1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 *  acpi_osl.c - OS-dependent functions ($Revision: 83 $)
4 *
5 *  Copyright (C) 2000       Andrew Henroid
6 *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
7 *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
8 *  Copyright (c) 2008 Intel Corporation
9 *   Author: Matthew Wilcox <willy@linux.intel.com>
10 */
11
12#define pr_fmt(fmt) "ACPI: OSL: " fmt
13
14#include <linux/module.h>
15#include <linux/kernel.h>
16#include <linux/slab.h>
17#include <linux/mm.h>
18#include <linux/highmem.h>
19#include <linux/lockdep.h>
20#include <linux/pci.h>
21#include <linux/interrupt.h>
22#include <linux/kmod.h>
23#include <linux/delay.h>
24#include <linux/workqueue.h>
25#include <linux/nmi.h>
26#include <linux/acpi.h>
27#include <linux/efi.h>
28#include <linux/ioport.h>
29#include <linux/list.h>
30#include <linux/jiffies.h>
31#include <linux/semaphore.h>
32#include <linux/security.h>
33
34#include <asm/io.h>
35#include <linux/uaccess.h>
36#include <linux/io-64-nonatomic-lo-hi.h>
37
38#include "acpica/accommon.h"
39#include "internal.h"
40
41/* Definitions for ACPI_DEBUG_PRINT() */
42#define _COMPONENT		ACPI_OS_SERVICES
43ACPI_MODULE_NAME("osl");
44
45struct acpi_os_dpc {
46	acpi_osd_exec_callback function;
47	void *context;
48	struct work_struct work;
49};
50
51#ifdef ENABLE_DEBUGGER
52#include <linux/kdb.h>
53
54/* stuff for debugger support */
55int acpi_in_debugger;
56EXPORT_SYMBOL(acpi_in_debugger);
57#endif				/*ENABLE_DEBUGGER */
58
59static int (*__acpi_os_prepare_sleep)(u8 sleep_state, u32 pm1a_ctrl,
60				      u32 pm1b_ctrl);
61static int (*__acpi_os_prepare_extended_sleep)(u8 sleep_state, u32 val_a,
62				      u32 val_b);
63
64static acpi_osd_handler acpi_irq_handler;
65static void *acpi_irq_context;
66static struct workqueue_struct *kacpid_wq;
67static struct workqueue_struct *kacpi_notify_wq;
68static struct workqueue_struct *kacpi_hotplug_wq;
69static bool acpi_os_initialized;
70unsigned int acpi_sci_irq = INVALID_ACPI_IRQ;
71bool acpi_permanent_mmap = false;
72
73/*
74 * This list of permanent mappings is for memory that may be accessed from
75 * interrupt context, where we can't do the ioremap().
76 */
77struct acpi_ioremap {
78	struct list_head list;
79	void __iomem *virt;
80	acpi_physical_address phys;
81	acpi_size size;
82	union {
83		unsigned long refcount;
84		struct rcu_work rwork;
85	} track;
86};
87
88static LIST_HEAD(acpi_ioremaps);
89static DEFINE_MUTEX(acpi_ioremap_lock);
90#define acpi_ioremap_lock_held() lock_is_held(&acpi_ioremap_lock.dep_map)
91
92static void __init acpi_request_region (struct acpi_generic_address *gas,
93	unsigned int length, char *desc)
94{
95	u64 addr;
96
97	/* Handle possible alignment issues */
98	memcpy(&addr, &gas->address, sizeof(addr));
99	if (!addr || !length)
100		return;
101
102	/* Resources are never freed */
103	if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_IO)
104		request_region(addr, length, desc);
105	else if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
106		request_mem_region(addr, length, desc);
107}
108
109static int __init acpi_reserve_resources(void)
110{
111	acpi_request_region(&acpi_gbl_FADT.xpm1a_event_block, acpi_gbl_FADT.pm1_event_length,
112		"ACPI PM1a_EVT_BLK");
113
114	acpi_request_region(&acpi_gbl_FADT.xpm1b_event_block, acpi_gbl_FADT.pm1_event_length,
115		"ACPI PM1b_EVT_BLK");
116
117	acpi_request_region(&acpi_gbl_FADT.xpm1a_control_block, acpi_gbl_FADT.pm1_control_length,
118		"ACPI PM1a_CNT_BLK");
119
120	acpi_request_region(&acpi_gbl_FADT.xpm1b_control_block, acpi_gbl_FADT.pm1_control_length,
121		"ACPI PM1b_CNT_BLK");
122
123	if (acpi_gbl_FADT.pm_timer_length == 4)
124		acpi_request_region(&acpi_gbl_FADT.xpm_timer_block, 4, "ACPI PM_TMR");
125
126	acpi_request_region(&acpi_gbl_FADT.xpm2_control_block, acpi_gbl_FADT.pm2_control_length,
127		"ACPI PM2_CNT_BLK");
128
129	/* Length of GPE blocks must be a non-negative multiple of 2 */
130
131	if (!(acpi_gbl_FADT.gpe0_block_length & 0x1))
132		acpi_request_region(&acpi_gbl_FADT.xgpe0_block,
133			       acpi_gbl_FADT.gpe0_block_length, "ACPI GPE0_BLK");
134
135	if (!(acpi_gbl_FADT.gpe1_block_length & 0x1))
136		acpi_request_region(&acpi_gbl_FADT.xgpe1_block,
137			       acpi_gbl_FADT.gpe1_block_length, "ACPI GPE1_BLK");
138
139	return 0;
140}
141fs_initcall_sync(acpi_reserve_resources);
142
143void acpi_os_printf(const char *fmt, ...)
144{
145	va_list args;
146	va_start(args, fmt);
147	acpi_os_vprintf(fmt, args);
148	va_end(args);
149}
150EXPORT_SYMBOL(acpi_os_printf);
151
152void __printf(1, 0) acpi_os_vprintf(const char *fmt, va_list args)
153{
154	static char buffer[512];
155
156	vsprintf(buffer, fmt, args);
157
158#ifdef ENABLE_DEBUGGER
159	if (acpi_in_debugger) {
160		kdb_printf("%s", buffer);
161	} else {
162		if (printk_get_level(buffer))
163			printk("%s", buffer);
164		else
165			printk(KERN_CONT "%s", buffer);
166	}
167#else
168	if (acpi_debugger_write_log(buffer) < 0) {
169		if (printk_get_level(buffer))
170			printk("%s", buffer);
171		else
172			printk(KERN_CONT "%s", buffer);
173	}
174#endif
175}
176
177#ifdef CONFIG_KEXEC
178static unsigned long acpi_rsdp;
179static int __init setup_acpi_rsdp(char *arg)
180{
181	return kstrtoul(arg, 16, &acpi_rsdp);
182}
183early_param("acpi_rsdp", setup_acpi_rsdp);
184#endif
185
186acpi_physical_address __init acpi_os_get_root_pointer(void)
187{
188	acpi_physical_address pa;
189
190#ifdef CONFIG_KEXEC
191	/*
192	 * We may have been provided with an RSDP on the command line,
193	 * but if a malicious user has done so they may be pointing us
194	 * at modified ACPI tables that could alter kernel behaviour -
195	 * so, we check the lockdown status before making use of
196	 * it. If we trust it then also stash it in an architecture
197	 * specific location (if appropriate) so it can be carried
198	 * over further kexec()s.
199	 */
200	if (acpi_rsdp && !security_locked_down(LOCKDOWN_ACPI_TABLES)) {
201		acpi_arch_set_root_pointer(acpi_rsdp);
202		return acpi_rsdp;
203	}
204#endif
205	pa = acpi_arch_get_root_pointer();
206	if (pa)
207		return pa;
208
209	if (efi_enabled(EFI_CONFIG_TABLES)) {
210		if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
211			return efi.acpi20;
212		if (efi.acpi != EFI_INVALID_TABLE_ADDR)
213			return efi.acpi;
214		pr_err("System description tables not found\n");
215	} else if (IS_ENABLED(CONFIG_ACPI_LEGACY_TABLES_LOOKUP)) {
216		acpi_find_root_pointer(&pa);
217	}
218
219	return pa;
220}
221
222/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
223static struct acpi_ioremap *
224acpi_map_lookup(acpi_physical_address phys, acpi_size size)
225{
226	struct acpi_ioremap *map;
227
228	list_for_each_entry_rcu(map, &acpi_ioremaps, list, acpi_ioremap_lock_held())
229		if (map->phys <= phys &&
230		    phys + size <= map->phys + map->size)
231			return map;
232
233	return NULL;
234}
235
236/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
237static void __iomem *
238acpi_map_vaddr_lookup(acpi_physical_address phys, unsigned int size)
239{
240	struct acpi_ioremap *map;
241
242	map = acpi_map_lookup(phys, size);
243	if (map)
244		return map->virt + (phys - map->phys);
245
246	return NULL;
247}
248
249void __iomem *acpi_os_get_iomem(acpi_physical_address phys, unsigned int size)
250{
251	struct acpi_ioremap *map;
252	void __iomem *virt = NULL;
253
254	mutex_lock(&acpi_ioremap_lock);
255	map = acpi_map_lookup(phys, size);
256	if (map) {
257		virt = map->virt + (phys - map->phys);
258		map->track.refcount++;
259	}
260	mutex_unlock(&acpi_ioremap_lock);
261	return virt;
262}
263EXPORT_SYMBOL_GPL(acpi_os_get_iomem);
264
265/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
266static struct acpi_ioremap *
267acpi_map_lookup_virt(void __iomem *virt, acpi_size size)
268{
269	struct acpi_ioremap *map;
270
271	list_for_each_entry_rcu(map, &acpi_ioremaps, list, acpi_ioremap_lock_held())
272		if (map->virt <= virt &&
273		    virt + size <= map->virt + map->size)
274			return map;
275
276	return NULL;
277}
278
279#if defined(CONFIG_ARM64) || defined(CONFIG_RISCV)
280/* ioremap will take care of cache attributes */
281#define should_use_kmap(pfn)   0
282#else
283#define should_use_kmap(pfn)   page_is_ram(pfn)
284#endif
285
286static void __iomem *acpi_map(acpi_physical_address pg_off, unsigned long pg_sz)
287{
288	unsigned long pfn;
289
290	pfn = pg_off >> PAGE_SHIFT;
291	if (should_use_kmap(pfn)) {
292		if (pg_sz > PAGE_SIZE)
293			return NULL;
294		return (void __iomem __force *)kmap(pfn_to_page(pfn));
295	} else
296		return acpi_os_ioremap(pg_off, pg_sz);
297}
298
299static void acpi_unmap(acpi_physical_address pg_off, void __iomem *vaddr)
300{
301	unsigned long pfn;
302
303	pfn = pg_off >> PAGE_SHIFT;
304	if (should_use_kmap(pfn))
305		kunmap(pfn_to_page(pfn));
306	else
307		iounmap(vaddr);
308}
309
310/**
311 * acpi_os_map_iomem - Get a virtual address for a given physical address range.
312 * @phys: Start of the physical address range to map.
313 * @size: Size of the physical address range to map.
314 *
315 * Look up the given physical address range in the list of existing ACPI memory
316 * mappings.  If found, get a reference to it and return a pointer to it (its
317 * virtual address).  If not found, map it, add it to that list and return a
318 * pointer to it.
319 *
320 * During early init (when acpi_permanent_mmap has not been set yet) this
321 * routine simply calls __acpi_map_table() to get the job done.
322 */
323void __iomem __ref
324*acpi_os_map_iomem(acpi_physical_address phys, acpi_size size)
325{
326	struct acpi_ioremap *map;
327	void __iomem *virt;
328	acpi_physical_address pg_off;
329	acpi_size pg_sz;
330
331	if (phys > ULONG_MAX) {
332		pr_err("Cannot map memory that high: 0x%llx\n", phys);
333		return NULL;
334	}
335
336	if (!acpi_permanent_mmap)
337		return __acpi_map_table((unsigned long)phys, size);
338
339	mutex_lock(&acpi_ioremap_lock);
340	/* Check if there's a suitable mapping already. */
341	map = acpi_map_lookup(phys, size);
342	if (map) {
343		map->track.refcount++;
344		goto out;
345	}
346
347	map = kzalloc(sizeof(*map), GFP_KERNEL);
348	if (!map) {
349		mutex_unlock(&acpi_ioremap_lock);
350		return NULL;
351	}
352
353	pg_off = round_down(phys, PAGE_SIZE);
354	pg_sz = round_up(phys + size, PAGE_SIZE) - pg_off;
355	virt = acpi_map(phys, size);
356	if (!virt) {
357		mutex_unlock(&acpi_ioremap_lock);
358		kfree(map);
359		return NULL;
360	}
361
362	INIT_LIST_HEAD(&map->list);
363	map->virt = (void __iomem __force *)((unsigned long)virt & PAGE_MASK);
364	map->phys = pg_off;
365	map->size = pg_sz;
366	map->track.refcount = 1;
367
368	list_add_tail_rcu(&map->list, &acpi_ioremaps);
369
370out:
371	mutex_unlock(&acpi_ioremap_lock);
372	return map->virt + (phys - map->phys);
373}
374EXPORT_SYMBOL_GPL(acpi_os_map_iomem);
375
376void *__ref acpi_os_map_memory(acpi_physical_address phys, acpi_size size)
377{
378	return (void *)acpi_os_map_iomem(phys, size);
379}
380EXPORT_SYMBOL_GPL(acpi_os_map_memory);
381
382static void acpi_os_map_remove(struct work_struct *work)
383{
384	struct acpi_ioremap *map = container_of(to_rcu_work(work),
385						struct acpi_ioremap,
386						track.rwork);
387
388	acpi_unmap(map->phys, map->virt);
389	kfree(map);
390}
391
392/* Must be called with mutex_lock(&acpi_ioremap_lock) */
393static void acpi_os_drop_map_ref(struct acpi_ioremap *map)
394{
395	if (--map->track.refcount)
396		return;
397
398	list_del_rcu(&map->list);
399
400	INIT_RCU_WORK(&map->track.rwork, acpi_os_map_remove);
401	queue_rcu_work(system_wq, &map->track.rwork);
402}
403
404/**
405 * acpi_os_unmap_iomem - Drop a memory mapping reference.
406 * @virt: Start of the address range to drop a reference to.
407 * @size: Size of the address range to drop a reference to.
408 *
409 * Look up the given virtual address range in the list of existing ACPI memory
410 * mappings, drop a reference to it and if there are no more active references
411 * to it, queue it up for later removal.
412 *
413 * During early init (when acpi_permanent_mmap has not been set yet) this
414 * routine simply calls __acpi_unmap_table() to get the job done.  Since
415 * __acpi_unmap_table() is an __init function, the __ref annotation is needed
416 * here.
417 */
418void __ref acpi_os_unmap_iomem(void __iomem *virt, acpi_size size)
419{
420	struct acpi_ioremap *map;
421
422	if (!acpi_permanent_mmap) {
423		__acpi_unmap_table(virt, size);
424		return;
425	}
426
427	mutex_lock(&acpi_ioremap_lock);
428
429	map = acpi_map_lookup_virt(virt, size);
430	if (!map) {
431		mutex_unlock(&acpi_ioremap_lock);
432		WARN(true, "ACPI: %s: bad address %p\n", __func__, virt);
433		return;
434	}
435	acpi_os_drop_map_ref(map);
436
437	mutex_unlock(&acpi_ioremap_lock);
438}
439EXPORT_SYMBOL_GPL(acpi_os_unmap_iomem);
440
441/**
442 * acpi_os_unmap_memory - Drop a memory mapping reference.
443 * @virt: Start of the address range to drop a reference to.
444 * @size: Size of the address range to drop a reference to.
445 */
446void __ref acpi_os_unmap_memory(void *virt, acpi_size size)
447{
448	acpi_os_unmap_iomem((void __iomem *)virt, size);
449}
450EXPORT_SYMBOL_GPL(acpi_os_unmap_memory);
451
452void __iomem *acpi_os_map_generic_address(struct acpi_generic_address *gas)
453{
454	u64 addr;
455
456	if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
457		return NULL;
458
459	/* Handle possible alignment issues */
460	memcpy(&addr, &gas->address, sizeof(addr));
461	if (!addr || !gas->bit_width)
462		return NULL;
463
464	return acpi_os_map_iomem(addr, gas->bit_width / 8);
465}
466EXPORT_SYMBOL(acpi_os_map_generic_address);
467
468void acpi_os_unmap_generic_address(struct acpi_generic_address *gas)
469{
470	u64 addr;
471	struct acpi_ioremap *map;
472
473	if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
474		return;
475
476	/* Handle possible alignment issues */
477	memcpy(&addr, &gas->address, sizeof(addr));
478	if (!addr || !gas->bit_width)
479		return;
480
481	mutex_lock(&acpi_ioremap_lock);
482
483	map = acpi_map_lookup(addr, gas->bit_width / 8);
484	if (!map) {
485		mutex_unlock(&acpi_ioremap_lock);
486		return;
487	}
488	acpi_os_drop_map_ref(map);
489
490	mutex_unlock(&acpi_ioremap_lock);
491}
492EXPORT_SYMBOL(acpi_os_unmap_generic_address);
493
494#ifdef ACPI_FUTURE_USAGE
495acpi_status
496acpi_os_get_physical_address(void *virt, acpi_physical_address *phys)
497{
498	if (!phys || !virt)
499		return AE_BAD_PARAMETER;
500
501	*phys = virt_to_phys(virt);
502
503	return AE_OK;
504}
505#endif
506
507#ifdef CONFIG_ACPI_REV_OVERRIDE_POSSIBLE
508static bool acpi_rev_override;
509
510int __init acpi_rev_override_setup(char *str)
511{
512	acpi_rev_override = true;
513	return 1;
514}
515__setup("acpi_rev_override", acpi_rev_override_setup);
516#else
517#define acpi_rev_override	false
518#endif
519
520#define ACPI_MAX_OVERRIDE_LEN 100
521
522static char acpi_os_name[ACPI_MAX_OVERRIDE_LEN];
523
524acpi_status
525acpi_os_predefined_override(const struct acpi_predefined_names *init_val,
526			    acpi_string *new_val)
527{
528	if (!init_val || !new_val)
529		return AE_BAD_PARAMETER;
530
531	*new_val = NULL;
532	if (!memcmp(init_val->name, "_OS_", 4) && strlen(acpi_os_name)) {
533		pr_info("Overriding _OS definition to '%s'\n", acpi_os_name);
534		*new_val = acpi_os_name;
535	}
536
537	if (!memcmp(init_val->name, "_REV", 4) && acpi_rev_override) {
538		pr_info("Overriding _REV return value to 5\n");
539		*new_val = (char *)5;
540	}
541
542	return AE_OK;
543}
544
545static irqreturn_t acpi_irq(int irq, void *dev_id)
546{
547	if ((*acpi_irq_handler)(acpi_irq_context)) {
548		acpi_irq_handled++;
549		return IRQ_HANDLED;
550	} else {
551		acpi_irq_not_handled++;
552		return IRQ_NONE;
553	}
554}
555
556acpi_status
557acpi_os_install_interrupt_handler(u32 gsi, acpi_osd_handler handler,
558				  void *context)
559{
560	unsigned int irq;
561
562	acpi_irq_stats_init();
563
564	/*
565	 * ACPI interrupts different from the SCI in our copy of the FADT are
566	 * not supported.
567	 */
568	if (gsi != acpi_gbl_FADT.sci_interrupt)
569		return AE_BAD_PARAMETER;
570
571	if (acpi_irq_handler)
572		return AE_ALREADY_ACQUIRED;
573
574	if (acpi_gsi_to_irq(gsi, &irq) < 0) {
575		pr_err("SCI (ACPI GSI %d) not registered\n", gsi);
576		return AE_OK;
577	}
578
579	acpi_irq_handler = handler;
580	acpi_irq_context = context;
581	if (request_threaded_irq(irq, NULL, acpi_irq, IRQF_SHARED | IRQF_ONESHOT,
582			         "acpi", acpi_irq)) {
583		pr_err("SCI (IRQ%d) allocation failed\n", irq);
584		acpi_irq_handler = NULL;
585		return AE_NOT_ACQUIRED;
586	}
587	acpi_sci_irq = irq;
588
589	return AE_OK;
590}
591
592acpi_status acpi_os_remove_interrupt_handler(u32 gsi, acpi_osd_handler handler)
593{
594	if (gsi != acpi_gbl_FADT.sci_interrupt || !acpi_sci_irq_valid())
595		return AE_BAD_PARAMETER;
596
597	free_irq(acpi_sci_irq, acpi_irq);
598	acpi_irq_handler = NULL;
599	acpi_sci_irq = INVALID_ACPI_IRQ;
600
601	return AE_OK;
602}
603
604/*
605 * Running in interpreter thread context, safe to sleep
606 */
607
608void acpi_os_sleep(u64 ms)
609{
610	msleep(ms);
611}
612
613void acpi_os_stall(u32 us)
614{
615	while (us) {
616		u32 delay = 1000;
617
618		if (delay > us)
619			delay = us;
620		udelay(delay);
621		touch_nmi_watchdog();
622		us -= delay;
623	}
624}
625
626/*
627 * Support ACPI 3.0 AML Timer operand. Returns a 64-bit free-running,
628 * monotonically increasing timer with 100ns granularity. Do not use
629 * ktime_get() to implement this function because this function may get
630 * called after timekeeping has been suspended. Note: calling this function
631 * after timekeeping has been suspended may lead to unexpected results
632 * because when timekeeping is suspended the jiffies counter is not
633 * incremented. See also timekeeping_suspend().
634 */
635u64 acpi_os_get_timer(void)
636{
637	return (get_jiffies_64() - INITIAL_JIFFIES) *
638		(ACPI_100NSEC_PER_SEC / HZ);
639}
640
641acpi_status acpi_os_read_port(acpi_io_address port, u32 *value, u32 width)
642{
643	u32 dummy;
644
645	if (value)
646		*value = 0;
647	else
648		value = &dummy;
649
650	if (width <= 8) {
651		*value = inb(port);
652	} else if (width <= 16) {
653		*value = inw(port);
654	} else if (width <= 32) {
655		*value = inl(port);
656	} else {
657		pr_debug("%s: Access width %d not supported\n", __func__, width);
658		return AE_BAD_PARAMETER;
659	}
660
661	return AE_OK;
662}
663
664EXPORT_SYMBOL(acpi_os_read_port);
665
666acpi_status acpi_os_write_port(acpi_io_address port, u32 value, u32 width)
667{
668	if (width <= 8) {
669		outb(value, port);
670	} else if (width <= 16) {
671		outw(value, port);
672	} else if (width <= 32) {
673		outl(value, port);
674	} else {
675		pr_debug("%s: Access width %d not supported\n", __func__, width);
676		return AE_BAD_PARAMETER;
677	}
678
679	return AE_OK;
680}
681
682EXPORT_SYMBOL(acpi_os_write_port);
683
684int acpi_os_read_iomem(void __iomem *virt_addr, u64 *value, u32 width)
685{
686
687	switch (width) {
688	case 8:
689		*(u8 *) value = readb(virt_addr);
690		break;
691	case 16:
692		*(u16 *) value = readw(virt_addr);
693		break;
694	case 32:
695		*(u32 *) value = readl(virt_addr);
696		break;
697	case 64:
698		*(u64 *) value = readq(virt_addr);
699		break;
700	default:
701		return -EINVAL;
702	}
703
704	return 0;
705}
706
707acpi_status
708acpi_os_read_memory(acpi_physical_address phys_addr, u64 *value, u32 width)
709{
710	void __iomem *virt_addr;
711	unsigned int size = width / 8;
712	bool unmap = false;
713	u64 dummy;
714	int error;
715
716	rcu_read_lock();
717	virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
718	if (!virt_addr) {
719		rcu_read_unlock();
720		virt_addr = acpi_os_ioremap(phys_addr, size);
721		if (!virt_addr)
722			return AE_BAD_ADDRESS;
723		unmap = true;
724	}
725
726	if (!value)
727		value = &dummy;
728
729	error = acpi_os_read_iomem(virt_addr, value, width);
730	BUG_ON(error);
731
732	if (unmap)
733		iounmap(virt_addr);
734	else
735		rcu_read_unlock();
736
737	return AE_OK;
738}
739
740acpi_status
741acpi_os_write_memory(acpi_physical_address phys_addr, u64 value, u32 width)
742{
743	void __iomem *virt_addr;
744	unsigned int size = width / 8;
745	bool unmap = false;
746
747	rcu_read_lock();
748	virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
749	if (!virt_addr) {
750		rcu_read_unlock();
751		virt_addr = acpi_os_ioremap(phys_addr, size);
752		if (!virt_addr)
753			return AE_BAD_ADDRESS;
754		unmap = true;
755	}
756
757	switch (width) {
758	case 8:
759		writeb(value, virt_addr);
760		break;
761	case 16:
762		writew(value, virt_addr);
763		break;
764	case 32:
765		writel(value, virt_addr);
766		break;
767	case 64:
768		writeq(value, virt_addr);
769		break;
770	default:
771		BUG();
772	}
773
774	if (unmap)
775		iounmap(virt_addr);
776	else
777		rcu_read_unlock();
778
779	return AE_OK;
780}
781
782#ifdef CONFIG_PCI
783acpi_status
784acpi_os_read_pci_configuration(struct acpi_pci_id *pci_id, u32 reg,
785			       u64 *value, u32 width)
786{
787	int result, size;
788	u32 value32;
789
790	if (!value)
791		return AE_BAD_PARAMETER;
792
793	switch (width) {
794	case 8:
795		size = 1;
796		break;
797	case 16:
798		size = 2;
799		break;
800	case 32:
801		size = 4;
802		break;
803	default:
804		return AE_ERROR;
805	}
806
807	result = raw_pci_read(pci_id->segment, pci_id->bus,
808				PCI_DEVFN(pci_id->device, pci_id->function),
809				reg, size, &value32);
810	*value = value32;
811
812	return (result ? AE_ERROR : AE_OK);
813}
814
815acpi_status
816acpi_os_write_pci_configuration(struct acpi_pci_id *pci_id, u32 reg,
817				u64 value, u32 width)
818{
819	int result, size;
820
821	switch (width) {
822	case 8:
823		size = 1;
824		break;
825	case 16:
826		size = 2;
827		break;
828	case 32:
829		size = 4;
830		break;
831	default:
832		return AE_ERROR;
833	}
834
835	result = raw_pci_write(pci_id->segment, pci_id->bus,
836				PCI_DEVFN(pci_id->device, pci_id->function),
837				reg, size, value);
838
839	return (result ? AE_ERROR : AE_OK);
840}
841#endif
842
843static void acpi_os_execute_deferred(struct work_struct *work)
844{
845	struct acpi_os_dpc *dpc = container_of(work, struct acpi_os_dpc, work);
846
847	dpc->function(dpc->context);
848	kfree(dpc);
849}
850
851#ifdef CONFIG_ACPI_DEBUGGER
852static struct acpi_debugger acpi_debugger;
853static bool acpi_debugger_initialized;
854
855int acpi_register_debugger(struct module *owner,
856			   const struct acpi_debugger_ops *ops)
857{
858	int ret = 0;
859
860	mutex_lock(&acpi_debugger.lock);
861	if (acpi_debugger.ops) {
862		ret = -EBUSY;
863		goto err_lock;
864	}
865
866	acpi_debugger.owner = owner;
867	acpi_debugger.ops = ops;
868
869err_lock:
870	mutex_unlock(&acpi_debugger.lock);
871	return ret;
872}
873EXPORT_SYMBOL(acpi_register_debugger);
874
875void acpi_unregister_debugger(const struct acpi_debugger_ops *ops)
876{
877	mutex_lock(&acpi_debugger.lock);
878	if (ops == acpi_debugger.ops) {
879		acpi_debugger.ops = NULL;
880		acpi_debugger.owner = NULL;
881	}
882	mutex_unlock(&acpi_debugger.lock);
883}
884EXPORT_SYMBOL(acpi_unregister_debugger);
885
886int acpi_debugger_create_thread(acpi_osd_exec_callback function, void *context)
887{
888	int ret;
889	int (*func)(acpi_osd_exec_callback, void *);
890	struct module *owner;
891
892	if (!acpi_debugger_initialized)
893		return -ENODEV;
894	mutex_lock(&acpi_debugger.lock);
895	if (!acpi_debugger.ops) {
896		ret = -ENODEV;
897		goto err_lock;
898	}
899	if (!try_module_get(acpi_debugger.owner)) {
900		ret = -ENODEV;
901		goto err_lock;
902	}
903	func = acpi_debugger.ops->create_thread;
904	owner = acpi_debugger.owner;
905	mutex_unlock(&acpi_debugger.lock);
906
907	ret = func(function, context);
908
909	mutex_lock(&acpi_debugger.lock);
910	module_put(owner);
911err_lock:
912	mutex_unlock(&acpi_debugger.lock);
913	return ret;
914}
915
916ssize_t acpi_debugger_write_log(const char *msg)
917{
918	ssize_t ret;
919	ssize_t (*func)(const char *);
920	struct module *owner;
921
922	if (!acpi_debugger_initialized)
923		return -ENODEV;
924	mutex_lock(&acpi_debugger.lock);
925	if (!acpi_debugger.ops) {
926		ret = -ENODEV;
927		goto err_lock;
928	}
929	if (!try_module_get(acpi_debugger.owner)) {
930		ret = -ENODEV;
931		goto err_lock;
932	}
933	func = acpi_debugger.ops->write_log;
934	owner = acpi_debugger.owner;
935	mutex_unlock(&acpi_debugger.lock);
936
937	ret = func(msg);
938
939	mutex_lock(&acpi_debugger.lock);
940	module_put(owner);
941err_lock:
942	mutex_unlock(&acpi_debugger.lock);
943	return ret;
944}
945
946ssize_t acpi_debugger_read_cmd(char *buffer, size_t buffer_length)
947{
948	ssize_t ret;
949	ssize_t (*func)(char *, size_t);
950	struct module *owner;
951
952	if (!acpi_debugger_initialized)
953		return -ENODEV;
954	mutex_lock(&acpi_debugger.lock);
955	if (!acpi_debugger.ops) {
956		ret = -ENODEV;
957		goto err_lock;
958	}
959	if (!try_module_get(acpi_debugger.owner)) {
960		ret = -ENODEV;
961		goto err_lock;
962	}
963	func = acpi_debugger.ops->read_cmd;
964	owner = acpi_debugger.owner;
965	mutex_unlock(&acpi_debugger.lock);
966
967	ret = func(buffer, buffer_length);
968
969	mutex_lock(&acpi_debugger.lock);
970	module_put(owner);
971err_lock:
972	mutex_unlock(&acpi_debugger.lock);
973	return ret;
974}
975
976int acpi_debugger_wait_command_ready(void)
977{
978	int ret;
979	int (*func)(bool, char *, size_t);
980	struct module *owner;
981
982	if (!acpi_debugger_initialized)
983		return -ENODEV;
984	mutex_lock(&acpi_debugger.lock);
985	if (!acpi_debugger.ops) {
986		ret = -ENODEV;
987		goto err_lock;
988	}
989	if (!try_module_get(acpi_debugger.owner)) {
990		ret = -ENODEV;
991		goto err_lock;
992	}
993	func = acpi_debugger.ops->wait_command_ready;
994	owner = acpi_debugger.owner;
995	mutex_unlock(&acpi_debugger.lock);
996
997	ret = func(acpi_gbl_method_executing,
998		   acpi_gbl_db_line_buf, ACPI_DB_LINE_BUFFER_SIZE);
999
1000	mutex_lock(&acpi_debugger.lock);
1001	module_put(owner);
1002err_lock:
1003	mutex_unlock(&acpi_debugger.lock);
1004	return ret;
1005}
1006
1007int acpi_debugger_notify_command_complete(void)
1008{
1009	int ret;
1010	int (*func)(void);
1011	struct module *owner;
1012
1013	if (!acpi_debugger_initialized)
1014		return -ENODEV;
1015	mutex_lock(&acpi_debugger.lock);
1016	if (!acpi_debugger.ops) {
1017		ret = -ENODEV;
1018		goto err_lock;
1019	}
1020	if (!try_module_get(acpi_debugger.owner)) {
1021		ret = -ENODEV;
1022		goto err_lock;
1023	}
1024	func = acpi_debugger.ops->notify_command_complete;
1025	owner = acpi_debugger.owner;
1026	mutex_unlock(&acpi_debugger.lock);
1027
1028	ret = func();
1029
1030	mutex_lock(&acpi_debugger.lock);
1031	module_put(owner);
1032err_lock:
1033	mutex_unlock(&acpi_debugger.lock);
1034	return ret;
1035}
1036
1037int __init acpi_debugger_init(void)
1038{
1039	mutex_init(&acpi_debugger.lock);
1040	acpi_debugger_initialized = true;
1041	return 0;
1042}
1043#endif
1044
1045/*******************************************************************************
1046 *
1047 * FUNCTION:    acpi_os_execute
1048 *
1049 * PARAMETERS:  Type               - Type of the callback
1050 *              Function           - Function to be executed
1051 *              Context            - Function parameters
1052 *
1053 * RETURN:      Status
1054 *
1055 * DESCRIPTION: Depending on type, either queues function for deferred execution or
1056 *              immediately executes function on a separate thread.
1057 *
1058 ******************************************************************************/
1059
1060acpi_status acpi_os_execute(acpi_execute_type type,
1061			    acpi_osd_exec_callback function, void *context)
1062{
1063	struct acpi_os_dpc *dpc;
1064	int ret;
1065
1066	ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
1067			  "Scheduling function [%p(%p)] for deferred execution.\n",
1068			  function, context));
1069
1070	if (type == OSL_DEBUGGER_MAIN_THREAD) {
1071		ret = acpi_debugger_create_thread(function, context);
1072		if (ret) {
1073			pr_err("Kernel thread creation failed\n");
1074			return AE_ERROR;
1075		}
1076		return AE_OK;
1077	}
1078
1079	/*
1080	 * Allocate/initialize DPC structure.  Note that this memory will be
1081	 * freed by the callee.  The kernel handles the work_struct list  in a
1082	 * way that allows us to also free its memory inside the callee.
1083	 * Because we may want to schedule several tasks with different
1084	 * parameters we can't use the approach some kernel code uses of
1085	 * having a static work_struct.
1086	 */
1087
1088	dpc = kzalloc(sizeof(struct acpi_os_dpc), GFP_ATOMIC);
1089	if (!dpc)
1090		return AE_NO_MEMORY;
1091
1092	dpc->function = function;
1093	dpc->context = context;
1094	INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1095
1096	/*
1097	 * To prevent lockdep from complaining unnecessarily, make sure that
1098	 * there is a different static lockdep key for each workqueue by using
1099	 * INIT_WORK() for each of them separately.
1100	 */
1101	switch (type) {
1102	case OSL_NOTIFY_HANDLER:
1103		ret = queue_work(kacpi_notify_wq, &dpc->work);
1104		break;
1105	case OSL_GPE_HANDLER:
1106		/*
1107		 * On some machines, a software-initiated SMI causes corruption
1108		 * unless the SMI runs on CPU 0.  An SMI can be initiated by
1109		 * any AML, but typically it's done in GPE-related methods that
1110		 * are run via workqueues, so we can avoid the known corruption
1111		 * cases by always queueing on CPU 0.
1112		 */
1113		ret = queue_work_on(0, kacpid_wq, &dpc->work);
1114		break;
1115	default:
1116		pr_err("Unsupported os_execute type %d.\n", type);
1117		goto err;
1118	}
1119	if (!ret) {
1120		pr_err("Unable to queue work\n");
1121		goto err;
1122	}
1123
1124	return AE_OK;
1125
1126err:
1127	kfree(dpc);
1128	return AE_ERROR;
1129}
1130EXPORT_SYMBOL(acpi_os_execute);
1131
1132void acpi_os_wait_events_complete(void)
1133{
1134	/*
1135	 * Make sure the GPE handler or the fixed event handler is not used
1136	 * on another CPU after removal.
1137	 */
1138	if (acpi_sci_irq_valid())
1139		synchronize_hardirq(acpi_sci_irq);
1140	flush_workqueue(kacpid_wq);
1141	flush_workqueue(kacpi_notify_wq);
1142}
1143EXPORT_SYMBOL(acpi_os_wait_events_complete);
1144
1145struct acpi_hp_work {
1146	struct work_struct work;
1147	struct acpi_device *adev;
1148	u32 src;
1149};
1150
1151static void acpi_hotplug_work_fn(struct work_struct *work)
1152{
1153	struct acpi_hp_work *hpw = container_of(work, struct acpi_hp_work, work);
1154
1155	acpi_os_wait_events_complete();
1156	acpi_device_hotplug(hpw->adev, hpw->src);
1157	kfree(hpw);
1158}
1159
1160acpi_status acpi_hotplug_schedule(struct acpi_device *adev, u32 src)
1161{
1162	struct acpi_hp_work *hpw;
1163
1164	acpi_handle_debug(adev->handle,
1165			  "Scheduling hotplug event %u for deferred handling\n",
1166			   src);
1167
1168	hpw = kmalloc(sizeof(*hpw), GFP_KERNEL);
1169	if (!hpw)
1170		return AE_NO_MEMORY;
1171
1172	INIT_WORK(&hpw->work, acpi_hotplug_work_fn);
1173	hpw->adev = adev;
1174	hpw->src = src;
1175	/*
1176	 * We can't run hotplug code in kacpid_wq/kacpid_notify_wq etc., because
1177	 * the hotplug code may call driver .remove() functions, which may
1178	 * invoke flush_scheduled_work()/acpi_os_wait_events_complete() to flush
1179	 * these workqueues.
1180	 */
1181	if (!queue_work(kacpi_hotplug_wq, &hpw->work)) {
1182		kfree(hpw);
1183		return AE_ERROR;
1184	}
1185	return AE_OK;
1186}
1187
1188bool acpi_queue_hotplug_work(struct work_struct *work)
1189{
1190	return queue_work(kacpi_hotplug_wq, work);
1191}
1192
1193acpi_status
1194acpi_os_create_semaphore(u32 max_units, u32 initial_units, acpi_handle *handle)
1195{
1196	struct semaphore *sem = NULL;
1197
1198	sem = acpi_os_allocate_zeroed(sizeof(struct semaphore));
1199	if (!sem)
1200		return AE_NO_MEMORY;
1201
1202	sema_init(sem, initial_units);
1203
1204	*handle = (acpi_handle *) sem;
1205
1206	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Creating semaphore[%p|%d].\n",
1207			  *handle, initial_units));
1208
1209	return AE_OK;
1210}
1211
1212/*
1213 * TODO: A better way to delete semaphores?  Linux doesn't have a
1214 * 'delete_semaphore()' function -- may result in an invalid
1215 * pointer dereference for non-synchronized consumers.	Should
1216 * we at least check for blocked threads and signal/cancel them?
1217 */
1218
1219acpi_status acpi_os_delete_semaphore(acpi_handle handle)
1220{
1221	struct semaphore *sem = (struct semaphore *)handle;
1222
1223	if (!sem)
1224		return AE_BAD_PARAMETER;
1225
1226	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Deleting semaphore[%p].\n", handle));
1227
1228	BUG_ON(!list_empty(&sem->wait_list));
1229	kfree(sem);
1230	sem = NULL;
1231
1232	return AE_OK;
1233}
1234
1235/*
1236 * TODO: Support for units > 1?
1237 */
1238acpi_status acpi_os_wait_semaphore(acpi_handle handle, u32 units, u16 timeout)
1239{
1240	acpi_status status = AE_OK;
1241	struct semaphore *sem = (struct semaphore *)handle;
1242	long jiffies;
1243	int ret = 0;
1244
1245	if (!acpi_os_initialized)
1246		return AE_OK;
1247
1248	if (!sem || (units < 1))
1249		return AE_BAD_PARAMETER;
1250
1251	if (units > 1)
1252		return AE_SUPPORT;
1253
1254	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Waiting for semaphore[%p|%d|%d]\n",
1255			  handle, units, timeout));
1256
1257	if (timeout == ACPI_WAIT_FOREVER)
1258		jiffies = MAX_SCHEDULE_TIMEOUT;
1259	else
1260		jiffies = msecs_to_jiffies(timeout);
1261
1262	ret = down_timeout(sem, jiffies);
1263	if (ret)
1264		status = AE_TIME;
1265
1266	if (ACPI_FAILURE(status)) {
1267		ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1268				  "Failed to acquire semaphore[%p|%d|%d], %s",
1269				  handle, units, timeout,
1270				  acpi_format_exception(status)));
1271	} else {
1272		ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1273				  "Acquired semaphore[%p|%d|%d]", handle,
1274				  units, timeout));
1275	}
1276
1277	return status;
1278}
1279
1280/*
1281 * TODO: Support for units > 1?
1282 */
1283acpi_status acpi_os_signal_semaphore(acpi_handle handle, u32 units)
1284{
1285	struct semaphore *sem = (struct semaphore *)handle;
1286
1287	if (!acpi_os_initialized)
1288		return AE_OK;
1289
1290	if (!sem || (units < 1))
1291		return AE_BAD_PARAMETER;
1292
1293	if (units > 1)
1294		return AE_SUPPORT;
1295
1296	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Signaling semaphore[%p|%d]\n", handle,
1297			  units));
1298
1299	up(sem);
1300
1301	return AE_OK;
1302}
1303
1304acpi_status acpi_os_get_line(char *buffer, u32 buffer_length, u32 *bytes_read)
1305{
1306#ifdef ENABLE_DEBUGGER
1307	if (acpi_in_debugger) {
1308		u32 chars;
1309
1310		kdb_read(buffer, buffer_length);
1311
1312		/* remove the CR kdb includes */
1313		chars = strlen(buffer) - 1;
1314		buffer[chars] = '\0';
1315	}
1316#else
1317	int ret;
1318
1319	ret = acpi_debugger_read_cmd(buffer, buffer_length);
1320	if (ret < 0)
1321		return AE_ERROR;
1322	if (bytes_read)
1323		*bytes_read = ret;
1324#endif
1325
1326	return AE_OK;
1327}
1328EXPORT_SYMBOL(acpi_os_get_line);
1329
1330acpi_status acpi_os_wait_command_ready(void)
1331{
1332	int ret;
1333
1334	ret = acpi_debugger_wait_command_ready();
1335	if (ret < 0)
1336		return AE_ERROR;
1337	return AE_OK;
1338}
1339
1340acpi_status acpi_os_notify_command_complete(void)
1341{
1342	int ret;
1343
1344	ret = acpi_debugger_notify_command_complete();
1345	if (ret < 0)
1346		return AE_ERROR;
1347	return AE_OK;
1348}
1349
1350acpi_status acpi_os_signal(u32 function, void *info)
1351{
1352	switch (function) {
1353	case ACPI_SIGNAL_FATAL:
1354		pr_err("Fatal opcode executed\n");
1355		break;
1356	case ACPI_SIGNAL_BREAKPOINT:
1357		/*
1358		 * AML Breakpoint
1359		 * ACPI spec. says to treat it as a NOP unless
1360		 * you are debugging.  So if/when we integrate
1361		 * AML debugger into the kernel debugger its
1362		 * hook will go here.  But until then it is
1363		 * not useful to print anything on breakpoints.
1364		 */
1365		break;
1366	default:
1367		break;
1368	}
1369
1370	return AE_OK;
1371}
1372
1373static int __init acpi_os_name_setup(char *str)
1374{
1375	char *p = acpi_os_name;
1376	int count = ACPI_MAX_OVERRIDE_LEN - 1;
1377
1378	if (!str || !*str)
1379		return 0;
1380
1381	for (; count-- && *str; str++) {
1382		if (isalnum(*str) || *str == ' ' || *str == ':')
1383			*p++ = *str;
1384		else if (*str == '\'' || *str == '"')
1385			continue;
1386		else
1387			break;
1388	}
1389	*p = 0;
1390
1391	return 1;
1392
1393}
1394
1395__setup("acpi_os_name=", acpi_os_name_setup);
1396
1397/*
1398 * Disable the auto-serialization of named objects creation methods.
1399 *
1400 * This feature is enabled by default.  It marks the AML control methods
1401 * that contain the opcodes to create named objects as "Serialized".
1402 */
1403static int __init acpi_no_auto_serialize_setup(char *str)
1404{
1405	acpi_gbl_auto_serialize_methods = FALSE;
1406	pr_info("Auto-serialization disabled\n");
1407
1408	return 1;
1409}
1410
1411__setup("acpi_no_auto_serialize", acpi_no_auto_serialize_setup);
1412
1413/* Check of resource interference between native drivers and ACPI
1414 * OperationRegions (SystemIO and System Memory only).
1415 * IO ports and memory declared in ACPI might be used by the ACPI subsystem
1416 * in arbitrary AML code and can interfere with legacy drivers.
1417 * acpi_enforce_resources= can be set to:
1418 *
1419 *   - strict (default) (2)
1420 *     -> further driver trying to access the resources will not load
1421 *   - lax              (1)
1422 *     -> further driver trying to access the resources will load, but you
1423 *     get a system message that something might go wrong...
1424 *
1425 *   - no               (0)
1426 *     -> ACPI Operation Region resources will not be registered
1427 *
1428 */
1429#define ENFORCE_RESOURCES_STRICT 2
1430#define ENFORCE_RESOURCES_LAX    1
1431#define ENFORCE_RESOURCES_NO     0
1432
1433static unsigned int acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1434
1435static int __init acpi_enforce_resources_setup(char *str)
1436{
1437	if (str == NULL || *str == '\0')
1438		return 0;
1439
1440	if (!strcmp("strict", str))
1441		acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1442	else if (!strcmp("lax", str))
1443		acpi_enforce_resources = ENFORCE_RESOURCES_LAX;
1444	else if (!strcmp("no", str))
1445		acpi_enforce_resources = ENFORCE_RESOURCES_NO;
1446
1447	return 1;
1448}
1449
1450__setup("acpi_enforce_resources=", acpi_enforce_resources_setup);
1451
1452/* Check for resource conflicts between ACPI OperationRegions and native
1453 * drivers */
1454int acpi_check_resource_conflict(const struct resource *res)
1455{
1456	acpi_adr_space_type space_id;
1457
1458	if (acpi_enforce_resources == ENFORCE_RESOURCES_NO)
1459		return 0;
1460
1461	if (res->flags & IORESOURCE_IO)
1462		space_id = ACPI_ADR_SPACE_SYSTEM_IO;
1463	else if (res->flags & IORESOURCE_MEM)
1464		space_id = ACPI_ADR_SPACE_SYSTEM_MEMORY;
1465	else
1466		return 0;
1467
1468	if (!acpi_check_address_range(space_id, res->start, resource_size(res), 1))
1469		return 0;
1470
1471	pr_info("Resource conflict; ACPI support missing from driver?\n");
1472
1473	if (acpi_enforce_resources == ENFORCE_RESOURCES_STRICT)
1474		return -EBUSY;
1475
1476	if (acpi_enforce_resources == ENFORCE_RESOURCES_LAX)
1477		pr_notice("Resource conflict: System may be unstable or behave erratically\n");
1478
1479	return 0;
1480}
1481EXPORT_SYMBOL(acpi_check_resource_conflict);
1482
1483int acpi_check_region(resource_size_t start, resource_size_t n,
1484		      const char *name)
1485{
1486	struct resource res = DEFINE_RES_IO_NAMED(start, n, name);
1487
1488	return acpi_check_resource_conflict(&res);
1489}
1490EXPORT_SYMBOL(acpi_check_region);
1491
1492/*
1493 * Let drivers know whether the resource checks are effective
1494 */
1495int acpi_resources_are_enforced(void)
1496{
1497	return acpi_enforce_resources == ENFORCE_RESOURCES_STRICT;
1498}
1499EXPORT_SYMBOL(acpi_resources_are_enforced);
1500
1501/*
1502 * Deallocate the memory for a spinlock.
1503 */
1504void acpi_os_delete_lock(acpi_spinlock handle)
1505{
1506	ACPI_FREE(handle);
1507}
1508
1509/*
1510 * Acquire a spinlock.
1511 *
1512 * handle is a pointer to the spinlock_t.
1513 */
1514
1515acpi_cpu_flags acpi_os_acquire_lock(acpi_spinlock lockp)
1516	__acquires(lockp)
1517{
1518	spin_lock(lockp);
1519	return 0;
1520}
1521
1522/*
1523 * Release a spinlock. See above.
1524 */
1525
1526void acpi_os_release_lock(acpi_spinlock lockp, acpi_cpu_flags not_used)
1527	__releases(lockp)
1528{
1529	spin_unlock(lockp);
1530}
1531
1532#ifndef ACPI_USE_LOCAL_CACHE
1533
1534/*******************************************************************************
1535 *
1536 * FUNCTION:    acpi_os_create_cache
1537 *
1538 * PARAMETERS:  name      - Ascii name for the cache
1539 *              size      - Size of each cached object
1540 *              depth     - Maximum depth of the cache (in objects) <ignored>
1541 *              cache     - Where the new cache object is returned
1542 *
1543 * RETURN:      status
1544 *
1545 * DESCRIPTION: Create a cache object
1546 *
1547 ******************************************************************************/
1548
1549acpi_status
1550acpi_os_create_cache(char *name, u16 size, u16 depth, acpi_cache_t **cache)
1551{
1552	*cache = kmem_cache_create(name, size, 0, 0, NULL);
1553	if (*cache == NULL)
1554		return AE_ERROR;
1555	else
1556		return AE_OK;
1557}
1558
1559/*******************************************************************************
1560 *
1561 * FUNCTION:    acpi_os_purge_cache
1562 *
1563 * PARAMETERS:  Cache           - Handle to cache object
1564 *
1565 * RETURN:      Status
1566 *
1567 * DESCRIPTION: Free all objects within the requested cache.
1568 *
1569 ******************************************************************************/
1570
1571acpi_status acpi_os_purge_cache(acpi_cache_t *cache)
1572{
1573	kmem_cache_shrink(cache);
1574	return AE_OK;
1575}
1576
1577/*******************************************************************************
1578 *
1579 * FUNCTION:    acpi_os_delete_cache
1580 *
1581 * PARAMETERS:  Cache           - Handle to cache object
1582 *
1583 * RETURN:      Status
1584 *
1585 * DESCRIPTION: Free all objects within the requested cache and delete the
1586 *              cache object.
1587 *
1588 ******************************************************************************/
1589
1590acpi_status acpi_os_delete_cache(acpi_cache_t *cache)
1591{
1592	kmem_cache_destroy(cache);
1593	return AE_OK;
1594}
1595
1596/*******************************************************************************
1597 *
1598 * FUNCTION:    acpi_os_release_object
1599 *
1600 * PARAMETERS:  Cache       - Handle to cache object
1601 *              Object      - The object to be released
1602 *
1603 * RETURN:      None
1604 *
1605 * DESCRIPTION: Release an object to the specified cache.  If cache is full,
1606 *              the object is deleted.
1607 *
1608 ******************************************************************************/
1609
1610acpi_status acpi_os_release_object(acpi_cache_t *cache, void *object)
1611{
1612	kmem_cache_free(cache, object);
1613	return AE_OK;
1614}
1615#endif
1616
1617static int __init acpi_no_static_ssdt_setup(char *s)
1618{
1619	acpi_gbl_disable_ssdt_table_install = TRUE;
1620	pr_info("Static SSDT installation disabled\n");
1621
1622	return 0;
1623}
1624
1625early_param("acpi_no_static_ssdt", acpi_no_static_ssdt_setup);
1626
1627static int __init acpi_disable_return_repair(char *s)
1628{
1629	pr_notice("Predefined validation mechanism disabled\n");
1630	acpi_gbl_disable_auto_repair = TRUE;
1631
1632	return 1;
1633}
1634
1635__setup("acpica_no_return_repair", acpi_disable_return_repair);
1636
1637acpi_status __init acpi_os_initialize(void)
1638{
1639	acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1640	acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1641
1642	acpi_gbl_xgpe0_block_logical_address =
1643		(unsigned long)acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe0_block);
1644	acpi_gbl_xgpe1_block_logical_address =
1645		(unsigned long)acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe1_block);
1646
1647	if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER) {
1648		/*
1649		 * Use acpi_os_map_generic_address to pre-map the reset
1650		 * register if it's in system memory.
1651		 */
1652		void *rv;
1653
1654		rv = acpi_os_map_generic_address(&acpi_gbl_FADT.reset_register);
1655		pr_debug("%s: Reset register mapping %s\n", __func__,
1656			 rv ? "successful" : "failed");
1657	}
1658	acpi_os_initialized = true;
1659
1660	return AE_OK;
1661}
1662
1663acpi_status __init acpi_os_initialize1(void)
1664{
1665	kacpid_wq = alloc_workqueue("kacpid", 0, 1);
1666	kacpi_notify_wq = alloc_workqueue("kacpi_notify", 0, 0);
1667	kacpi_hotplug_wq = alloc_ordered_workqueue("kacpi_hotplug", 0);
1668	BUG_ON(!kacpid_wq);
1669	BUG_ON(!kacpi_notify_wq);
1670	BUG_ON(!kacpi_hotplug_wq);
1671	acpi_osi_init();
1672	return AE_OK;
1673}
1674
1675acpi_status acpi_os_terminate(void)
1676{
1677	if (acpi_irq_handler) {
1678		acpi_os_remove_interrupt_handler(acpi_gbl_FADT.sci_interrupt,
1679						 acpi_irq_handler);
1680	}
1681
1682	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe1_block);
1683	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe0_block);
1684	acpi_gbl_xgpe0_block_logical_address = 0UL;
1685	acpi_gbl_xgpe1_block_logical_address = 0UL;
1686
1687	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1688	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1689
1690	if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER)
1691		acpi_os_unmap_generic_address(&acpi_gbl_FADT.reset_register);
1692
1693	destroy_workqueue(kacpid_wq);
1694	destroy_workqueue(kacpi_notify_wq);
1695	destroy_workqueue(kacpi_hotplug_wq);
1696
1697	return AE_OK;
1698}
1699
1700acpi_status acpi_os_prepare_sleep(u8 sleep_state, u32 pm1a_control,
1701				  u32 pm1b_control)
1702{
1703	int rc = 0;
1704
1705	if (__acpi_os_prepare_sleep)
1706		rc = __acpi_os_prepare_sleep(sleep_state,
1707					     pm1a_control, pm1b_control);
1708	if (rc < 0)
1709		return AE_ERROR;
1710	else if (rc > 0)
1711		return AE_CTRL_TERMINATE;
1712
1713	return AE_OK;
1714}
1715
1716void acpi_os_set_prepare_sleep(int (*func)(u8 sleep_state,
1717			       u32 pm1a_ctrl, u32 pm1b_ctrl))
1718{
1719	__acpi_os_prepare_sleep = func;
1720}
1721
1722#if (ACPI_REDUCED_HARDWARE)
1723acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1724				  u32 val_b)
1725{
1726	int rc = 0;
1727
1728	if (__acpi_os_prepare_extended_sleep)
1729		rc = __acpi_os_prepare_extended_sleep(sleep_state,
1730					     val_a, val_b);
1731	if (rc < 0)
1732		return AE_ERROR;
1733	else if (rc > 0)
1734		return AE_CTRL_TERMINATE;
1735
1736	return AE_OK;
1737}
1738#else
1739acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1740				  u32 val_b)
1741{
1742	return AE_OK;
1743}
1744#endif
1745
1746void acpi_os_set_prepare_extended_sleep(int (*func)(u8 sleep_state,
1747			       u32 val_a, u32 val_b))
1748{
1749	__acpi_os_prepare_extended_sleep = func;
1750}
1751
1752acpi_status acpi_os_enter_sleep(u8 sleep_state,
1753				u32 reg_a_value, u32 reg_b_value)
1754{
1755	acpi_status status;
1756
1757	if (acpi_gbl_reduced_hardware)
1758		status = acpi_os_prepare_extended_sleep(sleep_state,
1759							reg_a_value,
1760							reg_b_value);
1761	else
1762		status = acpi_os_prepare_sleep(sleep_state,
1763					       reg_a_value, reg_b_value);
1764	return status;
1765}
1766