1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * CPPC (Collaborative Processor Performance Control) methods used by CPUfreq drivers.
4 *
5 * (C) Copyright 2014, 2015 Linaro Ltd.
6 * Author: Ashwin Chaugule <ashwin.chaugule@linaro.org>
7 *
8 * CPPC describes a few methods for controlling CPU performance using
9 * information from a per CPU table called CPC. This table is described in
10 * the ACPI v5.0+ specification. The table consists of a list of
11 * registers which may be memory mapped or hardware registers and also may
12 * include some static integer values.
13 *
14 * CPU performance is on an abstract continuous scale as against a discretized
15 * P-state scale which is tied to CPU frequency only. In brief, the basic
16 * operation involves:
17 *
18 * - OS makes a CPU performance request. (Can provide min and max bounds)
19 *
20 * - Platform (such as BMC) is free to optimize request within requested bounds
21 *   depending on power/thermal budgets etc.
22 *
23 * - Platform conveys its decision back to OS
24 *
25 * The communication between OS and platform occurs through another medium
26 * called (PCC) Platform Communication Channel. This is a generic mailbox like
27 * mechanism which includes doorbell semantics to indicate register updates.
28 * See drivers/mailbox/pcc.c for details on PCC.
29 *
30 * Finer details about the PCC and CPPC spec are available in the ACPI v5.1 and
31 * above specifications.
32 */
33
34#define pr_fmt(fmt)	"ACPI CPPC: " fmt
35
36#include <linux/delay.h>
37#include <linux/iopoll.h>
38#include <linux/ktime.h>
39#include <linux/rwsem.h>
40#include <linux/wait.h>
41#include <linux/topology.h>
42#include <linux/dmi.h>
43#include <linux/units.h>
44#include <asm/unaligned.h>
45
46#include <acpi/cppc_acpi.h>
47
48struct cppc_pcc_data {
49	struct pcc_mbox_chan *pcc_channel;
50	void __iomem *pcc_comm_addr;
51	bool pcc_channel_acquired;
52	unsigned int deadline_us;
53	unsigned int pcc_mpar, pcc_mrtt, pcc_nominal;
54
55	bool pending_pcc_write_cmd;	/* Any pending/batched PCC write cmds? */
56	bool platform_owns_pcc;		/* Ownership of PCC subspace */
57	unsigned int pcc_write_cnt;	/* Running count of PCC write commands */
58
59	/*
60	 * Lock to provide controlled access to the PCC channel.
61	 *
62	 * For performance critical usecases(currently cppc_set_perf)
63	 *	We need to take read_lock and check if channel belongs to OSPM
64	 * before reading or writing to PCC subspace
65	 *	We need to take write_lock before transferring the channel
66	 * ownership to the platform via a Doorbell
67	 *	This allows us to batch a number of CPPC requests if they happen
68	 * to originate in about the same time
69	 *
70	 * For non-performance critical usecases(init)
71	 *	Take write_lock for all purposes which gives exclusive access
72	 */
73	struct rw_semaphore pcc_lock;
74
75	/* Wait queue for CPUs whose requests were batched */
76	wait_queue_head_t pcc_write_wait_q;
77	ktime_t last_cmd_cmpl_time;
78	ktime_t last_mpar_reset;
79	int mpar_count;
80	int refcount;
81};
82
83/* Array to represent the PCC channel per subspace ID */
84static struct cppc_pcc_data *pcc_data[MAX_PCC_SUBSPACES];
85/* The cpu_pcc_subspace_idx contains per CPU subspace ID */
86static DEFINE_PER_CPU(int, cpu_pcc_subspace_idx);
87
88/*
89 * The cpc_desc structure contains the ACPI register details
90 * as described in the per CPU _CPC tables. The details
91 * include the type of register (e.g. PCC, System IO, FFH etc.)
92 * and destination addresses which lets us READ/WRITE CPU performance
93 * information using the appropriate I/O methods.
94 */
95static DEFINE_PER_CPU(struct cpc_desc *, cpc_desc_ptr);
96
97/* pcc mapped address + header size + offset within PCC subspace */
98#define GET_PCC_VADDR(offs, pcc_ss_id) (pcc_data[pcc_ss_id]->pcc_comm_addr + \
99						0x8 + (offs))
100
101/* Check if a CPC register is in PCC */
102#define CPC_IN_PCC(cpc) ((cpc)->type == ACPI_TYPE_BUFFER &&		\
103				(cpc)->cpc_entry.reg.space_id ==	\
104				ACPI_ADR_SPACE_PLATFORM_COMM)
105
106/* Check if a CPC register is in SystemMemory */
107#define CPC_IN_SYSTEM_MEMORY(cpc) ((cpc)->type == ACPI_TYPE_BUFFER &&	\
108				(cpc)->cpc_entry.reg.space_id ==	\
109				ACPI_ADR_SPACE_SYSTEM_MEMORY)
110
111/* Check if a CPC register is in SystemIo */
112#define CPC_IN_SYSTEM_IO(cpc) ((cpc)->type == ACPI_TYPE_BUFFER &&	\
113				(cpc)->cpc_entry.reg.space_id ==	\
114				ACPI_ADR_SPACE_SYSTEM_IO)
115
116/* Evaluates to True if reg is a NULL register descriptor */
117#define IS_NULL_REG(reg) ((reg)->space_id ==  ACPI_ADR_SPACE_SYSTEM_MEMORY && \
118				(reg)->address == 0 &&			\
119				(reg)->bit_width == 0 &&		\
120				(reg)->bit_offset == 0 &&		\
121				(reg)->access_width == 0)
122
123/* Evaluates to True if an optional cpc field is supported */
124#define CPC_SUPPORTED(cpc) ((cpc)->type == ACPI_TYPE_INTEGER ?		\
125				!!(cpc)->cpc_entry.int_value :		\
126				!IS_NULL_REG(&(cpc)->cpc_entry.reg))
127/*
128 * Arbitrary Retries in case the remote processor is slow to respond
129 * to PCC commands. Keeping it high enough to cover emulators where
130 * the processors run painfully slow.
131 */
132#define NUM_RETRIES 500ULL
133
134#define OVER_16BTS_MASK ~0xFFFFULL
135
136#define define_one_cppc_ro(_name)		\
137static struct kobj_attribute _name =		\
138__ATTR(_name, 0444, show_##_name, NULL)
139
140#define to_cpc_desc(a) container_of(a, struct cpc_desc, kobj)
141
142#define show_cppc_data(access_fn, struct_name, member_name)		\
143	static ssize_t show_##member_name(struct kobject *kobj,		\
144				struct kobj_attribute *attr, char *buf)	\
145	{								\
146		struct cpc_desc *cpc_ptr = to_cpc_desc(kobj);		\
147		struct struct_name st_name = {0};			\
148		int ret;						\
149									\
150		ret = access_fn(cpc_ptr->cpu_id, &st_name);		\
151		if (ret)						\
152			return ret;					\
153									\
154		return sysfs_emit(buf, "%llu\n",		\
155				(u64)st_name.member_name);		\
156	}								\
157	define_one_cppc_ro(member_name)
158
159show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, highest_perf);
160show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_perf);
161show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, nominal_perf);
162show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_nonlinear_perf);
163show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_freq);
164show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, nominal_freq);
165
166show_cppc_data(cppc_get_perf_ctrs, cppc_perf_fb_ctrs, reference_perf);
167show_cppc_data(cppc_get_perf_ctrs, cppc_perf_fb_ctrs, wraparound_time);
168
169/* Check for valid access_width, otherwise, fallback to using bit_width */
170#define GET_BIT_WIDTH(reg) ((reg)->access_width ? (8 << ((reg)->access_width - 1)) : (reg)->bit_width)
171
172/* Shift and apply the mask for CPC reads/writes */
173#define MASK_VAL(reg, val) ((val) >> ((reg)->bit_offset & 			\
174					GENMASK(((reg)->bit_width), 0)))
175
176static ssize_t show_feedback_ctrs(struct kobject *kobj,
177		struct kobj_attribute *attr, char *buf)
178{
179	struct cpc_desc *cpc_ptr = to_cpc_desc(kobj);
180	struct cppc_perf_fb_ctrs fb_ctrs = {0};
181	int ret;
182
183	ret = cppc_get_perf_ctrs(cpc_ptr->cpu_id, &fb_ctrs);
184	if (ret)
185		return ret;
186
187	return sysfs_emit(buf, "ref:%llu del:%llu\n",
188			fb_ctrs.reference, fb_ctrs.delivered);
189}
190define_one_cppc_ro(feedback_ctrs);
191
192static struct attribute *cppc_attrs[] = {
193	&feedback_ctrs.attr,
194	&reference_perf.attr,
195	&wraparound_time.attr,
196	&highest_perf.attr,
197	&lowest_perf.attr,
198	&lowest_nonlinear_perf.attr,
199	&nominal_perf.attr,
200	&nominal_freq.attr,
201	&lowest_freq.attr,
202	NULL
203};
204ATTRIBUTE_GROUPS(cppc);
205
206static const struct kobj_type cppc_ktype = {
207	.sysfs_ops = &kobj_sysfs_ops,
208	.default_groups = cppc_groups,
209};
210
211static int check_pcc_chan(int pcc_ss_id, bool chk_err_bit)
212{
213	int ret, status;
214	struct cppc_pcc_data *pcc_ss_data = pcc_data[pcc_ss_id];
215	struct acpi_pcct_shared_memory __iomem *generic_comm_base =
216		pcc_ss_data->pcc_comm_addr;
217
218	if (!pcc_ss_data->platform_owns_pcc)
219		return 0;
220
221	/*
222	 * Poll PCC status register every 3us(delay_us) for maximum of
223	 * deadline_us(timeout_us) until PCC command complete bit is set(cond)
224	 */
225	ret = readw_relaxed_poll_timeout(&generic_comm_base->status, status,
226					status & PCC_CMD_COMPLETE_MASK, 3,
227					pcc_ss_data->deadline_us);
228
229	if (likely(!ret)) {
230		pcc_ss_data->platform_owns_pcc = false;
231		if (chk_err_bit && (status & PCC_ERROR_MASK))
232			ret = -EIO;
233	}
234
235	if (unlikely(ret))
236		pr_err("PCC check channel failed for ss: %d. ret=%d\n",
237		       pcc_ss_id, ret);
238
239	return ret;
240}
241
242/*
243 * This function transfers the ownership of the PCC to the platform
244 * So it must be called while holding write_lock(pcc_lock)
245 */
246static int send_pcc_cmd(int pcc_ss_id, u16 cmd)
247{
248	int ret = -EIO, i;
249	struct cppc_pcc_data *pcc_ss_data = pcc_data[pcc_ss_id];
250	struct acpi_pcct_shared_memory __iomem *generic_comm_base =
251		pcc_ss_data->pcc_comm_addr;
252	unsigned int time_delta;
253
254	/*
255	 * For CMD_WRITE we know for a fact the caller should have checked
256	 * the channel before writing to PCC space
257	 */
258	if (cmd == CMD_READ) {
259		/*
260		 * If there are pending cpc_writes, then we stole the channel
261		 * before write completion, so first send a WRITE command to
262		 * platform
263		 */
264		if (pcc_ss_data->pending_pcc_write_cmd)
265			send_pcc_cmd(pcc_ss_id, CMD_WRITE);
266
267		ret = check_pcc_chan(pcc_ss_id, false);
268		if (ret)
269			goto end;
270	} else /* CMD_WRITE */
271		pcc_ss_data->pending_pcc_write_cmd = FALSE;
272
273	/*
274	 * Handle the Minimum Request Turnaround Time(MRTT)
275	 * "The minimum amount of time that OSPM must wait after the completion
276	 * of a command before issuing the next command, in microseconds"
277	 */
278	if (pcc_ss_data->pcc_mrtt) {
279		time_delta = ktime_us_delta(ktime_get(),
280					    pcc_ss_data->last_cmd_cmpl_time);
281		if (pcc_ss_data->pcc_mrtt > time_delta)
282			udelay(pcc_ss_data->pcc_mrtt - time_delta);
283	}
284
285	/*
286	 * Handle the non-zero Maximum Periodic Access Rate(MPAR)
287	 * "The maximum number of periodic requests that the subspace channel can
288	 * support, reported in commands per minute. 0 indicates no limitation."
289	 *
290	 * This parameter should be ideally zero or large enough so that it can
291	 * handle maximum number of requests that all the cores in the system can
292	 * collectively generate. If it is not, we will follow the spec and just
293	 * not send the request to the platform after hitting the MPAR limit in
294	 * any 60s window
295	 */
296	if (pcc_ss_data->pcc_mpar) {
297		if (pcc_ss_data->mpar_count == 0) {
298			time_delta = ktime_ms_delta(ktime_get(),
299						    pcc_ss_data->last_mpar_reset);
300			if ((time_delta < 60 * MSEC_PER_SEC) && pcc_ss_data->last_mpar_reset) {
301				pr_debug("PCC cmd for subspace %d not sent due to MPAR limit",
302					 pcc_ss_id);
303				ret = -EIO;
304				goto end;
305			}
306			pcc_ss_data->last_mpar_reset = ktime_get();
307			pcc_ss_data->mpar_count = pcc_ss_data->pcc_mpar;
308		}
309		pcc_ss_data->mpar_count--;
310	}
311
312	/* Write to the shared comm region. */
313	writew_relaxed(cmd, &generic_comm_base->command);
314
315	/* Flip CMD COMPLETE bit */
316	writew_relaxed(0, &generic_comm_base->status);
317
318	pcc_ss_data->platform_owns_pcc = true;
319
320	/* Ring doorbell */
321	ret = mbox_send_message(pcc_ss_data->pcc_channel->mchan, &cmd);
322	if (ret < 0) {
323		pr_err("Err sending PCC mbox message. ss: %d cmd:%d, ret:%d\n",
324		       pcc_ss_id, cmd, ret);
325		goto end;
326	}
327
328	/* wait for completion and check for PCC error bit */
329	ret = check_pcc_chan(pcc_ss_id, true);
330
331	if (pcc_ss_data->pcc_mrtt)
332		pcc_ss_data->last_cmd_cmpl_time = ktime_get();
333
334	if (pcc_ss_data->pcc_channel->mchan->mbox->txdone_irq)
335		mbox_chan_txdone(pcc_ss_data->pcc_channel->mchan, ret);
336	else
337		mbox_client_txdone(pcc_ss_data->pcc_channel->mchan, ret);
338
339end:
340	if (cmd == CMD_WRITE) {
341		if (unlikely(ret)) {
342			for_each_possible_cpu(i) {
343				struct cpc_desc *desc = per_cpu(cpc_desc_ptr, i);
344
345				if (!desc)
346					continue;
347
348				if (desc->write_cmd_id == pcc_ss_data->pcc_write_cnt)
349					desc->write_cmd_status = ret;
350			}
351		}
352		pcc_ss_data->pcc_write_cnt++;
353		wake_up_all(&pcc_ss_data->pcc_write_wait_q);
354	}
355
356	return ret;
357}
358
359static void cppc_chan_tx_done(struct mbox_client *cl, void *msg, int ret)
360{
361	if (ret < 0)
362		pr_debug("TX did not complete: CMD sent:%x, ret:%d\n",
363				*(u16 *)msg, ret);
364	else
365		pr_debug("TX completed. CMD sent:%x, ret:%d\n",
366				*(u16 *)msg, ret);
367}
368
369static struct mbox_client cppc_mbox_cl = {
370	.tx_done = cppc_chan_tx_done,
371	.knows_txdone = true,
372};
373
374static int acpi_get_psd(struct cpc_desc *cpc_ptr, acpi_handle handle)
375{
376	int result = -EFAULT;
377	acpi_status status = AE_OK;
378	struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
379	struct acpi_buffer format = {sizeof("NNNNN"), "NNNNN"};
380	struct acpi_buffer state = {0, NULL};
381	union acpi_object  *psd = NULL;
382	struct acpi_psd_package *pdomain;
383
384	status = acpi_evaluate_object_typed(handle, "_PSD", NULL,
385					    &buffer, ACPI_TYPE_PACKAGE);
386	if (status == AE_NOT_FOUND)	/* _PSD is optional */
387		return 0;
388	if (ACPI_FAILURE(status))
389		return -ENODEV;
390
391	psd = buffer.pointer;
392	if (!psd || psd->package.count != 1) {
393		pr_debug("Invalid _PSD data\n");
394		goto end;
395	}
396
397	pdomain = &(cpc_ptr->domain_info);
398
399	state.length = sizeof(struct acpi_psd_package);
400	state.pointer = pdomain;
401
402	status = acpi_extract_package(&(psd->package.elements[0]),
403		&format, &state);
404	if (ACPI_FAILURE(status)) {
405		pr_debug("Invalid _PSD data for CPU:%d\n", cpc_ptr->cpu_id);
406		goto end;
407	}
408
409	if (pdomain->num_entries != ACPI_PSD_REV0_ENTRIES) {
410		pr_debug("Unknown _PSD:num_entries for CPU:%d\n", cpc_ptr->cpu_id);
411		goto end;
412	}
413
414	if (pdomain->revision != ACPI_PSD_REV0_REVISION) {
415		pr_debug("Unknown _PSD:revision for CPU: %d\n", cpc_ptr->cpu_id);
416		goto end;
417	}
418
419	if (pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ALL &&
420	    pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ANY &&
421	    pdomain->coord_type != DOMAIN_COORD_TYPE_HW_ALL) {
422		pr_debug("Invalid _PSD:coord_type for CPU:%d\n", cpc_ptr->cpu_id);
423		goto end;
424	}
425
426	result = 0;
427end:
428	kfree(buffer.pointer);
429	return result;
430}
431
432bool acpi_cpc_valid(void)
433{
434	struct cpc_desc *cpc_ptr;
435	int cpu;
436
437	if (acpi_disabled)
438		return false;
439
440	for_each_present_cpu(cpu) {
441		cpc_ptr = per_cpu(cpc_desc_ptr, cpu);
442		if (!cpc_ptr)
443			return false;
444	}
445
446	return true;
447}
448EXPORT_SYMBOL_GPL(acpi_cpc_valid);
449
450bool cppc_allow_fast_switch(void)
451{
452	struct cpc_register_resource *desired_reg;
453	struct cpc_desc *cpc_ptr;
454	int cpu;
455
456	for_each_possible_cpu(cpu) {
457		cpc_ptr = per_cpu(cpc_desc_ptr, cpu);
458		desired_reg = &cpc_ptr->cpc_regs[DESIRED_PERF];
459		if (!CPC_IN_SYSTEM_MEMORY(desired_reg) &&
460				!CPC_IN_SYSTEM_IO(desired_reg))
461			return false;
462	}
463
464	return true;
465}
466EXPORT_SYMBOL_GPL(cppc_allow_fast_switch);
467
468/**
469 * acpi_get_psd_map - Map the CPUs in the freq domain of a given cpu
470 * @cpu: Find all CPUs that share a domain with cpu.
471 * @cpu_data: Pointer to CPU specific CPPC data including PSD info.
472 *
473 *	Return: 0 for success or negative value for err.
474 */
475int acpi_get_psd_map(unsigned int cpu, struct cppc_cpudata *cpu_data)
476{
477	struct cpc_desc *cpc_ptr, *match_cpc_ptr;
478	struct acpi_psd_package *match_pdomain;
479	struct acpi_psd_package *pdomain;
480	int count_target, i;
481
482	/*
483	 * Now that we have _PSD data from all CPUs, let's setup P-state
484	 * domain info.
485	 */
486	cpc_ptr = per_cpu(cpc_desc_ptr, cpu);
487	if (!cpc_ptr)
488		return -EFAULT;
489
490	pdomain = &(cpc_ptr->domain_info);
491	cpumask_set_cpu(cpu, cpu_data->shared_cpu_map);
492	if (pdomain->num_processors <= 1)
493		return 0;
494
495	/* Validate the Domain info */
496	count_target = pdomain->num_processors;
497	if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ALL)
498		cpu_data->shared_type = CPUFREQ_SHARED_TYPE_ALL;
499	else if (pdomain->coord_type == DOMAIN_COORD_TYPE_HW_ALL)
500		cpu_data->shared_type = CPUFREQ_SHARED_TYPE_HW;
501	else if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ANY)
502		cpu_data->shared_type = CPUFREQ_SHARED_TYPE_ANY;
503
504	for_each_possible_cpu(i) {
505		if (i == cpu)
506			continue;
507
508		match_cpc_ptr = per_cpu(cpc_desc_ptr, i);
509		if (!match_cpc_ptr)
510			goto err_fault;
511
512		match_pdomain = &(match_cpc_ptr->domain_info);
513		if (match_pdomain->domain != pdomain->domain)
514			continue;
515
516		/* Here i and cpu are in the same domain */
517		if (match_pdomain->num_processors != count_target)
518			goto err_fault;
519
520		if (pdomain->coord_type != match_pdomain->coord_type)
521			goto err_fault;
522
523		cpumask_set_cpu(i, cpu_data->shared_cpu_map);
524	}
525
526	return 0;
527
528err_fault:
529	/* Assume no coordination on any error parsing domain info */
530	cpumask_clear(cpu_data->shared_cpu_map);
531	cpumask_set_cpu(cpu, cpu_data->shared_cpu_map);
532	cpu_data->shared_type = CPUFREQ_SHARED_TYPE_NONE;
533
534	return -EFAULT;
535}
536EXPORT_SYMBOL_GPL(acpi_get_psd_map);
537
538static int register_pcc_channel(int pcc_ss_idx)
539{
540	struct pcc_mbox_chan *pcc_chan;
541	u64 usecs_lat;
542
543	if (pcc_ss_idx >= 0) {
544		pcc_chan = pcc_mbox_request_channel(&cppc_mbox_cl, pcc_ss_idx);
545
546		if (IS_ERR(pcc_chan)) {
547			pr_err("Failed to find PCC channel for subspace %d\n",
548			       pcc_ss_idx);
549			return -ENODEV;
550		}
551
552		pcc_data[pcc_ss_idx]->pcc_channel = pcc_chan;
553		/*
554		 * cppc_ss->latency is just a Nominal value. In reality
555		 * the remote processor could be much slower to reply.
556		 * So add an arbitrary amount of wait on top of Nominal.
557		 */
558		usecs_lat = NUM_RETRIES * pcc_chan->latency;
559		pcc_data[pcc_ss_idx]->deadline_us = usecs_lat;
560		pcc_data[pcc_ss_idx]->pcc_mrtt = pcc_chan->min_turnaround_time;
561		pcc_data[pcc_ss_idx]->pcc_mpar = pcc_chan->max_access_rate;
562		pcc_data[pcc_ss_idx]->pcc_nominal = pcc_chan->latency;
563
564		pcc_data[pcc_ss_idx]->pcc_comm_addr =
565			acpi_os_ioremap(pcc_chan->shmem_base_addr,
566					pcc_chan->shmem_size);
567		if (!pcc_data[pcc_ss_idx]->pcc_comm_addr) {
568			pr_err("Failed to ioremap PCC comm region mem for %d\n",
569			       pcc_ss_idx);
570			return -ENOMEM;
571		}
572
573		/* Set flag so that we don't come here for each CPU. */
574		pcc_data[pcc_ss_idx]->pcc_channel_acquired = true;
575	}
576
577	return 0;
578}
579
580/**
581 * cpc_ffh_supported() - check if FFH reading supported
582 *
583 * Check if the architecture has support for functional fixed hardware
584 * read/write capability.
585 *
586 * Return: true for supported, false for not supported
587 */
588bool __weak cpc_ffh_supported(void)
589{
590	return false;
591}
592
593/**
594 * cpc_supported_by_cpu() - check if CPPC is supported by CPU
595 *
596 * Check if the architectural support for CPPC is present even
597 * if the _OSC hasn't prescribed it
598 *
599 * Return: true for supported, false for not supported
600 */
601bool __weak cpc_supported_by_cpu(void)
602{
603	return false;
604}
605
606/**
607 * pcc_data_alloc() - Allocate the pcc_data memory for pcc subspace
608 * @pcc_ss_id: PCC Subspace index as in the PCC client ACPI package.
609 *
610 * Check and allocate the cppc_pcc_data memory.
611 * In some processor configurations it is possible that same subspace
612 * is shared between multiple CPUs. This is seen especially in CPUs
613 * with hardware multi-threading support.
614 *
615 * Return: 0 for success, errno for failure
616 */
617static int pcc_data_alloc(int pcc_ss_id)
618{
619	if (pcc_ss_id < 0 || pcc_ss_id >= MAX_PCC_SUBSPACES)
620		return -EINVAL;
621
622	if (pcc_data[pcc_ss_id]) {
623		pcc_data[pcc_ss_id]->refcount++;
624	} else {
625		pcc_data[pcc_ss_id] = kzalloc(sizeof(struct cppc_pcc_data),
626					      GFP_KERNEL);
627		if (!pcc_data[pcc_ss_id])
628			return -ENOMEM;
629		pcc_data[pcc_ss_id]->refcount++;
630	}
631
632	return 0;
633}
634
635/*
636 * An example CPC table looks like the following.
637 *
638 *  Name (_CPC, Package() {
639 *      17,							// NumEntries
640 *      1,							// Revision
641 *      ResourceTemplate() {Register(PCC, 32, 0, 0x120, 2)},	// Highest Performance
642 *      ResourceTemplate() {Register(PCC, 32, 0, 0x124, 2)},	// Nominal Performance
643 *      ResourceTemplate() {Register(PCC, 32, 0, 0x128, 2)},	// Lowest Nonlinear Performance
644 *      ResourceTemplate() {Register(PCC, 32, 0, 0x12C, 2)},	// Lowest Performance
645 *      ResourceTemplate() {Register(PCC, 32, 0, 0x130, 2)},	// Guaranteed Performance Register
646 *      ResourceTemplate() {Register(PCC, 32, 0, 0x110, 2)},	// Desired Performance Register
647 *      ResourceTemplate() {Register(SystemMemory, 0, 0, 0, 0)},
648 *      ...
649 *      ...
650 *      ...
651 *  }
652 * Each Register() encodes how to access that specific register.
653 * e.g. a sample PCC entry has the following encoding:
654 *
655 *  Register (
656 *      PCC,	// AddressSpaceKeyword
657 *      8,	// RegisterBitWidth
658 *      8,	// RegisterBitOffset
659 *      0x30,	// RegisterAddress
660 *      9,	// AccessSize (subspace ID)
661 *  )
662 */
663
664#ifndef arch_init_invariance_cppc
665static inline void arch_init_invariance_cppc(void) { }
666#endif
667
668/**
669 * acpi_cppc_processor_probe - Search for per CPU _CPC objects.
670 * @pr: Ptr to acpi_processor containing this CPU's logical ID.
671 *
672 *	Return: 0 for success or negative value for err.
673 */
674int acpi_cppc_processor_probe(struct acpi_processor *pr)
675{
676	struct acpi_buffer output = {ACPI_ALLOCATE_BUFFER, NULL};
677	union acpi_object *out_obj, *cpc_obj;
678	struct cpc_desc *cpc_ptr;
679	struct cpc_reg *gas_t;
680	struct device *cpu_dev;
681	acpi_handle handle = pr->handle;
682	unsigned int num_ent, i, cpc_rev;
683	int pcc_subspace_id = -1;
684	acpi_status status;
685	int ret = -ENODATA;
686
687	if (!osc_sb_cppc2_support_acked) {
688		pr_debug("CPPC v2 _OSC not acked\n");
689		if (!cpc_supported_by_cpu())
690			return -ENODEV;
691	}
692
693	/* Parse the ACPI _CPC table for this CPU. */
694	status = acpi_evaluate_object_typed(handle, "_CPC", NULL, &output,
695			ACPI_TYPE_PACKAGE);
696	if (ACPI_FAILURE(status)) {
697		ret = -ENODEV;
698		goto out_buf_free;
699	}
700
701	out_obj = (union acpi_object *) output.pointer;
702
703	cpc_ptr = kzalloc(sizeof(struct cpc_desc), GFP_KERNEL);
704	if (!cpc_ptr) {
705		ret = -ENOMEM;
706		goto out_buf_free;
707	}
708
709	/* First entry is NumEntries. */
710	cpc_obj = &out_obj->package.elements[0];
711	if (cpc_obj->type == ACPI_TYPE_INTEGER)	{
712		num_ent = cpc_obj->integer.value;
713		if (num_ent <= 1) {
714			pr_debug("Unexpected _CPC NumEntries value (%d) for CPU:%d\n",
715				 num_ent, pr->id);
716			goto out_free;
717		}
718	} else {
719		pr_debug("Unexpected _CPC NumEntries entry type (%d) for CPU:%d\n",
720			 cpc_obj->type, pr->id);
721		goto out_free;
722	}
723
724	/* Second entry should be revision. */
725	cpc_obj = &out_obj->package.elements[1];
726	if (cpc_obj->type == ACPI_TYPE_INTEGER)	{
727		cpc_rev = cpc_obj->integer.value;
728	} else {
729		pr_debug("Unexpected _CPC Revision entry type (%d) for CPU:%d\n",
730			 cpc_obj->type, pr->id);
731		goto out_free;
732	}
733
734	if (cpc_rev < CPPC_V2_REV) {
735		pr_debug("Unsupported _CPC Revision (%d) for CPU:%d\n", cpc_rev,
736			 pr->id);
737		goto out_free;
738	}
739
740	/*
741	 * Disregard _CPC if the number of entries in the return pachage is not
742	 * as expected, but support future revisions being proper supersets of
743	 * the v3 and only causing more entries to be returned by _CPC.
744	 */
745	if ((cpc_rev == CPPC_V2_REV && num_ent != CPPC_V2_NUM_ENT) ||
746	    (cpc_rev == CPPC_V3_REV && num_ent != CPPC_V3_NUM_ENT) ||
747	    (cpc_rev > CPPC_V3_REV && num_ent <= CPPC_V3_NUM_ENT)) {
748		pr_debug("Unexpected number of _CPC return package entries (%d) for CPU:%d\n",
749			 num_ent, pr->id);
750		goto out_free;
751	}
752	if (cpc_rev > CPPC_V3_REV) {
753		num_ent = CPPC_V3_NUM_ENT;
754		cpc_rev = CPPC_V3_REV;
755	}
756
757	cpc_ptr->num_entries = num_ent;
758	cpc_ptr->version = cpc_rev;
759
760	/* Iterate through remaining entries in _CPC */
761	for (i = 2; i < num_ent; i++) {
762		cpc_obj = &out_obj->package.elements[i];
763
764		if (cpc_obj->type == ACPI_TYPE_INTEGER)	{
765			cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_INTEGER;
766			cpc_ptr->cpc_regs[i-2].cpc_entry.int_value = cpc_obj->integer.value;
767		} else if (cpc_obj->type == ACPI_TYPE_BUFFER) {
768			gas_t = (struct cpc_reg *)
769				cpc_obj->buffer.pointer;
770
771			/*
772			 * The PCC Subspace index is encoded inside
773			 * the CPC table entries. The same PCC index
774			 * will be used for all the PCC entries,
775			 * so extract it only once.
776			 */
777			if (gas_t->space_id == ACPI_ADR_SPACE_PLATFORM_COMM) {
778				if (pcc_subspace_id < 0) {
779					pcc_subspace_id = gas_t->access_width;
780					if (pcc_data_alloc(pcc_subspace_id))
781						goto out_free;
782				} else if (pcc_subspace_id != gas_t->access_width) {
783					pr_debug("Mismatched PCC ids in _CPC for CPU:%d\n",
784						 pr->id);
785					goto out_free;
786				}
787			} else if (gas_t->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
788				if (gas_t->address) {
789					void __iomem *addr;
790					size_t access_width;
791
792					if (!osc_cpc_flexible_adr_space_confirmed) {
793						pr_debug("Flexible address space capability not supported\n");
794						if (!cpc_supported_by_cpu())
795							goto out_free;
796					}
797
798					access_width = GET_BIT_WIDTH(gas_t) / 8;
799					addr = ioremap(gas_t->address, access_width);
800					if (!addr)
801						goto out_free;
802					cpc_ptr->cpc_regs[i-2].sys_mem_vaddr = addr;
803				}
804			} else if (gas_t->space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
805				if (gas_t->access_width < 1 || gas_t->access_width > 3) {
806					/*
807					 * 1 = 8-bit, 2 = 16-bit, and 3 = 32-bit.
808					 * SystemIO doesn't implement 64-bit
809					 * registers.
810					 */
811					pr_debug("Invalid access width %d for SystemIO register in _CPC\n",
812						 gas_t->access_width);
813					goto out_free;
814				}
815				if (gas_t->address & OVER_16BTS_MASK) {
816					/* SystemIO registers use 16-bit integer addresses */
817					pr_debug("Invalid IO port %llu for SystemIO register in _CPC\n",
818						 gas_t->address);
819					goto out_free;
820				}
821				if (!osc_cpc_flexible_adr_space_confirmed) {
822					pr_debug("Flexible address space capability not supported\n");
823					if (!cpc_supported_by_cpu())
824						goto out_free;
825				}
826			} else {
827				if (gas_t->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE || !cpc_ffh_supported()) {
828					/* Support only PCC, SystemMemory, SystemIO, and FFH type regs. */
829					pr_debug("Unsupported register type (%d) in _CPC\n",
830						 gas_t->space_id);
831					goto out_free;
832				}
833			}
834
835			cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_BUFFER;
836			memcpy(&cpc_ptr->cpc_regs[i-2].cpc_entry.reg, gas_t, sizeof(*gas_t));
837		} else {
838			pr_debug("Invalid entry type (%d) in _CPC for CPU:%d\n",
839				 i, pr->id);
840			goto out_free;
841		}
842	}
843	per_cpu(cpu_pcc_subspace_idx, pr->id) = pcc_subspace_id;
844
845	/*
846	 * Initialize the remaining cpc_regs as unsupported.
847	 * Example: In case FW exposes CPPC v2, the below loop will initialize
848	 * LOWEST_FREQ and NOMINAL_FREQ regs as unsupported
849	 */
850	for (i = num_ent - 2; i < MAX_CPC_REG_ENT; i++) {
851		cpc_ptr->cpc_regs[i].type = ACPI_TYPE_INTEGER;
852		cpc_ptr->cpc_regs[i].cpc_entry.int_value = 0;
853	}
854
855
856	/* Store CPU Logical ID */
857	cpc_ptr->cpu_id = pr->id;
858
859	/* Parse PSD data for this CPU */
860	ret = acpi_get_psd(cpc_ptr, handle);
861	if (ret)
862		goto out_free;
863
864	/* Register PCC channel once for all PCC subspace ID. */
865	if (pcc_subspace_id >= 0 && !pcc_data[pcc_subspace_id]->pcc_channel_acquired) {
866		ret = register_pcc_channel(pcc_subspace_id);
867		if (ret)
868			goto out_free;
869
870		init_rwsem(&pcc_data[pcc_subspace_id]->pcc_lock);
871		init_waitqueue_head(&pcc_data[pcc_subspace_id]->pcc_write_wait_q);
872	}
873
874	/* Everything looks okay */
875	pr_debug("Parsed CPC struct for CPU: %d\n", pr->id);
876
877	/* Add per logical CPU nodes for reading its feedback counters. */
878	cpu_dev = get_cpu_device(pr->id);
879	if (!cpu_dev) {
880		ret = -EINVAL;
881		goto out_free;
882	}
883
884	/* Plug PSD data into this CPU's CPC descriptor. */
885	per_cpu(cpc_desc_ptr, pr->id) = cpc_ptr;
886
887	ret = kobject_init_and_add(&cpc_ptr->kobj, &cppc_ktype, &cpu_dev->kobj,
888			"acpi_cppc");
889	if (ret) {
890		per_cpu(cpc_desc_ptr, pr->id) = NULL;
891		kobject_put(&cpc_ptr->kobj);
892		goto out_free;
893	}
894
895	arch_init_invariance_cppc();
896
897	kfree(output.pointer);
898	return 0;
899
900out_free:
901	/* Free all the mapped sys mem areas for this CPU */
902	for (i = 2; i < cpc_ptr->num_entries; i++) {
903		void __iomem *addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;
904
905		if (addr)
906			iounmap(addr);
907	}
908	kfree(cpc_ptr);
909
910out_buf_free:
911	kfree(output.pointer);
912	return ret;
913}
914EXPORT_SYMBOL_GPL(acpi_cppc_processor_probe);
915
916/**
917 * acpi_cppc_processor_exit - Cleanup CPC structs.
918 * @pr: Ptr to acpi_processor containing this CPU's logical ID.
919 *
920 * Return: Void
921 */
922void acpi_cppc_processor_exit(struct acpi_processor *pr)
923{
924	struct cpc_desc *cpc_ptr;
925	unsigned int i;
926	void __iomem *addr;
927	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, pr->id);
928
929	if (pcc_ss_id >= 0 && pcc_data[pcc_ss_id]) {
930		if (pcc_data[pcc_ss_id]->pcc_channel_acquired) {
931			pcc_data[pcc_ss_id]->refcount--;
932			if (!pcc_data[pcc_ss_id]->refcount) {
933				pcc_mbox_free_channel(pcc_data[pcc_ss_id]->pcc_channel);
934				kfree(pcc_data[pcc_ss_id]);
935				pcc_data[pcc_ss_id] = NULL;
936			}
937		}
938	}
939
940	cpc_ptr = per_cpu(cpc_desc_ptr, pr->id);
941	if (!cpc_ptr)
942		return;
943
944	/* Free all the mapped sys mem areas for this CPU */
945	for (i = 2; i < cpc_ptr->num_entries; i++) {
946		addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;
947		if (addr)
948			iounmap(addr);
949	}
950
951	kobject_put(&cpc_ptr->kobj);
952	kfree(cpc_ptr);
953}
954EXPORT_SYMBOL_GPL(acpi_cppc_processor_exit);
955
956/**
957 * cpc_read_ffh() - Read FFH register
958 * @cpunum:	CPU number to read
959 * @reg:	cppc register information
960 * @val:	place holder for return value
961 *
962 * Read bit_width bits from a specified address and bit_offset
963 *
964 * Return: 0 for success and error code
965 */
966int __weak cpc_read_ffh(int cpunum, struct cpc_reg *reg, u64 *val)
967{
968	return -ENOTSUPP;
969}
970
971/**
972 * cpc_write_ffh() - Write FFH register
973 * @cpunum:	CPU number to write
974 * @reg:	cppc register information
975 * @val:	value to write
976 *
977 * Write value of bit_width bits to a specified address and bit_offset
978 *
979 * Return: 0 for success and error code
980 */
981int __weak cpc_write_ffh(int cpunum, struct cpc_reg *reg, u64 val)
982{
983	return -ENOTSUPP;
984}
985
986/*
987 * Since cpc_read and cpc_write are called while holding pcc_lock, it should be
988 * as fast as possible. We have already mapped the PCC subspace during init, so
989 * we can directly write to it.
990 */
991
992static int cpc_read(int cpu, struct cpc_register_resource *reg_res, u64 *val)
993{
994	void __iomem *vaddr = NULL;
995	int size;
996	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
997	struct cpc_reg *reg = &reg_res->cpc_entry.reg;
998
999	if (reg_res->type == ACPI_TYPE_INTEGER) {
1000		*val = reg_res->cpc_entry.int_value;
1001		return 0;
1002	}
1003
1004	*val = 0;
1005
1006	if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
1007		u32 width = GET_BIT_WIDTH(reg);
1008		u32 val_u32;
1009		acpi_status status;
1010
1011		status = acpi_os_read_port((acpi_io_address)reg->address,
1012					   &val_u32, width);
1013		if (ACPI_FAILURE(status)) {
1014			pr_debug("Error: Failed to read SystemIO port %llx\n",
1015				 reg->address);
1016			return -EFAULT;
1017		}
1018
1019		*val = val_u32;
1020		return 0;
1021	} else if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM && pcc_ss_id >= 0)
1022		vaddr = GET_PCC_VADDR(reg->address, pcc_ss_id);
1023	else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
1024		vaddr = reg_res->sys_mem_vaddr;
1025	else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
1026		return cpc_read_ffh(cpu, reg, val);
1027	else
1028		return acpi_os_read_memory((acpi_physical_address)reg->address,
1029				val, reg->bit_width);
1030
1031	size = GET_BIT_WIDTH(reg);
1032
1033	switch (size) {
1034	case 8:
1035		*val = readb_relaxed(vaddr);
1036		break;
1037	case 16:
1038		*val = readw_relaxed(vaddr);
1039		break;
1040	case 32:
1041		*val = readl_relaxed(vaddr);
1042		break;
1043	case 64:
1044		*val = readq_relaxed(vaddr);
1045		break;
1046	default:
1047		pr_debug("Error: Cannot read %u bit width from PCC for ss: %d\n",
1048			 reg->bit_width, pcc_ss_id);
1049		return -EFAULT;
1050	}
1051
1052	if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
1053		*val = MASK_VAL(reg, *val);
1054
1055	return 0;
1056}
1057
1058static int cpc_write(int cpu, struct cpc_register_resource *reg_res, u64 val)
1059{
1060	int ret_val = 0;
1061	int size;
1062	void __iomem *vaddr = NULL;
1063	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
1064	struct cpc_reg *reg = &reg_res->cpc_entry.reg;
1065
1066	if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
1067		u32 width = GET_BIT_WIDTH(reg);
1068		acpi_status status;
1069
1070		status = acpi_os_write_port((acpi_io_address)reg->address,
1071					    (u32)val, width);
1072		if (ACPI_FAILURE(status)) {
1073			pr_debug("Error: Failed to write SystemIO port %llx\n",
1074				 reg->address);
1075			return -EFAULT;
1076		}
1077
1078		return 0;
1079	} else if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM && pcc_ss_id >= 0)
1080		vaddr = GET_PCC_VADDR(reg->address, pcc_ss_id);
1081	else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
1082		vaddr = reg_res->sys_mem_vaddr;
1083	else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
1084		return cpc_write_ffh(cpu, reg, val);
1085	else
1086		return acpi_os_write_memory((acpi_physical_address)reg->address,
1087				val, reg->bit_width);
1088
1089	size = GET_BIT_WIDTH(reg);
1090
1091	if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
1092		val = MASK_VAL(reg, val);
1093
1094	switch (size) {
1095	case 8:
1096		writeb_relaxed(val, vaddr);
1097		break;
1098	case 16:
1099		writew_relaxed(val, vaddr);
1100		break;
1101	case 32:
1102		writel_relaxed(val, vaddr);
1103		break;
1104	case 64:
1105		writeq_relaxed(val, vaddr);
1106		break;
1107	default:
1108		pr_debug("Error: Cannot write %u bit width to PCC for ss: %d\n",
1109			 reg->bit_width, pcc_ss_id);
1110		ret_val = -EFAULT;
1111		break;
1112	}
1113
1114	return ret_val;
1115}
1116
1117static int cppc_get_perf(int cpunum, enum cppc_regs reg_idx, u64 *perf)
1118{
1119	struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1120	struct cpc_register_resource *reg;
1121
1122	if (!cpc_desc) {
1123		pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1124		return -ENODEV;
1125	}
1126
1127	reg = &cpc_desc->cpc_regs[reg_idx];
1128
1129	if (CPC_IN_PCC(reg)) {
1130		int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1131		struct cppc_pcc_data *pcc_ss_data = NULL;
1132		int ret = 0;
1133
1134		if (pcc_ss_id < 0)
1135			return -EIO;
1136
1137		pcc_ss_data = pcc_data[pcc_ss_id];
1138
1139		down_write(&pcc_ss_data->pcc_lock);
1140
1141		if (send_pcc_cmd(pcc_ss_id, CMD_READ) >= 0)
1142			cpc_read(cpunum, reg, perf);
1143		else
1144			ret = -EIO;
1145
1146		up_write(&pcc_ss_data->pcc_lock);
1147
1148		return ret;
1149	}
1150
1151	cpc_read(cpunum, reg, perf);
1152
1153	return 0;
1154}
1155
1156/**
1157 * cppc_get_desired_perf - Get the desired performance register value.
1158 * @cpunum: CPU from which to get desired performance.
1159 * @desired_perf: Return address.
1160 *
1161 * Return: 0 for success, -EIO otherwise.
1162 */
1163int cppc_get_desired_perf(int cpunum, u64 *desired_perf)
1164{
1165	return cppc_get_perf(cpunum, DESIRED_PERF, desired_perf);
1166}
1167EXPORT_SYMBOL_GPL(cppc_get_desired_perf);
1168
1169/**
1170 * cppc_get_nominal_perf - Get the nominal performance register value.
1171 * @cpunum: CPU from which to get nominal performance.
1172 * @nominal_perf: Return address.
1173 *
1174 * Return: 0 for success, -EIO otherwise.
1175 */
1176int cppc_get_nominal_perf(int cpunum, u64 *nominal_perf)
1177{
1178	return cppc_get_perf(cpunum, NOMINAL_PERF, nominal_perf);
1179}
1180
1181/**
1182 * cppc_get_highest_perf - Get the highest performance register value.
1183 * @cpunum: CPU from which to get highest performance.
1184 * @highest_perf: Return address.
1185 *
1186 * Return: 0 for success, -EIO otherwise.
1187 */
1188int cppc_get_highest_perf(int cpunum, u64 *highest_perf)
1189{
1190	return cppc_get_perf(cpunum, HIGHEST_PERF, highest_perf);
1191}
1192EXPORT_SYMBOL_GPL(cppc_get_highest_perf);
1193
1194/**
1195 * cppc_get_epp_perf - Get the epp register value.
1196 * @cpunum: CPU from which to get epp preference value.
1197 * @epp_perf: Return address.
1198 *
1199 * Return: 0 for success, -EIO otherwise.
1200 */
1201int cppc_get_epp_perf(int cpunum, u64 *epp_perf)
1202{
1203	return cppc_get_perf(cpunum, ENERGY_PERF, epp_perf);
1204}
1205EXPORT_SYMBOL_GPL(cppc_get_epp_perf);
1206
1207/**
1208 * cppc_get_perf_caps - Get a CPU's performance capabilities.
1209 * @cpunum: CPU from which to get capabilities info.
1210 * @perf_caps: ptr to cppc_perf_caps. See cppc_acpi.h
1211 *
1212 * Return: 0 for success with perf_caps populated else -ERRNO.
1213 */
1214int cppc_get_perf_caps(int cpunum, struct cppc_perf_caps *perf_caps)
1215{
1216	struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1217	struct cpc_register_resource *highest_reg, *lowest_reg,
1218		*lowest_non_linear_reg, *nominal_reg, *guaranteed_reg,
1219		*low_freq_reg = NULL, *nom_freq_reg = NULL;
1220	u64 high, low, guaranteed, nom, min_nonlinear, low_f = 0, nom_f = 0;
1221	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1222	struct cppc_pcc_data *pcc_ss_data = NULL;
1223	int ret = 0, regs_in_pcc = 0;
1224
1225	if (!cpc_desc) {
1226		pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1227		return -ENODEV;
1228	}
1229
1230	highest_reg = &cpc_desc->cpc_regs[HIGHEST_PERF];
1231	lowest_reg = &cpc_desc->cpc_regs[LOWEST_PERF];
1232	lowest_non_linear_reg = &cpc_desc->cpc_regs[LOW_NON_LINEAR_PERF];
1233	nominal_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
1234	low_freq_reg = &cpc_desc->cpc_regs[LOWEST_FREQ];
1235	nom_freq_reg = &cpc_desc->cpc_regs[NOMINAL_FREQ];
1236	guaranteed_reg = &cpc_desc->cpc_regs[GUARANTEED_PERF];
1237
1238	/* Are any of the regs PCC ?*/
1239	if (CPC_IN_PCC(highest_reg) || CPC_IN_PCC(lowest_reg) ||
1240		CPC_IN_PCC(lowest_non_linear_reg) || CPC_IN_PCC(nominal_reg) ||
1241		CPC_IN_PCC(low_freq_reg) || CPC_IN_PCC(nom_freq_reg)) {
1242		if (pcc_ss_id < 0) {
1243			pr_debug("Invalid pcc_ss_id\n");
1244			return -ENODEV;
1245		}
1246		pcc_ss_data = pcc_data[pcc_ss_id];
1247		regs_in_pcc = 1;
1248		down_write(&pcc_ss_data->pcc_lock);
1249		/* Ring doorbell once to update PCC subspace */
1250		if (send_pcc_cmd(pcc_ss_id, CMD_READ) < 0) {
1251			ret = -EIO;
1252			goto out_err;
1253		}
1254	}
1255
1256	cpc_read(cpunum, highest_reg, &high);
1257	perf_caps->highest_perf = high;
1258
1259	cpc_read(cpunum, lowest_reg, &low);
1260	perf_caps->lowest_perf = low;
1261
1262	cpc_read(cpunum, nominal_reg, &nom);
1263	perf_caps->nominal_perf = nom;
1264
1265	if (guaranteed_reg->type != ACPI_TYPE_BUFFER  ||
1266	    IS_NULL_REG(&guaranteed_reg->cpc_entry.reg)) {
1267		perf_caps->guaranteed_perf = 0;
1268	} else {
1269		cpc_read(cpunum, guaranteed_reg, &guaranteed);
1270		perf_caps->guaranteed_perf = guaranteed;
1271	}
1272
1273	cpc_read(cpunum, lowest_non_linear_reg, &min_nonlinear);
1274	perf_caps->lowest_nonlinear_perf = min_nonlinear;
1275
1276	if (!high || !low || !nom || !min_nonlinear)
1277		ret = -EFAULT;
1278
1279	/* Read optional lowest and nominal frequencies if present */
1280	if (CPC_SUPPORTED(low_freq_reg))
1281		cpc_read(cpunum, low_freq_reg, &low_f);
1282
1283	if (CPC_SUPPORTED(nom_freq_reg))
1284		cpc_read(cpunum, nom_freq_reg, &nom_f);
1285
1286	perf_caps->lowest_freq = low_f;
1287	perf_caps->nominal_freq = nom_f;
1288
1289
1290out_err:
1291	if (regs_in_pcc)
1292		up_write(&pcc_ss_data->pcc_lock);
1293	return ret;
1294}
1295EXPORT_SYMBOL_GPL(cppc_get_perf_caps);
1296
1297/**
1298 * cppc_perf_ctrs_in_pcc - Check if any perf counters are in a PCC region.
1299 *
1300 * CPPC has flexibility about how CPU performance counters are accessed.
1301 * One of the choices is PCC regions, which can have a high access latency. This
1302 * routine allows callers of cppc_get_perf_ctrs() to know this ahead of time.
1303 *
1304 * Return: true if any of the counters are in PCC regions, false otherwise
1305 */
1306bool cppc_perf_ctrs_in_pcc(void)
1307{
1308	int cpu;
1309
1310	for_each_present_cpu(cpu) {
1311		struct cpc_register_resource *ref_perf_reg;
1312		struct cpc_desc *cpc_desc;
1313
1314		cpc_desc = per_cpu(cpc_desc_ptr, cpu);
1315
1316		if (CPC_IN_PCC(&cpc_desc->cpc_regs[DELIVERED_CTR]) ||
1317		    CPC_IN_PCC(&cpc_desc->cpc_regs[REFERENCE_CTR]) ||
1318		    CPC_IN_PCC(&cpc_desc->cpc_regs[CTR_WRAP_TIME]))
1319			return true;
1320
1321
1322		ref_perf_reg = &cpc_desc->cpc_regs[REFERENCE_PERF];
1323
1324		/*
1325		 * If reference perf register is not supported then we should
1326		 * use the nominal perf value
1327		 */
1328		if (!CPC_SUPPORTED(ref_perf_reg))
1329			ref_perf_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
1330
1331		if (CPC_IN_PCC(ref_perf_reg))
1332			return true;
1333	}
1334
1335	return false;
1336}
1337EXPORT_SYMBOL_GPL(cppc_perf_ctrs_in_pcc);
1338
1339/**
1340 * cppc_get_perf_ctrs - Read a CPU's performance feedback counters.
1341 * @cpunum: CPU from which to read counters.
1342 * @perf_fb_ctrs: ptr to cppc_perf_fb_ctrs. See cppc_acpi.h
1343 *
1344 * Return: 0 for success with perf_fb_ctrs populated else -ERRNO.
1345 */
1346int cppc_get_perf_ctrs(int cpunum, struct cppc_perf_fb_ctrs *perf_fb_ctrs)
1347{
1348	struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1349	struct cpc_register_resource *delivered_reg, *reference_reg,
1350		*ref_perf_reg, *ctr_wrap_reg;
1351	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1352	struct cppc_pcc_data *pcc_ss_data = NULL;
1353	u64 delivered, reference, ref_perf, ctr_wrap_time;
1354	int ret = 0, regs_in_pcc = 0;
1355
1356	if (!cpc_desc) {
1357		pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1358		return -ENODEV;
1359	}
1360
1361	delivered_reg = &cpc_desc->cpc_regs[DELIVERED_CTR];
1362	reference_reg = &cpc_desc->cpc_regs[REFERENCE_CTR];
1363	ref_perf_reg = &cpc_desc->cpc_regs[REFERENCE_PERF];
1364	ctr_wrap_reg = &cpc_desc->cpc_regs[CTR_WRAP_TIME];
1365
1366	/*
1367	 * If reference perf register is not supported then we should
1368	 * use the nominal perf value
1369	 */
1370	if (!CPC_SUPPORTED(ref_perf_reg))
1371		ref_perf_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
1372
1373	/* Are any of the regs PCC ?*/
1374	if (CPC_IN_PCC(delivered_reg) || CPC_IN_PCC(reference_reg) ||
1375		CPC_IN_PCC(ctr_wrap_reg) || CPC_IN_PCC(ref_perf_reg)) {
1376		if (pcc_ss_id < 0) {
1377			pr_debug("Invalid pcc_ss_id\n");
1378			return -ENODEV;
1379		}
1380		pcc_ss_data = pcc_data[pcc_ss_id];
1381		down_write(&pcc_ss_data->pcc_lock);
1382		regs_in_pcc = 1;
1383		/* Ring doorbell once to update PCC subspace */
1384		if (send_pcc_cmd(pcc_ss_id, CMD_READ) < 0) {
1385			ret = -EIO;
1386			goto out_err;
1387		}
1388	}
1389
1390	cpc_read(cpunum, delivered_reg, &delivered);
1391	cpc_read(cpunum, reference_reg, &reference);
1392	cpc_read(cpunum, ref_perf_reg, &ref_perf);
1393
1394	/*
1395	 * Per spec, if ctr_wrap_time optional register is unsupported, then the
1396	 * performance counters are assumed to never wrap during the lifetime of
1397	 * platform
1398	 */
1399	ctr_wrap_time = (u64)(~((u64)0));
1400	if (CPC_SUPPORTED(ctr_wrap_reg))
1401		cpc_read(cpunum, ctr_wrap_reg, &ctr_wrap_time);
1402
1403	if (!delivered || !reference ||	!ref_perf) {
1404		ret = -EFAULT;
1405		goto out_err;
1406	}
1407
1408	perf_fb_ctrs->delivered = delivered;
1409	perf_fb_ctrs->reference = reference;
1410	perf_fb_ctrs->reference_perf = ref_perf;
1411	perf_fb_ctrs->wraparound_time = ctr_wrap_time;
1412out_err:
1413	if (regs_in_pcc)
1414		up_write(&pcc_ss_data->pcc_lock);
1415	return ret;
1416}
1417EXPORT_SYMBOL_GPL(cppc_get_perf_ctrs);
1418
1419/*
1420 * Set Energy Performance Preference Register value through
1421 * Performance Controls Interface
1422 */
1423int cppc_set_epp_perf(int cpu, struct cppc_perf_ctrls *perf_ctrls, bool enable)
1424{
1425	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
1426	struct cpc_register_resource *epp_set_reg;
1427	struct cpc_register_resource *auto_sel_reg;
1428	struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu);
1429	struct cppc_pcc_data *pcc_ss_data = NULL;
1430	int ret;
1431
1432	if (!cpc_desc) {
1433		pr_debug("No CPC descriptor for CPU:%d\n", cpu);
1434		return -ENODEV;
1435	}
1436
1437	auto_sel_reg = &cpc_desc->cpc_regs[AUTO_SEL_ENABLE];
1438	epp_set_reg = &cpc_desc->cpc_regs[ENERGY_PERF];
1439
1440	if (CPC_IN_PCC(epp_set_reg) || CPC_IN_PCC(auto_sel_reg)) {
1441		if (pcc_ss_id < 0) {
1442			pr_debug("Invalid pcc_ss_id for CPU:%d\n", cpu);
1443			return -ENODEV;
1444		}
1445
1446		if (CPC_SUPPORTED(auto_sel_reg)) {
1447			ret = cpc_write(cpu, auto_sel_reg, enable);
1448			if (ret)
1449				return ret;
1450		}
1451
1452		if (CPC_SUPPORTED(epp_set_reg)) {
1453			ret = cpc_write(cpu, epp_set_reg, perf_ctrls->energy_perf);
1454			if (ret)
1455				return ret;
1456		}
1457
1458		pcc_ss_data = pcc_data[pcc_ss_id];
1459
1460		down_write(&pcc_ss_data->pcc_lock);
1461		/* after writing CPC, transfer the ownership of PCC to platform */
1462		ret = send_pcc_cmd(pcc_ss_id, CMD_WRITE);
1463		up_write(&pcc_ss_data->pcc_lock);
1464	} else {
1465		ret = -ENOTSUPP;
1466		pr_debug("_CPC in PCC is not supported\n");
1467	}
1468
1469	return ret;
1470}
1471EXPORT_SYMBOL_GPL(cppc_set_epp_perf);
1472
1473/**
1474 * cppc_get_auto_sel_caps - Read autonomous selection register.
1475 * @cpunum : CPU from which to read register.
1476 * @perf_caps : struct where autonomous selection register value is updated.
1477 */
1478int cppc_get_auto_sel_caps(int cpunum, struct cppc_perf_caps *perf_caps)
1479{
1480	struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1481	struct cpc_register_resource *auto_sel_reg;
1482	u64  auto_sel;
1483
1484	if (!cpc_desc) {
1485		pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1486		return -ENODEV;
1487	}
1488
1489	auto_sel_reg = &cpc_desc->cpc_regs[AUTO_SEL_ENABLE];
1490
1491	if (!CPC_SUPPORTED(auto_sel_reg))
1492		pr_warn_once("Autonomous mode is not unsupported!\n");
1493
1494	if (CPC_IN_PCC(auto_sel_reg)) {
1495		int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1496		struct cppc_pcc_data *pcc_ss_data = NULL;
1497		int ret = 0;
1498
1499		if (pcc_ss_id < 0)
1500			return -ENODEV;
1501
1502		pcc_ss_data = pcc_data[pcc_ss_id];
1503
1504		down_write(&pcc_ss_data->pcc_lock);
1505
1506		if (send_pcc_cmd(pcc_ss_id, CMD_READ) >= 0) {
1507			cpc_read(cpunum, auto_sel_reg, &auto_sel);
1508			perf_caps->auto_sel = (bool)auto_sel;
1509		} else {
1510			ret = -EIO;
1511		}
1512
1513		up_write(&pcc_ss_data->pcc_lock);
1514
1515		return ret;
1516	}
1517
1518	return 0;
1519}
1520EXPORT_SYMBOL_GPL(cppc_get_auto_sel_caps);
1521
1522/**
1523 * cppc_set_auto_sel - Write autonomous selection register.
1524 * @cpu    : CPU to which to write register.
1525 * @enable : the desired value of autonomous selection resiter to be updated.
1526 */
1527int cppc_set_auto_sel(int cpu, bool enable)
1528{
1529	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
1530	struct cpc_register_resource *auto_sel_reg;
1531	struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu);
1532	struct cppc_pcc_data *pcc_ss_data = NULL;
1533	int ret = -EINVAL;
1534
1535	if (!cpc_desc) {
1536		pr_debug("No CPC descriptor for CPU:%d\n", cpu);
1537		return -ENODEV;
1538	}
1539
1540	auto_sel_reg = &cpc_desc->cpc_regs[AUTO_SEL_ENABLE];
1541
1542	if (CPC_IN_PCC(auto_sel_reg)) {
1543		if (pcc_ss_id < 0) {
1544			pr_debug("Invalid pcc_ss_id\n");
1545			return -ENODEV;
1546		}
1547
1548		if (CPC_SUPPORTED(auto_sel_reg)) {
1549			ret = cpc_write(cpu, auto_sel_reg, enable);
1550			if (ret)
1551				return ret;
1552		}
1553
1554		pcc_ss_data = pcc_data[pcc_ss_id];
1555
1556		down_write(&pcc_ss_data->pcc_lock);
1557		/* after writing CPC, transfer the ownership of PCC to platform */
1558		ret = send_pcc_cmd(pcc_ss_id, CMD_WRITE);
1559		up_write(&pcc_ss_data->pcc_lock);
1560	} else {
1561		ret = -ENOTSUPP;
1562		pr_debug("_CPC in PCC is not supported\n");
1563	}
1564
1565	return ret;
1566}
1567EXPORT_SYMBOL_GPL(cppc_set_auto_sel);
1568
1569/**
1570 * cppc_set_enable - Set to enable CPPC on the processor by writing the
1571 * Continuous Performance Control package EnableRegister field.
1572 * @cpu: CPU for which to enable CPPC register.
1573 * @enable: 0 - disable, 1 - enable CPPC feature on the processor.
1574 *
1575 * Return: 0 for success, -ERRNO or -EIO otherwise.
1576 */
1577int cppc_set_enable(int cpu, bool enable)
1578{
1579	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
1580	struct cpc_register_resource *enable_reg;
1581	struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu);
1582	struct cppc_pcc_data *pcc_ss_data = NULL;
1583	int ret = -EINVAL;
1584
1585	if (!cpc_desc) {
1586		pr_debug("No CPC descriptor for CPU:%d\n", cpu);
1587		return -EINVAL;
1588	}
1589
1590	enable_reg = &cpc_desc->cpc_regs[ENABLE];
1591
1592	if (CPC_IN_PCC(enable_reg)) {
1593
1594		if (pcc_ss_id < 0)
1595			return -EIO;
1596
1597		ret = cpc_write(cpu, enable_reg, enable);
1598		if (ret)
1599			return ret;
1600
1601		pcc_ss_data = pcc_data[pcc_ss_id];
1602
1603		down_write(&pcc_ss_data->pcc_lock);
1604		/* after writing CPC, transfer the ownership of PCC to platfrom */
1605		ret = send_pcc_cmd(pcc_ss_id, CMD_WRITE);
1606		up_write(&pcc_ss_data->pcc_lock);
1607		return ret;
1608	}
1609
1610	return cpc_write(cpu, enable_reg, enable);
1611}
1612EXPORT_SYMBOL_GPL(cppc_set_enable);
1613
1614/**
1615 * cppc_set_perf - Set a CPU's performance controls.
1616 * @cpu: CPU for which to set performance controls.
1617 * @perf_ctrls: ptr to cppc_perf_ctrls. See cppc_acpi.h
1618 *
1619 * Return: 0 for success, -ERRNO otherwise.
1620 */
1621int cppc_set_perf(int cpu, struct cppc_perf_ctrls *perf_ctrls)
1622{
1623	struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu);
1624	struct cpc_register_resource *desired_reg, *min_perf_reg, *max_perf_reg;
1625	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
1626	struct cppc_pcc_data *pcc_ss_data = NULL;
1627	int ret = 0;
1628
1629	if (!cpc_desc) {
1630		pr_debug("No CPC descriptor for CPU:%d\n", cpu);
1631		return -ENODEV;
1632	}
1633
1634	desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
1635	min_perf_reg = &cpc_desc->cpc_regs[MIN_PERF];
1636	max_perf_reg = &cpc_desc->cpc_regs[MAX_PERF];
1637
1638	/*
1639	 * This is Phase-I where we want to write to CPC registers
1640	 * -> We want all CPUs to be able to execute this phase in parallel
1641	 *
1642	 * Since read_lock can be acquired by multiple CPUs simultaneously we
1643	 * achieve that goal here
1644	 */
1645	if (CPC_IN_PCC(desired_reg) || CPC_IN_PCC(min_perf_reg) || CPC_IN_PCC(max_perf_reg)) {
1646		if (pcc_ss_id < 0) {
1647			pr_debug("Invalid pcc_ss_id\n");
1648			return -ENODEV;
1649		}
1650		pcc_ss_data = pcc_data[pcc_ss_id];
1651		down_read(&pcc_ss_data->pcc_lock); /* BEGIN Phase-I */
1652		if (pcc_ss_data->platform_owns_pcc) {
1653			ret = check_pcc_chan(pcc_ss_id, false);
1654			if (ret) {
1655				up_read(&pcc_ss_data->pcc_lock);
1656				return ret;
1657			}
1658		}
1659		/*
1660		 * Update the pending_write to make sure a PCC CMD_READ will not
1661		 * arrive and steal the channel during the switch to write lock
1662		 */
1663		pcc_ss_data->pending_pcc_write_cmd = true;
1664		cpc_desc->write_cmd_id = pcc_ss_data->pcc_write_cnt;
1665		cpc_desc->write_cmd_status = 0;
1666	}
1667
1668	cpc_write(cpu, desired_reg, perf_ctrls->desired_perf);
1669
1670	/*
1671	 * Only write if min_perf and max_perf not zero. Some drivers pass zero
1672	 * value to min and max perf, but they don't mean to set the zero value,
1673	 * they just don't want to write to those registers.
1674	 */
1675	if (perf_ctrls->min_perf)
1676		cpc_write(cpu, min_perf_reg, perf_ctrls->min_perf);
1677	if (perf_ctrls->max_perf)
1678		cpc_write(cpu, max_perf_reg, perf_ctrls->max_perf);
1679
1680	if (CPC_IN_PCC(desired_reg) || CPC_IN_PCC(min_perf_reg) || CPC_IN_PCC(max_perf_reg))
1681		up_read(&pcc_ss_data->pcc_lock);	/* END Phase-I */
1682	/*
1683	 * This is Phase-II where we transfer the ownership of PCC to Platform
1684	 *
1685	 * Short Summary: Basically if we think of a group of cppc_set_perf
1686	 * requests that happened in short overlapping interval. The last CPU to
1687	 * come out of Phase-I will enter Phase-II and ring the doorbell.
1688	 *
1689	 * We have the following requirements for Phase-II:
1690	 *     1. We want to execute Phase-II only when there are no CPUs
1691	 * currently executing in Phase-I
1692	 *     2. Once we start Phase-II we want to avoid all other CPUs from
1693	 * entering Phase-I.
1694	 *     3. We want only one CPU among all those who went through Phase-I
1695	 * to run phase-II
1696	 *
1697	 * If write_trylock fails to get the lock and doesn't transfer the
1698	 * PCC ownership to the platform, then one of the following will be TRUE
1699	 *     1. There is at-least one CPU in Phase-I which will later execute
1700	 * write_trylock, so the CPUs in Phase-I will be responsible for
1701	 * executing the Phase-II.
1702	 *     2. Some other CPU has beaten this CPU to successfully execute the
1703	 * write_trylock and has already acquired the write_lock. We know for a
1704	 * fact it (other CPU acquiring the write_lock) couldn't have happened
1705	 * before this CPU's Phase-I as we held the read_lock.
1706	 *     3. Some other CPU executing pcc CMD_READ has stolen the
1707	 * down_write, in which case, send_pcc_cmd will check for pending
1708	 * CMD_WRITE commands by checking the pending_pcc_write_cmd.
1709	 * So this CPU can be certain that its request will be delivered
1710	 *    So in all cases, this CPU knows that its request will be delivered
1711	 * by another CPU and can return
1712	 *
1713	 * After getting the down_write we still need to check for
1714	 * pending_pcc_write_cmd to take care of the following scenario
1715	 *    The thread running this code could be scheduled out between
1716	 * Phase-I and Phase-II. Before it is scheduled back on, another CPU
1717	 * could have delivered the request to Platform by triggering the
1718	 * doorbell and transferred the ownership of PCC to platform. So this
1719	 * avoids triggering an unnecessary doorbell and more importantly before
1720	 * triggering the doorbell it makes sure that the PCC channel ownership
1721	 * is still with OSPM.
1722	 *   pending_pcc_write_cmd can also be cleared by a different CPU, if
1723	 * there was a pcc CMD_READ waiting on down_write and it steals the lock
1724	 * before the pcc CMD_WRITE is completed. send_pcc_cmd checks for this
1725	 * case during a CMD_READ and if there are pending writes it delivers
1726	 * the write command before servicing the read command
1727	 */
1728	if (CPC_IN_PCC(desired_reg) || CPC_IN_PCC(min_perf_reg) || CPC_IN_PCC(max_perf_reg)) {
1729		if (down_write_trylock(&pcc_ss_data->pcc_lock)) {/* BEGIN Phase-II */
1730			/* Update only if there are pending write commands */
1731			if (pcc_ss_data->pending_pcc_write_cmd)
1732				send_pcc_cmd(pcc_ss_id, CMD_WRITE);
1733			up_write(&pcc_ss_data->pcc_lock);	/* END Phase-II */
1734		} else
1735			/* Wait until pcc_write_cnt is updated by send_pcc_cmd */
1736			wait_event(pcc_ss_data->pcc_write_wait_q,
1737				   cpc_desc->write_cmd_id != pcc_ss_data->pcc_write_cnt);
1738
1739		/* send_pcc_cmd updates the status in case of failure */
1740		ret = cpc_desc->write_cmd_status;
1741	}
1742	return ret;
1743}
1744EXPORT_SYMBOL_GPL(cppc_set_perf);
1745
1746/**
1747 * cppc_get_transition_latency - returns frequency transition latency in ns
1748 * @cpu_num: CPU number for per_cpu().
1749 *
1750 * ACPI CPPC does not explicitly specify how a platform can specify the
1751 * transition latency for performance change requests. The closest we have
1752 * is the timing information from the PCCT tables which provides the info
1753 * on the number and frequency of PCC commands the platform can handle.
1754 *
1755 * If desired_reg is in the SystemMemory or SystemIo ACPI address space,
1756 * then assume there is no latency.
1757 */
1758unsigned int cppc_get_transition_latency(int cpu_num)
1759{
1760	/*
1761	 * Expected transition latency is based on the PCCT timing values
1762	 * Below are definition from ACPI spec:
1763	 * pcc_nominal- Expected latency to process a command, in microseconds
1764	 * pcc_mpar   - The maximum number of periodic requests that the subspace
1765	 *              channel can support, reported in commands per minute. 0
1766	 *              indicates no limitation.
1767	 * pcc_mrtt   - The minimum amount of time that OSPM must wait after the
1768	 *              completion of a command before issuing the next command,
1769	 *              in microseconds.
1770	 */
1771	unsigned int latency_ns = 0;
1772	struct cpc_desc *cpc_desc;
1773	struct cpc_register_resource *desired_reg;
1774	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu_num);
1775	struct cppc_pcc_data *pcc_ss_data;
1776
1777	cpc_desc = per_cpu(cpc_desc_ptr, cpu_num);
1778	if (!cpc_desc)
1779		return CPUFREQ_ETERNAL;
1780
1781	desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
1782	if (CPC_IN_SYSTEM_MEMORY(desired_reg) || CPC_IN_SYSTEM_IO(desired_reg))
1783		return 0;
1784	else if (!CPC_IN_PCC(desired_reg))
1785		return CPUFREQ_ETERNAL;
1786
1787	if (pcc_ss_id < 0)
1788		return CPUFREQ_ETERNAL;
1789
1790	pcc_ss_data = pcc_data[pcc_ss_id];
1791	if (pcc_ss_data->pcc_mpar)
1792		latency_ns = 60 * (1000 * 1000 * 1000 / pcc_ss_data->pcc_mpar);
1793
1794	latency_ns = max(latency_ns, pcc_ss_data->pcc_nominal * 1000);
1795	latency_ns = max(latency_ns, pcc_ss_data->pcc_mrtt * 1000);
1796
1797	return latency_ns;
1798}
1799EXPORT_SYMBOL_GPL(cppc_get_transition_latency);
1800
1801/* Minimum struct length needed for the DMI processor entry we want */
1802#define DMI_ENTRY_PROCESSOR_MIN_LENGTH	48
1803
1804/* Offset in the DMI processor structure for the max frequency */
1805#define DMI_PROCESSOR_MAX_SPEED		0x14
1806
1807/* Callback function used to retrieve the max frequency from DMI */
1808static void cppc_find_dmi_mhz(const struct dmi_header *dm, void *private)
1809{
1810	const u8 *dmi_data = (const u8 *)dm;
1811	u16 *mhz = (u16 *)private;
1812
1813	if (dm->type == DMI_ENTRY_PROCESSOR &&
1814	    dm->length >= DMI_ENTRY_PROCESSOR_MIN_LENGTH) {
1815		u16 val = (u16)get_unaligned((const u16 *)
1816				(dmi_data + DMI_PROCESSOR_MAX_SPEED));
1817		*mhz = val > *mhz ? val : *mhz;
1818	}
1819}
1820
1821/* Look up the max frequency in DMI */
1822static u64 cppc_get_dmi_max_khz(void)
1823{
1824	u16 mhz = 0;
1825
1826	dmi_walk(cppc_find_dmi_mhz, &mhz);
1827
1828	/*
1829	 * Real stupid fallback value, just in case there is no
1830	 * actual value set.
1831	 */
1832	mhz = mhz ? mhz : 1;
1833
1834	return KHZ_PER_MHZ * mhz;
1835}
1836
1837/*
1838 * If CPPC lowest_freq and nominal_freq registers are exposed then we can
1839 * use them to convert perf to freq and vice versa. The conversion is
1840 * extrapolated as an affine function passing by the 2 points:
1841 *  - (Low perf, Low freq)
1842 *  - (Nominal perf, Nominal freq)
1843 */
1844unsigned int cppc_perf_to_khz(struct cppc_perf_caps *caps, unsigned int perf)
1845{
1846	s64 retval, offset = 0;
1847	static u64 max_khz;
1848	u64 mul, div;
1849
1850	if (caps->lowest_freq && caps->nominal_freq) {
1851		mul = caps->nominal_freq - caps->lowest_freq;
1852		mul *= KHZ_PER_MHZ;
1853		div = caps->nominal_perf - caps->lowest_perf;
1854		offset = caps->nominal_freq * KHZ_PER_MHZ -
1855			 div64_u64(caps->nominal_perf * mul, div);
1856	} else {
1857		if (!max_khz)
1858			max_khz = cppc_get_dmi_max_khz();
1859		mul = max_khz;
1860		div = caps->highest_perf;
1861	}
1862
1863	retval = offset + div64_u64(perf * mul, div);
1864	if (retval >= 0)
1865		return retval;
1866	return 0;
1867}
1868EXPORT_SYMBOL_GPL(cppc_perf_to_khz);
1869
1870unsigned int cppc_khz_to_perf(struct cppc_perf_caps *caps, unsigned int freq)
1871{
1872	s64 retval, offset = 0;
1873	static u64 max_khz;
1874	u64  mul, div;
1875
1876	if (caps->lowest_freq && caps->nominal_freq) {
1877		mul = caps->nominal_perf - caps->lowest_perf;
1878		div = caps->nominal_freq - caps->lowest_freq;
1879		/*
1880		 * We don't need to convert to kHz for computing offset and can
1881		 * directly use nominal_freq and lowest_freq as the div64_u64
1882		 * will remove the frequency unit.
1883		 */
1884		offset = caps->nominal_perf -
1885			 div64_u64(caps->nominal_freq * mul, div);
1886		/* But we need it for computing the perf level. */
1887		div *= KHZ_PER_MHZ;
1888	} else {
1889		if (!max_khz)
1890			max_khz = cppc_get_dmi_max_khz();
1891		mul = caps->highest_perf;
1892		div = max_khz;
1893	}
1894
1895	retval = offset + div64_u64(freq * mul, div);
1896	if (retval >= 0)
1897		return retval;
1898	return 0;
1899}
1900EXPORT_SYMBOL_GPL(cppc_khz_to_perf);
1901