1// SPDX-License-Identifier: GPL-2.0-or-later
2/************************************************************
3 * EFI GUID Partition Table handling
4 *
5 * http://www.uefi.org/specs/
6 * http://www.intel.com/technology/efi/
7 *
8 * efi.[ch] by Matt Domsch <Matt_Domsch@dell.com>
9 *   Copyright 2000,2001,2002,2004 Dell Inc.
10 *
11 * TODO:
12 *
13 * Changelog:
14 * Mon August 5th, 2013 Davidlohr Bueso <davidlohr@hp.com>
15 * - detect hybrid MBRs, tighter pMBR checking & cleanups.
16 *
17 * Mon Nov 09 2004 Matt Domsch <Matt_Domsch@dell.com>
18 * - test for valid PMBR and valid PGPT before ever reading
19 *   AGPT, allow override with 'gpt' kernel command line option.
20 * - check for first/last_usable_lba outside of size of disk
21 *
22 * Tue  Mar 26 2002 Matt Domsch <Matt_Domsch@dell.com>
23 * - Ported to 2.5.7-pre1 and 2.5.7-dj2
24 * - Applied patch to avoid fault in alternate header handling
25 * - cleaned up find_valid_gpt
26 * - On-disk structure and copy in memory is *always* LE now -
27 *   swab fields as needed
28 * - remove print_gpt_header()
29 * - only use first max_p partition entries, to keep the kernel minor number
30 *   and partition numbers tied.
31 *
32 * Mon  Feb 04 2002 Matt Domsch <Matt_Domsch@dell.com>
33 * - Removed __PRIPTR_PREFIX - not being used
34 *
35 * Mon  Jan 14 2002 Matt Domsch <Matt_Domsch@dell.com>
36 * - Ported to 2.5.2-pre11 + library crc32 patch Linus applied
37 *
38 * Thu Dec 6 2001 Matt Domsch <Matt_Domsch@dell.com>
39 * - Added compare_gpts().
40 * - moved le_efi_guid_to_cpus() back into this file.  GPT is the only
41 *   thing that keeps EFI GUIDs on disk.
42 * - Changed gpt structure names and members to be simpler and more Linux-like.
43 *
44 * Wed Oct 17 2001 Matt Domsch <Matt_Domsch@dell.com>
45 * - Removed CONFIG_DEVFS_VOLUMES_UUID code entirely per Martin Wilck
46 *
47 * Wed Oct 10 2001 Matt Domsch <Matt_Domsch@dell.com>
48 * - Changed function comments to DocBook style per Andreas Dilger suggestion.
49 *
50 * Mon Oct 08 2001 Matt Domsch <Matt_Domsch@dell.com>
51 * - Change read_lba() to use the page cache per Al Viro's work.
52 * - print u64s properly on all architectures
53 * - fixed debug_printk(), now Dprintk()
54 *
55 * Mon Oct 01 2001 Matt Domsch <Matt_Domsch@dell.com>
56 * - Style cleanups
57 * - made most functions static
58 * - Endianness addition
59 * - remove test for second alternate header, as it's not per spec,
60 *   and is unnecessary.  There's now a method to read/write the last
61 *   sector of an odd-sized disk from user space.  No tools have ever
62 *   been released which used this code, so it's effectively dead.
63 * - Per Asit Mallick of Intel, added a test for a valid PMBR.
64 * - Added kernel command line option 'gpt' to override valid PMBR test.
65 *
66 * Wed Jun  6 2001 Martin Wilck <Martin.Wilck@Fujitsu-Siemens.com>
67 * - added devfs volume UUID support (/dev/volumes/uuids) for
68 *   mounting file systems by the partition GUID.
69 *
70 * Tue Dec  5 2000 Matt Domsch <Matt_Domsch@dell.com>
71 * - Moved crc32() to linux/lib, added efi_crc32().
72 *
73 * Thu Nov 30 2000 Matt Domsch <Matt_Domsch@dell.com>
74 * - Replaced Intel's CRC32 function with an equivalent
75 *   non-license-restricted version.
76 *
77 * Wed Oct 25 2000 Matt Domsch <Matt_Domsch@dell.com>
78 * - Fixed the last_lba() call to return the proper last block
79 *
80 * Thu Oct 12 2000 Matt Domsch <Matt_Domsch@dell.com>
81 * - Thanks to Andries Brouwer for his debugging assistance.
82 * - Code works, detects all the partitions.
83 *
84 ************************************************************/
85#include <linux/kernel.h>
86#include <linux/crc32.h>
87#include <linux/ctype.h>
88#include <linux/math64.h>
89#include <linux/slab.h>
90#include "check.h"
91#include "efi.h"
92
93/* This allows a kernel command line option 'gpt' to override
94 * the test for invalid PMBR.  Not __initdata because reloading
95 * the partition tables happens after init too.
96 */
97static int force_gpt;
98static int __init
99force_gpt_fn(char *str)
100{
101	force_gpt = 1;
102	return 1;
103}
104__setup("gpt", force_gpt_fn);
105
106
107/**
108 * efi_crc32() - EFI version of crc32 function
109 * @buf: buffer to calculate crc32 of
110 * @len: length of buf
111 *
112 * Description: Returns EFI-style CRC32 value for @buf
113 *
114 * This function uses the little endian Ethernet polynomial
115 * but seeds the function with ~0, and xor's with ~0 at the end.
116 * Note, the EFI Specification, v1.02, has a reference to
117 * Dr. Dobbs Journal, May 1994 (actually it's in May 1992).
118 */
119static inline u32
120efi_crc32(const void *buf, unsigned long len)
121{
122	return (crc32(~0L, buf, len) ^ ~0L);
123}
124
125/**
126 * last_lba(): return number of last logical block of device
127 * @disk: block device
128 *
129 * Description: Returns last LBA value on success, 0 on error.
130 * This is stored (by sd and ide-geometry) in
131 *  the part[0] entry for this disk, and is the number of
132 *  physical sectors available on the disk.
133 */
134static u64 last_lba(struct gendisk *disk)
135{
136	return div_u64(bdev_nr_bytes(disk->part0),
137		       queue_logical_block_size(disk->queue)) - 1ULL;
138}
139
140static inline int pmbr_part_valid(gpt_mbr_record *part)
141{
142	if (part->os_type != EFI_PMBR_OSTYPE_EFI_GPT)
143		goto invalid;
144
145	/* set to 0x00000001 (i.e., the LBA of the GPT Partition Header) */
146	if (le32_to_cpu(part->starting_lba) != GPT_PRIMARY_PARTITION_TABLE_LBA)
147		goto invalid;
148
149	return GPT_MBR_PROTECTIVE;
150invalid:
151	return 0;
152}
153
154/**
155 * is_pmbr_valid(): test Protective MBR for validity
156 * @mbr: pointer to a legacy mbr structure
157 * @total_sectors: amount of sectors in the device
158 *
159 * Description: Checks for a valid protective or hybrid
160 * master boot record (MBR). The validity of a pMBR depends
161 * on all of the following properties:
162 *  1) MSDOS signature is in the last two bytes of the MBR
163 *  2) One partition of type 0xEE is found
164 *
165 * In addition, a hybrid MBR will have up to three additional
166 * primary partitions, which point to the same space that's
167 * marked out by up to three GPT partitions.
168 *
169 * Returns 0 upon invalid MBR, or GPT_MBR_PROTECTIVE or
170 * GPT_MBR_HYBRID depending on the device layout.
171 */
172static int is_pmbr_valid(legacy_mbr *mbr, sector_t total_sectors)
173{
174	uint32_t sz = 0;
175	int i, part = 0, ret = 0; /* invalid by default */
176
177	if (!mbr || le16_to_cpu(mbr->signature) != MSDOS_MBR_SIGNATURE)
178		goto done;
179
180	for (i = 0; i < 4; i++) {
181		ret = pmbr_part_valid(&mbr->partition_record[i]);
182		if (ret == GPT_MBR_PROTECTIVE) {
183			part = i;
184			/*
185			 * Ok, we at least know that there's a protective MBR,
186			 * now check if there are other partition types for
187			 * hybrid MBR.
188			 */
189			goto check_hybrid;
190		}
191	}
192
193	if (ret != GPT_MBR_PROTECTIVE)
194		goto done;
195check_hybrid:
196	for (i = 0; i < 4; i++)
197		if ((mbr->partition_record[i].os_type !=
198			EFI_PMBR_OSTYPE_EFI_GPT) &&
199		    (mbr->partition_record[i].os_type != 0x00))
200			ret = GPT_MBR_HYBRID;
201
202	/*
203	 * Protective MBRs take up the lesser of the whole disk
204	 * or 2 TiB (32bit LBA), ignoring the rest of the disk.
205	 * Some partitioning programs, nonetheless, choose to set
206	 * the size to the maximum 32-bit limitation, disregarding
207	 * the disk size.
208	 *
209	 * Hybrid MBRs do not necessarily comply with this.
210	 *
211	 * Consider a bad value here to be a warning to support dd'ing
212	 * an image from a smaller disk to a larger disk.
213	 */
214	if (ret == GPT_MBR_PROTECTIVE) {
215		sz = le32_to_cpu(mbr->partition_record[part].size_in_lba);
216		if (sz != (uint32_t) total_sectors - 1 && sz != 0xFFFFFFFF)
217			pr_debug("GPT: mbr size in lba (%u) different than whole disk (%u).\n",
218				 sz, min_t(uint32_t,
219					   total_sectors - 1, 0xFFFFFFFF));
220	}
221done:
222	return ret;
223}
224
225/**
226 * read_lba(): Read bytes from disk, starting at given LBA
227 * @state: disk parsed partitions
228 * @lba: the Logical Block Address of the partition table
229 * @buffer: destination buffer
230 * @count: bytes to read
231 *
232 * Description: Reads @count bytes from @state->disk into @buffer.
233 * Returns number of bytes read on success, 0 on error.
234 */
235static size_t read_lba(struct parsed_partitions *state,
236		       u64 lba, u8 *buffer, size_t count)
237{
238	size_t totalreadcount = 0;
239	sector_t n = lba *
240		(queue_logical_block_size(state->disk->queue) / 512);
241
242	if (!buffer || lba > last_lba(state->disk))
243                return 0;
244
245	while (count) {
246		int copied = 512;
247		Sector sect;
248		unsigned char *data = read_part_sector(state, n++, &sect);
249		if (!data)
250			break;
251		if (copied > count)
252			copied = count;
253		memcpy(buffer, data, copied);
254		put_dev_sector(sect);
255		buffer += copied;
256		totalreadcount +=copied;
257		count -= copied;
258	}
259	return totalreadcount;
260}
261
262/**
263 * alloc_read_gpt_entries(): reads partition entries from disk
264 * @state: disk parsed partitions
265 * @gpt: GPT header
266 *
267 * Description: Returns ptes on success,  NULL on error.
268 * Allocates space for PTEs based on information found in @gpt.
269 * Notes: remember to free pte when you're done!
270 */
271static gpt_entry *alloc_read_gpt_entries(struct parsed_partitions *state,
272					 gpt_header *gpt)
273{
274	size_t count;
275	gpt_entry *pte;
276
277	if (!gpt)
278		return NULL;
279
280	count = (size_t)le32_to_cpu(gpt->num_partition_entries) *
281                le32_to_cpu(gpt->sizeof_partition_entry);
282	if (!count)
283		return NULL;
284	pte = kmalloc(count, GFP_KERNEL);
285	if (!pte)
286		return NULL;
287
288	if (read_lba(state, le64_to_cpu(gpt->partition_entry_lba),
289			(u8 *) pte, count) < count) {
290		kfree(pte);
291                pte=NULL;
292		return NULL;
293	}
294	return pte;
295}
296
297/**
298 * alloc_read_gpt_header(): Allocates GPT header, reads into it from disk
299 * @state: disk parsed partitions
300 * @lba: the Logical Block Address of the partition table
301 *
302 * Description: returns GPT header on success, NULL on error.   Allocates
303 * and fills a GPT header starting at @ from @state->disk.
304 * Note: remember to free gpt when finished with it.
305 */
306static gpt_header *alloc_read_gpt_header(struct parsed_partitions *state,
307					 u64 lba)
308{
309	gpt_header *gpt;
310	unsigned ssz = queue_logical_block_size(state->disk->queue);
311
312	gpt = kmalloc(ssz, GFP_KERNEL);
313	if (!gpt)
314		return NULL;
315
316	if (read_lba(state, lba, (u8 *) gpt, ssz) < ssz) {
317		kfree(gpt);
318                gpt=NULL;
319		return NULL;
320	}
321
322	return gpt;
323}
324
325/**
326 * is_gpt_valid() - tests one GPT header and PTEs for validity
327 * @state: disk parsed partitions
328 * @lba: logical block address of the GPT header to test
329 * @gpt: GPT header ptr, filled on return.
330 * @ptes: PTEs ptr, filled on return.
331 *
332 * Description: returns 1 if valid,  0 on error.
333 * If valid, returns pointers to newly allocated GPT header and PTEs.
334 */
335static int is_gpt_valid(struct parsed_partitions *state, u64 lba,
336			gpt_header **gpt, gpt_entry **ptes)
337{
338	u32 crc, origcrc;
339	u64 lastlba, pt_size;
340
341	if (!ptes)
342		return 0;
343	if (!(*gpt = alloc_read_gpt_header(state, lba)))
344		return 0;
345
346	/* Check the GUID Partition Table signature */
347	if (le64_to_cpu((*gpt)->signature) != GPT_HEADER_SIGNATURE) {
348		pr_debug("GUID Partition Table Header signature is wrong:"
349			 "%lld != %lld\n",
350			 (unsigned long long)le64_to_cpu((*gpt)->signature),
351			 (unsigned long long)GPT_HEADER_SIGNATURE);
352		goto fail;
353	}
354
355	/* Check the GUID Partition Table header size is too big */
356	if (le32_to_cpu((*gpt)->header_size) >
357			queue_logical_block_size(state->disk->queue)) {
358		pr_debug("GUID Partition Table Header size is too large: %u > %u\n",
359			le32_to_cpu((*gpt)->header_size),
360			queue_logical_block_size(state->disk->queue));
361		goto fail;
362	}
363
364	/* Check the GUID Partition Table header size is too small */
365	if (le32_to_cpu((*gpt)->header_size) < sizeof(gpt_header)) {
366		pr_debug("GUID Partition Table Header size is too small: %u < %zu\n",
367			le32_to_cpu((*gpt)->header_size),
368			sizeof(gpt_header));
369		goto fail;
370	}
371
372	/* Check the GUID Partition Table CRC */
373	origcrc = le32_to_cpu((*gpt)->header_crc32);
374	(*gpt)->header_crc32 = 0;
375	crc = efi_crc32((const unsigned char *) (*gpt), le32_to_cpu((*gpt)->header_size));
376
377	if (crc != origcrc) {
378		pr_debug("GUID Partition Table Header CRC is wrong: %x != %x\n",
379			 crc, origcrc);
380		goto fail;
381	}
382	(*gpt)->header_crc32 = cpu_to_le32(origcrc);
383
384	/* Check that the my_lba entry points to the LBA that contains
385	 * the GUID Partition Table */
386	if (le64_to_cpu((*gpt)->my_lba) != lba) {
387		pr_debug("GPT my_lba incorrect: %lld != %lld\n",
388			 (unsigned long long)le64_to_cpu((*gpt)->my_lba),
389			 (unsigned long long)lba);
390		goto fail;
391	}
392
393	/* Check the first_usable_lba and last_usable_lba are
394	 * within the disk.
395	 */
396	lastlba = last_lba(state->disk);
397	if (le64_to_cpu((*gpt)->first_usable_lba) > lastlba) {
398		pr_debug("GPT: first_usable_lba incorrect: %lld > %lld\n",
399			 (unsigned long long)le64_to_cpu((*gpt)->first_usable_lba),
400			 (unsigned long long)lastlba);
401		goto fail;
402	}
403	if (le64_to_cpu((*gpt)->last_usable_lba) > lastlba) {
404		pr_debug("GPT: last_usable_lba incorrect: %lld > %lld\n",
405			 (unsigned long long)le64_to_cpu((*gpt)->last_usable_lba),
406			 (unsigned long long)lastlba);
407		goto fail;
408	}
409	if (le64_to_cpu((*gpt)->last_usable_lba) < le64_to_cpu((*gpt)->first_usable_lba)) {
410		pr_debug("GPT: last_usable_lba incorrect: %lld > %lld\n",
411			 (unsigned long long)le64_to_cpu((*gpt)->last_usable_lba),
412			 (unsigned long long)le64_to_cpu((*gpt)->first_usable_lba));
413		goto fail;
414	}
415	/* Check that sizeof_partition_entry has the correct value */
416	if (le32_to_cpu((*gpt)->sizeof_partition_entry) != sizeof(gpt_entry)) {
417		pr_debug("GUID Partition Entry Size check failed.\n");
418		goto fail;
419	}
420
421	/* Sanity check partition table size */
422	pt_size = (u64)le32_to_cpu((*gpt)->num_partition_entries) *
423		le32_to_cpu((*gpt)->sizeof_partition_entry);
424	if (pt_size > KMALLOC_MAX_SIZE) {
425		pr_debug("GUID Partition Table is too large: %llu > %lu bytes\n",
426			 (unsigned long long)pt_size, KMALLOC_MAX_SIZE);
427		goto fail;
428	}
429
430	if (!(*ptes = alloc_read_gpt_entries(state, *gpt)))
431		goto fail;
432
433	/* Check the GUID Partition Entry Array CRC */
434	crc = efi_crc32((const unsigned char *) (*ptes), pt_size);
435
436	if (crc != le32_to_cpu((*gpt)->partition_entry_array_crc32)) {
437		pr_debug("GUID Partition Entry Array CRC check failed.\n");
438		goto fail_ptes;
439	}
440
441	/* We're done, all's well */
442	return 1;
443
444 fail_ptes:
445	kfree(*ptes);
446	*ptes = NULL;
447 fail:
448	kfree(*gpt);
449	*gpt = NULL;
450	return 0;
451}
452
453/**
454 * is_pte_valid() - tests one PTE for validity
455 * @pte:pte to check
456 * @lastlba: last lba of the disk
457 *
458 * Description: returns 1 if valid,  0 on error.
459 */
460static inline int
461is_pte_valid(const gpt_entry *pte, const u64 lastlba)
462{
463	if ((!efi_guidcmp(pte->partition_type_guid, NULL_GUID)) ||
464	    le64_to_cpu(pte->starting_lba) > lastlba         ||
465	    le64_to_cpu(pte->ending_lba)   > lastlba)
466		return 0;
467	return 1;
468}
469
470/**
471 * compare_gpts() - Search disk for valid GPT headers and PTEs
472 * @pgpt: primary GPT header
473 * @agpt: alternate GPT header
474 * @lastlba: last LBA number
475 *
476 * Description: Returns nothing.  Sanity checks pgpt and agpt fields
477 * and prints warnings on discrepancies.
478 *
479 */
480static void
481compare_gpts(gpt_header *pgpt, gpt_header *agpt, u64 lastlba)
482{
483	int error_found = 0;
484	if (!pgpt || !agpt)
485		return;
486	if (le64_to_cpu(pgpt->my_lba) != le64_to_cpu(agpt->alternate_lba)) {
487		pr_warn("GPT:Primary header LBA != Alt. header alternate_lba\n");
488		pr_warn("GPT:%lld != %lld\n",
489		       (unsigned long long)le64_to_cpu(pgpt->my_lba),
490                       (unsigned long long)le64_to_cpu(agpt->alternate_lba));
491		error_found++;
492	}
493	if (le64_to_cpu(pgpt->alternate_lba) != le64_to_cpu(agpt->my_lba)) {
494		pr_warn("GPT:Primary header alternate_lba != Alt. header my_lba\n");
495		pr_warn("GPT:%lld != %lld\n",
496		       (unsigned long long)le64_to_cpu(pgpt->alternate_lba),
497                       (unsigned long long)le64_to_cpu(agpt->my_lba));
498		error_found++;
499	}
500	if (le64_to_cpu(pgpt->first_usable_lba) !=
501            le64_to_cpu(agpt->first_usable_lba)) {
502		pr_warn("GPT:first_usable_lbas don't match.\n");
503		pr_warn("GPT:%lld != %lld\n",
504		       (unsigned long long)le64_to_cpu(pgpt->first_usable_lba),
505                       (unsigned long long)le64_to_cpu(agpt->first_usable_lba));
506		error_found++;
507	}
508	if (le64_to_cpu(pgpt->last_usable_lba) !=
509            le64_to_cpu(agpt->last_usable_lba)) {
510		pr_warn("GPT:last_usable_lbas don't match.\n");
511		pr_warn("GPT:%lld != %lld\n",
512		       (unsigned long long)le64_to_cpu(pgpt->last_usable_lba),
513                       (unsigned long long)le64_to_cpu(agpt->last_usable_lba));
514		error_found++;
515	}
516	if (efi_guidcmp(pgpt->disk_guid, agpt->disk_guid)) {
517		pr_warn("GPT:disk_guids don't match.\n");
518		error_found++;
519	}
520	if (le32_to_cpu(pgpt->num_partition_entries) !=
521            le32_to_cpu(agpt->num_partition_entries)) {
522		pr_warn("GPT:num_partition_entries don't match: "
523		       "0x%x != 0x%x\n",
524		       le32_to_cpu(pgpt->num_partition_entries),
525		       le32_to_cpu(agpt->num_partition_entries));
526		error_found++;
527	}
528	if (le32_to_cpu(pgpt->sizeof_partition_entry) !=
529            le32_to_cpu(agpt->sizeof_partition_entry)) {
530		pr_warn("GPT:sizeof_partition_entry values don't match: "
531		       "0x%x != 0x%x\n",
532                       le32_to_cpu(pgpt->sizeof_partition_entry),
533		       le32_to_cpu(agpt->sizeof_partition_entry));
534		error_found++;
535	}
536	if (le32_to_cpu(pgpt->partition_entry_array_crc32) !=
537            le32_to_cpu(agpt->partition_entry_array_crc32)) {
538		pr_warn("GPT:partition_entry_array_crc32 values don't match: "
539		       "0x%x != 0x%x\n",
540                       le32_to_cpu(pgpt->partition_entry_array_crc32),
541		       le32_to_cpu(agpt->partition_entry_array_crc32));
542		error_found++;
543	}
544	if (le64_to_cpu(pgpt->alternate_lba) != lastlba) {
545		pr_warn("GPT:Primary header thinks Alt. header is not at the end of the disk.\n");
546		pr_warn("GPT:%lld != %lld\n",
547			(unsigned long long)le64_to_cpu(pgpt->alternate_lba),
548			(unsigned long long)lastlba);
549		error_found++;
550	}
551
552	if (le64_to_cpu(agpt->my_lba) != lastlba) {
553		pr_warn("GPT:Alternate GPT header not at the end of the disk.\n");
554		pr_warn("GPT:%lld != %lld\n",
555			(unsigned long long)le64_to_cpu(agpt->my_lba),
556			(unsigned long long)lastlba);
557		error_found++;
558	}
559
560	if (error_found)
561		pr_warn("GPT: Use GNU Parted to correct GPT errors.\n");
562	return;
563}
564
565/**
566 * find_valid_gpt() - Search disk for valid GPT headers and PTEs
567 * @state: disk parsed partitions
568 * @gpt: GPT header ptr, filled on return.
569 * @ptes: PTEs ptr, filled on return.
570 *
571 * Description: Returns 1 if valid, 0 on error.
572 * If valid, returns pointers to newly allocated GPT header and PTEs.
573 * Validity depends on PMBR being valid (or being overridden by the
574 * 'gpt' kernel command line option) and finding either the Primary
575 * GPT header and PTEs valid, or the Alternate GPT header and PTEs
576 * valid.  If the Primary GPT header is not valid, the Alternate GPT header
577 * is not checked unless the 'gpt' kernel command line option is passed.
578 * This protects against devices which misreport their size, and forces
579 * the user to decide to use the Alternate GPT.
580 */
581static int find_valid_gpt(struct parsed_partitions *state, gpt_header **gpt,
582			  gpt_entry **ptes)
583{
584	int good_pgpt = 0, good_agpt = 0, good_pmbr = 0;
585	gpt_header *pgpt = NULL, *agpt = NULL;
586	gpt_entry *pptes = NULL, *aptes = NULL;
587	legacy_mbr *legacymbr;
588	struct gendisk *disk = state->disk;
589	const struct block_device_operations *fops = disk->fops;
590	sector_t total_sectors = get_capacity(state->disk);
591	u64 lastlba;
592
593	if (!ptes)
594		return 0;
595
596	lastlba = last_lba(state->disk);
597        if (!force_gpt) {
598		/* This will be added to the EFI Spec. per Intel after v1.02. */
599		legacymbr = kzalloc(sizeof(*legacymbr), GFP_KERNEL);
600		if (!legacymbr)
601			goto fail;
602
603		read_lba(state, 0, (u8 *)legacymbr, sizeof(*legacymbr));
604		good_pmbr = is_pmbr_valid(legacymbr, total_sectors);
605		kfree(legacymbr);
606
607		if (!good_pmbr)
608			goto fail;
609
610		pr_debug("Device has a %s MBR\n",
611			 good_pmbr == GPT_MBR_PROTECTIVE ?
612						"protective" : "hybrid");
613	}
614
615	good_pgpt = is_gpt_valid(state, GPT_PRIMARY_PARTITION_TABLE_LBA,
616				 &pgpt, &pptes);
617        if (good_pgpt)
618		good_agpt = is_gpt_valid(state,
619					 le64_to_cpu(pgpt->alternate_lba),
620					 &agpt, &aptes);
621        if (!good_agpt && force_gpt)
622                good_agpt = is_gpt_valid(state, lastlba, &agpt, &aptes);
623
624	if (!good_agpt && force_gpt && fops->alternative_gpt_sector) {
625		sector_t agpt_sector;
626		int err;
627
628		err = fops->alternative_gpt_sector(disk, &agpt_sector);
629		if (!err)
630			good_agpt = is_gpt_valid(state, agpt_sector,
631						 &agpt, &aptes);
632	}
633
634        /* The obviously unsuccessful case */
635        if (!good_pgpt && !good_agpt)
636                goto fail;
637
638        compare_gpts(pgpt, agpt, lastlba);
639
640        /* The good cases */
641        if (good_pgpt) {
642                *gpt  = pgpt;
643                *ptes = pptes;
644                kfree(agpt);
645                kfree(aptes);
646		if (!good_agpt)
647                        pr_warn("Alternate GPT is invalid, using primary GPT.\n");
648                return 1;
649        }
650        else if (good_agpt) {
651                *gpt  = agpt;
652                *ptes = aptes;
653                kfree(pgpt);
654                kfree(pptes);
655		pr_warn("Primary GPT is invalid, using alternate GPT.\n");
656                return 1;
657        }
658
659 fail:
660        kfree(pgpt);
661        kfree(agpt);
662        kfree(pptes);
663        kfree(aptes);
664        *gpt = NULL;
665        *ptes = NULL;
666        return 0;
667}
668
669/**
670 * utf16_le_to_7bit(): Naively converts a UTF-16LE string to 7-bit ASCII characters
671 * @in: input UTF-16LE string
672 * @size: size of the input string
673 * @out: output string ptr, should be capable to store @size+1 characters
674 *
675 * Description: Converts @size UTF16-LE symbols from @in string to 7-bit
676 * ASCII characters and stores them to @out. Adds trailing zero to @out array.
677 */
678static void utf16_le_to_7bit(const __le16 *in, unsigned int size, u8 *out)
679{
680	unsigned int i = 0;
681
682	out[size] = 0;
683
684	while (i < size) {
685		u8 c = le16_to_cpu(in[i]) & 0xff;
686
687		if (c && !isprint(c))
688			c = '!';
689		out[i] = c;
690		i++;
691	}
692}
693
694/**
695 * efi_partition - scan for GPT partitions
696 * @state: disk parsed partitions
697 *
698 * Description: called from check.c, if the disk contains GPT
699 * partitions, sets up partition entries in the kernel.
700 *
701 * If the first block on the disk is a legacy MBR,
702 * it will get handled by msdos_partition().
703 * If it's a Protective MBR, we'll handle it here.
704 *
705 * We do not create a Linux partition for GPT, but
706 * only for the actual data partitions.
707 * Returns:
708 * -1 if unable to read the partition table
709 *  0 if this isn't our partition table
710 *  1 if successful
711 *
712 */
713int efi_partition(struct parsed_partitions *state)
714{
715	gpt_header *gpt = NULL;
716	gpt_entry *ptes = NULL;
717	u32 i;
718	unsigned ssz = queue_logical_block_size(state->disk->queue) / 512;
719
720	if (!find_valid_gpt(state, &gpt, &ptes) || !gpt || !ptes) {
721		kfree(gpt);
722		kfree(ptes);
723		return 0;
724	}
725
726	pr_debug("GUID Partition Table is valid!  Yea!\n");
727
728	for (i = 0; i < le32_to_cpu(gpt->num_partition_entries) && i < state->limit-1; i++) {
729		struct partition_meta_info *info;
730		unsigned label_max;
731		u64 start = le64_to_cpu(ptes[i].starting_lba);
732		u64 size = le64_to_cpu(ptes[i].ending_lba) -
733			   le64_to_cpu(ptes[i].starting_lba) + 1ULL;
734
735		if (!is_pte_valid(&ptes[i], last_lba(state->disk)))
736			continue;
737
738		put_partition(state, i+1, start * ssz, size * ssz);
739
740		/* If this is a RAID volume, tell md */
741		if (!efi_guidcmp(ptes[i].partition_type_guid, PARTITION_LINUX_RAID_GUID))
742			state->parts[i + 1].flags = ADDPART_FLAG_RAID;
743
744		info = &state->parts[i + 1].info;
745		efi_guid_to_str(&ptes[i].unique_partition_guid, info->uuid);
746
747		/* Naively convert UTF16-LE to 7 bits. */
748		label_max = min(ARRAY_SIZE(info->volname) - 1,
749				ARRAY_SIZE(ptes[i].partition_name));
750		utf16_le_to_7bit(ptes[i].partition_name, label_max, info->volname);
751		state->parts[i + 1].has_info = true;
752	}
753	kfree(ptes);
754	kfree(gpt);
755	strlcat(state->pp_buf, "\n", PAGE_SIZE);
756	return 1;
757}
758