1// SPDX-License-Identifier: GPL-2.0
2/*
3 * ACPI Time and Alarm (TAD) Device Driver
4 *
5 * Copyright (C) 2018 Intel Corporation
6 * Author: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
7 *
8 * This driver is based on Section 9.18 of the ACPI 6.2 specification revision.
9 *
10 * It only supports the system wakeup capabilities of the TAD.
11 *
12 * Provided are sysfs attributes, available under the TAD platform device,
13 * allowing user space to manage the AC and DC wakeup timers of the TAD:
14 * set and read their values, set and check their expire timer wake policies,
15 * check and clear their status and check the capabilities of the TAD reported
16 * by AML.  The DC timer attributes are only present if the TAD supports a
17 * separate DC alarm timer.
18 *
19 * The wakeup events handling and power management of the TAD is expected to
20 * be taken care of by the ACPI PM domain attached to its platform device.
21 */
22
23#include <linux/acpi.h>
24#include <linux/kernel.h>
25#include <linux/module.h>
26#include <linux/platform_device.h>
27#include <linux/pm_runtime.h>
28#include <linux/suspend.h>
29
30MODULE_LICENSE("GPL v2");
31MODULE_AUTHOR("Rafael J. Wysocki");
32
33/* ACPI TAD capability flags (ACPI 6.2, Section 9.18.2) */
34#define ACPI_TAD_AC_WAKE	BIT(0)
35#define ACPI_TAD_DC_WAKE	BIT(1)
36#define ACPI_TAD_RT		BIT(2)
37#define ACPI_TAD_RT_IN_MS	BIT(3)
38#define ACPI_TAD_S4_S5__GWS	BIT(4)
39#define ACPI_TAD_AC_S4_WAKE	BIT(5)
40#define ACPI_TAD_AC_S5_WAKE	BIT(6)
41#define ACPI_TAD_DC_S4_WAKE	BIT(7)
42#define ACPI_TAD_DC_S5_WAKE	BIT(8)
43
44/* ACPI TAD alarm timer selection */
45#define ACPI_TAD_AC_TIMER	(u32)0
46#define ACPI_TAD_DC_TIMER	(u32)1
47
48/* Special value for disabled timer or expired timer wake policy. */
49#define ACPI_TAD_WAKE_DISABLED	(~(u32)0)
50
51struct acpi_tad_driver_data {
52	u32 capabilities;
53};
54
55struct acpi_tad_rt {
56	u16 year;  /* 1900 - 9999 */
57	u8 month;  /* 1 - 12 */
58	u8 day;    /* 1 - 31 */
59	u8 hour;   /* 0 - 23 */
60	u8 minute; /* 0 - 59 */
61	u8 second; /* 0 - 59 */
62	u8 valid;  /* 0 (failed) or 1 (success) for reads, 0 for writes */
63	u16 msec;  /* 1 - 1000 */
64	s16 tz;    /* -1440 to 1440 or 2047 (unspecified) */
65	u8 daylight;
66	u8 padding[3]; /* must be 0 */
67} __packed;
68
69static int acpi_tad_set_real_time(struct device *dev, struct acpi_tad_rt *rt)
70{
71	acpi_handle handle = ACPI_HANDLE(dev);
72	union acpi_object args[] = {
73		{ .type = ACPI_TYPE_BUFFER, },
74	};
75	struct acpi_object_list arg_list = {
76		.pointer = args,
77		.count = ARRAY_SIZE(args),
78	};
79	unsigned long long retval;
80	acpi_status status;
81
82	if (rt->year < 1900 || rt->year > 9999 ||
83	    rt->month < 1 || rt->month > 12 ||
84	    rt->hour > 23 || rt->minute > 59 || rt->second > 59 ||
85	    rt->tz < -1440 || (rt->tz > 1440 && rt->tz != 2047) ||
86	    rt->daylight > 3)
87		return -ERANGE;
88
89	args[0].buffer.pointer = (u8 *)rt;
90	args[0].buffer.length = sizeof(*rt);
91
92	pm_runtime_get_sync(dev);
93
94	status = acpi_evaluate_integer(handle, "_SRT", &arg_list, &retval);
95
96	pm_runtime_put_sync(dev);
97
98	if (ACPI_FAILURE(status) || retval)
99		return -EIO;
100
101	return 0;
102}
103
104static int acpi_tad_get_real_time(struct device *dev, struct acpi_tad_rt *rt)
105{
106	acpi_handle handle = ACPI_HANDLE(dev);
107	struct acpi_buffer output = { ACPI_ALLOCATE_BUFFER };
108	union acpi_object *out_obj;
109	struct acpi_tad_rt *data;
110	acpi_status status;
111	int ret = -EIO;
112
113	pm_runtime_get_sync(dev);
114
115	status = acpi_evaluate_object(handle, "_GRT", NULL, &output);
116
117	pm_runtime_put_sync(dev);
118
119	if (ACPI_FAILURE(status))
120		goto out_free;
121
122	out_obj = output.pointer;
123	if (out_obj->type != ACPI_TYPE_BUFFER)
124		goto out_free;
125
126	if (out_obj->buffer.length != sizeof(*rt))
127		goto out_free;
128
129	data = (struct acpi_tad_rt *)(out_obj->buffer.pointer);
130	if (!data->valid)
131		goto out_free;
132
133	memcpy(rt, data, sizeof(*rt));
134	ret = 0;
135
136out_free:
137	ACPI_FREE(output.pointer);
138	return ret;
139}
140
141static char *acpi_tad_rt_next_field(char *s, int *val)
142{
143	char *p;
144
145	p = strchr(s, ':');
146	if (!p)
147		return NULL;
148
149	*p = '\0';
150	if (kstrtoint(s, 10, val))
151		return NULL;
152
153	return p + 1;
154}
155
156static ssize_t time_store(struct device *dev, struct device_attribute *attr,
157			  const char *buf, size_t count)
158{
159	struct acpi_tad_rt rt;
160	char *str, *s;
161	int val, ret = -ENODATA;
162
163	str = kmemdup_nul(buf, count, GFP_KERNEL);
164	if (!str)
165		return -ENOMEM;
166
167	s = acpi_tad_rt_next_field(str, &val);
168	if (!s)
169		goto out_free;
170
171	rt.year = val;
172
173	s = acpi_tad_rt_next_field(s, &val);
174	if (!s)
175		goto out_free;
176
177	rt.month = val;
178
179	s = acpi_tad_rt_next_field(s, &val);
180	if (!s)
181		goto out_free;
182
183	rt.day = val;
184
185	s = acpi_tad_rt_next_field(s, &val);
186	if (!s)
187		goto out_free;
188
189	rt.hour = val;
190
191	s = acpi_tad_rt_next_field(s, &val);
192	if (!s)
193		goto out_free;
194
195	rt.minute = val;
196
197	s = acpi_tad_rt_next_field(s, &val);
198	if (!s)
199		goto out_free;
200
201	rt.second = val;
202
203	s = acpi_tad_rt_next_field(s, &val);
204	if (!s)
205		goto out_free;
206
207	rt.tz = val;
208
209	if (kstrtoint(s, 10, &val))
210		goto out_free;
211
212	rt.daylight = val;
213
214	rt.valid = 0;
215	rt.msec = 0;
216	memset(rt.padding, 0, 3);
217
218	ret = acpi_tad_set_real_time(dev, &rt);
219
220out_free:
221	kfree(str);
222	return ret ? ret : count;
223}
224
225static ssize_t time_show(struct device *dev, struct device_attribute *attr,
226			 char *buf)
227{
228	struct acpi_tad_rt rt;
229	int ret;
230
231	ret = acpi_tad_get_real_time(dev, &rt);
232	if (ret)
233		return ret;
234
235	return sprintf(buf, "%u:%u:%u:%u:%u:%u:%d:%u\n",
236		       rt.year, rt.month, rt.day, rt.hour, rt.minute, rt.second,
237		       rt.tz, rt.daylight);
238}
239
240static DEVICE_ATTR_RW(time);
241
242static struct attribute *acpi_tad_time_attrs[] = {
243	&dev_attr_time.attr,
244	NULL,
245};
246static const struct attribute_group acpi_tad_time_attr_group = {
247	.attrs	= acpi_tad_time_attrs,
248};
249
250static int acpi_tad_wake_set(struct device *dev, char *method, u32 timer_id,
251			     u32 value)
252{
253	acpi_handle handle = ACPI_HANDLE(dev);
254	union acpi_object args[] = {
255		{ .type = ACPI_TYPE_INTEGER, },
256		{ .type = ACPI_TYPE_INTEGER, },
257	};
258	struct acpi_object_list arg_list = {
259		.pointer = args,
260		.count = ARRAY_SIZE(args),
261	};
262	unsigned long long retval;
263	acpi_status status;
264
265	args[0].integer.value = timer_id;
266	args[1].integer.value = value;
267
268	pm_runtime_get_sync(dev);
269
270	status = acpi_evaluate_integer(handle, method, &arg_list, &retval);
271
272	pm_runtime_put_sync(dev);
273
274	if (ACPI_FAILURE(status) || retval)
275		return -EIO;
276
277	return 0;
278}
279
280static int acpi_tad_wake_write(struct device *dev, const char *buf, char *method,
281			       u32 timer_id, const char *specval)
282{
283	u32 value;
284
285	if (sysfs_streq(buf, specval)) {
286		value = ACPI_TAD_WAKE_DISABLED;
287	} else {
288		int ret = kstrtou32(buf, 0, &value);
289
290		if (ret)
291			return ret;
292
293		if (value == ACPI_TAD_WAKE_DISABLED)
294			return -EINVAL;
295	}
296
297	return acpi_tad_wake_set(dev, method, timer_id, value);
298}
299
300static ssize_t acpi_tad_wake_read(struct device *dev, char *buf, char *method,
301				  u32 timer_id, const char *specval)
302{
303	acpi_handle handle = ACPI_HANDLE(dev);
304	union acpi_object args[] = {
305		{ .type = ACPI_TYPE_INTEGER, },
306	};
307	struct acpi_object_list arg_list = {
308		.pointer = args,
309		.count = ARRAY_SIZE(args),
310	};
311	unsigned long long retval;
312	acpi_status status;
313
314	args[0].integer.value = timer_id;
315
316	pm_runtime_get_sync(dev);
317
318	status = acpi_evaluate_integer(handle, method, &arg_list, &retval);
319
320	pm_runtime_put_sync(dev);
321
322	if (ACPI_FAILURE(status))
323		return -EIO;
324
325	if ((u32)retval == ACPI_TAD_WAKE_DISABLED)
326		return sprintf(buf, "%s\n", specval);
327
328	return sprintf(buf, "%u\n", (u32)retval);
329}
330
331static const char *alarm_specval = "disabled";
332
333static int acpi_tad_alarm_write(struct device *dev, const char *buf,
334				u32 timer_id)
335{
336	return acpi_tad_wake_write(dev, buf, "_STV", timer_id, alarm_specval);
337}
338
339static ssize_t acpi_tad_alarm_read(struct device *dev, char *buf, u32 timer_id)
340{
341	return acpi_tad_wake_read(dev, buf, "_TIV", timer_id, alarm_specval);
342}
343
344static const char *policy_specval = "never";
345
346static int acpi_tad_policy_write(struct device *dev, const char *buf,
347				 u32 timer_id)
348{
349	return acpi_tad_wake_write(dev, buf, "_STP", timer_id, policy_specval);
350}
351
352static ssize_t acpi_tad_policy_read(struct device *dev, char *buf, u32 timer_id)
353{
354	return acpi_tad_wake_read(dev, buf, "_TIP", timer_id, policy_specval);
355}
356
357static int acpi_tad_clear_status(struct device *dev, u32 timer_id)
358{
359	acpi_handle handle = ACPI_HANDLE(dev);
360	union acpi_object args[] = {
361		{ .type = ACPI_TYPE_INTEGER, },
362	};
363	struct acpi_object_list arg_list = {
364		.pointer = args,
365		.count = ARRAY_SIZE(args),
366	};
367	unsigned long long retval;
368	acpi_status status;
369
370	args[0].integer.value = timer_id;
371
372	pm_runtime_get_sync(dev);
373
374	status = acpi_evaluate_integer(handle, "_CWS", &arg_list, &retval);
375
376	pm_runtime_put_sync(dev);
377
378	if (ACPI_FAILURE(status) || retval)
379		return -EIO;
380
381	return 0;
382}
383
384static int acpi_tad_status_write(struct device *dev, const char *buf, u32 timer_id)
385{
386	int ret, value;
387
388	ret = kstrtoint(buf, 0, &value);
389	if (ret)
390		return ret;
391
392	if (value)
393		return -EINVAL;
394
395	return acpi_tad_clear_status(dev, timer_id);
396}
397
398static ssize_t acpi_tad_status_read(struct device *dev, char *buf, u32 timer_id)
399{
400	acpi_handle handle = ACPI_HANDLE(dev);
401	union acpi_object args[] = {
402		{ .type = ACPI_TYPE_INTEGER, },
403	};
404	struct acpi_object_list arg_list = {
405		.pointer = args,
406		.count = ARRAY_SIZE(args),
407	};
408	unsigned long long retval;
409	acpi_status status;
410
411	args[0].integer.value = timer_id;
412
413	pm_runtime_get_sync(dev);
414
415	status = acpi_evaluate_integer(handle, "_GWS", &arg_list, &retval);
416
417	pm_runtime_put_sync(dev);
418
419	if (ACPI_FAILURE(status))
420		return -EIO;
421
422	return sprintf(buf, "0x%02X\n", (u32)retval);
423}
424
425static ssize_t caps_show(struct device *dev, struct device_attribute *attr,
426			 char *buf)
427{
428	struct acpi_tad_driver_data *dd = dev_get_drvdata(dev);
429
430	return sprintf(buf, "0x%02X\n", dd->capabilities);
431}
432
433static DEVICE_ATTR_RO(caps);
434
435static ssize_t ac_alarm_store(struct device *dev, struct device_attribute *attr,
436			      const char *buf, size_t count)
437{
438	int ret = acpi_tad_alarm_write(dev, buf, ACPI_TAD_AC_TIMER);
439
440	return ret ? ret : count;
441}
442
443static ssize_t ac_alarm_show(struct device *dev, struct device_attribute *attr,
444			     char *buf)
445{
446	return acpi_tad_alarm_read(dev, buf, ACPI_TAD_AC_TIMER);
447}
448
449static DEVICE_ATTR_RW(ac_alarm);
450
451static ssize_t ac_policy_store(struct device *dev, struct device_attribute *attr,
452			       const char *buf, size_t count)
453{
454	int ret = acpi_tad_policy_write(dev, buf, ACPI_TAD_AC_TIMER);
455
456	return ret ? ret : count;
457}
458
459static ssize_t ac_policy_show(struct device *dev, struct device_attribute *attr,
460			      char *buf)
461{
462	return acpi_tad_policy_read(dev, buf, ACPI_TAD_AC_TIMER);
463}
464
465static DEVICE_ATTR_RW(ac_policy);
466
467static ssize_t ac_status_store(struct device *dev, struct device_attribute *attr,
468			       const char *buf, size_t count)
469{
470	int ret = acpi_tad_status_write(dev, buf, ACPI_TAD_AC_TIMER);
471
472	return ret ? ret : count;
473}
474
475static ssize_t ac_status_show(struct device *dev, struct device_attribute *attr,
476			      char *buf)
477{
478	return acpi_tad_status_read(dev, buf, ACPI_TAD_AC_TIMER);
479}
480
481static DEVICE_ATTR_RW(ac_status);
482
483static struct attribute *acpi_tad_attrs[] = {
484	&dev_attr_caps.attr,
485	&dev_attr_ac_alarm.attr,
486	&dev_attr_ac_policy.attr,
487	&dev_attr_ac_status.attr,
488	NULL,
489};
490static const struct attribute_group acpi_tad_attr_group = {
491	.attrs	= acpi_tad_attrs,
492};
493
494static ssize_t dc_alarm_store(struct device *dev, struct device_attribute *attr,
495			      const char *buf, size_t count)
496{
497	int ret = acpi_tad_alarm_write(dev, buf, ACPI_TAD_DC_TIMER);
498
499	return ret ? ret : count;
500}
501
502static ssize_t dc_alarm_show(struct device *dev, struct device_attribute *attr,
503			     char *buf)
504{
505	return acpi_tad_alarm_read(dev, buf, ACPI_TAD_DC_TIMER);
506}
507
508static DEVICE_ATTR_RW(dc_alarm);
509
510static ssize_t dc_policy_store(struct device *dev, struct device_attribute *attr,
511			       const char *buf, size_t count)
512{
513	int ret = acpi_tad_policy_write(dev, buf, ACPI_TAD_DC_TIMER);
514
515	return ret ? ret : count;
516}
517
518static ssize_t dc_policy_show(struct device *dev, struct device_attribute *attr,
519			      char *buf)
520{
521	return acpi_tad_policy_read(dev, buf, ACPI_TAD_DC_TIMER);
522}
523
524static DEVICE_ATTR_RW(dc_policy);
525
526static ssize_t dc_status_store(struct device *dev, struct device_attribute *attr,
527			       const char *buf, size_t count)
528{
529	int ret = acpi_tad_status_write(dev, buf, ACPI_TAD_DC_TIMER);
530
531	return ret ? ret : count;
532}
533
534static ssize_t dc_status_show(struct device *dev, struct device_attribute *attr,
535			      char *buf)
536{
537	return acpi_tad_status_read(dev, buf, ACPI_TAD_DC_TIMER);
538}
539
540static DEVICE_ATTR_RW(dc_status);
541
542static struct attribute *acpi_tad_dc_attrs[] = {
543	&dev_attr_dc_alarm.attr,
544	&dev_attr_dc_policy.attr,
545	&dev_attr_dc_status.attr,
546	NULL,
547};
548static const struct attribute_group acpi_tad_dc_attr_group = {
549	.attrs	= acpi_tad_dc_attrs,
550};
551
552static int acpi_tad_disable_timer(struct device *dev, u32 timer_id)
553{
554	return acpi_tad_wake_set(dev, "_STV", timer_id, ACPI_TAD_WAKE_DISABLED);
555}
556
557static void acpi_tad_remove(struct platform_device *pdev)
558{
559	struct device *dev = &pdev->dev;
560	acpi_handle handle = ACPI_HANDLE(dev);
561	struct acpi_tad_driver_data *dd = dev_get_drvdata(dev);
562
563	device_init_wakeup(dev, false);
564
565	pm_runtime_get_sync(dev);
566
567	if (dd->capabilities & ACPI_TAD_DC_WAKE)
568		sysfs_remove_group(&dev->kobj, &acpi_tad_dc_attr_group);
569
570	sysfs_remove_group(&dev->kobj, &acpi_tad_attr_group);
571
572	acpi_tad_disable_timer(dev, ACPI_TAD_AC_TIMER);
573	acpi_tad_clear_status(dev, ACPI_TAD_AC_TIMER);
574	if (dd->capabilities & ACPI_TAD_DC_WAKE) {
575		acpi_tad_disable_timer(dev, ACPI_TAD_DC_TIMER);
576		acpi_tad_clear_status(dev, ACPI_TAD_DC_TIMER);
577	}
578
579	pm_runtime_put_sync(dev);
580	pm_runtime_disable(dev);
581	acpi_remove_cmos_rtc_space_handler(handle);
582}
583
584static int acpi_tad_probe(struct platform_device *pdev)
585{
586	struct device *dev = &pdev->dev;
587	acpi_handle handle = ACPI_HANDLE(dev);
588	struct acpi_tad_driver_data *dd;
589	acpi_status status;
590	unsigned long long caps;
591	int ret;
592
593	ret = acpi_install_cmos_rtc_space_handler(handle);
594	if (ret < 0) {
595		dev_info(dev, "Unable to install space handler\n");
596		return -ENODEV;
597	}
598	/*
599	 * Initialization failure messages are mostly about firmware issues, so
600	 * print them at the "info" level.
601	 */
602	status = acpi_evaluate_integer(handle, "_GCP", NULL, &caps);
603	if (ACPI_FAILURE(status)) {
604		dev_info(dev, "Unable to get capabilities\n");
605		ret = -ENODEV;
606		goto remove_handler;
607	}
608
609	if (!(caps & ACPI_TAD_AC_WAKE)) {
610		dev_info(dev, "Unsupported capabilities\n");
611		ret = -ENODEV;
612		goto remove_handler;
613	}
614
615	if (!acpi_has_method(handle, "_PRW")) {
616		dev_info(dev, "Missing _PRW\n");
617		ret = -ENODEV;
618		goto remove_handler;
619	}
620
621	dd = devm_kzalloc(dev, sizeof(*dd), GFP_KERNEL);
622	if (!dd) {
623		ret = -ENOMEM;
624		goto remove_handler;
625	}
626
627	dd->capabilities = caps;
628	dev_set_drvdata(dev, dd);
629
630	/*
631	 * Assume that the ACPI PM domain has been attached to the device and
632	 * simply enable system wakeup and runtime PM and put the device into
633	 * runtime suspend.  Everything else should be taken care of by the ACPI
634	 * PM domain callbacks.
635	 */
636	device_init_wakeup(dev, true);
637	dev_pm_set_driver_flags(dev, DPM_FLAG_SMART_SUSPEND |
638				     DPM_FLAG_MAY_SKIP_RESUME);
639	/*
640	 * The platform bus type layer tells the ACPI PM domain powers up the
641	 * device, so set the runtime PM status of it to "active".
642	 */
643	pm_runtime_set_active(dev);
644	pm_runtime_enable(dev);
645	pm_runtime_suspend(dev);
646
647	ret = sysfs_create_group(&dev->kobj, &acpi_tad_attr_group);
648	if (ret)
649		goto fail;
650
651	if (caps & ACPI_TAD_DC_WAKE) {
652		ret = sysfs_create_group(&dev->kobj, &acpi_tad_dc_attr_group);
653		if (ret)
654			goto fail;
655	}
656
657	if (caps & ACPI_TAD_RT) {
658		ret = sysfs_create_group(&dev->kobj, &acpi_tad_time_attr_group);
659		if (ret)
660			goto fail;
661	}
662
663	return 0;
664
665fail:
666	acpi_tad_remove(pdev);
667	/* Don't fallthrough because cmos rtc space handler is removed in acpi_tad_remove() */
668	return ret;
669
670remove_handler:
671	acpi_remove_cmos_rtc_space_handler(handle);
672	return ret;
673}
674
675static const struct acpi_device_id acpi_tad_ids[] = {
676	{"ACPI000E", 0},
677	{}
678};
679
680static struct platform_driver acpi_tad_driver = {
681	.driver = {
682		.name = "acpi-tad",
683		.acpi_match_table = acpi_tad_ids,
684	},
685	.probe = acpi_tad_probe,
686	.remove_new = acpi_tad_remove,
687};
688MODULE_DEVICE_TABLE(acpi, acpi_tad_ids);
689
690module_platform_driver(acpi_tad_driver);
691