_clear method.  Try to initialize bmdma_addr
3087	 * regardless of dma masks.
3088	 */
3089	rc = dma_set_mask_and_coherent(&pdev->dev, ATA_DMA_MASK);
3090	if (rc)
3091		ata_bmdma_nodma(host, "failed to set dma mask");
3092
3093	/* request and iomap DMA region */
3094	rc = pcim_iomap_regions(pdev, 1 << 4, dev_driver_string(gdev));
3095	if (rc) {
3096		ata_bmdma_nodma(host, "failed to request/iomap BAR4");
3097		return;
3098	}
3099	host->iomap = pcim_iomap_table(pdev);
3100
3101	for (i = 0; i < 2; i++) {
3102		struct ata_port *ap = host->ports[i];
3103		void __iomem *bmdma = host->iomap[4] + 8 * i;
3104
3105		if (ata_port_is_dummy(ap))
3106			continue;
3107
3108		ap->ioaddr.bmdma_addr = bmdma;
3109		if ((!(ap->flags & ATA_FLAG_IGN_SIMPLEX)) &&
3110		    (ioread8(bmdma + 2) & 0x80))
3111			host->flags |= ATA_HOST_SIMPLEX;
3112
3113		ata_port_desc(ap, "bmdma 0x%llx",
3114		    (unsigned long long)pci_resource_start(pdev, 4) + 8 * i);
3115	}
3116}
3117EXPORT_SYMBOL_GPL(ata_pci_bmdma_init);
3118
3119/**
3120 *	ata_pci_bmdma_prepare_host - helper to prepare PCI BMDMA ATA host
3121 *	@pdev: target PCI device
3122 *	@ppi: array of port_info, must be enough for two ports
3123 *	@r_host: out argument for the initialized ATA host
3124 *
3125 *	Helper to allocate BMDMA ATA host for @pdev, acquire all PCI
3126 *	resources and initialize it accordingly in one go.
3127 *
3128 *	LOCKING:
3129 *	Inherited from calling layer (may sleep).
3130 *
3131 *	RETURNS:
3132 *	0 on success, -errno otherwise.
3133 */
3134int ata_pci_bmdma_prepare_host(struct pci_dev *pdev,
3135			       const struct ata_port_info * const * ppi,
3136			       struct ata_host **r_host)
3137{
3138	int rc;
3139
3140	rc = ata_pci_sff_prepare_host(pdev, ppi, r_host);
3141	if (rc)
3142		return rc;
3143
3144	ata_pci_bmdma_init(*r_host);
3145	return 0;
3146}
3147EXPORT_SYMBOL_GPL(ata_pci_bmdma_prepare_host);
3148
3149/**
3150 *	ata_pci_bmdma_init_one - Initialize/register BMDMA PCI IDE controller
3151 *	@pdev: Controller to be initialized
3152 *	@ppi: array of port_info, must be enough for two ports
3153 *	@sht: scsi_host_template to use when registering the host
3154 *	@host_priv: host private_data
3155 *	@hflags: host flags
3156 *
3157 *	This function is similar to ata_pci_sff_init_one() but also
3158 *	takes care of BMDMA initialization.
3159 *
3160 *	LOCKING:
3161 *	Inherited from PCI layer (may sleep).
3162 *
3163 *	RETURNS:
3164 *	Zero on success, negative on errno-based value on error.
3165 */
3166int ata_pci_bmdma_init_one(struct pci_dev *pdev,
3167			   const struct ata_port_info * const * ppi,
3168			   const struct scsi_host_template *sht, void *host_priv,
3169			   int hflags)
3170{
3171	return ata_pci_init_one(pdev, ppi, sht, host_priv, hflags, 1);
3172}
3173EXPORT_SYMBOL_GPL(ata_pci_bmdma_init_one);
3174
3175#endif /* CONFIG_PCI */
3176#endif /* CONFIG_ATA_BMDMA */
3177
3178/**
3179 *	ata_sff_port_init - Initialize SFF/BMDMA ATA port
3180 *	@ap: Port to initialize
3181 *
3182 *	Called on port allocation to initialize SFF/BMDMA specific
3183 *	fields.
3184 *
3185 *	LOCKING:
3186 *	None.
3187 */
3188void ata_sff_port_init(struct ata_port *ap)
3189{
3190	INIT_DELAYED_WORK(&ap->sff_pio_task, ata_sff_pio_task);
3191	ap->ctl = ATA_DEVCTL_OBS;
3192	ap->last_ctl = 0xFF;
3193}
3194
3195int __init ata_sff_init(void)
3196{
3197	ata_sff_wq = alloc_workqueue("ata_sff", WQ_MEM_RECLAIM, WQ_MAX_ACTIVE);
3198	if (!ata_sff_wq)
3199		return -ENOMEM;
3200
3201	return 0;
3202}
3203
3204void ata_sff_exit(void)
3205{
3206	destroy_workqueue(ata_sff_wq);
3207}
3208