1145132Sanholt// SPDX-License-Identifier: GPL-2.0
2145132Sanholt
3145132Sanholt#include "blk-rq-qos.h"
4145132Sanholt
5145132Sanholt/*
6145132Sanholt * Increment 'v', if 'v' is below 'below'. Returns true if we succeeded,
7145132Sanholt * false if 'v' + 1 would be bigger than 'below'.
8145132Sanholt */
9145132Sanholtstatic bool atomic_inc_below(atomic_t *v, unsigned int below)
10145132Sanholt{
11145132Sanholt	unsigned int cur = atomic_read(v);
12145132Sanholt
13145132Sanholt	do {
14145132Sanholt		if (cur >= below)
15145132Sanholt			return false;
16145132Sanholt	} while (!atomic_try_cmpxchg(v, &cur, cur + 1));
17145132Sanholt
18145132Sanholt	return true;
19145132Sanholt}
20145132Sanholt
21145132Sanholtbool rq_wait_inc_below(struct rq_wait *rq_wait, unsigned int limit)
22145132Sanholt{
23145132Sanholt	return atomic_inc_below(&rq_wait->inflight, limit);
24145132Sanholt}
25145132Sanholt
26145132Sanholtvoid __rq_qos_cleanup(struct rq_qos *rqos, struct bio *bio)
27145132Sanholt{
28145132Sanholt	do {
29145132Sanholt		if (rqos->ops->cleanup)
30145132Sanholt			rqos->ops->cleanup(rqos, bio);
31152909Sanholt		rqos = rqos->next;
32152909Sanholt	} while (rqos);
33152909Sanholt}
34182080Srnoland
35182080Srnolandvoid __rq_qos_done(struct rq_qos *rqos, struct request *rq)
36182080Srnoland{
37182080Srnoland	do {
38182080Srnoland		if (rqos->ops->done)
39145132Sanholt			rqos->ops->done(rqos, rq);
40145132Sanholt		rqos = rqos->next;
41182080Srnoland	} while (rqos);
42182080Srnoland}
43182080Srnoland
44182080Srnolandvoid __rq_qos_issue(struct rq_qos *rqos, struct request *rq)
45182080Srnoland{
46182080Srnoland	do {
47182080Srnoland		if (rqos->ops->issue)
48182080Srnoland			rqos->ops->issue(rqos, rq);
49182080Srnoland		rqos = rqos->next;
50145132Sanholt	} while (rqos);
51182080Srnoland}
52182080Srnoland
53182080Srnolandvoid __rq_qos_requeue(struct rq_qos *rqos, struct request *rq)
54182080Srnoland{
55182080Srnoland	do {
56182080Srnoland		if (rqos->ops->requeue)
57145132Sanholt			rqos->ops->requeue(rqos, rq);
58182080Srnoland		rqos = rqos->next;
59182080Srnoland	} while (rqos);
60145132Sanholt}
61182080Srnoland
62182080Srnolandvoid __rq_qos_throttle(struct rq_qos *rqos, struct bio *bio)
63182080Srnoland{
64182080Srnoland	do {
65182080Srnoland		if (rqos->ops->throttle)
66182080Srnoland			rqos->ops->throttle(rqos, bio);
67182080Srnoland		rqos = rqos->next;
68182080Srnoland	} while (rqos);
69182080Srnoland}
70182080Srnoland
71182080Srnolandvoid __rq_qos_track(struct rq_qos *rqos, struct request *rq, struct bio *bio)
72182080Srnoland{
73182080Srnoland	do {
74183573Srnoland		if (rqos->ops->track)
75182080Srnoland			rqos->ops->track(rqos, rq, bio);
76182080Srnoland		rqos = rqos->next;
77183834Srnoland	} while (rqos);
78183834Srnoland}
79182080Srnoland
80182080Srnolandvoid __rq_qos_merge(struct rq_qos *rqos, struct request *rq, struct bio *bio)
81182080Srnoland{
82182080Srnoland	do {
83182080Srnoland		if (rqos->ops->merge)
84182080Srnoland			rqos->ops->merge(rqos, rq, bio);
85182080Srnoland		rqos = rqos->next;
86182080Srnoland	} while (rqos);
87182080Srnoland}
88182080Srnoland
89182080Srnolandvoid __rq_qos_done_bio(struct rq_qos *rqos, struct bio *bio)
90145132Sanholt{
91145132Sanholt	do {
92145132Sanholt		if (rqos->ops->done_bio)
93182080Srnoland			rqos->ops->done_bio(rqos, bio);
94145132Sanholt		rqos = rqos->next;
95183573Srnoland	} while (rqos);
96182080Srnoland}
97182080Srnoland
98182080Srnolandvoid __rq_qos_queue_depth_changed(struct rq_qos *rqos)
99182080Srnoland{
100182080Srnoland	do {
101182080Srnoland		if (rqos->ops->queue_depth_changed)
102182080Srnoland			rqos->ops->queue_depth_changed(rqos);
103182080Srnoland		rqos = rqos->next;
104182080Srnoland	} while (rqos);
105183834Srnoland}
106183834Srnoland
107182080Srnoland/*
108182080Srnoland * Return true, if we can't increase the depth further by scaling
109182080Srnoland */
110182080Srnolandbool rq_depth_calc_max_depth(struct rq_depth *rqd)
111182080Srnoland{
112145132Sanholt	unsigned int depth;
113182080Srnoland	bool ret = false;
114182080Srnoland
115182080Srnoland	/*
116182080Srnoland	 * For QD=1 devices, this is a special case. It's important for those
117182080Srnoland	 * to have one request ready when one completes, so force a depth of
118182080Srnoland	 * 2 for those devices. On the backend, it'll be a depth of 1 anyway,
119182080Srnoland	 * since the device can't have more than that in flight. If we're
120182080Srnoland	 * scaling down, then keep a setting of 1/1/1.
121182080Srnoland	 */
122182080Srnoland	if (rqd->queue_depth == 1) {
123182080Srnoland		if (rqd->scale_step > 0)
124182080Srnoland			rqd->max_depth = 1;
125182080Srnoland		else {
126182080Srnoland			rqd->max_depth = 2;
127182080Srnoland			ret = true;
128182080Srnoland		}
129183834Srnoland	} else {
130182080Srnoland		/*
131182080Srnoland		 * scale_step == 0 is our default state. If we have suffered
132182080Srnoland		 * latency spikes, step will be > 0, and we shrink the
133182080Srnoland		 * allowed write depths. If step is < 0, we're only doing
134182080Srnoland		 * writes, and we allow a temporarily higher depth to
135182080Srnoland		 * increase performance.
136182080Srnoland		 */
137182080Srnoland		depth = min_t(unsigned int, rqd->default_depth,
138183834Srnoland			      rqd->queue_depth);
139183834Srnoland		if (rqd->scale_step > 0)
140182080Srnoland			depth = 1 + ((depth - 1) >> min(31, rqd->scale_step));
141182080Srnoland		else if (rqd->scale_step < 0) {
142182080Srnoland			unsigned int maxd = 3 * rqd->queue_depth / 4;
143182080Srnoland
144182080Srnoland			depth = 1 + ((depth - 1) << -rqd->scale_step);
145182080Srnoland			if (depth > maxd) {
146182080Srnoland				depth = maxd;
147182080Srnoland				ret = true;
148182080Srnoland			}
149182080Srnoland		}
150182080Srnoland
151182080Srnoland		rqd->max_depth = depth;
152182080Srnoland	}
153182080Srnoland
154182080Srnoland	return ret;
155182080Srnoland}
156182080Srnoland
157182080Srnoland/* Returns true on success and false if scaling up wasn't possible */
158182080Srnolandbool rq_depth_scale_up(struct rq_depth *rqd)
159182080Srnoland{
160182080Srnoland	/*
161182080Srnoland	 * Hit max in previous round, stop here
162182080Srnoland	 */
163182080Srnoland	if (rqd->scaled_max)
164182080Srnoland		return false;
165182080Srnoland
166182080Srnoland	rqd->scale_step--;
167182080Srnoland
168183834Srnoland	rqd->scaled_max = rq_depth_calc_max_depth(rqd);
169183834Srnoland	return true;
170182080Srnoland}
171182080Srnoland
172182080Srnoland/*
173182080Srnoland * Scale rwb down. If 'hard_throttle' is set, do it quicker, since we
174 * had a latency violation. Returns true on success and returns false if
175 * scaling down wasn't possible.
176 */
177bool rq_depth_scale_down(struct rq_depth *rqd, bool hard_throttle)
178{
179	/*
180	 * Stop scaling down when we've hit the limit. This also prevents
181	 * ->scale_step from going to crazy values, if the device can't
182	 * keep up.
183	 */
184	if (rqd->max_depth == 1)
185		return false;
186
187	if (rqd->scale_step < 0 && hard_throttle)
188		rqd->scale_step = 0;
189	else
190		rqd->scale_step++;
191
192	rqd->scaled_max = false;
193	rq_depth_calc_max_depth(rqd);
194	return true;
195}
196
197struct rq_qos_wait_data {
198	struct wait_queue_entry wq;
199	struct task_struct *task;
200	struct rq_wait *rqw;
201	acquire_inflight_cb_t *cb;
202	void *private_data;
203	bool got_token;
204};
205
206static int rq_qos_wake_function(struct wait_queue_entry *curr,
207				unsigned int mode, int wake_flags, void *key)
208{
209	struct rq_qos_wait_data *data = container_of(curr,
210						     struct rq_qos_wait_data,
211						     wq);
212
213	/*
214	 * If we fail to get a budget, return -1 to interrupt the wake up loop
215	 * in __wake_up_common.
216	 */
217	if (!data->cb(data->rqw, data->private_data))
218		return -1;
219
220	data->got_token = true;
221	smp_wmb();
222	list_del_init(&curr->entry);
223	wake_up_process(data->task);
224	return 1;
225}
226
227/**
228 * rq_qos_wait - throttle on a rqw if we need to
229 * @rqw: rqw to throttle on
230 * @private_data: caller provided specific data
231 * @acquire_inflight_cb: inc the rqw->inflight counter if we can
232 * @cleanup_cb: the callback to cleanup in case we race with a waker
233 *
234 * This provides a uniform place for the rq_qos users to do their throttling.
235 * Since you can end up with a lot of things sleeping at once, this manages the
236 * waking up based on the resources available.  The acquire_inflight_cb should
237 * inc the rqw->inflight if we have the ability to do so, or return false if not
238 * and then we will sleep until the room becomes available.
239 *
240 * cleanup_cb is in case that we race with a waker and need to cleanup the
241 * inflight count accordingly.
242 */
243void rq_qos_wait(struct rq_wait *rqw, void *private_data,
244		 acquire_inflight_cb_t *acquire_inflight_cb,
245		 cleanup_cb_t *cleanup_cb)
246{
247	struct rq_qos_wait_data data = {
248		.wq = {
249			.func	= rq_qos_wake_function,
250			.entry	= LIST_HEAD_INIT(data.wq.entry),
251		},
252		.task = current,
253		.rqw = rqw,
254		.cb = acquire_inflight_cb,
255		.private_data = private_data,
256	};
257	bool has_sleeper;
258
259	has_sleeper = wq_has_sleeper(&rqw->wait);
260	if (!has_sleeper && acquire_inflight_cb(rqw, private_data))
261		return;
262
263	has_sleeper = !prepare_to_wait_exclusive(&rqw->wait, &data.wq,
264						 TASK_UNINTERRUPTIBLE);
265	do {
266		/* The memory barrier in set_task_state saves us here. */
267		if (data.got_token)
268			break;
269		if (!has_sleeper && acquire_inflight_cb(rqw, private_data)) {
270			finish_wait(&rqw->wait, &data.wq);
271
272			/*
273			 * We raced with rq_qos_wake_function() getting a token,
274			 * which means we now have two. Put our local token
275			 * and wake anyone else potentially waiting for one.
276			 */
277			smp_rmb();
278			if (data.got_token)
279				cleanup_cb(rqw, private_data);
280			break;
281		}
282		io_schedule();
283		has_sleeper = true;
284		set_current_state(TASK_UNINTERRUPTIBLE);
285	} while (1);
286	finish_wait(&rqw->wait, &data.wq);
287}
288
289void rq_qos_exit(struct request_queue *q)
290{
291	mutex_lock(&q->rq_qos_mutex);
292	while (q->rq_qos) {
293		struct rq_qos *rqos = q->rq_qos;
294		q->rq_qos = rqos->next;
295		rqos->ops->exit(rqos);
296	}
297	mutex_unlock(&q->rq_qos_mutex);
298}
299
300int rq_qos_add(struct rq_qos *rqos, struct gendisk *disk, enum rq_qos_id id,
301		const struct rq_qos_ops *ops)
302{
303	struct request_queue *q = disk->queue;
304
305	lockdep_assert_held(&q->rq_qos_mutex);
306
307	rqos->disk = disk;
308	rqos->id = id;
309	rqos->ops = ops;
310
311	/*
312	 * No IO can be in-flight when adding rqos, so freeze queue, which
313	 * is fine since we only support rq_qos for blk-mq queue.
314	 */
315	blk_mq_freeze_queue(q);
316
317	if (rq_qos_id(q, rqos->id))
318		goto ebusy;
319	rqos->next = q->rq_qos;
320	q->rq_qos = rqos;
321
322	blk_mq_unfreeze_queue(q);
323
324	if (rqos->ops->debugfs_attrs) {
325		mutex_lock(&q->debugfs_mutex);
326		blk_mq_debugfs_register_rqos(rqos);
327		mutex_unlock(&q->debugfs_mutex);
328	}
329
330	return 0;
331ebusy:
332	blk_mq_unfreeze_queue(q);
333	return -EBUSY;
334}
335
336void rq_qos_del(struct rq_qos *rqos)
337{
338	struct request_queue *q = rqos->disk->queue;
339	struct rq_qos **cur;
340
341	lockdep_assert_held(&q->rq_qos_mutex);
342
343	blk_mq_freeze_queue(q);
344	for (cur = &q->rq_qos; *cur; cur = &(*cur)->next) {
345		if (*cur == rqos) {
346			*cur = rqos->next;
347			break;
348		}
349	}
350	blk_mq_unfreeze_queue(q);
351
352	mutex_lock(&q->debugfs_mutex);
353	blk_mq_debugfs_unregister_rqos(rqos);
354	mutex_unlock(&q->debugfs_mutex);
355}
356