1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * algif_aead: User-space interface for AEAD algorithms
4 *
5 * Copyright (C) 2014, Stephan Mueller <smueller@chronox.de>
6 *
7 * This file provides the user-space API for AEAD ciphers.
8 *
9 * The following concept of the memory management is used:
10 *
11 * The kernel maintains two SGLs, the TX SGL and the RX SGL. The TX SGL is
12 * filled by user space with the data submitted via sendmsg (maybe with
13 * MSG_SPLICE_PAGES).  Filling up the TX SGL does not cause a crypto operation
14 * -- the data will only be tracked by the kernel. Upon receipt of one recvmsg
15 * call, the caller must provide a buffer which is tracked with the RX SGL.
16 *
17 * During the processing of the recvmsg operation, the cipher request is
18 * allocated and prepared. As part of the recvmsg operation, the processed
19 * TX buffers are extracted from the TX SGL into a separate SGL.
20 *
21 * After the completion of the crypto operation, the RX SGL and the cipher
22 * request is released. The extracted TX SGL parts are released together with
23 * the RX SGL release.
24 */
25
26#include <crypto/internal/aead.h>
27#include <crypto/scatterwalk.h>
28#include <crypto/if_alg.h>
29#include <crypto/skcipher.h>
30#include <crypto/null.h>
31#include <linux/init.h>
32#include <linux/list.h>
33#include <linux/kernel.h>
34#include <linux/mm.h>
35#include <linux/module.h>
36#include <linux/net.h>
37#include <net/sock.h>
38
39struct aead_tfm {
40	struct crypto_aead *aead;
41	struct crypto_sync_skcipher *null_tfm;
42};
43
44static inline bool aead_sufficient_data(struct sock *sk)
45{
46	struct alg_sock *ask = alg_sk(sk);
47	struct sock *psk = ask->parent;
48	struct alg_sock *pask = alg_sk(psk);
49	struct af_alg_ctx *ctx = ask->private;
50	struct aead_tfm *aeadc = pask->private;
51	struct crypto_aead *tfm = aeadc->aead;
52	unsigned int as = crypto_aead_authsize(tfm);
53
54	/*
55	 * The minimum amount of memory needed for an AEAD cipher is
56	 * the AAD and in case of decryption the tag.
57	 */
58	return ctx->used >= ctx->aead_assoclen + (ctx->enc ? 0 : as);
59}
60
61static int aead_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
62{
63	struct sock *sk = sock->sk;
64	struct alg_sock *ask = alg_sk(sk);
65	struct sock *psk = ask->parent;
66	struct alg_sock *pask = alg_sk(psk);
67	struct aead_tfm *aeadc = pask->private;
68	struct crypto_aead *tfm = aeadc->aead;
69	unsigned int ivsize = crypto_aead_ivsize(tfm);
70
71	return af_alg_sendmsg(sock, msg, size, ivsize);
72}
73
74static int crypto_aead_copy_sgl(struct crypto_sync_skcipher *null_tfm,
75				struct scatterlist *src,
76				struct scatterlist *dst, unsigned int len)
77{
78	SYNC_SKCIPHER_REQUEST_ON_STACK(skreq, null_tfm);
79
80	skcipher_request_set_sync_tfm(skreq, null_tfm);
81	skcipher_request_set_callback(skreq, CRYPTO_TFM_REQ_MAY_SLEEP,
82				      NULL, NULL);
83	skcipher_request_set_crypt(skreq, src, dst, len, NULL);
84
85	return crypto_skcipher_encrypt(skreq);
86}
87
88static int _aead_recvmsg(struct socket *sock, struct msghdr *msg,
89			 size_t ignored, int flags)
90{
91	struct sock *sk = sock->sk;
92	struct alg_sock *ask = alg_sk(sk);
93	struct sock *psk = ask->parent;
94	struct alg_sock *pask = alg_sk(psk);
95	struct af_alg_ctx *ctx = ask->private;
96	struct aead_tfm *aeadc = pask->private;
97	struct crypto_aead *tfm = aeadc->aead;
98	struct crypto_sync_skcipher *null_tfm = aeadc->null_tfm;
99	unsigned int i, as = crypto_aead_authsize(tfm);
100	struct af_alg_async_req *areq;
101	struct af_alg_tsgl *tsgl, *tmp;
102	struct scatterlist *rsgl_src, *tsgl_src = NULL;
103	int err = 0;
104	size_t used = 0;		/* [in]  TX bufs to be en/decrypted */
105	size_t outlen = 0;		/* [out] RX bufs produced by kernel */
106	size_t usedpages = 0;		/* [in]  RX bufs to be used from user */
107	size_t processed = 0;		/* [in]  TX bufs to be consumed */
108
109	if (!ctx->init || ctx->more) {
110		err = af_alg_wait_for_data(sk, flags, 0);
111		if (err)
112			return err;
113	}
114
115	/*
116	 * Data length provided by caller via sendmsg that has not yet been
117	 * processed.
118	 */
119	used = ctx->used;
120
121	/*
122	 * Make sure sufficient data is present -- note, the same check is also
123	 * present in sendmsg. The checks in sendmsg shall provide an
124	 * information to the data sender that something is wrong, but they are
125	 * irrelevant to maintain the kernel integrity.  We need this check
126	 * here too in case user space decides to not honor the error message
127	 * in sendmsg and still call recvmsg. This check here protects the
128	 * kernel integrity.
129	 */
130	if (!aead_sufficient_data(sk))
131		return -EINVAL;
132
133	/*
134	 * Calculate the minimum output buffer size holding the result of the
135	 * cipher operation. When encrypting data, the receiving buffer is
136	 * larger by the tag length compared to the input buffer as the
137	 * encryption operation generates the tag. For decryption, the input
138	 * buffer provides the tag which is consumed resulting in only the
139	 * plaintext without a buffer for the tag returned to the caller.
140	 */
141	if (ctx->enc)
142		outlen = used + as;
143	else
144		outlen = used - as;
145
146	/*
147	 * The cipher operation input data is reduced by the associated data
148	 * length as this data is processed separately later on.
149	 */
150	used -= ctx->aead_assoclen;
151
152	/* Allocate cipher request for current operation. */
153	areq = af_alg_alloc_areq(sk, sizeof(struct af_alg_async_req) +
154				     crypto_aead_reqsize(tfm));
155	if (IS_ERR(areq))
156		return PTR_ERR(areq);
157
158	/* convert iovecs of output buffers into RX SGL */
159	err = af_alg_get_rsgl(sk, msg, flags, areq, outlen, &usedpages);
160	if (err)
161		goto free;
162
163	/*
164	 * Ensure output buffer is sufficiently large. If the caller provides
165	 * less buffer space, only use the relative required input size. This
166	 * allows AIO operation where the caller sent all data to be processed
167	 * and the AIO operation performs the operation on the different chunks
168	 * of the input data.
169	 */
170	if (usedpages < outlen) {
171		size_t less = outlen - usedpages;
172
173		if (used < less) {
174			err = -EINVAL;
175			goto free;
176		}
177		used -= less;
178		outlen -= less;
179	}
180
181	processed = used + ctx->aead_assoclen;
182	list_for_each_entry_safe(tsgl, tmp, &ctx->tsgl_list, list) {
183		for (i = 0; i < tsgl->cur; i++) {
184			struct scatterlist *process_sg = tsgl->sg + i;
185
186			if (!(process_sg->length) || !sg_page(process_sg))
187				continue;
188			tsgl_src = process_sg;
189			break;
190		}
191		if (tsgl_src)
192			break;
193	}
194	if (processed && !tsgl_src) {
195		err = -EFAULT;
196		goto free;
197	}
198
199	/*
200	 * Copy of AAD from source to destination
201	 *
202	 * The AAD is copied to the destination buffer without change. Even
203	 * when user space uses an in-place cipher operation, the kernel
204	 * will copy the data as it does not see whether such in-place operation
205	 * is initiated.
206	 *
207	 * To ensure efficiency, the following implementation ensure that the
208	 * ciphers are invoked to perform a crypto operation in-place. This
209	 * is achieved by memory management specified as follows.
210	 */
211
212	/* Use the RX SGL as source (and destination) for crypto op. */
213	rsgl_src = areq->first_rsgl.sgl.sgt.sgl;
214
215	if (ctx->enc) {
216		/*
217		 * Encryption operation - The in-place cipher operation is
218		 * achieved by the following operation:
219		 *
220		 * TX SGL: AAD || PT
221		 *	    |	   |
222		 *	    | copy |
223		 *	    v	   v
224		 * RX SGL: AAD || PT || Tag
225		 */
226		err = crypto_aead_copy_sgl(null_tfm, tsgl_src,
227					   areq->first_rsgl.sgl.sgt.sgl,
228					   processed);
229		if (err)
230			goto free;
231		af_alg_pull_tsgl(sk, processed, NULL, 0);
232	} else {
233		/*
234		 * Decryption operation - To achieve an in-place cipher
235		 * operation, the following  SGL structure is used:
236		 *
237		 * TX SGL: AAD || CT || Tag
238		 *	    |	   |	 ^
239		 *	    | copy |	 | Create SGL link.
240		 *	    v	   v	 |
241		 * RX SGL: AAD || CT ----+
242		 */
243
244		 /* Copy AAD || CT to RX SGL buffer for in-place operation. */
245		err = crypto_aead_copy_sgl(null_tfm, tsgl_src,
246					   areq->first_rsgl.sgl.sgt.sgl,
247					   outlen);
248		if (err)
249			goto free;
250
251		/* Create TX SGL for tag and chain it to RX SGL. */
252		areq->tsgl_entries = af_alg_count_tsgl(sk, processed,
253						       processed - as);
254		if (!areq->tsgl_entries)
255			areq->tsgl_entries = 1;
256		areq->tsgl = sock_kmalloc(sk, array_size(sizeof(*areq->tsgl),
257							 areq->tsgl_entries),
258					  GFP_KERNEL);
259		if (!areq->tsgl) {
260			err = -ENOMEM;
261			goto free;
262		}
263		sg_init_table(areq->tsgl, areq->tsgl_entries);
264
265		/* Release TX SGL, except for tag data and reassign tag data. */
266		af_alg_pull_tsgl(sk, processed, areq->tsgl, processed - as);
267
268		/* chain the areq TX SGL holding the tag with RX SGL */
269		if (usedpages) {
270			/* RX SGL present */
271			struct af_alg_sgl *sgl_prev = &areq->last_rsgl->sgl;
272			struct scatterlist *sg = sgl_prev->sgt.sgl;
273
274			sg_unmark_end(sg + sgl_prev->sgt.nents - 1);
275			sg_chain(sg, sgl_prev->sgt.nents + 1, areq->tsgl);
276		} else
277			/* no RX SGL present (e.g. authentication only) */
278			rsgl_src = areq->tsgl;
279	}
280
281	/* Initialize the crypto operation */
282	aead_request_set_crypt(&areq->cra_u.aead_req, rsgl_src,
283			       areq->first_rsgl.sgl.sgt.sgl, used, ctx->iv);
284	aead_request_set_ad(&areq->cra_u.aead_req, ctx->aead_assoclen);
285	aead_request_set_tfm(&areq->cra_u.aead_req, tfm);
286
287	if (msg->msg_iocb && !is_sync_kiocb(msg->msg_iocb)) {
288		/* AIO operation */
289		sock_hold(sk);
290		areq->iocb = msg->msg_iocb;
291
292		/* Remember output size that will be generated. */
293		areq->outlen = outlen;
294
295		aead_request_set_callback(&areq->cra_u.aead_req,
296					  CRYPTO_TFM_REQ_MAY_SLEEP,
297					  af_alg_async_cb, areq);
298		err = ctx->enc ? crypto_aead_encrypt(&areq->cra_u.aead_req) :
299				 crypto_aead_decrypt(&areq->cra_u.aead_req);
300
301		/* AIO operation in progress */
302		if (err == -EINPROGRESS)
303			return -EIOCBQUEUED;
304
305		sock_put(sk);
306	} else {
307		/* Synchronous operation */
308		aead_request_set_callback(&areq->cra_u.aead_req,
309					  CRYPTO_TFM_REQ_MAY_SLEEP |
310					  CRYPTO_TFM_REQ_MAY_BACKLOG,
311					  crypto_req_done, &ctx->wait);
312		err = crypto_wait_req(ctx->enc ?
313				crypto_aead_encrypt(&areq->cra_u.aead_req) :
314				crypto_aead_decrypt(&areq->cra_u.aead_req),
315				&ctx->wait);
316	}
317
318
319free:
320	af_alg_free_resources(areq);
321
322	return err ? err : outlen;
323}
324
325static int aead_recvmsg(struct socket *sock, struct msghdr *msg,
326			size_t ignored, int flags)
327{
328	struct sock *sk = sock->sk;
329	int ret = 0;
330
331	lock_sock(sk);
332	while (msg_data_left(msg)) {
333		int err = _aead_recvmsg(sock, msg, ignored, flags);
334
335		/*
336		 * This error covers -EIOCBQUEUED which implies that we can
337		 * only handle one AIO request. If the caller wants to have
338		 * multiple AIO requests in parallel, he must make multiple
339		 * separate AIO calls.
340		 *
341		 * Also return the error if no data has been processed so far.
342		 */
343		if (err <= 0) {
344			if (err == -EIOCBQUEUED || err == -EBADMSG || !ret)
345				ret = err;
346			goto out;
347		}
348
349		ret += err;
350	}
351
352out:
353	af_alg_wmem_wakeup(sk);
354	release_sock(sk);
355	return ret;
356}
357
358static struct proto_ops algif_aead_ops = {
359	.family		=	PF_ALG,
360
361	.connect	=	sock_no_connect,
362	.socketpair	=	sock_no_socketpair,
363	.getname	=	sock_no_getname,
364	.ioctl		=	sock_no_ioctl,
365	.listen		=	sock_no_listen,
366	.shutdown	=	sock_no_shutdown,
367	.mmap		=	sock_no_mmap,
368	.bind		=	sock_no_bind,
369	.accept		=	sock_no_accept,
370
371	.release	=	af_alg_release,
372	.sendmsg	=	aead_sendmsg,
373	.recvmsg	=	aead_recvmsg,
374	.poll		=	af_alg_poll,
375};
376
377static int aead_check_key(struct socket *sock)
378{
379	int err = 0;
380	struct sock *psk;
381	struct alg_sock *pask;
382	struct aead_tfm *tfm;
383	struct sock *sk = sock->sk;
384	struct alg_sock *ask = alg_sk(sk);
385
386	lock_sock(sk);
387	if (!atomic_read(&ask->nokey_refcnt))
388		goto unlock_child;
389
390	psk = ask->parent;
391	pask = alg_sk(ask->parent);
392	tfm = pask->private;
393
394	err = -ENOKEY;
395	lock_sock_nested(psk, SINGLE_DEPTH_NESTING);
396	if (crypto_aead_get_flags(tfm->aead) & CRYPTO_TFM_NEED_KEY)
397		goto unlock;
398
399	atomic_dec(&pask->nokey_refcnt);
400	atomic_set(&ask->nokey_refcnt, 0);
401
402	err = 0;
403
404unlock:
405	release_sock(psk);
406unlock_child:
407	release_sock(sk);
408
409	return err;
410}
411
412static int aead_sendmsg_nokey(struct socket *sock, struct msghdr *msg,
413				  size_t size)
414{
415	int err;
416
417	err = aead_check_key(sock);
418	if (err)
419		return err;
420
421	return aead_sendmsg(sock, msg, size);
422}
423
424static int aead_recvmsg_nokey(struct socket *sock, struct msghdr *msg,
425				  size_t ignored, int flags)
426{
427	int err;
428
429	err = aead_check_key(sock);
430	if (err)
431		return err;
432
433	return aead_recvmsg(sock, msg, ignored, flags);
434}
435
436static struct proto_ops algif_aead_ops_nokey = {
437	.family		=	PF_ALG,
438
439	.connect	=	sock_no_connect,
440	.socketpair	=	sock_no_socketpair,
441	.getname	=	sock_no_getname,
442	.ioctl		=	sock_no_ioctl,
443	.listen		=	sock_no_listen,
444	.shutdown	=	sock_no_shutdown,
445	.mmap		=	sock_no_mmap,
446	.bind		=	sock_no_bind,
447	.accept		=	sock_no_accept,
448
449	.release	=	af_alg_release,
450	.sendmsg	=	aead_sendmsg_nokey,
451	.recvmsg	=	aead_recvmsg_nokey,
452	.poll		=	af_alg_poll,
453};
454
455static void *aead_bind(const char *name, u32 type, u32 mask)
456{
457	struct aead_tfm *tfm;
458	struct crypto_aead *aead;
459	struct crypto_sync_skcipher *null_tfm;
460
461	tfm = kzalloc(sizeof(*tfm), GFP_KERNEL);
462	if (!tfm)
463		return ERR_PTR(-ENOMEM);
464
465	aead = crypto_alloc_aead(name, type, mask);
466	if (IS_ERR(aead)) {
467		kfree(tfm);
468		return ERR_CAST(aead);
469	}
470
471	null_tfm = crypto_get_default_null_skcipher();
472	if (IS_ERR(null_tfm)) {
473		crypto_free_aead(aead);
474		kfree(tfm);
475		return ERR_CAST(null_tfm);
476	}
477
478	tfm->aead = aead;
479	tfm->null_tfm = null_tfm;
480
481	return tfm;
482}
483
484static void aead_release(void *private)
485{
486	struct aead_tfm *tfm = private;
487
488	crypto_free_aead(tfm->aead);
489	crypto_put_default_null_skcipher();
490	kfree(tfm);
491}
492
493static int aead_setauthsize(void *private, unsigned int authsize)
494{
495	struct aead_tfm *tfm = private;
496
497	return crypto_aead_setauthsize(tfm->aead, authsize);
498}
499
500static int aead_setkey(void *private, const u8 *key, unsigned int keylen)
501{
502	struct aead_tfm *tfm = private;
503
504	return crypto_aead_setkey(tfm->aead, key, keylen);
505}
506
507static void aead_sock_destruct(struct sock *sk)
508{
509	struct alg_sock *ask = alg_sk(sk);
510	struct af_alg_ctx *ctx = ask->private;
511	struct sock *psk = ask->parent;
512	struct alg_sock *pask = alg_sk(psk);
513	struct aead_tfm *aeadc = pask->private;
514	struct crypto_aead *tfm = aeadc->aead;
515	unsigned int ivlen = crypto_aead_ivsize(tfm);
516
517	af_alg_pull_tsgl(sk, ctx->used, NULL, 0);
518	sock_kzfree_s(sk, ctx->iv, ivlen);
519	sock_kfree_s(sk, ctx, ctx->len);
520	af_alg_release_parent(sk);
521}
522
523static int aead_accept_parent_nokey(void *private, struct sock *sk)
524{
525	struct af_alg_ctx *ctx;
526	struct alg_sock *ask = alg_sk(sk);
527	struct aead_tfm *tfm = private;
528	struct crypto_aead *aead = tfm->aead;
529	unsigned int len = sizeof(*ctx);
530	unsigned int ivlen = crypto_aead_ivsize(aead);
531
532	ctx = sock_kmalloc(sk, len, GFP_KERNEL);
533	if (!ctx)
534		return -ENOMEM;
535	memset(ctx, 0, len);
536
537	ctx->iv = sock_kmalloc(sk, ivlen, GFP_KERNEL);
538	if (!ctx->iv) {
539		sock_kfree_s(sk, ctx, len);
540		return -ENOMEM;
541	}
542	memset(ctx->iv, 0, ivlen);
543
544	INIT_LIST_HEAD(&ctx->tsgl_list);
545	ctx->len = len;
546	crypto_init_wait(&ctx->wait);
547
548	ask->private = ctx;
549
550	sk->sk_destruct = aead_sock_destruct;
551
552	return 0;
553}
554
555static int aead_accept_parent(void *private, struct sock *sk)
556{
557	struct aead_tfm *tfm = private;
558
559	if (crypto_aead_get_flags(tfm->aead) & CRYPTO_TFM_NEED_KEY)
560		return -ENOKEY;
561
562	return aead_accept_parent_nokey(private, sk);
563}
564
565static const struct af_alg_type algif_type_aead = {
566	.bind		=	aead_bind,
567	.release	=	aead_release,
568	.setkey		=	aead_setkey,
569	.setauthsize	=	aead_setauthsize,
570	.accept		=	aead_accept_parent,
571	.accept_nokey	=	aead_accept_parent_nokey,
572	.ops		=	&algif_aead_ops,
573	.ops_nokey	=	&algif_aead_ops_nokey,
574	.name		=	"aead",
575	.owner		=	THIS_MODULE
576};
577
578static int __init algif_aead_init(void)
579{
580	return af_alg_register_type(&algif_type_aead);
581}
582
583static void __exit algif_aead_exit(void)
584{
585	int err = af_alg_unregister_type(&algif_type_aead);
586	BUG_ON(err);
587}
588
589module_init(algif_aead_init);
590module_exit(algif_aead_exit);
591MODULE_LICENSE("GPL");
592MODULE_AUTHOR("Stephan Mueller <smueller@chronox.de>");
593MODULE_DESCRIPTION("AEAD kernel crypto API user space interface");
594