1/*
2 * Copyright (c) 2013, 2014 Kenneth MacKay. All rights reserved.
3 * Copyright (c) 2019 Vitaly Chikunov <vt@altlinux.org>
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met:
8 *  * Redistributions of source code must retain the above copyright
9 *   notice, this list of conditions and the following disclaimer.
10 *  * Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
15 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
16 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
17 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
18 * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
19 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
20 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
24 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 */
26
27#include <crypto/ecc_curve.h>
28#include <linux/module.h>
29#include <linux/random.h>
30#include <linux/slab.h>
31#include <linux/swab.h>
32#include <linux/fips.h>
33#include <crypto/ecdh.h>
34#include <crypto/rng.h>
35#include <crypto/internal/ecc.h>
36#include <asm/unaligned.h>
37#include <linux/ratelimit.h>
38
39#include "ecc_curve_defs.h"
40
41typedef struct {
42	u64 m_low;
43	u64 m_high;
44} uint128_t;
45
46/* Returns curv25519 curve param */
47const struct ecc_curve *ecc_get_curve25519(void)
48{
49	return &ecc_25519;
50}
51EXPORT_SYMBOL(ecc_get_curve25519);
52
53const struct ecc_curve *ecc_get_curve(unsigned int curve_id)
54{
55	switch (curve_id) {
56	/* In FIPS mode only allow P256 and higher */
57	case ECC_CURVE_NIST_P192:
58		return fips_enabled ? NULL : &nist_p192;
59	case ECC_CURVE_NIST_P256:
60		return &nist_p256;
61	case ECC_CURVE_NIST_P384:
62		return &nist_p384;
63	default:
64		return NULL;
65	}
66}
67EXPORT_SYMBOL(ecc_get_curve);
68
69static u64 *ecc_alloc_digits_space(unsigned int ndigits)
70{
71	size_t len = ndigits * sizeof(u64);
72
73	if (!len)
74		return NULL;
75
76	return kmalloc(len, GFP_KERNEL);
77}
78
79static void ecc_free_digits_space(u64 *space)
80{
81	kfree_sensitive(space);
82}
83
84struct ecc_point *ecc_alloc_point(unsigned int ndigits)
85{
86	struct ecc_point *p = kmalloc(sizeof(*p), GFP_KERNEL);
87
88	if (!p)
89		return NULL;
90
91	p->x = ecc_alloc_digits_space(ndigits);
92	if (!p->x)
93		goto err_alloc_x;
94
95	p->y = ecc_alloc_digits_space(ndigits);
96	if (!p->y)
97		goto err_alloc_y;
98
99	p->ndigits = ndigits;
100
101	return p;
102
103err_alloc_y:
104	ecc_free_digits_space(p->x);
105err_alloc_x:
106	kfree(p);
107	return NULL;
108}
109EXPORT_SYMBOL(ecc_alloc_point);
110
111void ecc_free_point(struct ecc_point *p)
112{
113	if (!p)
114		return;
115
116	kfree_sensitive(p->x);
117	kfree_sensitive(p->y);
118	kfree_sensitive(p);
119}
120EXPORT_SYMBOL(ecc_free_point);
121
122static void vli_clear(u64 *vli, unsigned int ndigits)
123{
124	int i;
125
126	for (i = 0; i < ndigits; i++)
127		vli[i] = 0;
128}
129
130/* Returns true if vli == 0, false otherwise. */
131bool vli_is_zero(const u64 *vli, unsigned int ndigits)
132{
133	int i;
134
135	for (i = 0; i < ndigits; i++) {
136		if (vli[i])
137			return false;
138	}
139
140	return true;
141}
142EXPORT_SYMBOL(vli_is_zero);
143
144/* Returns nonzero if bit of vli is set. */
145static u64 vli_test_bit(const u64 *vli, unsigned int bit)
146{
147	return (vli[bit / 64] & ((u64)1 << (bit % 64)));
148}
149
150static bool vli_is_negative(const u64 *vli, unsigned int ndigits)
151{
152	return vli_test_bit(vli, ndigits * 64 - 1);
153}
154
155/* Counts the number of 64-bit "digits" in vli. */
156static unsigned int vli_num_digits(const u64 *vli, unsigned int ndigits)
157{
158	int i;
159
160	/* Search from the end until we find a non-zero digit.
161	 * We do it in reverse because we expect that most digits will
162	 * be nonzero.
163	 */
164	for (i = ndigits - 1; i >= 0 && vli[i] == 0; i--);
165
166	return (i + 1);
167}
168
169/* Counts the number of bits required for vli. */
170unsigned int vli_num_bits(const u64 *vli, unsigned int ndigits)
171{
172	unsigned int i, num_digits;
173	u64 digit;
174
175	num_digits = vli_num_digits(vli, ndigits);
176	if (num_digits == 0)
177		return 0;
178
179	digit = vli[num_digits - 1];
180	for (i = 0; digit; i++)
181		digit >>= 1;
182
183	return ((num_digits - 1) * 64 + i);
184}
185EXPORT_SYMBOL(vli_num_bits);
186
187/* Set dest from unaligned bit string src. */
188void vli_from_be64(u64 *dest, const void *src, unsigned int ndigits)
189{
190	int i;
191	const u64 *from = src;
192
193	for (i = 0; i < ndigits; i++)
194		dest[i] = get_unaligned_be64(&from[ndigits - 1 - i]);
195}
196EXPORT_SYMBOL(vli_from_be64);
197
198void vli_from_le64(u64 *dest, const void *src, unsigned int ndigits)
199{
200	int i;
201	const u64 *from = src;
202
203	for (i = 0; i < ndigits; i++)
204		dest[i] = get_unaligned_le64(&from[i]);
205}
206EXPORT_SYMBOL(vli_from_le64);
207
208/* Sets dest = src. */
209static void vli_set(u64 *dest, const u64 *src, unsigned int ndigits)
210{
211	int i;
212
213	for (i = 0; i < ndigits; i++)
214		dest[i] = src[i];
215}
216
217/* Returns sign of left - right. */
218int vli_cmp(const u64 *left, const u64 *right, unsigned int ndigits)
219{
220	int i;
221
222	for (i = ndigits - 1; i >= 0; i--) {
223		if (left[i] > right[i])
224			return 1;
225		else if (left[i] < right[i])
226			return -1;
227	}
228
229	return 0;
230}
231EXPORT_SYMBOL(vli_cmp);
232
233/* Computes result = in << c, returning carry. Can modify in place
234 * (if result == in). 0 < shift < 64.
235 */
236static u64 vli_lshift(u64 *result, const u64 *in, unsigned int shift,
237		      unsigned int ndigits)
238{
239	u64 carry = 0;
240	int i;
241
242	for (i = 0; i < ndigits; i++) {
243		u64 temp = in[i];
244
245		result[i] = (temp << shift) | carry;
246		carry = temp >> (64 - shift);
247	}
248
249	return carry;
250}
251
252/* Computes vli = vli >> 1. */
253static void vli_rshift1(u64 *vli, unsigned int ndigits)
254{
255	u64 *end = vli;
256	u64 carry = 0;
257
258	vli += ndigits;
259
260	while (vli-- > end) {
261		u64 temp = *vli;
262		*vli = (temp >> 1) | carry;
263		carry = temp << 63;
264	}
265}
266
267/* Computes result = left + right, returning carry. Can modify in place. */
268static u64 vli_add(u64 *result, const u64 *left, const u64 *right,
269		   unsigned int ndigits)
270{
271	u64 carry = 0;
272	int i;
273
274	for (i = 0; i < ndigits; i++) {
275		u64 sum;
276
277		sum = left[i] + right[i] + carry;
278		if (sum != left[i])
279			carry = (sum < left[i]);
280
281		result[i] = sum;
282	}
283
284	return carry;
285}
286
287/* Computes result = left + right, returning carry. Can modify in place. */
288static u64 vli_uadd(u64 *result, const u64 *left, u64 right,
289		    unsigned int ndigits)
290{
291	u64 carry = right;
292	int i;
293
294	for (i = 0; i < ndigits; i++) {
295		u64 sum;
296
297		sum = left[i] + carry;
298		if (sum != left[i])
299			carry = (sum < left[i]);
300		else
301			carry = !!carry;
302
303		result[i] = sum;
304	}
305
306	return carry;
307}
308
309/* Computes result = left - right, returning borrow. Can modify in place. */
310u64 vli_sub(u64 *result, const u64 *left, const u64 *right,
311		   unsigned int ndigits)
312{
313	u64 borrow = 0;
314	int i;
315
316	for (i = 0; i < ndigits; i++) {
317		u64 diff;
318
319		diff = left[i] - right[i] - borrow;
320		if (diff != left[i])
321			borrow = (diff > left[i]);
322
323		result[i] = diff;
324	}
325
326	return borrow;
327}
328EXPORT_SYMBOL(vli_sub);
329
330/* Computes result = left - right, returning borrow. Can modify in place. */
331static u64 vli_usub(u64 *result, const u64 *left, u64 right,
332	     unsigned int ndigits)
333{
334	u64 borrow = right;
335	int i;
336
337	for (i = 0; i < ndigits; i++) {
338		u64 diff;
339
340		diff = left[i] - borrow;
341		if (diff != left[i])
342			borrow = (diff > left[i]);
343
344		result[i] = diff;
345	}
346
347	return borrow;
348}
349
350static uint128_t mul_64_64(u64 left, u64 right)
351{
352	uint128_t result;
353#if defined(CONFIG_ARCH_SUPPORTS_INT128)
354	unsigned __int128 m = (unsigned __int128)left * right;
355
356	result.m_low  = m;
357	result.m_high = m >> 64;
358#else
359	u64 a0 = left & 0xffffffffull;
360	u64 a1 = left >> 32;
361	u64 b0 = right & 0xffffffffull;
362	u64 b1 = right >> 32;
363	u64 m0 = a0 * b0;
364	u64 m1 = a0 * b1;
365	u64 m2 = a1 * b0;
366	u64 m3 = a1 * b1;
367
368	m2 += (m0 >> 32);
369	m2 += m1;
370
371	/* Overflow */
372	if (m2 < m1)
373		m3 += 0x100000000ull;
374
375	result.m_low = (m0 & 0xffffffffull) | (m2 << 32);
376	result.m_high = m3 + (m2 >> 32);
377#endif
378	return result;
379}
380
381static uint128_t add_128_128(uint128_t a, uint128_t b)
382{
383	uint128_t result;
384
385	result.m_low = a.m_low + b.m_low;
386	result.m_high = a.m_high + b.m_high + (result.m_low < a.m_low);
387
388	return result;
389}
390
391static void vli_mult(u64 *result, const u64 *left, const u64 *right,
392		     unsigned int ndigits)
393{
394	uint128_t r01 = { 0, 0 };
395	u64 r2 = 0;
396	unsigned int i, k;
397
398	/* Compute each digit of result in sequence, maintaining the
399	 * carries.
400	 */
401	for (k = 0; k < ndigits * 2 - 1; k++) {
402		unsigned int min;
403
404		if (k < ndigits)
405			min = 0;
406		else
407			min = (k + 1) - ndigits;
408
409		for (i = min; i <= k && i < ndigits; i++) {
410			uint128_t product;
411
412			product = mul_64_64(left[i], right[k - i]);
413
414			r01 = add_128_128(r01, product);
415			r2 += (r01.m_high < product.m_high);
416		}
417
418		result[k] = r01.m_low;
419		r01.m_low = r01.m_high;
420		r01.m_high = r2;
421		r2 = 0;
422	}
423
424	result[ndigits * 2 - 1] = r01.m_low;
425}
426
427/* Compute product = left * right, for a small right value. */
428static void vli_umult(u64 *result, const u64 *left, u32 right,
429		      unsigned int ndigits)
430{
431	uint128_t r01 = { 0 };
432	unsigned int k;
433
434	for (k = 0; k < ndigits; k++) {
435		uint128_t product;
436
437		product = mul_64_64(left[k], right);
438		r01 = add_128_128(r01, product);
439		/* no carry */
440		result[k] = r01.m_low;
441		r01.m_low = r01.m_high;
442		r01.m_high = 0;
443	}
444	result[k] = r01.m_low;
445	for (++k; k < ndigits * 2; k++)
446		result[k] = 0;
447}
448
449static void vli_square(u64 *result, const u64 *left, unsigned int ndigits)
450{
451	uint128_t r01 = { 0, 0 };
452	u64 r2 = 0;
453	int i, k;
454
455	for (k = 0; k < ndigits * 2 - 1; k++) {
456		unsigned int min;
457
458		if (k < ndigits)
459			min = 0;
460		else
461			min = (k + 1) - ndigits;
462
463		for (i = min; i <= k && i <= k - i; i++) {
464			uint128_t product;
465
466			product = mul_64_64(left[i], left[k - i]);
467
468			if (i < k - i) {
469				r2 += product.m_high >> 63;
470				product.m_high = (product.m_high << 1) |
471						 (product.m_low >> 63);
472				product.m_low <<= 1;
473			}
474
475			r01 = add_128_128(r01, product);
476			r2 += (r01.m_high < product.m_high);
477		}
478
479		result[k] = r01.m_low;
480		r01.m_low = r01.m_high;
481		r01.m_high = r2;
482		r2 = 0;
483	}
484
485	result[ndigits * 2 - 1] = r01.m_low;
486}
487
488/* Computes result = (left + right) % mod.
489 * Assumes that left < mod and right < mod, result != mod.
490 */
491static void vli_mod_add(u64 *result, const u64 *left, const u64 *right,
492			const u64 *mod, unsigned int ndigits)
493{
494	u64 carry;
495
496	carry = vli_add(result, left, right, ndigits);
497
498	/* result > mod (result = mod + remainder), so subtract mod to
499	 * get remainder.
500	 */
501	if (carry || vli_cmp(result, mod, ndigits) >= 0)
502		vli_sub(result, result, mod, ndigits);
503}
504
505/* Computes result = (left - right) % mod.
506 * Assumes that left < mod and right < mod, result != mod.
507 */
508static void vli_mod_sub(u64 *result, const u64 *left, const u64 *right,
509			const u64 *mod, unsigned int ndigits)
510{
511	u64 borrow = vli_sub(result, left, right, ndigits);
512
513	/* In this case, p_result == -diff == (max int) - diff.
514	 * Since -x % d == d - x, we can get the correct result from
515	 * result + mod (with overflow).
516	 */
517	if (borrow)
518		vli_add(result, result, mod, ndigits);
519}
520
521/*
522 * Computes result = product % mod
523 * for special form moduli: p = 2^k-c, for small c (note the minus sign)
524 *
525 * References:
526 * R. Crandall, C. Pomerance. Prime Numbers: A Computational Perspective.
527 * 9 Fast Algorithms for Large-Integer Arithmetic. 9.2.3 Moduli of special form
528 * Algorithm 9.2.13 (Fast mod operation for special-form moduli).
529 */
530static void vli_mmod_special(u64 *result, const u64 *product,
531			      const u64 *mod, unsigned int ndigits)
532{
533	u64 c = -mod[0];
534	u64 t[ECC_MAX_DIGITS * 2];
535	u64 r[ECC_MAX_DIGITS * 2];
536
537	vli_set(r, product, ndigits * 2);
538	while (!vli_is_zero(r + ndigits, ndigits)) {
539		vli_umult(t, r + ndigits, c, ndigits);
540		vli_clear(r + ndigits, ndigits);
541		vli_add(r, r, t, ndigits * 2);
542	}
543	vli_set(t, mod, ndigits);
544	vli_clear(t + ndigits, ndigits);
545	while (vli_cmp(r, t, ndigits * 2) >= 0)
546		vli_sub(r, r, t, ndigits * 2);
547	vli_set(result, r, ndigits);
548}
549
550/*
551 * Computes result = product % mod
552 * for special form moduli: p = 2^{k-1}+c, for small c (note the plus sign)
553 * where k-1 does not fit into qword boundary by -1 bit (such as 255).
554
555 * References (loosely based on):
556 * A. Menezes, P. van Oorschot, S. Vanstone. Handbook of Applied Cryptography.
557 * 14.3.4 Reduction methods for moduli of special form. Algorithm 14.47.
558 * URL: http://cacr.uwaterloo.ca/hac/about/chap14.pdf
559 *
560 * H. Cohen, G. Frey, R. Avanzi, C. Doche, T. Lange, K. Nguyen, F. Vercauteren.
561 * Handbook of Elliptic and Hyperelliptic Curve Cryptography.
562 * Algorithm 10.25 Fast reduction for special form moduli
563 */
564static void vli_mmod_special2(u64 *result, const u64 *product,
565			       const u64 *mod, unsigned int ndigits)
566{
567	u64 c2 = mod[0] * 2;
568	u64 q[ECC_MAX_DIGITS];
569	u64 r[ECC_MAX_DIGITS * 2];
570	u64 m[ECC_MAX_DIGITS * 2]; /* expanded mod */
571	int carry; /* last bit that doesn't fit into q */
572	int i;
573
574	vli_set(m, mod, ndigits);
575	vli_clear(m + ndigits, ndigits);
576
577	vli_set(r, product, ndigits);
578	/* q and carry are top bits */
579	vli_set(q, product + ndigits, ndigits);
580	vli_clear(r + ndigits, ndigits);
581	carry = vli_is_negative(r, ndigits);
582	if (carry)
583		r[ndigits - 1] &= (1ull << 63) - 1;
584	for (i = 1; carry || !vli_is_zero(q, ndigits); i++) {
585		u64 qc[ECC_MAX_DIGITS * 2];
586
587		vli_umult(qc, q, c2, ndigits);
588		if (carry)
589			vli_uadd(qc, qc, mod[0], ndigits * 2);
590		vli_set(q, qc + ndigits, ndigits);
591		vli_clear(qc + ndigits, ndigits);
592		carry = vli_is_negative(qc, ndigits);
593		if (carry)
594			qc[ndigits - 1] &= (1ull << 63) - 1;
595		if (i & 1)
596			vli_sub(r, r, qc, ndigits * 2);
597		else
598			vli_add(r, r, qc, ndigits * 2);
599	}
600	while (vli_is_negative(r, ndigits * 2))
601		vli_add(r, r, m, ndigits * 2);
602	while (vli_cmp(r, m, ndigits * 2) >= 0)
603		vli_sub(r, r, m, ndigits * 2);
604
605	vli_set(result, r, ndigits);
606}
607
608/*
609 * Computes result = product % mod, where product is 2N words long.
610 * Reference: Ken MacKay's micro-ecc.
611 * Currently only designed to work for curve_p or curve_n.
612 */
613static void vli_mmod_slow(u64 *result, u64 *product, const u64 *mod,
614			  unsigned int ndigits)
615{
616	u64 mod_m[2 * ECC_MAX_DIGITS];
617	u64 tmp[2 * ECC_MAX_DIGITS];
618	u64 *v[2] = { tmp, product };
619	u64 carry = 0;
620	unsigned int i;
621	/* Shift mod so its highest set bit is at the maximum position. */
622	int shift = (ndigits * 2 * 64) - vli_num_bits(mod, ndigits);
623	int word_shift = shift / 64;
624	int bit_shift = shift % 64;
625
626	vli_clear(mod_m, word_shift);
627	if (bit_shift > 0) {
628		for (i = 0; i < ndigits; ++i) {
629			mod_m[word_shift + i] = (mod[i] << bit_shift) | carry;
630			carry = mod[i] >> (64 - bit_shift);
631		}
632	} else
633		vli_set(mod_m + word_shift, mod, ndigits);
634
635	for (i = 1; shift >= 0; --shift) {
636		u64 borrow = 0;
637		unsigned int j;
638
639		for (j = 0; j < ndigits * 2; ++j) {
640			u64 diff = v[i][j] - mod_m[j] - borrow;
641
642			if (diff != v[i][j])
643				borrow = (diff > v[i][j]);
644			v[1 - i][j] = diff;
645		}
646		i = !(i ^ borrow); /* Swap the index if there was no borrow */
647		vli_rshift1(mod_m, ndigits);
648		mod_m[ndigits - 1] |= mod_m[ndigits] << (64 - 1);
649		vli_rshift1(mod_m + ndigits, ndigits);
650	}
651	vli_set(result, v[i], ndigits);
652}
653
654/* Computes result = product % mod using Barrett's reduction with precomputed
655 * value mu appended to the mod after ndigits, mu = (2^{2w} / mod) and have
656 * length ndigits + 1, where mu * (2^w - 1) should not overflow ndigits
657 * boundary.
658 *
659 * Reference:
660 * R. Brent, P. Zimmermann. Modern Computer Arithmetic. 2010.
661 * 2.4.1 Barrett's algorithm. Algorithm 2.5.
662 */
663static void vli_mmod_barrett(u64 *result, u64 *product, const u64 *mod,
664			     unsigned int ndigits)
665{
666	u64 q[ECC_MAX_DIGITS * 2];
667	u64 r[ECC_MAX_DIGITS * 2];
668	const u64 *mu = mod + ndigits;
669
670	vli_mult(q, product + ndigits, mu, ndigits);
671	if (mu[ndigits])
672		vli_add(q + ndigits, q + ndigits, product + ndigits, ndigits);
673	vli_mult(r, mod, q + ndigits, ndigits);
674	vli_sub(r, product, r, ndigits * 2);
675	while (!vli_is_zero(r + ndigits, ndigits) ||
676	       vli_cmp(r, mod, ndigits) != -1) {
677		u64 carry;
678
679		carry = vli_sub(r, r, mod, ndigits);
680		vli_usub(r + ndigits, r + ndigits, carry, ndigits);
681	}
682	vli_set(result, r, ndigits);
683}
684
685/* Computes p_result = p_product % curve_p.
686 * See algorithm 5 and 6 from
687 * http://www.isys.uni-klu.ac.at/PDF/2001-0126-MT.pdf
688 */
689static void vli_mmod_fast_192(u64 *result, const u64 *product,
690			      const u64 *curve_prime, u64 *tmp)
691{
692	const unsigned int ndigits = 3;
693	int carry;
694
695	vli_set(result, product, ndigits);
696
697	vli_set(tmp, &product[3], ndigits);
698	carry = vli_add(result, result, tmp, ndigits);
699
700	tmp[0] = 0;
701	tmp[1] = product[3];
702	tmp[2] = product[4];
703	carry += vli_add(result, result, tmp, ndigits);
704
705	tmp[0] = tmp[1] = product[5];
706	tmp[2] = 0;
707	carry += vli_add(result, result, tmp, ndigits);
708
709	while (carry || vli_cmp(curve_prime, result, ndigits) != 1)
710		carry -= vli_sub(result, result, curve_prime, ndigits);
711}
712
713/* Computes result = product % curve_prime
714 * from http://www.nsa.gov/ia/_files/nist-routines.pdf
715 */
716static void vli_mmod_fast_256(u64 *result, const u64 *product,
717			      const u64 *curve_prime, u64 *tmp)
718{
719	int carry;
720	const unsigned int ndigits = 4;
721
722	/* t */
723	vli_set(result, product, ndigits);
724
725	/* s1 */
726	tmp[0] = 0;
727	tmp[1] = product[5] & 0xffffffff00000000ull;
728	tmp[2] = product[6];
729	tmp[3] = product[7];
730	carry = vli_lshift(tmp, tmp, 1, ndigits);
731	carry += vli_add(result, result, tmp, ndigits);
732
733	/* s2 */
734	tmp[1] = product[6] << 32;
735	tmp[2] = (product[6] >> 32) | (product[7] << 32);
736	tmp[3] = product[7] >> 32;
737	carry += vli_lshift(tmp, tmp, 1, ndigits);
738	carry += vli_add(result, result, tmp, ndigits);
739
740	/* s3 */
741	tmp[0] = product[4];
742	tmp[1] = product[5] & 0xffffffff;
743	tmp[2] = 0;
744	tmp[3] = product[7];
745	carry += vli_add(result, result, tmp, ndigits);
746
747	/* s4 */
748	tmp[0] = (product[4] >> 32) | (product[5] << 32);
749	tmp[1] = (product[5] >> 32) | (product[6] & 0xffffffff00000000ull);
750	tmp[2] = product[7];
751	tmp[3] = (product[6] >> 32) | (product[4] << 32);
752	carry += vli_add(result, result, tmp, ndigits);
753
754	/* d1 */
755	tmp[0] = (product[5] >> 32) | (product[6] << 32);
756	tmp[1] = (product[6] >> 32);
757	tmp[2] = 0;
758	tmp[3] = (product[4] & 0xffffffff) | (product[5] << 32);
759	carry -= vli_sub(result, result, tmp, ndigits);
760
761	/* d2 */
762	tmp[0] = product[6];
763	tmp[1] = product[7];
764	tmp[2] = 0;
765	tmp[3] = (product[4] >> 32) | (product[5] & 0xffffffff00000000ull);
766	carry -= vli_sub(result, result, tmp, ndigits);
767
768	/* d3 */
769	tmp[0] = (product[6] >> 32) | (product[7] << 32);
770	tmp[1] = (product[7] >> 32) | (product[4] << 32);
771	tmp[2] = (product[4] >> 32) | (product[5] << 32);
772	tmp[3] = (product[6] << 32);
773	carry -= vli_sub(result, result, tmp, ndigits);
774
775	/* d4 */
776	tmp[0] = product[7];
777	tmp[1] = product[4] & 0xffffffff00000000ull;
778	tmp[2] = product[5];
779	tmp[3] = product[6] & 0xffffffff00000000ull;
780	carry -= vli_sub(result, result, tmp, ndigits);
781
782	if (carry < 0) {
783		do {
784			carry += vli_add(result, result, curve_prime, ndigits);
785		} while (carry < 0);
786	} else {
787		while (carry || vli_cmp(curve_prime, result, ndigits) != 1)
788			carry -= vli_sub(result, result, curve_prime, ndigits);
789	}
790}
791
792#define SL32OR32(x32, y32) (((u64)x32 << 32) | y32)
793#define AND64H(x64)  (x64 & 0xffFFffFF00000000ull)
794#define AND64L(x64)  (x64 & 0x00000000ffFFffFFull)
795
796/* Computes result = product % curve_prime
797 * from "Mathematical routines for the NIST prime elliptic curves"
798 */
799static void vli_mmod_fast_384(u64 *result, const u64 *product,
800				const u64 *curve_prime, u64 *tmp)
801{
802	int carry;
803	const unsigned int ndigits = 6;
804
805	/* t */
806	vli_set(result, product, ndigits);
807
808	/* s1 */
809	tmp[0] = 0;		// 0 || 0
810	tmp[1] = 0;		// 0 || 0
811	tmp[2] = SL32OR32(product[11], (product[10]>>32));	//a22||a21
812	tmp[3] = product[11]>>32;	// 0 ||a23
813	tmp[4] = 0;		// 0 || 0
814	tmp[5] = 0;		// 0 || 0
815	carry = vli_lshift(tmp, tmp, 1, ndigits);
816	carry += vli_add(result, result, tmp, ndigits);
817
818	/* s2 */
819	tmp[0] = product[6];	//a13||a12
820	tmp[1] = product[7];	//a15||a14
821	tmp[2] = product[8];	//a17||a16
822	tmp[3] = product[9];	//a19||a18
823	tmp[4] = product[10];	//a21||a20
824	tmp[5] = product[11];	//a23||a22
825	carry += vli_add(result, result, tmp, ndigits);
826
827	/* s3 */
828	tmp[0] = SL32OR32(product[11], (product[10]>>32));	//a22||a21
829	tmp[1] = SL32OR32(product[6], (product[11]>>32));	//a12||a23
830	tmp[2] = SL32OR32(product[7], (product[6])>>32);	//a14||a13
831	tmp[3] = SL32OR32(product[8], (product[7]>>32));	//a16||a15
832	tmp[4] = SL32OR32(product[9], (product[8]>>32));	//a18||a17
833	tmp[5] = SL32OR32(product[10], (product[9]>>32));	//a20||a19
834	carry += vli_add(result, result, tmp, ndigits);
835
836	/* s4 */
837	tmp[0] = AND64H(product[11]);	//a23|| 0
838	tmp[1] = (product[10]<<32);	//a20|| 0
839	tmp[2] = product[6];	//a13||a12
840	tmp[3] = product[7];	//a15||a14
841	tmp[4] = product[8];	//a17||a16
842	tmp[5] = product[9];	//a19||a18
843	carry += vli_add(result, result, tmp, ndigits);
844
845	/* s5 */
846	tmp[0] = 0;		//  0|| 0
847	tmp[1] = 0;		//  0|| 0
848	tmp[2] = product[10];	//a21||a20
849	tmp[3] = product[11];	//a23||a22
850	tmp[4] = 0;		//  0|| 0
851	tmp[5] = 0;		//  0|| 0
852	carry += vli_add(result, result, tmp, ndigits);
853
854	/* s6 */
855	tmp[0] = AND64L(product[10]);	// 0 ||a20
856	tmp[1] = AND64H(product[10]);	//a21|| 0
857	tmp[2] = product[11];	//a23||a22
858	tmp[3] = 0;		// 0 || 0
859	tmp[4] = 0;		// 0 || 0
860	tmp[5] = 0;		// 0 || 0
861	carry += vli_add(result, result, tmp, ndigits);
862
863	/* d1 */
864	tmp[0] = SL32OR32(product[6], (product[11]>>32));	//a12||a23
865	tmp[1] = SL32OR32(product[7], (product[6]>>32));	//a14||a13
866	tmp[2] = SL32OR32(product[8], (product[7]>>32));	//a16||a15
867	tmp[3] = SL32OR32(product[9], (product[8]>>32));	//a18||a17
868	tmp[4] = SL32OR32(product[10], (product[9]>>32));	//a20||a19
869	tmp[5] = SL32OR32(product[11], (product[10]>>32));	//a22||a21
870	carry -= vli_sub(result, result, tmp, ndigits);
871
872	/* d2 */
873	tmp[0] = (product[10]<<32);	//a20|| 0
874	tmp[1] = SL32OR32(product[11], (product[10]>>32));	//a22||a21
875	tmp[2] = (product[11]>>32);	// 0 ||a23
876	tmp[3] = 0;		// 0 || 0
877	tmp[4] = 0;		// 0 || 0
878	tmp[5] = 0;		// 0 || 0
879	carry -= vli_sub(result, result, tmp, ndigits);
880
881	/* d3 */
882	tmp[0] = 0;		// 0 || 0
883	tmp[1] = AND64H(product[11]);	//a23|| 0
884	tmp[2] = product[11]>>32;	// 0 ||a23
885	tmp[3] = 0;		// 0 || 0
886	tmp[4] = 0;		// 0 || 0
887	tmp[5] = 0;		// 0 || 0
888	carry -= vli_sub(result, result, tmp, ndigits);
889
890	if (carry < 0) {
891		do {
892			carry += vli_add(result, result, curve_prime, ndigits);
893		} while (carry < 0);
894	} else {
895		while (carry || vli_cmp(curve_prime, result, ndigits) != 1)
896			carry -= vli_sub(result, result, curve_prime, ndigits);
897	}
898
899}
900
901#undef SL32OR32
902#undef AND64H
903#undef AND64L
904
905/* Computes result = product % curve_prime for different curve_primes.
906 *
907 * Note that curve_primes are distinguished just by heuristic check and
908 * not by complete conformance check.
909 */
910static bool vli_mmod_fast(u64 *result, u64 *product,
911			  const struct ecc_curve *curve)
912{
913	u64 tmp[2 * ECC_MAX_DIGITS];
914	const u64 *curve_prime = curve->p;
915	const unsigned int ndigits = curve->g.ndigits;
916
917	/* All NIST curves have name prefix 'nist_' */
918	if (strncmp(curve->name, "nist_", 5) != 0) {
919		/* Try to handle Pseudo-Marsenne primes. */
920		if (curve_prime[ndigits - 1] == -1ull) {
921			vli_mmod_special(result, product, curve_prime,
922					 ndigits);
923			return true;
924		} else if (curve_prime[ndigits - 1] == 1ull << 63 &&
925			   curve_prime[ndigits - 2] == 0) {
926			vli_mmod_special2(result, product, curve_prime,
927					  ndigits);
928			return true;
929		}
930		vli_mmod_barrett(result, product, curve_prime, ndigits);
931		return true;
932	}
933
934	switch (ndigits) {
935	case 3:
936		vli_mmod_fast_192(result, product, curve_prime, tmp);
937		break;
938	case 4:
939		vli_mmod_fast_256(result, product, curve_prime, tmp);
940		break;
941	case 6:
942		vli_mmod_fast_384(result, product, curve_prime, tmp);
943		break;
944	default:
945		pr_err_ratelimited("ecc: unsupported digits size!\n");
946		return false;
947	}
948
949	return true;
950}
951
952/* Computes result = (left * right) % mod.
953 * Assumes that mod is big enough curve order.
954 */
955void vli_mod_mult_slow(u64 *result, const u64 *left, const u64 *right,
956		       const u64 *mod, unsigned int ndigits)
957{
958	u64 product[ECC_MAX_DIGITS * 2];
959
960	vli_mult(product, left, right, ndigits);
961	vli_mmod_slow(result, product, mod, ndigits);
962}
963EXPORT_SYMBOL(vli_mod_mult_slow);
964
965/* Computes result = (left * right) % curve_prime. */
966static void vli_mod_mult_fast(u64 *result, const u64 *left, const u64 *right,
967			      const struct ecc_curve *curve)
968{
969	u64 product[2 * ECC_MAX_DIGITS];
970
971	vli_mult(product, left, right, curve->g.ndigits);
972	vli_mmod_fast(result, product, curve);
973}
974
975/* Computes result = left^2 % curve_prime. */
976static void vli_mod_square_fast(u64 *result, const u64 *left,
977				const struct ecc_curve *curve)
978{
979	u64 product[2 * ECC_MAX_DIGITS];
980
981	vli_square(product, left, curve->g.ndigits);
982	vli_mmod_fast(result, product, curve);
983}
984
985#define EVEN(vli) (!(vli[0] & 1))
986/* Computes result = (1 / p_input) % mod. All VLIs are the same size.
987 * See "From Euclid's GCD to Montgomery Multiplication to the Great Divide"
988 * https://labs.oracle.com/techrep/2001/smli_tr-2001-95.pdf
989 */
990void vli_mod_inv(u64 *result, const u64 *input, const u64 *mod,
991			unsigned int ndigits)
992{
993	u64 a[ECC_MAX_DIGITS], b[ECC_MAX_DIGITS];
994	u64 u[ECC_MAX_DIGITS], v[ECC_MAX_DIGITS];
995	u64 carry;
996	int cmp_result;
997
998	if (vli_is_zero(input, ndigits)) {
999		vli_clear(result, ndigits);
1000		return;
1001	}
1002
1003	vli_set(a, input, ndigits);
1004	vli_set(b, mod, ndigits);
1005	vli_clear(u, ndigits);
1006	u[0] = 1;
1007	vli_clear(v, ndigits);
1008
1009	while ((cmp_result = vli_cmp(a, b, ndigits)) != 0) {
1010		carry = 0;
1011
1012		if (EVEN(a)) {
1013			vli_rshift1(a, ndigits);
1014
1015			if (!EVEN(u))
1016				carry = vli_add(u, u, mod, ndigits);
1017
1018			vli_rshift1(u, ndigits);
1019			if (carry)
1020				u[ndigits - 1] |= 0x8000000000000000ull;
1021		} else if (EVEN(b)) {
1022			vli_rshift1(b, ndigits);
1023
1024			if (!EVEN(v))
1025				carry = vli_add(v, v, mod, ndigits);
1026
1027			vli_rshift1(v, ndigits);
1028			if (carry)
1029				v[ndigits - 1] |= 0x8000000000000000ull;
1030		} else if (cmp_result > 0) {
1031			vli_sub(a, a, b, ndigits);
1032			vli_rshift1(a, ndigits);
1033
1034			if (vli_cmp(u, v, ndigits) < 0)
1035				vli_add(u, u, mod, ndigits);
1036
1037			vli_sub(u, u, v, ndigits);
1038			if (!EVEN(u))
1039				carry = vli_add(u, u, mod, ndigits);
1040
1041			vli_rshift1(u, ndigits);
1042			if (carry)
1043				u[ndigits - 1] |= 0x8000000000000000ull;
1044		} else {
1045			vli_sub(b, b, a, ndigits);
1046			vli_rshift1(b, ndigits);
1047
1048			if (vli_cmp(v, u, ndigits) < 0)
1049				vli_add(v, v, mod, ndigits);
1050
1051			vli_sub(v, v, u, ndigits);
1052			if (!EVEN(v))
1053				carry = vli_add(v, v, mod, ndigits);
1054
1055			vli_rshift1(v, ndigits);
1056			if (carry)
1057				v[ndigits - 1] |= 0x8000000000000000ull;
1058		}
1059	}
1060
1061	vli_set(result, u, ndigits);
1062}
1063EXPORT_SYMBOL(vli_mod_inv);
1064
1065/* ------ Point operations ------ */
1066
1067/* Returns true if p_point is the point at infinity, false otherwise. */
1068bool ecc_point_is_zero(const struct ecc_point *point)
1069{
1070	return (vli_is_zero(point->x, point->ndigits) &&
1071		vli_is_zero(point->y, point->ndigits));
1072}
1073EXPORT_SYMBOL(ecc_point_is_zero);
1074
1075/* Point multiplication algorithm using Montgomery's ladder with co-Z
1076 * coordinates. From https://eprint.iacr.org/2011/338.pdf
1077 */
1078
1079/* Double in place */
1080static void ecc_point_double_jacobian(u64 *x1, u64 *y1, u64 *z1,
1081					const struct ecc_curve *curve)
1082{
1083	/* t1 = x, t2 = y, t3 = z */
1084	u64 t4[ECC_MAX_DIGITS];
1085	u64 t5[ECC_MAX_DIGITS];
1086	const u64 *curve_prime = curve->p;
1087	const unsigned int ndigits = curve->g.ndigits;
1088
1089	if (vli_is_zero(z1, ndigits))
1090		return;
1091
1092	/* t4 = y1^2 */
1093	vli_mod_square_fast(t4, y1, curve);
1094	/* t5 = x1*y1^2 = A */
1095	vli_mod_mult_fast(t5, x1, t4, curve);
1096	/* t4 = y1^4 */
1097	vli_mod_square_fast(t4, t4, curve);
1098	/* t2 = y1*z1 = z3 */
1099	vli_mod_mult_fast(y1, y1, z1, curve);
1100	/* t3 = z1^2 */
1101	vli_mod_square_fast(z1, z1, curve);
1102
1103	/* t1 = x1 + z1^2 */
1104	vli_mod_add(x1, x1, z1, curve_prime, ndigits);
1105	/* t3 = 2*z1^2 */
1106	vli_mod_add(z1, z1, z1, curve_prime, ndigits);
1107	/* t3 = x1 - z1^2 */
1108	vli_mod_sub(z1, x1, z1, curve_prime, ndigits);
1109	/* t1 = x1^2 - z1^4 */
1110	vli_mod_mult_fast(x1, x1, z1, curve);
1111
1112	/* t3 = 2*(x1^2 - z1^4) */
1113	vli_mod_add(z1, x1, x1, curve_prime, ndigits);
1114	/* t1 = 3*(x1^2 - z1^4) */
1115	vli_mod_add(x1, x1, z1, curve_prime, ndigits);
1116	if (vli_test_bit(x1, 0)) {
1117		u64 carry = vli_add(x1, x1, curve_prime, ndigits);
1118
1119		vli_rshift1(x1, ndigits);
1120		x1[ndigits - 1] |= carry << 63;
1121	} else {
1122		vli_rshift1(x1, ndigits);
1123	}
1124	/* t1 = 3/2*(x1^2 - z1^4) = B */
1125
1126	/* t3 = B^2 */
1127	vli_mod_square_fast(z1, x1, curve);
1128	/* t3 = B^2 - A */
1129	vli_mod_sub(z1, z1, t5, curve_prime, ndigits);
1130	/* t3 = B^2 - 2A = x3 */
1131	vli_mod_sub(z1, z1, t5, curve_prime, ndigits);
1132	/* t5 = A - x3 */
1133	vli_mod_sub(t5, t5, z1, curve_prime, ndigits);
1134	/* t1 = B * (A - x3) */
1135	vli_mod_mult_fast(x1, x1, t5, curve);
1136	/* t4 = B * (A - x3) - y1^4 = y3 */
1137	vli_mod_sub(t4, x1, t4, curve_prime, ndigits);
1138
1139	vli_set(x1, z1, ndigits);
1140	vli_set(z1, y1, ndigits);
1141	vli_set(y1, t4, ndigits);
1142}
1143
1144/* Modify (x1, y1) => (x1 * z^2, y1 * z^3) */
1145static void apply_z(u64 *x1, u64 *y1, u64 *z, const struct ecc_curve *curve)
1146{
1147	u64 t1[ECC_MAX_DIGITS];
1148
1149	vli_mod_square_fast(t1, z, curve);		/* z^2 */
1150	vli_mod_mult_fast(x1, x1, t1, curve);	/* x1 * z^2 */
1151	vli_mod_mult_fast(t1, t1, z, curve);	/* z^3 */
1152	vli_mod_mult_fast(y1, y1, t1, curve);	/* y1 * z^3 */
1153}
1154
1155/* P = (x1, y1) => 2P, (x2, y2) => P' */
1156static void xycz_initial_double(u64 *x1, u64 *y1, u64 *x2, u64 *y2,
1157				u64 *p_initial_z, const struct ecc_curve *curve)
1158{
1159	u64 z[ECC_MAX_DIGITS];
1160	const unsigned int ndigits = curve->g.ndigits;
1161
1162	vli_set(x2, x1, ndigits);
1163	vli_set(y2, y1, ndigits);
1164
1165	vli_clear(z, ndigits);
1166	z[0] = 1;
1167
1168	if (p_initial_z)
1169		vli_set(z, p_initial_z, ndigits);
1170
1171	apply_z(x1, y1, z, curve);
1172
1173	ecc_point_double_jacobian(x1, y1, z, curve);
1174
1175	apply_z(x2, y2, z, curve);
1176}
1177
1178/* Input P = (x1, y1, Z), Q = (x2, y2, Z)
1179 * Output P' = (x1', y1', Z3), P + Q = (x3, y3, Z3)
1180 * or P => P', Q => P + Q
1181 */
1182static void xycz_add(u64 *x1, u64 *y1, u64 *x2, u64 *y2,
1183			const struct ecc_curve *curve)
1184{
1185	/* t1 = X1, t2 = Y1, t3 = X2, t4 = Y2 */
1186	u64 t5[ECC_MAX_DIGITS];
1187	const u64 *curve_prime = curve->p;
1188	const unsigned int ndigits = curve->g.ndigits;
1189
1190	/* t5 = x2 - x1 */
1191	vli_mod_sub(t5, x2, x1, curve_prime, ndigits);
1192	/* t5 = (x2 - x1)^2 = A */
1193	vli_mod_square_fast(t5, t5, curve);
1194	/* t1 = x1*A = B */
1195	vli_mod_mult_fast(x1, x1, t5, curve);
1196	/* t3 = x2*A = C */
1197	vli_mod_mult_fast(x2, x2, t5, curve);
1198	/* t4 = y2 - y1 */
1199	vli_mod_sub(y2, y2, y1, curve_prime, ndigits);
1200	/* t5 = (y2 - y1)^2 = D */
1201	vli_mod_square_fast(t5, y2, curve);
1202
1203	/* t5 = D - B */
1204	vli_mod_sub(t5, t5, x1, curve_prime, ndigits);
1205	/* t5 = D - B - C = x3 */
1206	vli_mod_sub(t5, t5, x2, curve_prime, ndigits);
1207	/* t3 = C - B */
1208	vli_mod_sub(x2, x2, x1, curve_prime, ndigits);
1209	/* t2 = y1*(C - B) */
1210	vli_mod_mult_fast(y1, y1, x2, curve);
1211	/* t3 = B - x3 */
1212	vli_mod_sub(x2, x1, t5, curve_prime, ndigits);
1213	/* t4 = (y2 - y1)*(B - x3) */
1214	vli_mod_mult_fast(y2, y2, x2, curve);
1215	/* t4 = y3 */
1216	vli_mod_sub(y2, y2, y1, curve_prime, ndigits);
1217
1218	vli_set(x2, t5, ndigits);
1219}
1220
1221/* Input P = (x1, y1, Z), Q = (x2, y2, Z)
1222 * Output P + Q = (x3, y3, Z3), P - Q = (x3', y3', Z3)
1223 * or P => P - Q, Q => P + Q
1224 */
1225static void xycz_add_c(u64 *x1, u64 *y1, u64 *x2, u64 *y2,
1226			const struct ecc_curve *curve)
1227{
1228	/* t1 = X1, t2 = Y1, t3 = X2, t4 = Y2 */
1229	u64 t5[ECC_MAX_DIGITS];
1230	u64 t6[ECC_MAX_DIGITS];
1231	u64 t7[ECC_MAX_DIGITS];
1232	const u64 *curve_prime = curve->p;
1233	const unsigned int ndigits = curve->g.ndigits;
1234
1235	/* t5 = x2 - x1 */
1236	vli_mod_sub(t5, x2, x1, curve_prime, ndigits);
1237	/* t5 = (x2 - x1)^2 = A */
1238	vli_mod_square_fast(t5, t5, curve);
1239	/* t1 = x1*A = B */
1240	vli_mod_mult_fast(x1, x1, t5, curve);
1241	/* t3 = x2*A = C */
1242	vli_mod_mult_fast(x2, x2, t5, curve);
1243	/* t4 = y2 + y1 */
1244	vli_mod_add(t5, y2, y1, curve_prime, ndigits);
1245	/* t4 = y2 - y1 */
1246	vli_mod_sub(y2, y2, y1, curve_prime, ndigits);
1247
1248	/* t6 = C - B */
1249	vli_mod_sub(t6, x2, x1, curve_prime, ndigits);
1250	/* t2 = y1 * (C - B) */
1251	vli_mod_mult_fast(y1, y1, t6, curve);
1252	/* t6 = B + C */
1253	vli_mod_add(t6, x1, x2, curve_prime, ndigits);
1254	/* t3 = (y2 - y1)^2 */
1255	vli_mod_square_fast(x2, y2, curve);
1256	/* t3 = x3 */
1257	vli_mod_sub(x2, x2, t6, curve_prime, ndigits);
1258
1259	/* t7 = B - x3 */
1260	vli_mod_sub(t7, x1, x2, curve_prime, ndigits);
1261	/* t4 = (y2 - y1)*(B - x3) */
1262	vli_mod_mult_fast(y2, y2, t7, curve);
1263	/* t4 = y3 */
1264	vli_mod_sub(y2, y2, y1, curve_prime, ndigits);
1265
1266	/* t7 = (y2 + y1)^2 = F */
1267	vli_mod_square_fast(t7, t5, curve);
1268	/* t7 = x3' */
1269	vli_mod_sub(t7, t7, t6, curve_prime, ndigits);
1270	/* t6 = x3' - B */
1271	vli_mod_sub(t6, t7, x1, curve_prime, ndigits);
1272	/* t6 = (y2 + y1)*(x3' - B) */
1273	vli_mod_mult_fast(t6, t6, t5, curve);
1274	/* t2 = y3' */
1275	vli_mod_sub(y1, t6, y1, curve_prime, ndigits);
1276
1277	vli_set(x1, t7, ndigits);
1278}
1279
1280static void ecc_point_mult(struct ecc_point *result,
1281			   const struct ecc_point *point, const u64 *scalar,
1282			   u64 *initial_z, const struct ecc_curve *curve,
1283			   unsigned int ndigits)
1284{
1285	/* R0 and R1 */
1286	u64 rx[2][ECC_MAX_DIGITS];
1287	u64 ry[2][ECC_MAX_DIGITS];
1288	u64 z[ECC_MAX_DIGITS];
1289	u64 sk[2][ECC_MAX_DIGITS];
1290	u64 *curve_prime = curve->p;
1291	int i, nb;
1292	int num_bits;
1293	int carry;
1294
1295	carry = vli_add(sk[0], scalar, curve->n, ndigits);
1296	vli_add(sk[1], sk[0], curve->n, ndigits);
1297	scalar = sk[!carry];
1298	num_bits = sizeof(u64) * ndigits * 8 + 1;
1299
1300	vli_set(rx[1], point->x, ndigits);
1301	vli_set(ry[1], point->y, ndigits);
1302
1303	xycz_initial_double(rx[1], ry[1], rx[0], ry[0], initial_z, curve);
1304
1305	for (i = num_bits - 2; i > 0; i--) {
1306		nb = !vli_test_bit(scalar, i);
1307		xycz_add_c(rx[1 - nb], ry[1 - nb], rx[nb], ry[nb], curve);
1308		xycz_add(rx[nb], ry[nb], rx[1 - nb], ry[1 - nb], curve);
1309	}
1310
1311	nb = !vli_test_bit(scalar, 0);
1312	xycz_add_c(rx[1 - nb], ry[1 - nb], rx[nb], ry[nb], curve);
1313
1314	/* Find final 1/Z value. */
1315	/* X1 - X0 */
1316	vli_mod_sub(z, rx[1], rx[0], curve_prime, ndigits);
1317	/* Yb * (X1 - X0) */
1318	vli_mod_mult_fast(z, z, ry[1 - nb], curve);
1319	/* xP * Yb * (X1 - X0) */
1320	vli_mod_mult_fast(z, z, point->x, curve);
1321
1322	/* 1 / (xP * Yb * (X1 - X0)) */
1323	vli_mod_inv(z, z, curve_prime, point->ndigits);
1324
1325	/* yP / (xP * Yb * (X1 - X0)) */
1326	vli_mod_mult_fast(z, z, point->y, curve);
1327	/* Xb * yP / (xP * Yb * (X1 - X0)) */
1328	vli_mod_mult_fast(z, z, rx[1 - nb], curve);
1329	/* End 1/Z calculation */
1330
1331	xycz_add(rx[nb], ry[nb], rx[1 - nb], ry[1 - nb], curve);
1332
1333	apply_z(rx[0], ry[0], z, curve);
1334
1335	vli_set(result->x, rx[0], ndigits);
1336	vli_set(result->y, ry[0], ndigits);
1337}
1338
1339/* Computes R = P + Q mod p */
1340static void ecc_point_add(const struct ecc_point *result,
1341		   const struct ecc_point *p, const struct ecc_point *q,
1342		   const struct ecc_curve *curve)
1343{
1344	u64 z[ECC_MAX_DIGITS];
1345	u64 px[ECC_MAX_DIGITS];
1346	u64 py[ECC_MAX_DIGITS];
1347	unsigned int ndigits = curve->g.ndigits;
1348
1349	vli_set(result->x, q->x, ndigits);
1350	vli_set(result->y, q->y, ndigits);
1351	vli_mod_sub(z, result->x, p->x, curve->p, ndigits);
1352	vli_set(px, p->x, ndigits);
1353	vli_set(py, p->y, ndigits);
1354	xycz_add(px, py, result->x, result->y, curve);
1355	vli_mod_inv(z, z, curve->p, ndigits);
1356	apply_z(result->x, result->y, z, curve);
1357}
1358
1359/* Computes R = u1P + u2Q mod p using Shamir's trick.
1360 * Based on: Kenneth MacKay's micro-ecc (2014).
1361 */
1362void ecc_point_mult_shamir(const struct ecc_point *result,
1363			   const u64 *u1, const struct ecc_point *p,
1364			   const u64 *u2, const struct ecc_point *q,
1365			   const struct ecc_curve *curve)
1366{
1367	u64 z[ECC_MAX_DIGITS];
1368	u64 sump[2][ECC_MAX_DIGITS];
1369	u64 *rx = result->x;
1370	u64 *ry = result->y;
1371	unsigned int ndigits = curve->g.ndigits;
1372	unsigned int num_bits;
1373	struct ecc_point sum = ECC_POINT_INIT(sump[0], sump[1], ndigits);
1374	const struct ecc_point *points[4];
1375	const struct ecc_point *point;
1376	unsigned int idx;
1377	int i;
1378
1379	ecc_point_add(&sum, p, q, curve);
1380	points[0] = NULL;
1381	points[1] = p;
1382	points[2] = q;
1383	points[3] = &sum;
1384
1385	num_bits = max(vli_num_bits(u1, ndigits), vli_num_bits(u2, ndigits));
1386	i = num_bits - 1;
1387	idx = !!vli_test_bit(u1, i);
1388	idx |= (!!vli_test_bit(u2, i)) << 1;
1389	point = points[idx];
1390
1391	vli_set(rx, point->x, ndigits);
1392	vli_set(ry, point->y, ndigits);
1393	vli_clear(z + 1, ndigits - 1);
1394	z[0] = 1;
1395
1396	for (--i; i >= 0; i--) {
1397		ecc_point_double_jacobian(rx, ry, z, curve);
1398		idx = !!vli_test_bit(u1, i);
1399		idx |= (!!vli_test_bit(u2, i)) << 1;
1400		point = points[idx];
1401		if (point) {
1402			u64 tx[ECC_MAX_DIGITS];
1403			u64 ty[ECC_MAX_DIGITS];
1404			u64 tz[ECC_MAX_DIGITS];
1405
1406			vli_set(tx, point->x, ndigits);
1407			vli_set(ty, point->y, ndigits);
1408			apply_z(tx, ty, z, curve);
1409			vli_mod_sub(tz, rx, tx, curve->p, ndigits);
1410			xycz_add(tx, ty, rx, ry, curve);
1411			vli_mod_mult_fast(z, z, tz, curve);
1412		}
1413	}
1414	vli_mod_inv(z, z, curve->p, ndigits);
1415	apply_z(rx, ry, z, curve);
1416}
1417EXPORT_SYMBOL(ecc_point_mult_shamir);
1418
1419static int __ecc_is_key_valid(const struct ecc_curve *curve,
1420			      const u64 *private_key, unsigned int ndigits)
1421{
1422	u64 one[ECC_MAX_DIGITS] = { 1, };
1423	u64 res[ECC_MAX_DIGITS];
1424
1425	if (!private_key)
1426		return -EINVAL;
1427
1428	if (curve->g.ndigits != ndigits)
1429		return -EINVAL;
1430
1431	/* Make sure the private key is in the range [2, n-3]. */
1432	if (vli_cmp(one, private_key, ndigits) != -1)
1433		return -EINVAL;
1434	vli_sub(res, curve->n, one, ndigits);
1435	vli_sub(res, res, one, ndigits);
1436	if (vli_cmp(res, private_key, ndigits) != 1)
1437		return -EINVAL;
1438
1439	return 0;
1440}
1441
1442int ecc_is_key_valid(unsigned int curve_id, unsigned int ndigits,
1443		     const u64 *private_key, unsigned int private_key_len)
1444{
1445	int nbytes;
1446	const struct ecc_curve *curve = ecc_get_curve(curve_id);
1447
1448	nbytes = ndigits << ECC_DIGITS_TO_BYTES_SHIFT;
1449
1450	if (private_key_len != nbytes)
1451		return -EINVAL;
1452
1453	return __ecc_is_key_valid(curve, private_key, ndigits);
1454}
1455EXPORT_SYMBOL(ecc_is_key_valid);
1456
1457/*
1458 * ECC private keys are generated using the method of extra random bits,
1459 * equivalent to that described in FIPS 186-4, Appendix B.4.1.
1460 *
1461 * d = (c mod(n���1)) + 1    where c is a string of random bits, 64 bits longer
1462 *                         than requested
1463 * 0 <= c mod(n-1) <= n-2  and implies that
1464 * 1 <= d <= n-1
1465 *
1466 * This method generates a private key uniformly distributed in the range
1467 * [1, n-1].
1468 */
1469int ecc_gen_privkey(unsigned int curve_id, unsigned int ndigits, u64 *privkey)
1470{
1471	const struct ecc_curve *curve = ecc_get_curve(curve_id);
1472	u64 priv[ECC_MAX_DIGITS];
1473	unsigned int nbytes = ndigits << ECC_DIGITS_TO_BYTES_SHIFT;
1474	unsigned int nbits = vli_num_bits(curve->n, ndigits);
1475	int err;
1476
1477	/* Check that N is included in Table 1 of FIPS 186-4, section 6.1.1 */
1478	if (nbits < 160 || ndigits > ARRAY_SIZE(priv))
1479		return -EINVAL;
1480
1481	/*
1482	 * FIPS 186-4 recommends that the private key should be obtained from a
1483	 * RBG with a security strength equal to or greater than the security
1484	 * strength associated with N.
1485	 *
1486	 * The maximum security strength identified by NIST SP800-57pt1r4 for
1487	 * ECC is 256 (N >= 512).
1488	 *
1489	 * This condition is met by the default RNG because it selects a favored
1490	 * DRBG with a security strength of 256.
1491	 */
1492	if (crypto_get_default_rng())
1493		return -EFAULT;
1494
1495	err = crypto_rng_get_bytes(crypto_default_rng, (u8 *)priv, nbytes);
1496	crypto_put_default_rng();
1497	if (err)
1498		return err;
1499
1500	/* Make sure the private key is in the valid range. */
1501	if (__ecc_is_key_valid(curve, priv, ndigits))
1502		return -EINVAL;
1503
1504	ecc_swap_digits(priv, privkey, ndigits);
1505
1506	return 0;
1507}
1508EXPORT_SYMBOL(ecc_gen_privkey);
1509
1510int ecc_make_pub_key(unsigned int curve_id, unsigned int ndigits,
1511		     const u64 *private_key, u64 *public_key)
1512{
1513	int ret = 0;
1514	struct ecc_point *pk;
1515	u64 priv[ECC_MAX_DIGITS];
1516	const struct ecc_curve *curve = ecc_get_curve(curve_id);
1517
1518	if (!private_key || !curve || ndigits > ARRAY_SIZE(priv)) {
1519		ret = -EINVAL;
1520		goto out;
1521	}
1522
1523	ecc_swap_digits(private_key, priv, ndigits);
1524
1525	pk = ecc_alloc_point(ndigits);
1526	if (!pk) {
1527		ret = -ENOMEM;
1528		goto out;
1529	}
1530
1531	ecc_point_mult(pk, &curve->g, priv, NULL, curve, ndigits);
1532
1533	/* SP800-56A rev 3 5.6.2.1.3 key check */
1534	if (ecc_is_pubkey_valid_full(curve, pk)) {
1535		ret = -EAGAIN;
1536		goto err_free_point;
1537	}
1538
1539	ecc_swap_digits(pk->x, public_key, ndigits);
1540	ecc_swap_digits(pk->y, &public_key[ndigits], ndigits);
1541
1542err_free_point:
1543	ecc_free_point(pk);
1544out:
1545	return ret;
1546}
1547EXPORT_SYMBOL(ecc_make_pub_key);
1548
1549/* SP800-56A section 5.6.2.3.4 partial verification: ephemeral keys only */
1550int ecc_is_pubkey_valid_partial(const struct ecc_curve *curve,
1551				struct ecc_point *pk)
1552{
1553	u64 yy[ECC_MAX_DIGITS], xxx[ECC_MAX_DIGITS], w[ECC_MAX_DIGITS];
1554
1555	if (WARN_ON(pk->ndigits != curve->g.ndigits))
1556		return -EINVAL;
1557
1558	/* Check 1: Verify key is not the zero point. */
1559	if (ecc_point_is_zero(pk))
1560		return -EINVAL;
1561
1562	/* Check 2: Verify key is in the range [1, p-1]. */
1563	if (vli_cmp(curve->p, pk->x, pk->ndigits) != 1)
1564		return -EINVAL;
1565	if (vli_cmp(curve->p, pk->y, pk->ndigits) != 1)
1566		return -EINVAL;
1567
1568	/* Check 3: Verify that y^2 == (x^3 + a��x + b) mod p */
1569	vli_mod_square_fast(yy, pk->y, curve); /* y^2 */
1570	vli_mod_square_fast(xxx, pk->x, curve); /* x^2 */
1571	vli_mod_mult_fast(xxx, xxx, pk->x, curve); /* x^3 */
1572	vli_mod_mult_fast(w, curve->a, pk->x, curve); /* a��x */
1573	vli_mod_add(w, w, curve->b, curve->p, pk->ndigits); /* a��x + b */
1574	vli_mod_add(w, w, xxx, curve->p, pk->ndigits); /* x^3 + a��x + b */
1575	if (vli_cmp(yy, w, pk->ndigits) != 0) /* Equation */
1576		return -EINVAL;
1577
1578	return 0;
1579}
1580EXPORT_SYMBOL(ecc_is_pubkey_valid_partial);
1581
1582/* SP800-56A section 5.6.2.3.3 full verification */
1583int ecc_is_pubkey_valid_full(const struct ecc_curve *curve,
1584			     struct ecc_point *pk)
1585{
1586	struct ecc_point *nQ;
1587
1588	/* Checks 1 through 3 */
1589	int ret = ecc_is_pubkey_valid_partial(curve, pk);
1590
1591	if (ret)
1592		return ret;
1593
1594	/* Check 4: Verify that nQ is the zero point. */
1595	nQ = ecc_alloc_point(pk->ndigits);
1596	if (!nQ)
1597		return -ENOMEM;
1598
1599	ecc_point_mult(nQ, pk, curve->n, NULL, curve, pk->ndigits);
1600	if (!ecc_point_is_zero(nQ))
1601		ret = -EINVAL;
1602
1603	ecc_free_point(nQ);
1604
1605	return ret;
1606}
1607EXPORT_SYMBOL(ecc_is_pubkey_valid_full);
1608
1609int crypto_ecdh_shared_secret(unsigned int curve_id, unsigned int ndigits,
1610			      const u64 *private_key, const u64 *public_key,
1611			      u64 *secret)
1612{
1613	int ret = 0;
1614	struct ecc_point *product, *pk;
1615	u64 priv[ECC_MAX_DIGITS];
1616	u64 rand_z[ECC_MAX_DIGITS];
1617	unsigned int nbytes;
1618	const struct ecc_curve *curve = ecc_get_curve(curve_id);
1619
1620	if (!private_key || !public_key || !curve ||
1621	    ndigits > ARRAY_SIZE(priv) || ndigits > ARRAY_SIZE(rand_z)) {
1622		ret = -EINVAL;
1623		goto out;
1624	}
1625
1626	nbytes = ndigits << ECC_DIGITS_TO_BYTES_SHIFT;
1627
1628	get_random_bytes(rand_z, nbytes);
1629
1630	pk = ecc_alloc_point(ndigits);
1631	if (!pk) {
1632		ret = -ENOMEM;
1633		goto out;
1634	}
1635
1636	ecc_swap_digits(public_key, pk->x, ndigits);
1637	ecc_swap_digits(&public_key[ndigits], pk->y, ndigits);
1638	ret = ecc_is_pubkey_valid_partial(curve, pk);
1639	if (ret)
1640		goto err_alloc_product;
1641
1642	ecc_swap_digits(private_key, priv, ndigits);
1643
1644	product = ecc_alloc_point(ndigits);
1645	if (!product) {
1646		ret = -ENOMEM;
1647		goto err_alloc_product;
1648	}
1649
1650	ecc_point_mult(product, pk, priv, rand_z, curve, ndigits);
1651
1652	if (ecc_point_is_zero(product)) {
1653		ret = -EFAULT;
1654		goto err_validity;
1655	}
1656
1657	ecc_swap_digits(product->x, secret, ndigits);
1658
1659err_validity:
1660	memzero_explicit(priv, sizeof(priv));
1661	memzero_explicit(rand_z, sizeof(rand_z));
1662	ecc_free_point(product);
1663err_alloc_product:
1664	ecc_free_point(pk);
1665out:
1666	return ret;
1667}
1668EXPORT_SYMBOL(crypto_ecdh_shared_secret);
1669
1670MODULE_LICENSE("Dual BSD/GPL");
1671