1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * ACPI support for Intel Lynxpoint LPSS.
4 *
5 * Copyright (C) 2013, Intel Corporation
6 * Authors: Mika Westerberg <mika.westerberg@linux.intel.com>
7 *          Rafael J. Wysocki <rafael.j.wysocki@intel.com>
8 */
9
10#include <linux/acpi.h>
11#include <linux/clkdev.h>
12#include <linux/clk-provider.h>
13#include <linux/dmi.h>
14#include <linux/err.h>
15#include <linux/io.h>
16#include <linux/mutex.h>
17#include <linux/pci.h>
18#include <linux/platform_device.h>
19#include <linux/platform_data/x86/clk-lpss.h>
20#include <linux/platform_data/x86/pmc_atom.h>
21#include <linux/pm_domain.h>
22#include <linux/pm_runtime.h>
23#include <linux/pwm.h>
24#include <linux/pxa2xx_ssp.h>
25#include <linux/suspend.h>
26#include <linux/delay.h>
27
28#include "internal.h"
29
30#ifdef CONFIG_X86_INTEL_LPSS
31
32#include <asm/cpu_device_id.h>
33#include <asm/intel-family.h>
34#include <asm/iosf_mbi.h>
35
36#define LPSS_ADDR(desc) ((unsigned long)&desc)
37
38#define LPSS_CLK_SIZE	0x04
39#define LPSS_LTR_SIZE	0x18
40
41/* Offsets relative to LPSS_PRIVATE_OFFSET */
42#define LPSS_CLK_DIVIDER_DEF_MASK	(BIT(1) | BIT(16))
43#define LPSS_RESETS			0x04
44#define LPSS_RESETS_RESET_FUNC		BIT(0)
45#define LPSS_RESETS_RESET_APB		BIT(1)
46#define LPSS_GENERAL			0x08
47#define LPSS_GENERAL_LTR_MODE_SW	BIT(2)
48#define LPSS_GENERAL_UART_RTS_OVRD	BIT(3)
49#define LPSS_SW_LTR			0x10
50#define LPSS_AUTO_LTR			0x14
51#define LPSS_LTR_SNOOP_REQ		BIT(15)
52#define LPSS_LTR_SNOOP_MASK		0x0000FFFF
53#define LPSS_LTR_SNOOP_LAT_1US		0x800
54#define LPSS_LTR_SNOOP_LAT_32US		0xC00
55#define LPSS_LTR_SNOOP_LAT_SHIFT	5
56#define LPSS_LTR_SNOOP_LAT_CUTOFF	3000
57#define LPSS_LTR_MAX_VAL		0x3FF
58#define LPSS_TX_INT			0x20
59#define LPSS_TX_INT_MASK		BIT(1)
60
61#define LPSS_PRV_REG_COUNT		9
62
63/* LPSS Flags */
64#define LPSS_CLK			BIT(0)
65#define LPSS_CLK_GATE			BIT(1)
66#define LPSS_CLK_DIVIDER		BIT(2)
67#define LPSS_LTR			BIT(3)
68#define LPSS_SAVE_CTX			BIT(4)
69/*
70 * For some devices the DSDT AML code for another device turns off the device
71 * before our suspend handler runs, causing us to read/save all 1-s (0xffffffff)
72 * as ctx register values.
73 * Luckily these devices always use the same ctx register values, so we can
74 * work around this by saving the ctx registers once on activation.
75 */
76#define LPSS_SAVE_CTX_ONCE		BIT(5)
77#define LPSS_NO_D3_DELAY		BIT(6)
78
79struct lpss_private_data;
80
81struct lpss_device_desc {
82	unsigned int flags;
83	const char *clk_con_id;
84	unsigned int prv_offset;
85	size_t prv_size_override;
86	const struct property_entry *properties;
87	void (*setup)(struct lpss_private_data *pdata);
88	bool resume_from_noirq;
89};
90
91static const struct lpss_device_desc lpss_dma_desc = {
92	.flags = LPSS_CLK,
93};
94
95struct lpss_private_data {
96	struct acpi_device *adev;
97	void __iomem *mmio_base;
98	resource_size_t mmio_size;
99	unsigned int fixed_clk_rate;
100	struct clk *clk;
101	const struct lpss_device_desc *dev_desc;
102	u32 prv_reg_ctx[LPSS_PRV_REG_COUNT];
103};
104
105/* Devices which need to be in D3 before lpss_iosf_enter_d3_state() proceeds */
106static u32 pmc_atom_d3_mask = 0xfe000ffe;
107
108/* LPSS run time quirks */
109static unsigned int lpss_quirks;
110
111/*
112 * LPSS_QUIRK_ALWAYS_POWER_ON: override power state for LPSS DMA device.
113 *
114 * The LPSS DMA controller has neither _PS0 nor _PS3 method. Moreover
115 * it can be powered off automatically whenever the last LPSS device goes down.
116 * In case of no power any access to the DMA controller will hang the system.
117 * The behaviour is reproduced on some HP laptops based on Intel BayTrail as
118 * well as on ASuS T100TA transformer.
119 *
120 * This quirk overrides power state of entire LPSS island to keep DMA powered
121 * on whenever we have at least one other device in use.
122 */
123#define LPSS_QUIRK_ALWAYS_POWER_ON	BIT(0)
124
125/* UART Component Parameter Register */
126#define LPSS_UART_CPR			0xF4
127#define LPSS_UART_CPR_AFCE		BIT(4)
128
129static void lpss_uart_setup(struct lpss_private_data *pdata)
130{
131	unsigned int offset;
132	u32 val;
133
134	offset = pdata->dev_desc->prv_offset + LPSS_TX_INT;
135	val = readl(pdata->mmio_base + offset);
136	writel(val | LPSS_TX_INT_MASK, pdata->mmio_base + offset);
137
138	val = readl(pdata->mmio_base + LPSS_UART_CPR);
139	if (!(val & LPSS_UART_CPR_AFCE)) {
140		offset = pdata->dev_desc->prv_offset + LPSS_GENERAL;
141		val = readl(pdata->mmio_base + offset);
142		val |= LPSS_GENERAL_UART_RTS_OVRD;
143		writel(val, pdata->mmio_base + offset);
144	}
145}
146
147static void lpss_deassert_reset(struct lpss_private_data *pdata)
148{
149	unsigned int offset;
150	u32 val;
151
152	offset = pdata->dev_desc->prv_offset + LPSS_RESETS;
153	val = readl(pdata->mmio_base + offset);
154	val |= LPSS_RESETS_RESET_APB | LPSS_RESETS_RESET_FUNC;
155	writel(val, pdata->mmio_base + offset);
156}
157
158/*
159 * BYT PWM used for backlight control by the i915 driver on systems without
160 * the Crystal Cove PMIC.
161 */
162static struct pwm_lookup byt_pwm_lookup[] = {
163	PWM_LOOKUP_WITH_MODULE("80860F09:00", 0, "0000:00:02.0",
164			       "pwm_soc_backlight", 0, PWM_POLARITY_NORMAL,
165			       "pwm-lpss-platform"),
166};
167
168static void byt_pwm_setup(struct lpss_private_data *pdata)
169{
170	/* Only call pwm_add_table for the first PWM controller */
171	if (acpi_dev_uid_match(pdata->adev, 1))
172		pwm_add_table(byt_pwm_lookup, ARRAY_SIZE(byt_pwm_lookup));
173}
174
175#define LPSS_I2C_ENABLE			0x6c
176
177static void byt_i2c_setup(struct lpss_private_data *pdata)
178{
179	acpi_handle handle = pdata->adev->handle;
180	unsigned long long shared_host = 0;
181	acpi_status status;
182	u64 uid;
183
184	/* Expected to always be successfull, but better safe then sorry */
185	if (!acpi_dev_uid_to_integer(pdata->adev, &uid) && uid) {
186		/* Detect I2C bus shared with PUNIT and ignore its d3 status */
187		status = acpi_evaluate_integer(handle, "_SEM", NULL, &shared_host);
188		if (ACPI_SUCCESS(status) && shared_host)
189			pmc_atom_d3_mask &= ~(BIT_LPSS2_F1_I2C1 << (uid - 1));
190	}
191
192	lpss_deassert_reset(pdata);
193
194	if (readl(pdata->mmio_base + pdata->dev_desc->prv_offset))
195		pdata->fixed_clk_rate = 133000000;
196
197	writel(0, pdata->mmio_base + LPSS_I2C_ENABLE);
198}
199
200/*
201 * BSW PWM1 is used for backlight control by the i915 driver
202 * BSW PWM2 is used for backlight control for fixed (etched into the glass)
203 * touch controls on some models. These touch-controls have specialized
204 * drivers which know they need the "pwm_soc_lpss_2" con-id.
205 */
206static struct pwm_lookup bsw_pwm_lookup[] = {
207	PWM_LOOKUP_WITH_MODULE("80862288:00", 0, "0000:00:02.0",
208			       "pwm_soc_backlight", 0, PWM_POLARITY_NORMAL,
209			       "pwm-lpss-platform"),
210	PWM_LOOKUP_WITH_MODULE("80862289:00", 0, NULL,
211			       "pwm_soc_lpss_2", 0, PWM_POLARITY_NORMAL,
212			       "pwm-lpss-platform"),
213};
214
215static void bsw_pwm_setup(struct lpss_private_data *pdata)
216{
217	/* Only call pwm_add_table for the first PWM controller */
218	if (acpi_dev_uid_match(pdata->adev, 1))
219		pwm_add_table(bsw_pwm_lookup, ARRAY_SIZE(bsw_pwm_lookup));
220}
221
222static const struct property_entry lpt_spi_properties[] = {
223	PROPERTY_ENTRY_U32("intel,spi-pxa2xx-type", LPSS_LPT_SSP),
224	{ }
225};
226
227static const struct lpss_device_desc lpt_spi_dev_desc = {
228	.flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_LTR
229			| LPSS_SAVE_CTX,
230	.prv_offset = 0x800,
231	.properties = lpt_spi_properties,
232};
233
234static const struct lpss_device_desc lpt_i2c_dev_desc = {
235	.flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_LTR | LPSS_SAVE_CTX,
236	.prv_offset = 0x800,
237};
238
239static struct property_entry uart_properties[] = {
240	PROPERTY_ENTRY_U32("reg-io-width", 4),
241	PROPERTY_ENTRY_U32("reg-shift", 2),
242	PROPERTY_ENTRY_BOOL("snps,uart-16550-compatible"),
243	{ },
244};
245
246static const struct lpss_device_desc lpt_uart_dev_desc = {
247	.flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_LTR
248			| LPSS_SAVE_CTX,
249	.clk_con_id = "baudclk",
250	.prv_offset = 0x800,
251	.setup = lpss_uart_setup,
252	.properties = uart_properties,
253};
254
255static const struct lpss_device_desc lpt_sdio_dev_desc = {
256	.flags = LPSS_LTR,
257	.prv_offset = 0x1000,
258	.prv_size_override = 0x1018,
259};
260
261static const struct lpss_device_desc byt_pwm_dev_desc = {
262	.flags = LPSS_SAVE_CTX,
263	.prv_offset = 0x800,
264	.setup = byt_pwm_setup,
265};
266
267static const struct lpss_device_desc bsw_pwm_dev_desc = {
268	.flags = LPSS_SAVE_CTX_ONCE | LPSS_NO_D3_DELAY,
269	.prv_offset = 0x800,
270	.setup = bsw_pwm_setup,
271	.resume_from_noirq = true,
272};
273
274static const struct lpss_device_desc bsw_pwm2_dev_desc = {
275	.flags = LPSS_SAVE_CTX_ONCE | LPSS_NO_D3_DELAY,
276	.prv_offset = 0x800,
277	.resume_from_noirq = true,
278};
279
280static const struct lpss_device_desc byt_uart_dev_desc = {
281	.flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX,
282	.clk_con_id = "baudclk",
283	.prv_offset = 0x800,
284	.setup = lpss_uart_setup,
285	.properties = uart_properties,
286};
287
288static const struct lpss_device_desc bsw_uart_dev_desc = {
289	.flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX
290			| LPSS_NO_D3_DELAY,
291	.clk_con_id = "baudclk",
292	.prv_offset = 0x800,
293	.setup = lpss_uart_setup,
294	.properties = uart_properties,
295};
296
297static const struct property_entry byt_spi_properties[] = {
298	PROPERTY_ENTRY_U32("intel,spi-pxa2xx-type", LPSS_BYT_SSP),
299	{ }
300};
301
302static const struct lpss_device_desc byt_spi_dev_desc = {
303	.flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX,
304	.prv_offset = 0x400,
305	.properties = byt_spi_properties,
306};
307
308static const struct lpss_device_desc byt_sdio_dev_desc = {
309	.flags = LPSS_CLK,
310};
311
312static const struct lpss_device_desc byt_i2c_dev_desc = {
313	.flags = LPSS_CLK | LPSS_SAVE_CTX,
314	.prv_offset = 0x800,
315	.setup = byt_i2c_setup,
316	.resume_from_noirq = true,
317};
318
319static const struct lpss_device_desc bsw_i2c_dev_desc = {
320	.flags = LPSS_CLK | LPSS_SAVE_CTX | LPSS_NO_D3_DELAY,
321	.prv_offset = 0x800,
322	.setup = byt_i2c_setup,
323	.resume_from_noirq = true,
324};
325
326static const struct property_entry bsw_spi_properties[] = {
327	PROPERTY_ENTRY_U32("intel,spi-pxa2xx-type", LPSS_BSW_SSP),
328	{ }
329};
330
331static const struct lpss_device_desc bsw_spi_dev_desc = {
332	.flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX
333			| LPSS_NO_D3_DELAY,
334	.prv_offset = 0x400,
335	.setup = lpss_deassert_reset,
336	.properties = bsw_spi_properties,
337};
338
339static const struct x86_cpu_id lpss_cpu_ids[] = {
340	X86_MATCH_INTEL_FAM6_MODEL(ATOM_SILVERMONT,	NULL),
341	X86_MATCH_INTEL_FAM6_MODEL(ATOM_AIRMONT,	NULL),
342	{}
343};
344
345#else
346
347#define LPSS_ADDR(desc) (0UL)
348
349#endif /* CONFIG_X86_INTEL_LPSS */
350
351static const struct acpi_device_id acpi_lpss_device_ids[] = {
352	/* Generic LPSS devices */
353	{ "INTL9C60", LPSS_ADDR(lpss_dma_desc) },
354
355	/* Lynxpoint LPSS devices */
356	{ "INT33C0", LPSS_ADDR(lpt_spi_dev_desc) },
357	{ "INT33C1", LPSS_ADDR(lpt_spi_dev_desc) },
358	{ "INT33C2", LPSS_ADDR(lpt_i2c_dev_desc) },
359	{ "INT33C3", LPSS_ADDR(lpt_i2c_dev_desc) },
360	{ "INT33C4", LPSS_ADDR(lpt_uart_dev_desc) },
361	{ "INT33C5", LPSS_ADDR(lpt_uart_dev_desc) },
362	{ "INT33C6", LPSS_ADDR(lpt_sdio_dev_desc) },
363
364	/* BayTrail LPSS devices */
365	{ "80860F09", LPSS_ADDR(byt_pwm_dev_desc) },
366	{ "80860F0A", LPSS_ADDR(byt_uart_dev_desc) },
367	{ "80860F0E", LPSS_ADDR(byt_spi_dev_desc) },
368	{ "80860F14", LPSS_ADDR(byt_sdio_dev_desc) },
369	{ "80860F41", LPSS_ADDR(byt_i2c_dev_desc) },
370
371	/* Braswell LPSS devices */
372	{ "80862286", LPSS_ADDR(lpss_dma_desc) },
373	{ "80862288", LPSS_ADDR(bsw_pwm_dev_desc) },
374	{ "80862289", LPSS_ADDR(bsw_pwm2_dev_desc) },
375	{ "8086228A", LPSS_ADDR(bsw_uart_dev_desc) },
376	{ "8086228E", LPSS_ADDR(bsw_spi_dev_desc) },
377	{ "808622C0", LPSS_ADDR(lpss_dma_desc) },
378	{ "808622C1", LPSS_ADDR(bsw_i2c_dev_desc) },
379
380	/* Broadwell LPSS devices */
381	{ "INT3430", LPSS_ADDR(lpt_spi_dev_desc) },
382	{ "INT3431", LPSS_ADDR(lpt_spi_dev_desc) },
383	{ "INT3432", LPSS_ADDR(lpt_i2c_dev_desc) },
384	{ "INT3433", LPSS_ADDR(lpt_i2c_dev_desc) },
385	{ "INT3434", LPSS_ADDR(lpt_uart_dev_desc) },
386	{ "INT3435", LPSS_ADDR(lpt_uart_dev_desc) },
387	{ "INT3436", LPSS_ADDR(lpt_sdio_dev_desc) },
388
389	/* Wildcat Point LPSS devices */
390	{ "INT3438", LPSS_ADDR(lpt_spi_dev_desc) },
391
392	{ }
393};
394
395#ifdef CONFIG_X86_INTEL_LPSS
396
397/* LPSS main clock device. */
398static struct platform_device *lpss_clk_dev;
399
400static inline void lpt_register_clock_device(void)
401{
402	lpss_clk_dev = platform_device_register_simple("clk-lpss-atom",
403						       PLATFORM_DEVID_NONE,
404						       NULL, 0);
405}
406
407static int register_device_clock(struct acpi_device *adev,
408				 struct lpss_private_data *pdata)
409{
410	const struct lpss_device_desc *dev_desc = pdata->dev_desc;
411	const char *devname = dev_name(&adev->dev);
412	struct clk *clk;
413	struct lpss_clk_data *clk_data;
414	const char *parent, *clk_name;
415	void __iomem *prv_base;
416
417	if (!lpss_clk_dev)
418		lpt_register_clock_device();
419
420	if (IS_ERR(lpss_clk_dev))
421		return PTR_ERR(lpss_clk_dev);
422
423	clk_data = platform_get_drvdata(lpss_clk_dev);
424	if (!clk_data)
425		return -ENODEV;
426	clk = clk_data->clk;
427
428	if (!pdata->mmio_base
429	    || pdata->mmio_size < dev_desc->prv_offset + LPSS_CLK_SIZE)
430		return -ENODATA;
431
432	parent = clk_data->name;
433	prv_base = pdata->mmio_base + dev_desc->prv_offset;
434
435	if (pdata->fixed_clk_rate) {
436		clk = clk_register_fixed_rate(NULL, devname, parent, 0,
437					      pdata->fixed_clk_rate);
438		goto out;
439	}
440
441	if (dev_desc->flags & LPSS_CLK_GATE) {
442		clk = clk_register_gate(NULL, devname, parent, 0,
443					prv_base, 0, 0, NULL);
444		parent = devname;
445	}
446
447	if (dev_desc->flags & LPSS_CLK_DIVIDER) {
448		/* Prevent division by zero */
449		if (!readl(prv_base))
450			writel(LPSS_CLK_DIVIDER_DEF_MASK, prv_base);
451
452		clk_name = kasprintf(GFP_KERNEL, "%s-div", devname);
453		if (!clk_name)
454			return -ENOMEM;
455		clk = clk_register_fractional_divider(NULL, clk_name, parent,
456						      0, prv_base, 1, 15, 16, 15,
457						      CLK_FRAC_DIVIDER_POWER_OF_TWO_PS,
458						      NULL);
459		parent = clk_name;
460
461		clk_name = kasprintf(GFP_KERNEL, "%s-update", devname);
462		if (!clk_name) {
463			kfree(parent);
464			return -ENOMEM;
465		}
466		clk = clk_register_gate(NULL, clk_name, parent,
467					CLK_SET_RATE_PARENT | CLK_SET_RATE_GATE,
468					prv_base, 31, 0, NULL);
469		kfree(parent);
470		kfree(clk_name);
471	}
472out:
473	if (IS_ERR(clk))
474		return PTR_ERR(clk);
475
476	pdata->clk = clk;
477	clk_register_clkdev(clk, dev_desc->clk_con_id, devname);
478	return 0;
479}
480
481struct lpss_device_links {
482	const char *supplier_hid;
483	const char *supplier_uid;
484	const char *consumer_hid;
485	const char *consumer_uid;
486	u32 flags;
487	const struct dmi_system_id *dep_missing_ids;
488};
489
490/* Please keep this list sorted alphabetically by vendor and model */
491static const struct dmi_system_id i2c1_dep_missing_dmi_ids[] = {
492	{
493		.matches = {
494			DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."),
495			DMI_MATCH(DMI_PRODUCT_NAME, "T200TA"),
496		},
497	},
498	{}
499};
500
501/*
502 * The _DEP method is used to identify dependencies but instead of creating
503 * device links for every handle in _DEP, only links in the following list are
504 * created. That is necessary because, in the general case, _DEP can refer to
505 * devices that might not have drivers, or that are on different buses, or where
506 * the supplier is not enumerated until after the consumer is probed.
507 */
508static const struct lpss_device_links lpss_device_links[] = {
509	/* CHT External sdcard slot controller depends on PMIC I2C ctrl */
510	{"808622C1", "7", "80860F14", "3", DL_FLAG_PM_RUNTIME},
511	/* CHT iGPU depends on PMIC I2C controller */
512	{"808622C1", "7", "LNXVIDEO", NULL, DL_FLAG_PM_RUNTIME},
513	/* BYT iGPU depends on the Embedded Controller I2C controller (UID 1) */
514	{"80860F41", "1", "LNXVIDEO", NULL, DL_FLAG_PM_RUNTIME,
515	 i2c1_dep_missing_dmi_ids},
516	/* BYT CR iGPU depends on PMIC I2C controller (UID 5 on CR) */
517	{"80860F41", "5", "LNXVIDEO", NULL, DL_FLAG_PM_RUNTIME},
518	/* BYT iGPU depends on PMIC I2C controller (UID 7 on non CR) */
519	{"80860F41", "7", "LNXVIDEO", NULL, DL_FLAG_PM_RUNTIME},
520};
521
522static bool acpi_lpss_is_supplier(struct acpi_device *adev,
523				  const struct lpss_device_links *link)
524{
525	return acpi_dev_hid_uid_match(adev, link->supplier_hid, link->supplier_uid);
526}
527
528static bool acpi_lpss_is_consumer(struct acpi_device *adev,
529				  const struct lpss_device_links *link)
530{
531	return acpi_dev_hid_uid_match(adev, link->consumer_hid, link->consumer_uid);
532}
533
534struct hid_uid {
535	const char *hid;
536	const char *uid;
537};
538
539static int match_hid_uid(struct device *dev, const void *data)
540{
541	struct acpi_device *adev = ACPI_COMPANION(dev);
542	const struct hid_uid *id = data;
543
544	if (!adev)
545		return 0;
546
547	return acpi_dev_hid_uid_match(adev, id->hid, id->uid);
548}
549
550static struct device *acpi_lpss_find_device(const char *hid, const char *uid)
551{
552	struct device *dev;
553
554	struct hid_uid data = {
555		.hid = hid,
556		.uid = uid,
557	};
558
559	dev = bus_find_device(&platform_bus_type, NULL, &data, match_hid_uid);
560	if (dev)
561		return dev;
562
563	return bus_find_device(&pci_bus_type, NULL, &data, match_hid_uid);
564}
565
566static void acpi_lpss_link_consumer(struct device *dev1,
567				    const struct lpss_device_links *link)
568{
569	struct device *dev2;
570
571	dev2 = acpi_lpss_find_device(link->consumer_hid, link->consumer_uid);
572	if (!dev2)
573		return;
574
575	if ((link->dep_missing_ids && dmi_check_system(link->dep_missing_ids))
576	    || acpi_device_dep(ACPI_HANDLE(dev2), ACPI_HANDLE(dev1)))
577		device_link_add(dev2, dev1, link->flags);
578
579	put_device(dev2);
580}
581
582static void acpi_lpss_link_supplier(struct device *dev1,
583				    const struct lpss_device_links *link)
584{
585	struct device *dev2;
586
587	dev2 = acpi_lpss_find_device(link->supplier_hid, link->supplier_uid);
588	if (!dev2)
589		return;
590
591	if ((link->dep_missing_ids && dmi_check_system(link->dep_missing_ids))
592	    || acpi_device_dep(ACPI_HANDLE(dev1), ACPI_HANDLE(dev2)))
593		device_link_add(dev1, dev2, link->flags);
594
595	put_device(dev2);
596}
597
598static void acpi_lpss_create_device_links(struct acpi_device *adev,
599					  struct platform_device *pdev)
600{
601	int i;
602
603	for (i = 0; i < ARRAY_SIZE(lpss_device_links); i++) {
604		const struct lpss_device_links *link = &lpss_device_links[i];
605
606		if (acpi_lpss_is_supplier(adev, link))
607			acpi_lpss_link_consumer(&pdev->dev, link);
608
609		if (acpi_lpss_is_consumer(adev, link))
610			acpi_lpss_link_supplier(&pdev->dev, link);
611	}
612}
613
614static int acpi_lpss_create_device(struct acpi_device *adev,
615				   const struct acpi_device_id *id)
616{
617	const struct lpss_device_desc *dev_desc;
618	struct lpss_private_data *pdata;
619	struct resource_entry *rentry;
620	struct list_head resource_list;
621	struct platform_device *pdev;
622	int ret;
623
624	dev_desc = (const struct lpss_device_desc *)id->driver_data;
625	if (!dev_desc)
626		return -EINVAL;
627
628	pdata = kzalloc(sizeof(*pdata), GFP_KERNEL);
629	if (!pdata)
630		return -ENOMEM;
631
632	INIT_LIST_HEAD(&resource_list);
633	ret = acpi_dev_get_memory_resources(adev, &resource_list);
634	if (ret < 0)
635		goto err_out;
636
637	rentry = list_first_entry_or_null(&resource_list, struct resource_entry, node);
638	if (rentry) {
639		if (dev_desc->prv_size_override)
640			pdata->mmio_size = dev_desc->prv_size_override;
641		else
642			pdata->mmio_size = resource_size(rentry->res);
643		pdata->mmio_base = ioremap(rentry->res->start, pdata->mmio_size);
644	}
645
646	acpi_dev_free_resource_list(&resource_list);
647
648	if (!pdata->mmio_base) {
649		/* Avoid acpi_bus_attach() instantiating a pdev for this dev. */
650		adev->pnp.type.platform_id = 0;
651		goto out_free;
652	}
653
654	pdata->adev = adev;
655	pdata->dev_desc = dev_desc;
656
657	if (dev_desc->setup)
658		dev_desc->setup(pdata);
659
660	if (dev_desc->flags & LPSS_CLK) {
661		ret = register_device_clock(adev, pdata);
662		if (ret)
663			goto out_free;
664	}
665
666	/*
667	 * This works around a known issue in ACPI tables where LPSS devices
668	 * have _PS0 and _PS3 without _PSC (and no power resources), so
669	 * acpi_bus_init_power() will assume that the BIOS has put them into D0.
670	 */
671	acpi_device_fix_up_power(adev);
672
673	adev->driver_data = pdata;
674	pdev = acpi_create_platform_device(adev, dev_desc->properties);
675	if (IS_ERR_OR_NULL(pdev)) {
676		adev->driver_data = NULL;
677		ret = PTR_ERR(pdev);
678		goto err_out;
679	}
680
681	acpi_lpss_create_device_links(adev, pdev);
682	return 1;
683
684out_free:
685	/* Skip the device, but continue the namespace scan */
686	ret = 0;
687err_out:
688	kfree(pdata);
689	return ret;
690}
691
692static u32 __lpss_reg_read(struct lpss_private_data *pdata, unsigned int reg)
693{
694	return readl(pdata->mmio_base + pdata->dev_desc->prv_offset + reg);
695}
696
697static void __lpss_reg_write(u32 val, struct lpss_private_data *pdata,
698			     unsigned int reg)
699{
700	writel(val, pdata->mmio_base + pdata->dev_desc->prv_offset + reg);
701}
702
703static int lpss_reg_read(struct device *dev, unsigned int reg, u32 *val)
704{
705	struct acpi_device *adev = ACPI_COMPANION(dev);
706	struct lpss_private_data *pdata;
707	unsigned long flags;
708	int ret;
709
710	if (WARN_ON(!adev))
711		return -ENODEV;
712
713	spin_lock_irqsave(&dev->power.lock, flags);
714	if (pm_runtime_suspended(dev)) {
715		ret = -EAGAIN;
716		goto out;
717	}
718	pdata = acpi_driver_data(adev);
719	if (WARN_ON(!pdata || !pdata->mmio_base)) {
720		ret = -ENODEV;
721		goto out;
722	}
723	*val = __lpss_reg_read(pdata, reg);
724	ret = 0;
725
726 out:
727	spin_unlock_irqrestore(&dev->power.lock, flags);
728	return ret;
729}
730
731static ssize_t lpss_ltr_show(struct device *dev, struct device_attribute *attr,
732			     char *buf)
733{
734	u32 ltr_value = 0;
735	unsigned int reg;
736	int ret;
737
738	reg = strcmp(attr->attr.name, "auto_ltr") ? LPSS_SW_LTR : LPSS_AUTO_LTR;
739	ret = lpss_reg_read(dev, reg, &ltr_value);
740	if (ret)
741		return ret;
742
743	return sysfs_emit(buf, "%08x\n", ltr_value);
744}
745
746static ssize_t lpss_ltr_mode_show(struct device *dev,
747				  struct device_attribute *attr, char *buf)
748{
749	u32 ltr_mode = 0;
750	char *outstr;
751	int ret;
752
753	ret = lpss_reg_read(dev, LPSS_GENERAL, &ltr_mode);
754	if (ret)
755		return ret;
756
757	outstr = (ltr_mode & LPSS_GENERAL_LTR_MODE_SW) ? "sw" : "auto";
758	return sprintf(buf, "%s\n", outstr);
759}
760
761static DEVICE_ATTR(auto_ltr, S_IRUSR, lpss_ltr_show, NULL);
762static DEVICE_ATTR(sw_ltr, S_IRUSR, lpss_ltr_show, NULL);
763static DEVICE_ATTR(ltr_mode, S_IRUSR, lpss_ltr_mode_show, NULL);
764
765static struct attribute *lpss_attrs[] = {
766	&dev_attr_auto_ltr.attr,
767	&dev_attr_sw_ltr.attr,
768	&dev_attr_ltr_mode.attr,
769	NULL,
770};
771
772static const struct attribute_group lpss_attr_group = {
773	.attrs = lpss_attrs,
774	.name = "lpss_ltr",
775};
776
777static void acpi_lpss_set_ltr(struct device *dev, s32 val)
778{
779	struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
780	u32 ltr_mode, ltr_val;
781
782	ltr_mode = __lpss_reg_read(pdata, LPSS_GENERAL);
783	if (val < 0) {
784		if (ltr_mode & LPSS_GENERAL_LTR_MODE_SW) {
785			ltr_mode &= ~LPSS_GENERAL_LTR_MODE_SW;
786			__lpss_reg_write(ltr_mode, pdata, LPSS_GENERAL);
787		}
788		return;
789	}
790	ltr_val = __lpss_reg_read(pdata, LPSS_SW_LTR) & ~LPSS_LTR_SNOOP_MASK;
791	if (val >= LPSS_LTR_SNOOP_LAT_CUTOFF) {
792		ltr_val |= LPSS_LTR_SNOOP_LAT_32US;
793		val = LPSS_LTR_MAX_VAL;
794	} else if (val > LPSS_LTR_MAX_VAL) {
795		ltr_val |= LPSS_LTR_SNOOP_LAT_32US | LPSS_LTR_SNOOP_REQ;
796		val >>= LPSS_LTR_SNOOP_LAT_SHIFT;
797	} else {
798		ltr_val |= LPSS_LTR_SNOOP_LAT_1US | LPSS_LTR_SNOOP_REQ;
799	}
800	ltr_val |= val;
801	__lpss_reg_write(ltr_val, pdata, LPSS_SW_LTR);
802	if (!(ltr_mode & LPSS_GENERAL_LTR_MODE_SW)) {
803		ltr_mode |= LPSS_GENERAL_LTR_MODE_SW;
804		__lpss_reg_write(ltr_mode, pdata, LPSS_GENERAL);
805	}
806}
807
808#ifdef CONFIG_PM
809/**
810 * acpi_lpss_save_ctx() - Save the private registers of LPSS device
811 * @dev: LPSS device
812 * @pdata: pointer to the private data of the LPSS device
813 *
814 * Most LPSS devices have private registers which may loose their context when
815 * the device is powered down. acpi_lpss_save_ctx() saves those registers into
816 * prv_reg_ctx array.
817 */
818static void acpi_lpss_save_ctx(struct device *dev,
819			       struct lpss_private_data *pdata)
820{
821	unsigned int i;
822
823	for (i = 0; i < LPSS_PRV_REG_COUNT; i++) {
824		unsigned long offset = i * sizeof(u32);
825
826		pdata->prv_reg_ctx[i] = __lpss_reg_read(pdata, offset);
827		dev_dbg(dev, "saving 0x%08x from LPSS reg at offset 0x%02lx\n",
828			pdata->prv_reg_ctx[i], offset);
829	}
830}
831
832/**
833 * acpi_lpss_restore_ctx() - Restore the private registers of LPSS device
834 * @dev: LPSS device
835 * @pdata: pointer to the private data of the LPSS device
836 *
837 * Restores the registers that were previously stored with acpi_lpss_save_ctx().
838 */
839static void acpi_lpss_restore_ctx(struct device *dev,
840				  struct lpss_private_data *pdata)
841{
842	unsigned int i;
843
844	for (i = 0; i < LPSS_PRV_REG_COUNT; i++) {
845		unsigned long offset = i * sizeof(u32);
846
847		__lpss_reg_write(pdata->prv_reg_ctx[i], pdata, offset);
848		dev_dbg(dev, "restoring 0x%08x to LPSS reg at offset 0x%02lx\n",
849			pdata->prv_reg_ctx[i], offset);
850	}
851}
852
853static void acpi_lpss_d3_to_d0_delay(struct lpss_private_data *pdata)
854{
855	/*
856	 * The following delay is needed or the subsequent write operations may
857	 * fail. The LPSS devices are actually PCI devices and the PCI spec
858	 * expects 10ms delay before the device can be accessed after D3 to D0
859	 * transition. However some platforms like BSW does not need this delay.
860	 */
861	unsigned int delay = 10;	/* default 10ms delay */
862
863	if (pdata->dev_desc->flags & LPSS_NO_D3_DELAY)
864		delay = 0;
865
866	msleep(delay);
867}
868
869static int acpi_lpss_activate(struct device *dev)
870{
871	struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
872	int ret;
873
874	ret = acpi_dev_resume(dev);
875	if (ret)
876		return ret;
877
878	acpi_lpss_d3_to_d0_delay(pdata);
879
880	/*
881	 * This is called only on ->probe() stage where a device is either in
882	 * known state defined by BIOS or most likely powered off. Due to this
883	 * we have to deassert reset line to be sure that ->probe() will
884	 * recognize the device.
885	 */
886	if (pdata->dev_desc->flags & (LPSS_SAVE_CTX | LPSS_SAVE_CTX_ONCE))
887		lpss_deassert_reset(pdata);
888
889#ifdef CONFIG_PM
890	if (pdata->dev_desc->flags & LPSS_SAVE_CTX_ONCE)
891		acpi_lpss_save_ctx(dev, pdata);
892#endif
893
894	return 0;
895}
896
897static void acpi_lpss_dismiss(struct device *dev)
898{
899	acpi_dev_suspend(dev, false);
900}
901
902/* IOSF SB for LPSS island */
903#define LPSS_IOSF_UNIT_LPIOEP		0xA0
904#define LPSS_IOSF_UNIT_LPIO1		0xAB
905#define LPSS_IOSF_UNIT_LPIO2		0xAC
906
907#define LPSS_IOSF_PMCSR			0x84
908#define LPSS_PMCSR_D0			0
909#define LPSS_PMCSR_D3hot		3
910#define LPSS_PMCSR_Dx_MASK		GENMASK(1, 0)
911
912#define LPSS_IOSF_GPIODEF0		0x154
913#define LPSS_GPIODEF0_DMA1_D3		BIT(2)
914#define LPSS_GPIODEF0_DMA2_D3		BIT(3)
915#define LPSS_GPIODEF0_DMA_D3_MASK	GENMASK(3, 2)
916#define LPSS_GPIODEF0_DMA_LLP		BIT(13)
917
918static DEFINE_MUTEX(lpss_iosf_mutex);
919static bool lpss_iosf_d3_entered = true;
920
921static void lpss_iosf_enter_d3_state(void)
922{
923	u32 value1 = 0;
924	u32 mask1 = LPSS_GPIODEF0_DMA_D3_MASK | LPSS_GPIODEF0_DMA_LLP;
925	u32 value2 = LPSS_PMCSR_D3hot;
926	u32 mask2 = LPSS_PMCSR_Dx_MASK;
927	/*
928	 * PMC provides an information about actual status of the LPSS devices.
929	 * Here we read the values related to LPSS power island, i.e. LPSS
930	 * devices, excluding both LPSS DMA controllers, along with SCC domain.
931	 */
932	u32 func_dis, d3_sts_0, pmc_status;
933	int ret;
934
935	ret = pmc_atom_read(PMC_FUNC_DIS, &func_dis);
936	if (ret)
937		return;
938
939	mutex_lock(&lpss_iosf_mutex);
940
941	ret = pmc_atom_read(PMC_D3_STS_0, &d3_sts_0);
942	if (ret)
943		goto exit;
944
945	/*
946	 * Get the status of entire LPSS power island per device basis.
947	 * Shutdown both LPSS DMA controllers if and only if all other devices
948	 * are already in D3hot.
949	 */
950	pmc_status = (~(d3_sts_0 | func_dis)) & pmc_atom_d3_mask;
951	if (pmc_status)
952		goto exit;
953
954	iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO1, MBI_CFG_WRITE,
955			LPSS_IOSF_PMCSR, value2, mask2);
956
957	iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO2, MBI_CFG_WRITE,
958			LPSS_IOSF_PMCSR, value2, mask2);
959
960	iosf_mbi_modify(LPSS_IOSF_UNIT_LPIOEP, MBI_CR_WRITE,
961			LPSS_IOSF_GPIODEF0, value1, mask1);
962
963	lpss_iosf_d3_entered = true;
964
965exit:
966	mutex_unlock(&lpss_iosf_mutex);
967}
968
969static void lpss_iosf_exit_d3_state(void)
970{
971	u32 value1 = LPSS_GPIODEF0_DMA1_D3 | LPSS_GPIODEF0_DMA2_D3 |
972		     LPSS_GPIODEF0_DMA_LLP;
973	u32 mask1 = LPSS_GPIODEF0_DMA_D3_MASK | LPSS_GPIODEF0_DMA_LLP;
974	u32 value2 = LPSS_PMCSR_D0;
975	u32 mask2 = LPSS_PMCSR_Dx_MASK;
976
977	mutex_lock(&lpss_iosf_mutex);
978
979	if (!lpss_iosf_d3_entered)
980		goto exit;
981
982	lpss_iosf_d3_entered = false;
983
984	iosf_mbi_modify(LPSS_IOSF_UNIT_LPIOEP, MBI_CR_WRITE,
985			LPSS_IOSF_GPIODEF0, value1, mask1);
986
987	iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO2, MBI_CFG_WRITE,
988			LPSS_IOSF_PMCSR, value2, mask2);
989
990	iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO1, MBI_CFG_WRITE,
991			LPSS_IOSF_PMCSR, value2, mask2);
992
993exit:
994	mutex_unlock(&lpss_iosf_mutex);
995}
996
997static int acpi_lpss_suspend(struct device *dev, bool wakeup)
998{
999	struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1000	int ret;
1001
1002	if (pdata->dev_desc->flags & LPSS_SAVE_CTX)
1003		acpi_lpss_save_ctx(dev, pdata);
1004
1005	ret = acpi_dev_suspend(dev, wakeup);
1006
1007	/*
1008	 * This call must be last in the sequence, otherwise PMC will return
1009	 * wrong status for devices being about to be powered off. See
1010	 * lpss_iosf_enter_d3_state() for further information.
1011	 */
1012	if (acpi_target_system_state() == ACPI_STATE_S0 &&
1013	    lpss_quirks & LPSS_QUIRK_ALWAYS_POWER_ON && iosf_mbi_available())
1014		lpss_iosf_enter_d3_state();
1015
1016	return ret;
1017}
1018
1019static int acpi_lpss_resume(struct device *dev)
1020{
1021	struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1022	int ret;
1023
1024	/*
1025	 * This call is kept first to be in symmetry with
1026	 * acpi_lpss_runtime_suspend() one.
1027	 */
1028	if (lpss_quirks & LPSS_QUIRK_ALWAYS_POWER_ON && iosf_mbi_available())
1029		lpss_iosf_exit_d3_state();
1030
1031	ret = acpi_dev_resume(dev);
1032	if (ret)
1033		return ret;
1034
1035	acpi_lpss_d3_to_d0_delay(pdata);
1036
1037	if (pdata->dev_desc->flags & (LPSS_SAVE_CTX | LPSS_SAVE_CTX_ONCE))
1038		acpi_lpss_restore_ctx(dev, pdata);
1039
1040	return 0;
1041}
1042
1043#ifdef CONFIG_PM_SLEEP
1044static int acpi_lpss_do_suspend_late(struct device *dev)
1045{
1046	int ret;
1047
1048	if (dev_pm_skip_suspend(dev))
1049		return 0;
1050
1051	ret = pm_generic_suspend_late(dev);
1052	return ret ? ret : acpi_lpss_suspend(dev, device_may_wakeup(dev));
1053}
1054
1055static int acpi_lpss_suspend_late(struct device *dev)
1056{
1057	struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1058
1059	if (pdata->dev_desc->resume_from_noirq)
1060		return 0;
1061
1062	return acpi_lpss_do_suspend_late(dev);
1063}
1064
1065static int acpi_lpss_suspend_noirq(struct device *dev)
1066{
1067	struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1068	int ret;
1069
1070	if (pdata->dev_desc->resume_from_noirq) {
1071		/*
1072		 * The driver's ->suspend_late callback will be invoked by
1073		 * acpi_lpss_do_suspend_late(), with the assumption that the
1074		 * driver really wanted to run that code in ->suspend_noirq, but
1075		 * it could not run after acpi_dev_suspend() and the driver
1076		 * expected the latter to be called in the "late" phase.
1077		 */
1078		ret = acpi_lpss_do_suspend_late(dev);
1079		if (ret)
1080			return ret;
1081	}
1082
1083	return acpi_subsys_suspend_noirq(dev);
1084}
1085
1086static int acpi_lpss_do_resume_early(struct device *dev)
1087{
1088	int ret = acpi_lpss_resume(dev);
1089
1090	return ret ? ret : pm_generic_resume_early(dev);
1091}
1092
1093static int acpi_lpss_resume_early(struct device *dev)
1094{
1095	struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1096
1097	if (pdata->dev_desc->resume_from_noirq)
1098		return 0;
1099
1100	if (dev_pm_skip_resume(dev))
1101		return 0;
1102
1103	return acpi_lpss_do_resume_early(dev);
1104}
1105
1106static int acpi_lpss_resume_noirq(struct device *dev)
1107{
1108	struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1109	int ret;
1110
1111	/* Follow acpi_subsys_resume_noirq(). */
1112	if (dev_pm_skip_resume(dev))
1113		return 0;
1114
1115	ret = pm_generic_resume_noirq(dev);
1116	if (ret)
1117		return ret;
1118
1119	if (!pdata->dev_desc->resume_from_noirq)
1120		return 0;
1121
1122	/*
1123	 * The driver's ->resume_early callback will be invoked by
1124	 * acpi_lpss_do_resume_early(), with the assumption that the driver
1125	 * really wanted to run that code in ->resume_noirq, but it could not
1126	 * run before acpi_dev_resume() and the driver expected the latter to be
1127	 * called in the "early" phase.
1128	 */
1129	return acpi_lpss_do_resume_early(dev);
1130}
1131
1132static int acpi_lpss_do_restore_early(struct device *dev)
1133{
1134	int ret = acpi_lpss_resume(dev);
1135
1136	return ret ? ret : pm_generic_restore_early(dev);
1137}
1138
1139static int acpi_lpss_restore_early(struct device *dev)
1140{
1141	struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1142
1143	if (pdata->dev_desc->resume_from_noirq)
1144		return 0;
1145
1146	return acpi_lpss_do_restore_early(dev);
1147}
1148
1149static int acpi_lpss_restore_noirq(struct device *dev)
1150{
1151	struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1152	int ret;
1153
1154	ret = pm_generic_restore_noirq(dev);
1155	if (ret)
1156		return ret;
1157
1158	if (!pdata->dev_desc->resume_from_noirq)
1159		return 0;
1160
1161	/* This is analogous to what happens in acpi_lpss_resume_noirq(). */
1162	return acpi_lpss_do_restore_early(dev);
1163}
1164
1165static int acpi_lpss_do_poweroff_late(struct device *dev)
1166{
1167	int ret = pm_generic_poweroff_late(dev);
1168
1169	return ret ? ret : acpi_lpss_suspend(dev, device_may_wakeup(dev));
1170}
1171
1172static int acpi_lpss_poweroff_late(struct device *dev)
1173{
1174	struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1175
1176	if (dev_pm_skip_suspend(dev))
1177		return 0;
1178
1179	if (pdata->dev_desc->resume_from_noirq)
1180		return 0;
1181
1182	return acpi_lpss_do_poweroff_late(dev);
1183}
1184
1185static int acpi_lpss_poweroff_noirq(struct device *dev)
1186{
1187	struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1188
1189	if (dev_pm_skip_suspend(dev))
1190		return 0;
1191
1192	if (pdata->dev_desc->resume_from_noirq) {
1193		/* This is analogous to the acpi_lpss_suspend_noirq() case. */
1194		int ret = acpi_lpss_do_poweroff_late(dev);
1195
1196		if (ret)
1197			return ret;
1198	}
1199
1200	return pm_generic_poweroff_noirq(dev);
1201}
1202#endif /* CONFIG_PM_SLEEP */
1203
1204static int acpi_lpss_runtime_suspend(struct device *dev)
1205{
1206	int ret = pm_generic_runtime_suspend(dev);
1207
1208	return ret ? ret : acpi_lpss_suspend(dev, true);
1209}
1210
1211static int acpi_lpss_runtime_resume(struct device *dev)
1212{
1213	int ret = acpi_lpss_resume(dev);
1214
1215	return ret ? ret : pm_generic_runtime_resume(dev);
1216}
1217#endif /* CONFIG_PM */
1218
1219static struct dev_pm_domain acpi_lpss_pm_domain = {
1220#ifdef CONFIG_PM
1221	.activate = acpi_lpss_activate,
1222	.dismiss = acpi_lpss_dismiss,
1223#endif
1224	.ops = {
1225#ifdef CONFIG_PM
1226#ifdef CONFIG_PM_SLEEP
1227		.prepare = acpi_subsys_prepare,
1228		.complete = acpi_subsys_complete,
1229		.suspend = acpi_subsys_suspend,
1230		.suspend_late = acpi_lpss_suspend_late,
1231		.suspend_noirq = acpi_lpss_suspend_noirq,
1232		.resume_noirq = acpi_lpss_resume_noirq,
1233		.resume_early = acpi_lpss_resume_early,
1234		.freeze = acpi_subsys_freeze,
1235		.poweroff = acpi_subsys_poweroff,
1236		.poweroff_late = acpi_lpss_poweroff_late,
1237		.poweroff_noirq = acpi_lpss_poweroff_noirq,
1238		.restore_noirq = acpi_lpss_restore_noirq,
1239		.restore_early = acpi_lpss_restore_early,
1240#endif
1241		.runtime_suspend = acpi_lpss_runtime_suspend,
1242		.runtime_resume = acpi_lpss_runtime_resume,
1243#endif
1244	},
1245};
1246
1247static int acpi_lpss_platform_notify(struct notifier_block *nb,
1248				     unsigned long action, void *data)
1249{
1250	struct platform_device *pdev = to_platform_device(data);
1251	struct lpss_private_data *pdata;
1252	struct acpi_device *adev;
1253	const struct acpi_device_id *id;
1254
1255	id = acpi_match_device(acpi_lpss_device_ids, &pdev->dev);
1256	if (!id || !id->driver_data)
1257		return 0;
1258
1259	adev = ACPI_COMPANION(&pdev->dev);
1260	if (!adev)
1261		return 0;
1262
1263	pdata = acpi_driver_data(adev);
1264	if (!pdata)
1265		return 0;
1266
1267	if (pdata->mmio_base &&
1268	    pdata->mmio_size < pdata->dev_desc->prv_offset + LPSS_LTR_SIZE) {
1269		dev_err(&pdev->dev, "MMIO size insufficient to access LTR\n");
1270		return 0;
1271	}
1272
1273	switch (action) {
1274	case BUS_NOTIFY_BIND_DRIVER:
1275		dev_pm_domain_set(&pdev->dev, &acpi_lpss_pm_domain);
1276		break;
1277	case BUS_NOTIFY_DRIVER_NOT_BOUND:
1278	case BUS_NOTIFY_UNBOUND_DRIVER:
1279		dev_pm_domain_set(&pdev->dev, NULL);
1280		break;
1281	case BUS_NOTIFY_ADD_DEVICE:
1282		dev_pm_domain_set(&pdev->dev, &acpi_lpss_pm_domain);
1283		if (pdata->dev_desc->flags & LPSS_LTR)
1284			return sysfs_create_group(&pdev->dev.kobj,
1285						  &lpss_attr_group);
1286		break;
1287	case BUS_NOTIFY_DEL_DEVICE:
1288		if (pdata->dev_desc->flags & LPSS_LTR)
1289			sysfs_remove_group(&pdev->dev.kobj, &lpss_attr_group);
1290		dev_pm_domain_set(&pdev->dev, NULL);
1291		break;
1292	default:
1293		break;
1294	}
1295
1296	return 0;
1297}
1298
1299static struct notifier_block acpi_lpss_nb = {
1300	.notifier_call = acpi_lpss_platform_notify,
1301};
1302
1303static void acpi_lpss_bind(struct device *dev)
1304{
1305	struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1306
1307	if (!pdata || !pdata->mmio_base || !(pdata->dev_desc->flags & LPSS_LTR))
1308		return;
1309
1310	if (pdata->mmio_size >= pdata->dev_desc->prv_offset + LPSS_LTR_SIZE)
1311		dev->power.set_latency_tolerance = acpi_lpss_set_ltr;
1312	else
1313		dev_err(dev, "MMIO size insufficient to access LTR\n");
1314}
1315
1316static void acpi_lpss_unbind(struct device *dev)
1317{
1318	dev->power.set_latency_tolerance = NULL;
1319}
1320
1321static struct acpi_scan_handler lpss_handler = {
1322	.ids = acpi_lpss_device_ids,
1323	.attach = acpi_lpss_create_device,
1324	.bind = acpi_lpss_bind,
1325	.unbind = acpi_lpss_unbind,
1326};
1327
1328void __init acpi_lpss_init(void)
1329{
1330	const struct x86_cpu_id *id;
1331	int ret;
1332
1333	ret = lpss_atom_clk_init();
1334	if (ret)
1335		return;
1336
1337	id = x86_match_cpu(lpss_cpu_ids);
1338	if (id)
1339		lpss_quirks |= LPSS_QUIRK_ALWAYS_POWER_ON;
1340
1341	bus_register_notifier(&platform_bus_type, &acpi_lpss_nb);
1342	acpi_scan_add_handler(&lpss_handler);
1343}
1344
1345#else
1346
1347static struct acpi_scan_handler lpss_handler = {
1348	.ids = acpi_lpss_device_ids,
1349};
1350
1351void __init acpi_lpss_init(void)
1352{
1353	acpi_scan_add_handler(&lpss_handler);
1354}
1355
1356#endif /* CONFIG_X86_INTEL_LPSS */
1357