1// SPDX-License-Identifier: GPL-2.0
2/*
3 * The Kyber I/O scheduler. Controls latency by throttling queue depths using
4 * scalable techniques.
5 *
6 * Copyright (C) 2017 Facebook
7 */
8
9#include <linux/kernel.h>
10#include <linux/blkdev.h>
11#include <linux/module.h>
12#include <linux/sbitmap.h>
13
14#include <trace/events/block.h>
15
16#include "elevator.h"
17#include "blk.h"
18#include "blk-mq.h"
19#include "blk-mq-debugfs.h"
20#include "blk-mq-sched.h"
21
22#define CREATE_TRACE_POINTS
23#include <trace/events/kyber.h>
24
25/*
26 * Scheduling domains: the device is divided into multiple domains based on the
27 * request type.
28 */
29enum {
30	KYBER_READ,
31	KYBER_WRITE,
32	KYBER_DISCARD,
33	KYBER_OTHER,
34	KYBER_NUM_DOMAINS,
35};
36
37static const char *kyber_domain_names[] = {
38	[KYBER_READ] = "READ",
39	[KYBER_WRITE] = "WRITE",
40	[KYBER_DISCARD] = "DISCARD",
41	[KYBER_OTHER] = "OTHER",
42};
43
44enum {
45	/*
46	 * In order to prevent starvation of synchronous requests by a flood of
47	 * asynchronous requests, we reserve 25% of requests for synchronous
48	 * operations.
49	 */
50	KYBER_ASYNC_PERCENT = 75,
51};
52
53/*
54 * Maximum device-wide depth for each scheduling domain.
55 *
56 * Even for fast devices with lots of tags like NVMe, you can saturate the
57 * device with only a fraction of the maximum possible queue depth. So, we cap
58 * these to a reasonable value.
59 */
60static const unsigned int kyber_depth[] = {
61	[KYBER_READ] = 256,
62	[KYBER_WRITE] = 128,
63	[KYBER_DISCARD] = 64,
64	[KYBER_OTHER] = 16,
65};
66
67/*
68 * Default latency targets for each scheduling domain.
69 */
70static const u64 kyber_latency_targets[] = {
71	[KYBER_READ] = 2ULL * NSEC_PER_MSEC,
72	[KYBER_WRITE] = 10ULL * NSEC_PER_MSEC,
73	[KYBER_DISCARD] = 5ULL * NSEC_PER_SEC,
74};
75
76/*
77 * Batch size (number of requests we'll dispatch in a row) for each scheduling
78 * domain.
79 */
80static const unsigned int kyber_batch_size[] = {
81	[KYBER_READ] = 16,
82	[KYBER_WRITE] = 8,
83	[KYBER_DISCARD] = 1,
84	[KYBER_OTHER] = 1,
85};
86
87/*
88 * Requests latencies are recorded in a histogram with buckets defined relative
89 * to the target latency:
90 *
91 * <= 1/4 * target latency
92 * <= 1/2 * target latency
93 * <= 3/4 * target latency
94 * <= target latency
95 * <= 1 1/4 * target latency
96 * <= 1 1/2 * target latency
97 * <= 1 3/4 * target latency
98 * > 1 3/4 * target latency
99 */
100enum {
101	/*
102	 * The width of the latency histogram buckets is
103	 * 1 / (1 << KYBER_LATENCY_SHIFT) * target latency.
104	 */
105	KYBER_LATENCY_SHIFT = 2,
106	/*
107	 * The first (1 << KYBER_LATENCY_SHIFT) buckets are <= target latency,
108	 * thus, "good".
109	 */
110	KYBER_GOOD_BUCKETS = 1 << KYBER_LATENCY_SHIFT,
111	/* There are also (1 << KYBER_LATENCY_SHIFT) "bad" buckets. */
112	KYBER_LATENCY_BUCKETS = 2 << KYBER_LATENCY_SHIFT,
113};
114
115/*
116 * We measure both the total latency and the I/O latency (i.e., latency after
117 * submitting to the device).
118 */
119enum {
120	KYBER_TOTAL_LATENCY,
121	KYBER_IO_LATENCY,
122};
123
124static const char *kyber_latency_type_names[] = {
125	[KYBER_TOTAL_LATENCY] = "total",
126	[KYBER_IO_LATENCY] = "I/O",
127};
128
129/*
130 * Per-cpu latency histograms: total latency and I/O latency for each scheduling
131 * domain except for KYBER_OTHER.
132 */
133struct kyber_cpu_latency {
134	atomic_t buckets[KYBER_OTHER][2][KYBER_LATENCY_BUCKETS];
135};
136
137/*
138 * There is a same mapping between ctx & hctx and kcq & khd,
139 * we use request->mq_ctx->index_hw to index the kcq in khd.
140 */
141struct kyber_ctx_queue {
142	/*
143	 * Used to ensure operations on rq_list and kcq_map to be an atmoic one.
144	 * Also protect the rqs on rq_list when merge.
145	 */
146	spinlock_t lock;
147	struct list_head rq_list[KYBER_NUM_DOMAINS];
148} ____cacheline_aligned_in_smp;
149
150struct kyber_queue_data {
151	struct request_queue *q;
152	dev_t dev;
153
154	/*
155	 * Each scheduling domain has a limited number of in-flight requests
156	 * device-wide, limited by these tokens.
157	 */
158	struct sbitmap_queue domain_tokens[KYBER_NUM_DOMAINS];
159
160	/*
161	 * Async request percentage, converted to per-word depth for
162	 * sbitmap_get_shallow().
163	 */
164	unsigned int async_depth;
165
166	struct kyber_cpu_latency __percpu *cpu_latency;
167
168	/* Timer for stats aggregation and adjusting domain tokens. */
169	struct timer_list timer;
170
171	unsigned int latency_buckets[KYBER_OTHER][2][KYBER_LATENCY_BUCKETS];
172
173	unsigned long latency_timeout[KYBER_OTHER];
174
175	int domain_p99[KYBER_OTHER];
176
177	/* Target latencies in nanoseconds. */
178	u64 latency_targets[KYBER_OTHER];
179};
180
181struct kyber_hctx_data {
182	spinlock_t lock;
183	struct list_head rqs[KYBER_NUM_DOMAINS];
184	unsigned int cur_domain;
185	unsigned int batching;
186	struct kyber_ctx_queue *kcqs;
187	struct sbitmap kcq_map[KYBER_NUM_DOMAINS];
188	struct sbq_wait domain_wait[KYBER_NUM_DOMAINS];
189	struct sbq_wait_state *domain_ws[KYBER_NUM_DOMAINS];
190	atomic_t wait_index[KYBER_NUM_DOMAINS];
191};
192
193static int kyber_domain_wake(wait_queue_entry_t *wait, unsigned mode, int flags,
194			     void *key);
195
196static unsigned int kyber_sched_domain(blk_opf_t opf)
197{
198	switch (opf & REQ_OP_MASK) {
199	case REQ_OP_READ:
200		return KYBER_READ;
201	case REQ_OP_WRITE:
202		return KYBER_WRITE;
203	case REQ_OP_DISCARD:
204		return KYBER_DISCARD;
205	default:
206		return KYBER_OTHER;
207	}
208}
209
210static void flush_latency_buckets(struct kyber_queue_data *kqd,
211				  struct kyber_cpu_latency *cpu_latency,
212				  unsigned int sched_domain, unsigned int type)
213{
214	unsigned int *buckets = kqd->latency_buckets[sched_domain][type];
215	atomic_t *cpu_buckets = cpu_latency->buckets[sched_domain][type];
216	unsigned int bucket;
217
218	for (bucket = 0; bucket < KYBER_LATENCY_BUCKETS; bucket++)
219		buckets[bucket] += atomic_xchg(&cpu_buckets[bucket], 0);
220}
221
222/*
223 * Calculate the histogram bucket with the given percentile rank, or -1 if there
224 * aren't enough samples yet.
225 */
226static int calculate_percentile(struct kyber_queue_data *kqd,
227				unsigned int sched_domain, unsigned int type,
228				unsigned int percentile)
229{
230	unsigned int *buckets = kqd->latency_buckets[sched_domain][type];
231	unsigned int bucket, samples = 0, percentile_samples;
232
233	for (bucket = 0; bucket < KYBER_LATENCY_BUCKETS; bucket++)
234		samples += buckets[bucket];
235
236	if (!samples)
237		return -1;
238
239	/*
240	 * We do the calculation once we have 500 samples or one second passes
241	 * since the first sample was recorded, whichever comes first.
242	 */
243	if (!kqd->latency_timeout[sched_domain])
244		kqd->latency_timeout[sched_domain] = max(jiffies + HZ, 1UL);
245	if (samples < 500 &&
246	    time_is_after_jiffies(kqd->latency_timeout[sched_domain])) {
247		return -1;
248	}
249	kqd->latency_timeout[sched_domain] = 0;
250
251	percentile_samples = DIV_ROUND_UP(samples * percentile, 100);
252	for (bucket = 0; bucket < KYBER_LATENCY_BUCKETS - 1; bucket++) {
253		if (buckets[bucket] >= percentile_samples)
254			break;
255		percentile_samples -= buckets[bucket];
256	}
257	memset(buckets, 0, sizeof(kqd->latency_buckets[sched_domain][type]));
258
259	trace_kyber_latency(kqd->dev, kyber_domain_names[sched_domain],
260			    kyber_latency_type_names[type], percentile,
261			    bucket + 1, 1 << KYBER_LATENCY_SHIFT, samples);
262
263	return bucket;
264}
265
266static void kyber_resize_domain(struct kyber_queue_data *kqd,
267				unsigned int sched_domain, unsigned int depth)
268{
269	depth = clamp(depth, 1U, kyber_depth[sched_domain]);
270	if (depth != kqd->domain_tokens[sched_domain].sb.depth) {
271		sbitmap_queue_resize(&kqd->domain_tokens[sched_domain], depth);
272		trace_kyber_adjust(kqd->dev, kyber_domain_names[sched_domain],
273				   depth);
274	}
275}
276
277static void kyber_timer_fn(struct timer_list *t)
278{
279	struct kyber_queue_data *kqd = from_timer(kqd, t, timer);
280	unsigned int sched_domain;
281	int cpu;
282	bool bad = false;
283
284	/* Sum all of the per-cpu latency histograms. */
285	for_each_online_cpu(cpu) {
286		struct kyber_cpu_latency *cpu_latency;
287
288		cpu_latency = per_cpu_ptr(kqd->cpu_latency, cpu);
289		for (sched_domain = 0; sched_domain < KYBER_OTHER; sched_domain++) {
290			flush_latency_buckets(kqd, cpu_latency, sched_domain,
291					      KYBER_TOTAL_LATENCY);
292			flush_latency_buckets(kqd, cpu_latency, sched_domain,
293					      KYBER_IO_LATENCY);
294		}
295	}
296
297	/*
298	 * Check if any domains have a high I/O latency, which might indicate
299	 * congestion in the device. Note that we use the p90; we don't want to
300	 * be too sensitive to outliers here.
301	 */
302	for (sched_domain = 0; sched_domain < KYBER_OTHER; sched_domain++) {
303		int p90;
304
305		p90 = calculate_percentile(kqd, sched_domain, KYBER_IO_LATENCY,
306					   90);
307		if (p90 >= KYBER_GOOD_BUCKETS)
308			bad = true;
309	}
310
311	/*
312	 * Adjust the scheduling domain depths. If we determined that there was
313	 * congestion, we throttle all domains with good latencies. Either way,
314	 * we ease up on throttling domains with bad latencies.
315	 */
316	for (sched_domain = 0; sched_domain < KYBER_OTHER; sched_domain++) {
317		unsigned int orig_depth, depth;
318		int p99;
319
320		p99 = calculate_percentile(kqd, sched_domain,
321					   KYBER_TOTAL_LATENCY, 99);
322		/*
323		 * This is kind of subtle: different domains will not
324		 * necessarily have enough samples to calculate the latency
325		 * percentiles during the same window, so we have to remember
326		 * the p99 for the next time we observe congestion; once we do,
327		 * we don't want to throttle again until we get more data, so we
328		 * reset it to -1.
329		 */
330		if (bad) {
331			if (p99 < 0)
332				p99 = kqd->domain_p99[sched_domain];
333			kqd->domain_p99[sched_domain] = -1;
334		} else if (p99 >= 0) {
335			kqd->domain_p99[sched_domain] = p99;
336		}
337		if (p99 < 0)
338			continue;
339
340		/*
341		 * If this domain has bad latency, throttle less. Otherwise,
342		 * throttle more iff we determined that there is congestion.
343		 *
344		 * The new depth is scaled linearly with the p99 latency vs the
345		 * latency target. E.g., if the p99 is 3/4 of the target, then
346		 * we throttle down to 3/4 of the current depth, and if the p99
347		 * is 2x the target, then we double the depth.
348		 */
349		if (bad || p99 >= KYBER_GOOD_BUCKETS) {
350			orig_depth = kqd->domain_tokens[sched_domain].sb.depth;
351			depth = (orig_depth * (p99 + 1)) >> KYBER_LATENCY_SHIFT;
352			kyber_resize_domain(kqd, sched_domain, depth);
353		}
354	}
355}
356
357static struct kyber_queue_data *kyber_queue_data_alloc(struct request_queue *q)
358{
359	struct kyber_queue_data *kqd;
360	int ret = -ENOMEM;
361	int i;
362
363	kqd = kzalloc_node(sizeof(*kqd), GFP_KERNEL, q->node);
364	if (!kqd)
365		goto err;
366
367	kqd->q = q;
368	kqd->dev = disk_devt(q->disk);
369
370	kqd->cpu_latency = alloc_percpu_gfp(struct kyber_cpu_latency,
371					    GFP_KERNEL | __GFP_ZERO);
372	if (!kqd->cpu_latency)
373		goto err_kqd;
374
375	timer_setup(&kqd->timer, kyber_timer_fn, 0);
376
377	for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
378		WARN_ON(!kyber_depth[i]);
379		WARN_ON(!kyber_batch_size[i]);
380		ret = sbitmap_queue_init_node(&kqd->domain_tokens[i],
381					      kyber_depth[i], -1, false,
382					      GFP_KERNEL, q->node);
383		if (ret) {
384			while (--i >= 0)
385				sbitmap_queue_free(&kqd->domain_tokens[i]);
386			goto err_buckets;
387		}
388	}
389
390	for (i = 0; i < KYBER_OTHER; i++) {
391		kqd->domain_p99[i] = -1;
392		kqd->latency_targets[i] = kyber_latency_targets[i];
393	}
394
395	return kqd;
396
397err_buckets:
398	free_percpu(kqd->cpu_latency);
399err_kqd:
400	kfree(kqd);
401err:
402	return ERR_PTR(ret);
403}
404
405static int kyber_init_sched(struct request_queue *q, struct elevator_type *e)
406{
407	struct kyber_queue_data *kqd;
408	struct elevator_queue *eq;
409
410	eq = elevator_alloc(q, e);
411	if (!eq)
412		return -ENOMEM;
413
414	kqd = kyber_queue_data_alloc(q);
415	if (IS_ERR(kqd)) {
416		kobject_put(&eq->kobj);
417		return PTR_ERR(kqd);
418	}
419
420	blk_stat_enable_accounting(q);
421
422	blk_queue_flag_clear(QUEUE_FLAG_SQ_SCHED, q);
423
424	eq->elevator_data = kqd;
425	q->elevator = eq;
426
427	return 0;
428}
429
430static void kyber_exit_sched(struct elevator_queue *e)
431{
432	struct kyber_queue_data *kqd = e->elevator_data;
433	int i;
434
435	timer_shutdown_sync(&kqd->timer);
436	blk_stat_disable_accounting(kqd->q);
437
438	for (i = 0; i < KYBER_NUM_DOMAINS; i++)
439		sbitmap_queue_free(&kqd->domain_tokens[i]);
440	free_percpu(kqd->cpu_latency);
441	kfree(kqd);
442}
443
444static void kyber_ctx_queue_init(struct kyber_ctx_queue *kcq)
445{
446	unsigned int i;
447
448	spin_lock_init(&kcq->lock);
449	for (i = 0; i < KYBER_NUM_DOMAINS; i++)
450		INIT_LIST_HEAD(&kcq->rq_list[i]);
451}
452
453static void kyber_depth_updated(struct blk_mq_hw_ctx *hctx)
454{
455	struct kyber_queue_data *kqd = hctx->queue->elevator->elevator_data;
456	struct blk_mq_tags *tags = hctx->sched_tags;
457	unsigned int shift = tags->bitmap_tags.sb.shift;
458
459	kqd->async_depth = (1U << shift) * KYBER_ASYNC_PERCENT / 100U;
460
461	sbitmap_queue_min_shallow_depth(&tags->bitmap_tags, kqd->async_depth);
462}
463
464static int kyber_init_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
465{
466	struct kyber_hctx_data *khd;
467	int i;
468
469	khd = kmalloc_node(sizeof(*khd), GFP_KERNEL, hctx->numa_node);
470	if (!khd)
471		return -ENOMEM;
472
473	khd->kcqs = kmalloc_array_node(hctx->nr_ctx,
474				       sizeof(struct kyber_ctx_queue),
475				       GFP_KERNEL, hctx->numa_node);
476	if (!khd->kcqs)
477		goto err_khd;
478
479	for (i = 0; i < hctx->nr_ctx; i++)
480		kyber_ctx_queue_init(&khd->kcqs[i]);
481
482	for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
483		if (sbitmap_init_node(&khd->kcq_map[i], hctx->nr_ctx,
484				      ilog2(8), GFP_KERNEL, hctx->numa_node,
485				      false, false)) {
486			while (--i >= 0)
487				sbitmap_free(&khd->kcq_map[i]);
488			goto err_kcqs;
489		}
490	}
491
492	spin_lock_init(&khd->lock);
493
494	for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
495		INIT_LIST_HEAD(&khd->rqs[i]);
496		khd->domain_wait[i].sbq = NULL;
497		init_waitqueue_func_entry(&khd->domain_wait[i].wait,
498					  kyber_domain_wake);
499		khd->domain_wait[i].wait.private = hctx;
500		INIT_LIST_HEAD(&khd->domain_wait[i].wait.entry);
501		atomic_set(&khd->wait_index[i], 0);
502	}
503
504	khd->cur_domain = 0;
505	khd->batching = 0;
506
507	hctx->sched_data = khd;
508	kyber_depth_updated(hctx);
509
510	return 0;
511
512err_kcqs:
513	kfree(khd->kcqs);
514err_khd:
515	kfree(khd);
516	return -ENOMEM;
517}
518
519static void kyber_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
520{
521	struct kyber_hctx_data *khd = hctx->sched_data;
522	int i;
523
524	for (i = 0; i < KYBER_NUM_DOMAINS; i++)
525		sbitmap_free(&khd->kcq_map[i]);
526	kfree(khd->kcqs);
527	kfree(hctx->sched_data);
528}
529
530static int rq_get_domain_token(struct request *rq)
531{
532	return (long)rq->elv.priv[0];
533}
534
535static void rq_set_domain_token(struct request *rq, int token)
536{
537	rq->elv.priv[0] = (void *)(long)token;
538}
539
540static void rq_clear_domain_token(struct kyber_queue_data *kqd,
541				  struct request *rq)
542{
543	unsigned int sched_domain;
544	int nr;
545
546	nr = rq_get_domain_token(rq);
547	if (nr != -1) {
548		sched_domain = kyber_sched_domain(rq->cmd_flags);
549		sbitmap_queue_clear(&kqd->domain_tokens[sched_domain], nr,
550				    rq->mq_ctx->cpu);
551	}
552}
553
554static void kyber_limit_depth(blk_opf_t opf, struct blk_mq_alloc_data *data)
555{
556	/*
557	 * We use the scheduler tags as per-hardware queue queueing tokens.
558	 * Async requests can be limited at this stage.
559	 */
560	if (!op_is_sync(opf)) {
561		struct kyber_queue_data *kqd = data->q->elevator->elevator_data;
562
563		data->shallow_depth = kqd->async_depth;
564	}
565}
566
567static bool kyber_bio_merge(struct request_queue *q, struct bio *bio,
568		unsigned int nr_segs)
569{
570	struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
571	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, bio->bi_opf, ctx);
572	struct kyber_hctx_data *khd = hctx->sched_data;
573	struct kyber_ctx_queue *kcq = &khd->kcqs[ctx->index_hw[hctx->type]];
574	unsigned int sched_domain = kyber_sched_domain(bio->bi_opf);
575	struct list_head *rq_list = &kcq->rq_list[sched_domain];
576	bool merged;
577
578	spin_lock(&kcq->lock);
579	merged = blk_bio_list_merge(hctx->queue, rq_list, bio, nr_segs);
580	spin_unlock(&kcq->lock);
581
582	return merged;
583}
584
585static void kyber_prepare_request(struct request *rq)
586{
587	rq_set_domain_token(rq, -1);
588}
589
590static void kyber_insert_requests(struct blk_mq_hw_ctx *hctx,
591				  struct list_head *rq_list,
592				  blk_insert_t flags)
593{
594	struct kyber_hctx_data *khd = hctx->sched_data;
595	struct request *rq, *next;
596
597	list_for_each_entry_safe(rq, next, rq_list, queuelist) {
598		unsigned int sched_domain = kyber_sched_domain(rq->cmd_flags);
599		struct kyber_ctx_queue *kcq = &khd->kcqs[rq->mq_ctx->index_hw[hctx->type]];
600		struct list_head *head = &kcq->rq_list[sched_domain];
601
602		spin_lock(&kcq->lock);
603		trace_block_rq_insert(rq);
604		if (flags & BLK_MQ_INSERT_AT_HEAD)
605			list_move(&rq->queuelist, head);
606		else
607			list_move_tail(&rq->queuelist, head);
608		sbitmap_set_bit(&khd->kcq_map[sched_domain],
609				rq->mq_ctx->index_hw[hctx->type]);
610		spin_unlock(&kcq->lock);
611	}
612}
613
614static void kyber_finish_request(struct request *rq)
615{
616	struct kyber_queue_data *kqd = rq->q->elevator->elevator_data;
617
618	rq_clear_domain_token(kqd, rq);
619}
620
621static void add_latency_sample(struct kyber_cpu_latency *cpu_latency,
622			       unsigned int sched_domain, unsigned int type,
623			       u64 target, u64 latency)
624{
625	unsigned int bucket;
626	u64 divisor;
627
628	if (latency > 0) {
629		divisor = max_t(u64, target >> KYBER_LATENCY_SHIFT, 1);
630		bucket = min_t(unsigned int, div64_u64(latency - 1, divisor),
631			       KYBER_LATENCY_BUCKETS - 1);
632	} else {
633		bucket = 0;
634	}
635
636	atomic_inc(&cpu_latency->buckets[sched_domain][type][bucket]);
637}
638
639static void kyber_completed_request(struct request *rq, u64 now)
640{
641	struct kyber_queue_data *kqd = rq->q->elevator->elevator_data;
642	struct kyber_cpu_latency *cpu_latency;
643	unsigned int sched_domain;
644	u64 target;
645
646	sched_domain = kyber_sched_domain(rq->cmd_flags);
647	if (sched_domain == KYBER_OTHER)
648		return;
649
650	cpu_latency = get_cpu_ptr(kqd->cpu_latency);
651	target = kqd->latency_targets[sched_domain];
652	add_latency_sample(cpu_latency, sched_domain, KYBER_TOTAL_LATENCY,
653			   target, now - rq->start_time_ns);
654	add_latency_sample(cpu_latency, sched_domain, KYBER_IO_LATENCY, target,
655			   now - rq->io_start_time_ns);
656	put_cpu_ptr(kqd->cpu_latency);
657
658	timer_reduce(&kqd->timer, jiffies + HZ / 10);
659}
660
661struct flush_kcq_data {
662	struct kyber_hctx_data *khd;
663	unsigned int sched_domain;
664	struct list_head *list;
665};
666
667static bool flush_busy_kcq(struct sbitmap *sb, unsigned int bitnr, void *data)
668{
669	struct flush_kcq_data *flush_data = data;
670	struct kyber_ctx_queue *kcq = &flush_data->khd->kcqs[bitnr];
671
672	spin_lock(&kcq->lock);
673	list_splice_tail_init(&kcq->rq_list[flush_data->sched_domain],
674			      flush_data->list);
675	sbitmap_clear_bit(sb, bitnr);
676	spin_unlock(&kcq->lock);
677
678	return true;
679}
680
681static void kyber_flush_busy_kcqs(struct kyber_hctx_data *khd,
682				  unsigned int sched_domain,
683				  struct list_head *list)
684{
685	struct flush_kcq_data data = {
686		.khd = khd,
687		.sched_domain = sched_domain,
688		.list = list,
689	};
690
691	sbitmap_for_each_set(&khd->kcq_map[sched_domain],
692			     flush_busy_kcq, &data);
693}
694
695static int kyber_domain_wake(wait_queue_entry_t *wqe, unsigned mode, int flags,
696			     void *key)
697{
698	struct blk_mq_hw_ctx *hctx = READ_ONCE(wqe->private);
699	struct sbq_wait *wait = container_of(wqe, struct sbq_wait, wait);
700
701	sbitmap_del_wait_queue(wait);
702	blk_mq_run_hw_queue(hctx, true);
703	return 1;
704}
705
706static int kyber_get_domain_token(struct kyber_queue_data *kqd,
707				  struct kyber_hctx_data *khd,
708				  struct blk_mq_hw_ctx *hctx)
709{
710	unsigned int sched_domain = khd->cur_domain;
711	struct sbitmap_queue *domain_tokens = &kqd->domain_tokens[sched_domain];
712	struct sbq_wait *wait = &khd->domain_wait[sched_domain];
713	struct sbq_wait_state *ws;
714	int nr;
715
716	nr = __sbitmap_queue_get(domain_tokens);
717
718	/*
719	 * If we failed to get a domain token, make sure the hardware queue is
720	 * run when one becomes available. Note that this is serialized on
721	 * khd->lock, but we still need to be careful about the waker.
722	 */
723	if (nr < 0 && list_empty_careful(&wait->wait.entry)) {
724		ws = sbq_wait_ptr(domain_tokens,
725				  &khd->wait_index[sched_domain]);
726		khd->domain_ws[sched_domain] = ws;
727		sbitmap_add_wait_queue(domain_tokens, ws, wait);
728
729		/*
730		 * Try again in case a token was freed before we got on the wait
731		 * queue.
732		 */
733		nr = __sbitmap_queue_get(domain_tokens);
734	}
735
736	/*
737	 * If we got a token while we were on the wait queue, remove ourselves
738	 * from the wait queue to ensure that all wake ups make forward
739	 * progress. It's possible that the waker already deleted the entry
740	 * between the !list_empty_careful() check and us grabbing the lock, but
741	 * list_del_init() is okay with that.
742	 */
743	if (nr >= 0 && !list_empty_careful(&wait->wait.entry)) {
744		ws = khd->domain_ws[sched_domain];
745		spin_lock_irq(&ws->wait.lock);
746		sbitmap_del_wait_queue(wait);
747		spin_unlock_irq(&ws->wait.lock);
748	}
749
750	return nr;
751}
752
753static struct request *
754kyber_dispatch_cur_domain(struct kyber_queue_data *kqd,
755			  struct kyber_hctx_data *khd,
756			  struct blk_mq_hw_ctx *hctx)
757{
758	struct list_head *rqs;
759	struct request *rq;
760	int nr;
761
762	rqs = &khd->rqs[khd->cur_domain];
763
764	/*
765	 * If we already have a flushed request, then we just need to get a
766	 * token for it. Otherwise, if there are pending requests in the kcqs,
767	 * flush the kcqs, but only if we can get a token. If not, we should
768	 * leave the requests in the kcqs so that they can be merged. Note that
769	 * khd->lock serializes the flushes, so if we observed any bit set in
770	 * the kcq_map, we will always get a request.
771	 */
772	rq = list_first_entry_or_null(rqs, struct request, queuelist);
773	if (rq) {
774		nr = kyber_get_domain_token(kqd, khd, hctx);
775		if (nr >= 0) {
776			khd->batching++;
777			rq_set_domain_token(rq, nr);
778			list_del_init(&rq->queuelist);
779			return rq;
780		} else {
781			trace_kyber_throttled(kqd->dev,
782					      kyber_domain_names[khd->cur_domain]);
783		}
784	} else if (sbitmap_any_bit_set(&khd->kcq_map[khd->cur_domain])) {
785		nr = kyber_get_domain_token(kqd, khd, hctx);
786		if (nr >= 0) {
787			kyber_flush_busy_kcqs(khd, khd->cur_domain, rqs);
788			rq = list_first_entry(rqs, struct request, queuelist);
789			khd->batching++;
790			rq_set_domain_token(rq, nr);
791			list_del_init(&rq->queuelist);
792			return rq;
793		} else {
794			trace_kyber_throttled(kqd->dev,
795					      kyber_domain_names[khd->cur_domain]);
796		}
797	}
798
799	/* There were either no pending requests or no tokens. */
800	return NULL;
801}
802
803static struct request *kyber_dispatch_request(struct blk_mq_hw_ctx *hctx)
804{
805	struct kyber_queue_data *kqd = hctx->queue->elevator->elevator_data;
806	struct kyber_hctx_data *khd = hctx->sched_data;
807	struct request *rq;
808	int i;
809
810	spin_lock(&khd->lock);
811
812	/*
813	 * First, if we are still entitled to batch, try to dispatch a request
814	 * from the batch.
815	 */
816	if (khd->batching < kyber_batch_size[khd->cur_domain]) {
817		rq = kyber_dispatch_cur_domain(kqd, khd, hctx);
818		if (rq)
819			goto out;
820	}
821
822	/*
823	 * Either,
824	 * 1. We were no longer entitled to a batch.
825	 * 2. The domain we were batching didn't have any requests.
826	 * 3. The domain we were batching was out of tokens.
827	 *
828	 * Start another batch. Note that this wraps back around to the original
829	 * domain if no other domains have requests or tokens.
830	 */
831	khd->batching = 0;
832	for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
833		if (khd->cur_domain == KYBER_NUM_DOMAINS - 1)
834			khd->cur_domain = 0;
835		else
836			khd->cur_domain++;
837
838		rq = kyber_dispatch_cur_domain(kqd, khd, hctx);
839		if (rq)
840			goto out;
841	}
842
843	rq = NULL;
844out:
845	spin_unlock(&khd->lock);
846	return rq;
847}
848
849static bool kyber_has_work(struct blk_mq_hw_ctx *hctx)
850{
851	struct kyber_hctx_data *khd = hctx->sched_data;
852	int i;
853
854	for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
855		if (!list_empty_careful(&khd->rqs[i]) ||
856		    sbitmap_any_bit_set(&khd->kcq_map[i]))
857			return true;
858	}
859
860	return false;
861}
862
863#define KYBER_LAT_SHOW_STORE(domain, name)				\
864static ssize_t kyber_##name##_lat_show(struct elevator_queue *e,	\
865				       char *page)			\
866{									\
867	struct kyber_queue_data *kqd = e->elevator_data;		\
868									\
869	return sprintf(page, "%llu\n", kqd->latency_targets[domain]);	\
870}									\
871									\
872static ssize_t kyber_##name##_lat_store(struct elevator_queue *e,	\
873					const char *page, size_t count)	\
874{									\
875	struct kyber_queue_data *kqd = e->elevator_data;		\
876	unsigned long long nsec;					\
877	int ret;							\
878									\
879	ret = kstrtoull(page, 10, &nsec);				\
880	if (ret)							\
881		return ret;						\
882									\
883	kqd->latency_targets[domain] = nsec;				\
884									\
885	return count;							\
886}
887KYBER_LAT_SHOW_STORE(KYBER_READ, read);
888KYBER_LAT_SHOW_STORE(KYBER_WRITE, write);
889#undef KYBER_LAT_SHOW_STORE
890
891#define KYBER_LAT_ATTR(op) __ATTR(op##_lat_nsec, 0644, kyber_##op##_lat_show, kyber_##op##_lat_store)
892static struct elv_fs_entry kyber_sched_attrs[] = {
893	KYBER_LAT_ATTR(read),
894	KYBER_LAT_ATTR(write),
895	__ATTR_NULL
896};
897#undef KYBER_LAT_ATTR
898
899#ifdef CONFIG_BLK_DEBUG_FS
900#define KYBER_DEBUGFS_DOMAIN_ATTRS(domain, name)			\
901static int kyber_##name##_tokens_show(void *data, struct seq_file *m)	\
902{									\
903	struct request_queue *q = data;					\
904	struct kyber_queue_data *kqd = q->elevator->elevator_data;	\
905									\
906	sbitmap_queue_show(&kqd->domain_tokens[domain], m);		\
907	return 0;							\
908}									\
909									\
910static void *kyber_##name##_rqs_start(struct seq_file *m, loff_t *pos)	\
911	__acquires(&khd->lock)						\
912{									\
913	struct blk_mq_hw_ctx *hctx = m->private;			\
914	struct kyber_hctx_data *khd = hctx->sched_data;			\
915									\
916	spin_lock(&khd->lock);						\
917	return seq_list_start(&khd->rqs[domain], *pos);			\
918}									\
919									\
920static void *kyber_##name##_rqs_next(struct seq_file *m, void *v,	\
921				     loff_t *pos)			\
922{									\
923	struct blk_mq_hw_ctx *hctx = m->private;			\
924	struct kyber_hctx_data *khd = hctx->sched_data;			\
925									\
926	return seq_list_next(v, &khd->rqs[domain], pos);		\
927}									\
928									\
929static void kyber_##name##_rqs_stop(struct seq_file *m, void *v)	\
930	__releases(&khd->lock)						\
931{									\
932	struct blk_mq_hw_ctx *hctx = m->private;			\
933	struct kyber_hctx_data *khd = hctx->sched_data;			\
934									\
935	spin_unlock(&khd->lock);					\
936}									\
937									\
938static const struct seq_operations kyber_##name##_rqs_seq_ops = {	\
939	.start	= kyber_##name##_rqs_start,				\
940	.next	= kyber_##name##_rqs_next,				\
941	.stop	= kyber_##name##_rqs_stop,				\
942	.show	= blk_mq_debugfs_rq_show,				\
943};									\
944									\
945static int kyber_##name##_waiting_show(void *data, struct seq_file *m)	\
946{									\
947	struct blk_mq_hw_ctx *hctx = data;				\
948	struct kyber_hctx_data *khd = hctx->sched_data;			\
949	wait_queue_entry_t *wait = &khd->domain_wait[domain].wait;	\
950									\
951	seq_printf(m, "%d\n", !list_empty_careful(&wait->entry));	\
952	return 0;							\
953}
954KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_READ, read)
955KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_WRITE, write)
956KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_DISCARD, discard)
957KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_OTHER, other)
958#undef KYBER_DEBUGFS_DOMAIN_ATTRS
959
960static int kyber_async_depth_show(void *data, struct seq_file *m)
961{
962	struct request_queue *q = data;
963	struct kyber_queue_data *kqd = q->elevator->elevator_data;
964
965	seq_printf(m, "%u\n", kqd->async_depth);
966	return 0;
967}
968
969static int kyber_cur_domain_show(void *data, struct seq_file *m)
970{
971	struct blk_mq_hw_ctx *hctx = data;
972	struct kyber_hctx_data *khd = hctx->sched_data;
973
974	seq_printf(m, "%s\n", kyber_domain_names[khd->cur_domain]);
975	return 0;
976}
977
978static int kyber_batching_show(void *data, struct seq_file *m)
979{
980	struct blk_mq_hw_ctx *hctx = data;
981	struct kyber_hctx_data *khd = hctx->sched_data;
982
983	seq_printf(m, "%u\n", khd->batching);
984	return 0;
985}
986
987#define KYBER_QUEUE_DOMAIN_ATTRS(name)	\
988	{#name "_tokens", 0400, kyber_##name##_tokens_show}
989static const struct blk_mq_debugfs_attr kyber_queue_debugfs_attrs[] = {
990	KYBER_QUEUE_DOMAIN_ATTRS(read),
991	KYBER_QUEUE_DOMAIN_ATTRS(write),
992	KYBER_QUEUE_DOMAIN_ATTRS(discard),
993	KYBER_QUEUE_DOMAIN_ATTRS(other),
994	{"async_depth", 0400, kyber_async_depth_show},
995	{},
996};
997#undef KYBER_QUEUE_DOMAIN_ATTRS
998
999#define KYBER_HCTX_DOMAIN_ATTRS(name)					\
1000	{#name "_rqs", 0400, .seq_ops = &kyber_##name##_rqs_seq_ops},	\
1001	{#name "_waiting", 0400, kyber_##name##_waiting_show}
1002static const struct blk_mq_debugfs_attr kyber_hctx_debugfs_attrs[] = {
1003	KYBER_HCTX_DOMAIN_ATTRS(read),
1004	KYBER_HCTX_DOMAIN_ATTRS(write),
1005	KYBER_HCTX_DOMAIN_ATTRS(discard),
1006	KYBER_HCTX_DOMAIN_ATTRS(other),
1007	{"cur_domain", 0400, kyber_cur_domain_show},
1008	{"batching", 0400, kyber_batching_show},
1009	{},
1010};
1011#undef KYBER_HCTX_DOMAIN_ATTRS
1012#endif
1013
1014static struct elevator_type kyber_sched = {
1015	.ops = {
1016		.init_sched = kyber_init_sched,
1017		.exit_sched = kyber_exit_sched,
1018		.init_hctx = kyber_init_hctx,
1019		.exit_hctx = kyber_exit_hctx,
1020		.limit_depth = kyber_limit_depth,
1021		.bio_merge = kyber_bio_merge,
1022		.prepare_request = kyber_prepare_request,
1023		.insert_requests = kyber_insert_requests,
1024		.finish_request = kyber_finish_request,
1025		.requeue_request = kyber_finish_request,
1026		.completed_request = kyber_completed_request,
1027		.dispatch_request = kyber_dispatch_request,
1028		.has_work = kyber_has_work,
1029		.depth_updated = kyber_depth_updated,
1030	},
1031#ifdef CONFIG_BLK_DEBUG_FS
1032	.queue_debugfs_attrs = kyber_queue_debugfs_attrs,
1033	.hctx_debugfs_attrs = kyber_hctx_debugfs_attrs,
1034#endif
1035	.elevator_attrs = kyber_sched_attrs,
1036	.elevator_name = "kyber",
1037	.elevator_owner = THIS_MODULE,
1038};
1039
1040static int __init kyber_init(void)
1041{
1042	return elv_register(&kyber_sched);
1043}
1044
1045static void __exit kyber_exit(void)
1046{
1047	elv_unregister(&kyber_sched);
1048}
1049
1050module_init(kyber_init);
1051module_exit(kyber_exit);
1052
1053MODULE_AUTHOR("Omar Sandoval");
1054MODULE_LICENSE("GPL");
1055MODULE_DESCRIPTION("Kyber I/O scheduler");
1056