1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Block multiqueue core code
4 *
5 * Copyright (C) 2013-2014 Jens Axboe
6 * Copyright (C) 2013-2014 Christoph Hellwig
7 */
8#include <linux/kernel.h>
9#include <linux/module.h>
10#include <linux/backing-dev.h>
11#include <linux/bio.h>
12#include <linux/blkdev.h>
13#include <linux/blk-integrity.h>
14#include <linux/kmemleak.h>
15#include <linux/mm.h>
16#include <linux/init.h>
17#include <linux/slab.h>
18#include <linux/workqueue.h>
19#include <linux/smp.h>
20#include <linux/interrupt.h>
21#include <linux/llist.h>
22#include <linux/cpu.h>
23#include <linux/cache.h>
24#include <linux/sched/topology.h>
25#include <linux/sched/signal.h>
26#include <linux/delay.h>
27#include <linux/crash_dump.h>
28#include <linux/prefetch.h>
29#include <linux/blk-crypto.h>
30#include <linux/part_stat.h>
31
32#include <trace/events/block.h>
33
34#include <linux/t10-pi.h>
35#include "blk.h"
36#include "blk-mq.h"
37#include "blk-mq-debugfs.h"
38#include "blk-pm.h"
39#include "blk-stat.h"
40#include "blk-mq-sched.h"
41#include "blk-rq-qos.h"
42
43static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
44static DEFINE_PER_CPU(call_single_data_t, blk_cpu_csd);
45
46static void blk_mq_insert_request(struct request *rq, blk_insert_t flags);
47static void blk_mq_request_bypass_insert(struct request *rq,
48		blk_insert_t flags);
49static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
50		struct list_head *list);
51static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
52			 struct io_comp_batch *iob, unsigned int flags);
53
54/*
55 * Check if any of the ctx, dispatch list or elevator
56 * have pending work in this hardware queue.
57 */
58static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
59{
60	return !list_empty_careful(&hctx->dispatch) ||
61		sbitmap_any_bit_set(&hctx->ctx_map) ||
62			blk_mq_sched_has_work(hctx);
63}
64
65/*
66 * Mark this ctx as having pending work in this hardware queue
67 */
68static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
69				     struct blk_mq_ctx *ctx)
70{
71	const int bit = ctx->index_hw[hctx->type];
72
73	if (!sbitmap_test_bit(&hctx->ctx_map, bit))
74		sbitmap_set_bit(&hctx->ctx_map, bit);
75}
76
77static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
78				      struct blk_mq_ctx *ctx)
79{
80	const int bit = ctx->index_hw[hctx->type];
81
82	sbitmap_clear_bit(&hctx->ctx_map, bit);
83}
84
85struct mq_inflight {
86	struct block_device *part;
87	unsigned int inflight[2];
88};
89
90static bool blk_mq_check_inflight(struct request *rq, void *priv)
91{
92	struct mq_inflight *mi = priv;
93
94	if (rq->part && blk_do_io_stat(rq) &&
95	    (!mi->part->bd_partno || rq->part == mi->part) &&
96	    blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
97		mi->inflight[rq_data_dir(rq)]++;
98
99	return true;
100}
101
102unsigned int blk_mq_in_flight(struct request_queue *q,
103		struct block_device *part)
104{
105	struct mq_inflight mi = { .part = part };
106
107	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
108
109	return mi.inflight[0] + mi.inflight[1];
110}
111
112void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
113		unsigned int inflight[2])
114{
115	struct mq_inflight mi = { .part = part };
116
117	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
118	inflight[0] = mi.inflight[0];
119	inflight[1] = mi.inflight[1];
120}
121
122void blk_freeze_queue_start(struct request_queue *q)
123{
124	mutex_lock(&q->mq_freeze_lock);
125	if (++q->mq_freeze_depth == 1) {
126		percpu_ref_kill(&q->q_usage_counter);
127		mutex_unlock(&q->mq_freeze_lock);
128		if (queue_is_mq(q))
129			blk_mq_run_hw_queues(q, false);
130	} else {
131		mutex_unlock(&q->mq_freeze_lock);
132	}
133}
134EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
135
136void blk_mq_freeze_queue_wait(struct request_queue *q)
137{
138	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
139}
140EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
141
142int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
143				     unsigned long timeout)
144{
145	return wait_event_timeout(q->mq_freeze_wq,
146					percpu_ref_is_zero(&q->q_usage_counter),
147					timeout);
148}
149EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
150
151/*
152 * Guarantee no request is in use, so we can change any data structure of
153 * the queue afterward.
154 */
155void blk_freeze_queue(struct request_queue *q)
156{
157	/*
158	 * In the !blk_mq case we are only calling this to kill the
159	 * q_usage_counter, otherwise this increases the freeze depth
160	 * and waits for it to return to zero.  For this reason there is
161	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
162	 * exported to drivers as the only user for unfreeze is blk_mq.
163	 */
164	blk_freeze_queue_start(q);
165	blk_mq_freeze_queue_wait(q);
166}
167
168void blk_mq_freeze_queue(struct request_queue *q)
169{
170	/*
171	 * ...just an alias to keep freeze and unfreeze actions balanced
172	 * in the blk_mq_* namespace
173	 */
174	blk_freeze_queue(q);
175}
176EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
177
178void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic)
179{
180	mutex_lock(&q->mq_freeze_lock);
181	if (force_atomic)
182		q->q_usage_counter.data->force_atomic = true;
183	q->mq_freeze_depth--;
184	WARN_ON_ONCE(q->mq_freeze_depth < 0);
185	if (!q->mq_freeze_depth) {
186		percpu_ref_resurrect(&q->q_usage_counter);
187		wake_up_all(&q->mq_freeze_wq);
188	}
189	mutex_unlock(&q->mq_freeze_lock);
190}
191
192void blk_mq_unfreeze_queue(struct request_queue *q)
193{
194	__blk_mq_unfreeze_queue(q, false);
195}
196EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
197
198/*
199 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
200 * mpt3sas driver such that this function can be removed.
201 */
202void blk_mq_quiesce_queue_nowait(struct request_queue *q)
203{
204	unsigned long flags;
205
206	spin_lock_irqsave(&q->queue_lock, flags);
207	if (!q->quiesce_depth++)
208		blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
209	spin_unlock_irqrestore(&q->queue_lock, flags);
210}
211EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
212
213/**
214 * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done
215 * @set: tag_set to wait on
216 *
217 * Note: it is driver's responsibility for making sure that quiesce has
218 * been started on or more of the request_queues of the tag_set.  This
219 * function only waits for the quiesce on those request_queues that had
220 * the quiesce flag set using blk_mq_quiesce_queue_nowait.
221 */
222void blk_mq_wait_quiesce_done(struct blk_mq_tag_set *set)
223{
224	if (set->flags & BLK_MQ_F_BLOCKING)
225		synchronize_srcu(set->srcu);
226	else
227		synchronize_rcu();
228}
229EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done);
230
231/**
232 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
233 * @q: request queue.
234 *
235 * Note: this function does not prevent that the struct request end_io()
236 * callback function is invoked. Once this function is returned, we make
237 * sure no dispatch can happen until the queue is unquiesced via
238 * blk_mq_unquiesce_queue().
239 */
240void blk_mq_quiesce_queue(struct request_queue *q)
241{
242	blk_mq_quiesce_queue_nowait(q);
243	/* nothing to wait for non-mq queues */
244	if (queue_is_mq(q))
245		blk_mq_wait_quiesce_done(q->tag_set);
246}
247EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
248
249/*
250 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
251 * @q: request queue.
252 *
253 * This function recovers queue into the state before quiescing
254 * which is done by blk_mq_quiesce_queue.
255 */
256void blk_mq_unquiesce_queue(struct request_queue *q)
257{
258	unsigned long flags;
259	bool run_queue = false;
260
261	spin_lock_irqsave(&q->queue_lock, flags);
262	if (WARN_ON_ONCE(q->quiesce_depth <= 0)) {
263		;
264	} else if (!--q->quiesce_depth) {
265		blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
266		run_queue = true;
267	}
268	spin_unlock_irqrestore(&q->queue_lock, flags);
269
270	/* dispatch requests which are inserted during quiescing */
271	if (run_queue)
272		blk_mq_run_hw_queues(q, true);
273}
274EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
275
276void blk_mq_quiesce_tagset(struct blk_mq_tag_set *set)
277{
278	struct request_queue *q;
279
280	mutex_lock(&set->tag_list_lock);
281	list_for_each_entry(q, &set->tag_list, tag_set_list) {
282		if (!blk_queue_skip_tagset_quiesce(q))
283			blk_mq_quiesce_queue_nowait(q);
284	}
285	blk_mq_wait_quiesce_done(set);
286	mutex_unlock(&set->tag_list_lock);
287}
288EXPORT_SYMBOL_GPL(blk_mq_quiesce_tagset);
289
290void blk_mq_unquiesce_tagset(struct blk_mq_tag_set *set)
291{
292	struct request_queue *q;
293
294	mutex_lock(&set->tag_list_lock);
295	list_for_each_entry(q, &set->tag_list, tag_set_list) {
296		if (!blk_queue_skip_tagset_quiesce(q))
297			blk_mq_unquiesce_queue(q);
298	}
299	mutex_unlock(&set->tag_list_lock);
300}
301EXPORT_SYMBOL_GPL(blk_mq_unquiesce_tagset);
302
303void blk_mq_wake_waiters(struct request_queue *q)
304{
305	struct blk_mq_hw_ctx *hctx;
306	unsigned long i;
307
308	queue_for_each_hw_ctx(q, hctx, i)
309		if (blk_mq_hw_queue_mapped(hctx))
310			blk_mq_tag_wakeup_all(hctx->tags, true);
311}
312
313void blk_rq_init(struct request_queue *q, struct request *rq)
314{
315	memset(rq, 0, sizeof(*rq));
316
317	INIT_LIST_HEAD(&rq->queuelist);
318	rq->q = q;
319	rq->__sector = (sector_t) -1;
320	INIT_HLIST_NODE(&rq->hash);
321	RB_CLEAR_NODE(&rq->rb_node);
322	rq->tag = BLK_MQ_NO_TAG;
323	rq->internal_tag = BLK_MQ_NO_TAG;
324	rq->start_time_ns = blk_time_get_ns();
325	rq->part = NULL;
326	blk_crypto_rq_set_defaults(rq);
327}
328EXPORT_SYMBOL(blk_rq_init);
329
330/* Set start and alloc time when the allocated request is actually used */
331static inline void blk_mq_rq_time_init(struct request *rq, u64 alloc_time_ns)
332{
333	if (blk_mq_need_time_stamp(rq))
334		rq->start_time_ns = blk_time_get_ns();
335	else
336		rq->start_time_ns = 0;
337
338#ifdef CONFIG_BLK_RQ_ALLOC_TIME
339	if (blk_queue_rq_alloc_time(rq->q))
340		rq->alloc_time_ns = alloc_time_ns ?: rq->start_time_ns;
341	else
342		rq->alloc_time_ns = 0;
343#endif
344}
345
346static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
347		struct blk_mq_tags *tags, unsigned int tag)
348{
349	struct blk_mq_ctx *ctx = data->ctx;
350	struct blk_mq_hw_ctx *hctx = data->hctx;
351	struct request_queue *q = data->q;
352	struct request *rq = tags->static_rqs[tag];
353
354	rq->q = q;
355	rq->mq_ctx = ctx;
356	rq->mq_hctx = hctx;
357	rq->cmd_flags = data->cmd_flags;
358
359	if (data->flags & BLK_MQ_REQ_PM)
360		data->rq_flags |= RQF_PM;
361	if (blk_queue_io_stat(q))
362		data->rq_flags |= RQF_IO_STAT;
363	rq->rq_flags = data->rq_flags;
364
365	if (data->rq_flags & RQF_SCHED_TAGS) {
366		rq->tag = BLK_MQ_NO_TAG;
367		rq->internal_tag = tag;
368	} else {
369		rq->tag = tag;
370		rq->internal_tag = BLK_MQ_NO_TAG;
371	}
372	rq->timeout = 0;
373
374	rq->part = NULL;
375	rq->io_start_time_ns = 0;
376	rq->stats_sectors = 0;
377	rq->nr_phys_segments = 0;
378#if defined(CONFIG_BLK_DEV_INTEGRITY)
379	rq->nr_integrity_segments = 0;
380#endif
381	rq->end_io = NULL;
382	rq->end_io_data = NULL;
383
384	blk_crypto_rq_set_defaults(rq);
385	INIT_LIST_HEAD(&rq->queuelist);
386	/* tag was already set */
387	WRITE_ONCE(rq->deadline, 0);
388	req_ref_set(rq, 1);
389
390	if (rq->rq_flags & RQF_USE_SCHED) {
391		struct elevator_queue *e = data->q->elevator;
392
393		INIT_HLIST_NODE(&rq->hash);
394		RB_CLEAR_NODE(&rq->rb_node);
395
396		if (e->type->ops.prepare_request)
397			e->type->ops.prepare_request(rq);
398	}
399
400	return rq;
401}
402
403static inline struct request *
404__blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data)
405{
406	unsigned int tag, tag_offset;
407	struct blk_mq_tags *tags;
408	struct request *rq;
409	unsigned long tag_mask;
410	int i, nr = 0;
411
412	tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset);
413	if (unlikely(!tag_mask))
414		return NULL;
415
416	tags = blk_mq_tags_from_data(data);
417	for (i = 0; tag_mask; i++) {
418		if (!(tag_mask & (1UL << i)))
419			continue;
420		tag = tag_offset + i;
421		prefetch(tags->static_rqs[tag]);
422		tag_mask &= ~(1UL << i);
423		rq = blk_mq_rq_ctx_init(data, tags, tag);
424		rq_list_add(data->cached_rq, rq);
425		nr++;
426	}
427	if (!(data->rq_flags & RQF_SCHED_TAGS))
428		blk_mq_add_active_requests(data->hctx, nr);
429	/* caller already holds a reference, add for remainder */
430	percpu_ref_get_many(&data->q->q_usage_counter, nr - 1);
431	data->nr_tags -= nr;
432
433	return rq_list_pop(data->cached_rq);
434}
435
436static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data)
437{
438	struct request_queue *q = data->q;
439	u64 alloc_time_ns = 0;
440	struct request *rq;
441	unsigned int tag;
442
443	/* alloc_time includes depth and tag waits */
444	if (blk_queue_rq_alloc_time(q))
445		alloc_time_ns = blk_time_get_ns();
446
447	if (data->cmd_flags & REQ_NOWAIT)
448		data->flags |= BLK_MQ_REQ_NOWAIT;
449
450	if (q->elevator) {
451		/*
452		 * All requests use scheduler tags when an I/O scheduler is
453		 * enabled for the queue.
454		 */
455		data->rq_flags |= RQF_SCHED_TAGS;
456
457		/*
458		 * Flush/passthrough requests are special and go directly to the
459		 * dispatch list.
460		 */
461		if ((data->cmd_flags & REQ_OP_MASK) != REQ_OP_FLUSH &&
462		    !blk_op_is_passthrough(data->cmd_flags)) {
463			struct elevator_mq_ops *ops = &q->elevator->type->ops;
464
465			WARN_ON_ONCE(data->flags & BLK_MQ_REQ_RESERVED);
466
467			data->rq_flags |= RQF_USE_SCHED;
468			if (ops->limit_depth)
469				ops->limit_depth(data->cmd_flags, data);
470		}
471	}
472
473retry:
474	data->ctx = blk_mq_get_ctx(q);
475	data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
476	if (!(data->rq_flags & RQF_SCHED_TAGS))
477		blk_mq_tag_busy(data->hctx);
478
479	if (data->flags & BLK_MQ_REQ_RESERVED)
480		data->rq_flags |= RQF_RESV;
481
482	/*
483	 * Try batched alloc if we want more than 1 tag.
484	 */
485	if (data->nr_tags > 1) {
486		rq = __blk_mq_alloc_requests_batch(data);
487		if (rq) {
488			blk_mq_rq_time_init(rq, alloc_time_ns);
489			return rq;
490		}
491		data->nr_tags = 1;
492	}
493
494	/*
495	 * Waiting allocations only fail because of an inactive hctx.  In that
496	 * case just retry the hctx assignment and tag allocation as CPU hotplug
497	 * should have migrated us to an online CPU by now.
498	 */
499	tag = blk_mq_get_tag(data);
500	if (tag == BLK_MQ_NO_TAG) {
501		if (data->flags & BLK_MQ_REQ_NOWAIT)
502			return NULL;
503		/*
504		 * Give up the CPU and sleep for a random short time to
505		 * ensure that thread using a realtime scheduling class
506		 * are migrated off the CPU, and thus off the hctx that
507		 * is going away.
508		 */
509		msleep(3);
510		goto retry;
511	}
512
513	if (!(data->rq_flags & RQF_SCHED_TAGS))
514		blk_mq_inc_active_requests(data->hctx);
515	rq = blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag);
516	blk_mq_rq_time_init(rq, alloc_time_ns);
517	return rq;
518}
519
520static struct request *blk_mq_rq_cache_fill(struct request_queue *q,
521					    struct blk_plug *plug,
522					    blk_opf_t opf,
523					    blk_mq_req_flags_t flags)
524{
525	struct blk_mq_alloc_data data = {
526		.q		= q,
527		.flags		= flags,
528		.cmd_flags	= opf,
529		.nr_tags	= plug->nr_ios,
530		.cached_rq	= &plug->cached_rq,
531	};
532	struct request *rq;
533
534	if (blk_queue_enter(q, flags))
535		return NULL;
536
537	plug->nr_ios = 1;
538
539	rq = __blk_mq_alloc_requests(&data);
540	if (unlikely(!rq))
541		blk_queue_exit(q);
542	return rq;
543}
544
545static struct request *blk_mq_alloc_cached_request(struct request_queue *q,
546						   blk_opf_t opf,
547						   blk_mq_req_flags_t flags)
548{
549	struct blk_plug *plug = current->plug;
550	struct request *rq;
551
552	if (!plug)
553		return NULL;
554
555	if (rq_list_empty(plug->cached_rq)) {
556		if (plug->nr_ios == 1)
557			return NULL;
558		rq = blk_mq_rq_cache_fill(q, plug, opf, flags);
559		if (!rq)
560			return NULL;
561	} else {
562		rq = rq_list_peek(&plug->cached_rq);
563		if (!rq || rq->q != q)
564			return NULL;
565
566		if (blk_mq_get_hctx_type(opf) != rq->mq_hctx->type)
567			return NULL;
568		if (op_is_flush(rq->cmd_flags) != op_is_flush(opf))
569			return NULL;
570
571		plug->cached_rq = rq_list_next(rq);
572		blk_mq_rq_time_init(rq, 0);
573	}
574
575	rq->cmd_flags = opf;
576	INIT_LIST_HEAD(&rq->queuelist);
577	return rq;
578}
579
580struct request *blk_mq_alloc_request(struct request_queue *q, blk_opf_t opf,
581		blk_mq_req_flags_t flags)
582{
583	struct request *rq;
584
585	rq = blk_mq_alloc_cached_request(q, opf, flags);
586	if (!rq) {
587		struct blk_mq_alloc_data data = {
588			.q		= q,
589			.flags		= flags,
590			.cmd_flags	= opf,
591			.nr_tags	= 1,
592		};
593		int ret;
594
595		ret = blk_queue_enter(q, flags);
596		if (ret)
597			return ERR_PTR(ret);
598
599		rq = __blk_mq_alloc_requests(&data);
600		if (!rq)
601			goto out_queue_exit;
602	}
603	rq->__data_len = 0;
604	rq->__sector = (sector_t) -1;
605	rq->bio = rq->biotail = NULL;
606	return rq;
607out_queue_exit:
608	blk_queue_exit(q);
609	return ERR_PTR(-EWOULDBLOCK);
610}
611EXPORT_SYMBOL(blk_mq_alloc_request);
612
613struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
614	blk_opf_t opf, blk_mq_req_flags_t flags, unsigned int hctx_idx)
615{
616	struct blk_mq_alloc_data data = {
617		.q		= q,
618		.flags		= flags,
619		.cmd_flags	= opf,
620		.nr_tags	= 1,
621	};
622	u64 alloc_time_ns = 0;
623	struct request *rq;
624	unsigned int cpu;
625	unsigned int tag;
626	int ret;
627
628	/* alloc_time includes depth and tag waits */
629	if (blk_queue_rq_alloc_time(q))
630		alloc_time_ns = blk_time_get_ns();
631
632	/*
633	 * If the tag allocator sleeps we could get an allocation for a
634	 * different hardware context.  No need to complicate the low level
635	 * allocator for this for the rare use case of a command tied to
636	 * a specific queue.
637	 */
638	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)) ||
639	    WARN_ON_ONCE(!(flags & BLK_MQ_REQ_RESERVED)))
640		return ERR_PTR(-EINVAL);
641
642	if (hctx_idx >= q->nr_hw_queues)
643		return ERR_PTR(-EIO);
644
645	ret = blk_queue_enter(q, flags);
646	if (ret)
647		return ERR_PTR(ret);
648
649	/*
650	 * Check if the hardware context is actually mapped to anything.
651	 * If not tell the caller that it should skip this queue.
652	 */
653	ret = -EXDEV;
654	data.hctx = xa_load(&q->hctx_table, hctx_idx);
655	if (!blk_mq_hw_queue_mapped(data.hctx))
656		goto out_queue_exit;
657	cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
658	if (cpu >= nr_cpu_ids)
659		goto out_queue_exit;
660	data.ctx = __blk_mq_get_ctx(q, cpu);
661
662	if (q->elevator)
663		data.rq_flags |= RQF_SCHED_TAGS;
664	else
665		blk_mq_tag_busy(data.hctx);
666
667	if (flags & BLK_MQ_REQ_RESERVED)
668		data.rq_flags |= RQF_RESV;
669
670	ret = -EWOULDBLOCK;
671	tag = blk_mq_get_tag(&data);
672	if (tag == BLK_MQ_NO_TAG)
673		goto out_queue_exit;
674	if (!(data.rq_flags & RQF_SCHED_TAGS))
675		blk_mq_inc_active_requests(data.hctx);
676	rq = blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag);
677	blk_mq_rq_time_init(rq, alloc_time_ns);
678	rq->__data_len = 0;
679	rq->__sector = (sector_t) -1;
680	rq->bio = rq->biotail = NULL;
681	return rq;
682
683out_queue_exit:
684	blk_queue_exit(q);
685	return ERR_PTR(ret);
686}
687EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
688
689static void blk_mq_finish_request(struct request *rq)
690{
691	struct request_queue *q = rq->q;
692
693	if (rq->rq_flags & RQF_USE_SCHED) {
694		q->elevator->type->ops.finish_request(rq);
695		/*
696		 * For postflush request that may need to be
697		 * completed twice, we should clear this flag
698		 * to avoid double finish_request() on the rq.
699		 */
700		rq->rq_flags &= ~RQF_USE_SCHED;
701	}
702}
703
704static void __blk_mq_free_request(struct request *rq)
705{
706	struct request_queue *q = rq->q;
707	struct blk_mq_ctx *ctx = rq->mq_ctx;
708	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
709	const int sched_tag = rq->internal_tag;
710
711	blk_crypto_free_request(rq);
712	blk_pm_mark_last_busy(rq);
713	rq->mq_hctx = NULL;
714
715	if (rq->tag != BLK_MQ_NO_TAG) {
716		blk_mq_dec_active_requests(hctx);
717		blk_mq_put_tag(hctx->tags, ctx, rq->tag);
718	}
719	if (sched_tag != BLK_MQ_NO_TAG)
720		blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
721	blk_mq_sched_restart(hctx);
722	blk_queue_exit(q);
723}
724
725void blk_mq_free_request(struct request *rq)
726{
727	struct request_queue *q = rq->q;
728
729	blk_mq_finish_request(rq);
730
731	if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
732		laptop_io_completion(q->disk->bdi);
733
734	rq_qos_done(q, rq);
735
736	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
737	if (req_ref_put_and_test(rq))
738		__blk_mq_free_request(rq);
739}
740EXPORT_SYMBOL_GPL(blk_mq_free_request);
741
742void blk_mq_free_plug_rqs(struct blk_plug *plug)
743{
744	struct request *rq;
745
746	while ((rq = rq_list_pop(&plug->cached_rq)) != NULL)
747		blk_mq_free_request(rq);
748}
749
750void blk_dump_rq_flags(struct request *rq, char *msg)
751{
752	printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
753		rq->q->disk ? rq->q->disk->disk_name : "?",
754		(__force unsigned long long) rq->cmd_flags);
755
756	printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
757	       (unsigned long long)blk_rq_pos(rq),
758	       blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
759	printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
760	       rq->bio, rq->biotail, blk_rq_bytes(rq));
761}
762EXPORT_SYMBOL(blk_dump_rq_flags);
763
764static void req_bio_endio(struct request *rq, struct bio *bio,
765			  unsigned int nbytes, blk_status_t error)
766{
767	if (unlikely(error)) {
768		bio->bi_status = error;
769	} else if (req_op(rq) == REQ_OP_ZONE_APPEND) {
770		/*
771		 * Partial zone append completions cannot be supported as the
772		 * BIO fragments may end up not being written sequentially.
773		 */
774		if (bio->bi_iter.bi_size != nbytes)
775			bio->bi_status = BLK_STS_IOERR;
776		else
777			bio->bi_iter.bi_sector = rq->__sector;
778	}
779
780	bio_advance(bio, nbytes);
781
782	if (unlikely(rq->rq_flags & RQF_QUIET))
783		bio_set_flag(bio, BIO_QUIET);
784	/* don't actually finish bio if it's part of flush sequence */
785	if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
786		bio_endio(bio);
787}
788
789static void blk_account_io_completion(struct request *req, unsigned int bytes)
790{
791	if (req->part && blk_do_io_stat(req)) {
792		const int sgrp = op_stat_group(req_op(req));
793
794		part_stat_lock();
795		part_stat_add(req->part, sectors[sgrp], bytes >> 9);
796		part_stat_unlock();
797	}
798}
799
800static void blk_print_req_error(struct request *req, blk_status_t status)
801{
802	printk_ratelimited(KERN_ERR
803		"%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
804		"phys_seg %u prio class %u\n",
805		blk_status_to_str(status),
806		req->q->disk ? req->q->disk->disk_name : "?",
807		blk_rq_pos(req), (__force u32)req_op(req),
808		blk_op_str(req_op(req)),
809		(__force u32)(req->cmd_flags & ~REQ_OP_MASK),
810		req->nr_phys_segments,
811		IOPRIO_PRIO_CLASS(req->ioprio));
812}
813
814/*
815 * Fully end IO on a request. Does not support partial completions, or
816 * errors.
817 */
818static void blk_complete_request(struct request *req)
819{
820	const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0;
821	int total_bytes = blk_rq_bytes(req);
822	struct bio *bio = req->bio;
823
824	trace_block_rq_complete(req, BLK_STS_OK, total_bytes);
825
826	if (!bio)
827		return;
828
829#ifdef CONFIG_BLK_DEV_INTEGRITY
830	if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ)
831		req->q->integrity.profile->complete_fn(req, total_bytes);
832#endif
833
834	/*
835	 * Upper layers may call blk_crypto_evict_key() anytime after the last
836	 * bio_endio().  Therefore, the keyslot must be released before that.
837	 */
838	blk_crypto_rq_put_keyslot(req);
839
840	blk_account_io_completion(req, total_bytes);
841
842	do {
843		struct bio *next = bio->bi_next;
844
845		/* Completion has already been traced */
846		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
847
848		if (req_op(req) == REQ_OP_ZONE_APPEND)
849			bio->bi_iter.bi_sector = req->__sector;
850
851		if (!is_flush)
852			bio_endio(bio);
853		bio = next;
854	} while (bio);
855
856	/*
857	 * Reset counters so that the request stacking driver
858	 * can find how many bytes remain in the request
859	 * later.
860	 */
861	if (!req->end_io) {
862		req->bio = NULL;
863		req->__data_len = 0;
864	}
865}
866
867/**
868 * blk_update_request - Complete multiple bytes without completing the request
869 * @req:      the request being processed
870 * @error:    block status code
871 * @nr_bytes: number of bytes to complete for @req
872 *
873 * Description:
874 *     Ends I/O on a number of bytes attached to @req, but doesn't complete
875 *     the request structure even if @req doesn't have leftover.
876 *     If @req has leftover, sets it up for the next range of segments.
877 *
878 *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
879 *     %false return from this function.
880 *
881 * Note:
882 *	The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function
883 *      except in the consistency check at the end of this function.
884 *
885 * Return:
886 *     %false - this request doesn't have any more data
887 *     %true  - this request has more data
888 **/
889bool blk_update_request(struct request *req, blk_status_t error,
890		unsigned int nr_bytes)
891{
892	int total_bytes;
893
894	trace_block_rq_complete(req, error, nr_bytes);
895
896	if (!req->bio)
897		return false;
898
899#ifdef CONFIG_BLK_DEV_INTEGRITY
900	if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
901	    error == BLK_STS_OK)
902		req->q->integrity.profile->complete_fn(req, nr_bytes);
903#endif
904
905	/*
906	 * Upper layers may call blk_crypto_evict_key() anytime after the last
907	 * bio_endio().  Therefore, the keyslot must be released before that.
908	 */
909	if (blk_crypto_rq_has_keyslot(req) && nr_bytes >= blk_rq_bytes(req))
910		__blk_crypto_rq_put_keyslot(req);
911
912	if (unlikely(error && !blk_rq_is_passthrough(req) &&
913		     !(req->rq_flags & RQF_QUIET)) &&
914		     !test_bit(GD_DEAD, &req->q->disk->state)) {
915		blk_print_req_error(req, error);
916		trace_block_rq_error(req, error, nr_bytes);
917	}
918
919	blk_account_io_completion(req, nr_bytes);
920
921	total_bytes = 0;
922	while (req->bio) {
923		struct bio *bio = req->bio;
924		unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
925
926		if (bio_bytes == bio->bi_iter.bi_size)
927			req->bio = bio->bi_next;
928
929		/* Completion has already been traced */
930		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
931		req_bio_endio(req, bio, bio_bytes, error);
932
933		total_bytes += bio_bytes;
934		nr_bytes -= bio_bytes;
935
936		if (!nr_bytes)
937			break;
938	}
939
940	/*
941	 * completely done
942	 */
943	if (!req->bio) {
944		/*
945		 * Reset counters so that the request stacking driver
946		 * can find how many bytes remain in the request
947		 * later.
948		 */
949		req->__data_len = 0;
950		return false;
951	}
952
953	req->__data_len -= total_bytes;
954
955	/* update sector only for requests with clear definition of sector */
956	if (!blk_rq_is_passthrough(req))
957		req->__sector += total_bytes >> 9;
958
959	/* mixed attributes always follow the first bio */
960	if (req->rq_flags & RQF_MIXED_MERGE) {
961		req->cmd_flags &= ~REQ_FAILFAST_MASK;
962		req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
963	}
964
965	if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
966		/*
967		 * If total number of sectors is less than the first segment
968		 * size, something has gone terribly wrong.
969		 */
970		if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
971			blk_dump_rq_flags(req, "request botched");
972			req->__data_len = blk_rq_cur_bytes(req);
973		}
974
975		/* recalculate the number of segments */
976		req->nr_phys_segments = blk_recalc_rq_segments(req);
977	}
978
979	return true;
980}
981EXPORT_SYMBOL_GPL(blk_update_request);
982
983static inline void blk_account_io_done(struct request *req, u64 now)
984{
985	trace_block_io_done(req);
986
987	/*
988	 * Account IO completion.  flush_rq isn't accounted as a
989	 * normal IO on queueing nor completion.  Accounting the
990	 * containing request is enough.
991	 */
992	if (blk_do_io_stat(req) && req->part &&
993	    !(req->rq_flags & RQF_FLUSH_SEQ)) {
994		const int sgrp = op_stat_group(req_op(req));
995
996		part_stat_lock();
997		update_io_ticks(req->part, jiffies, true);
998		part_stat_inc(req->part, ios[sgrp]);
999		part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns);
1000		part_stat_unlock();
1001	}
1002}
1003
1004static inline void blk_account_io_start(struct request *req)
1005{
1006	trace_block_io_start(req);
1007
1008	if (blk_do_io_stat(req)) {
1009		/*
1010		 * All non-passthrough requests are created from a bio with one
1011		 * exception: when a flush command that is part of a flush sequence
1012		 * generated by the state machine in blk-flush.c is cloned onto the
1013		 * lower device by dm-multipath we can get here without a bio.
1014		 */
1015		if (req->bio)
1016			req->part = req->bio->bi_bdev;
1017		else
1018			req->part = req->q->disk->part0;
1019
1020		part_stat_lock();
1021		update_io_ticks(req->part, jiffies, false);
1022		part_stat_unlock();
1023	}
1024}
1025
1026static inline void __blk_mq_end_request_acct(struct request *rq, u64 now)
1027{
1028	if (rq->rq_flags & RQF_STATS)
1029		blk_stat_add(rq, now);
1030
1031	blk_mq_sched_completed_request(rq, now);
1032	blk_account_io_done(rq, now);
1033}
1034
1035inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
1036{
1037	if (blk_mq_need_time_stamp(rq))
1038		__blk_mq_end_request_acct(rq, blk_time_get_ns());
1039
1040	blk_mq_finish_request(rq);
1041
1042	if (rq->end_io) {
1043		rq_qos_done(rq->q, rq);
1044		if (rq->end_io(rq, error) == RQ_END_IO_FREE)
1045			blk_mq_free_request(rq);
1046	} else {
1047		blk_mq_free_request(rq);
1048	}
1049}
1050EXPORT_SYMBOL(__blk_mq_end_request);
1051
1052void blk_mq_end_request(struct request *rq, blk_status_t error)
1053{
1054	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
1055		BUG();
1056	__blk_mq_end_request(rq, error);
1057}
1058EXPORT_SYMBOL(blk_mq_end_request);
1059
1060#define TAG_COMP_BATCH		32
1061
1062static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx,
1063					  int *tag_array, int nr_tags)
1064{
1065	struct request_queue *q = hctx->queue;
1066
1067	blk_mq_sub_active_requests(hctx, nr_tags);
1068
1069	blk_mq_put_tags(hctx->tags, tag_array, nr_tags);
1070	percpu_ref_put_many(&q->q_usage_counter, nr_tags);
1071}
1072
1073void blk_mq_end_request_batch(struct io_comp_batch *iob)
1074{
1075	int tags[TAG_COMP_BATCH], nr_tags = 0;
1076	struct blk_mq_hw_ctx *cur_hctx = NULL;
1077	struct request *rq;
1078	u64 now = 0;
1079
1080	if (iob->need_ts)
1081		now = blk_time_get_ns();
1082
1083	while ((rq = rq_list_pop(&iob->req_list)) != NULL) {
1084		prefetch(rq->bio);
1085		prefetch(rq->rq_next);
1086
1087		blk_complete_request(rq);
1088		if (iob->need_ts)
1089			__blk_mq_end_request_acct(rq, now);
1090
1091		blk_mq_finish_request(rq);
1092
1093		rq_qos_done(rq->q, rq);
1094
1095		/*
1096		 * If end_io handler returns NONE, then it still has
1097		 * ownership of the request.
1098		 */
1099		if (rq->end_io && rq->end_io(rq, 0) == RQ_END_IO_NONE)
1100			continue;
1101
1102		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1103		if (!req_ref_put_and_test(rq))
1104			continue;
1105
1106		blk_crypto_free_request(rq);
1107		blk_pm_mark_last_busy(rq);
1108
1109		if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) {
1110			if (cur_hctx)
1111				blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1112			nr_tags = 0;
1113			cur_hctx = rq->mq_hctx;
1114		}
1115		tags[nr_tags++] = rq->tag;
1116	}
1117
1118	if (nr_tags)
1119		blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1120}
1121EXPORT_SYMBOL_GPL(blk_mq_end_request_batch);
1122
1123static void blk_complete_reqs(struct llist_head *list)
1124{
1125	struct llist_node *entry = llist_reverse_order(llist_del_all(list));
1126	struct request *rq, *next;
1127
1128	llist_for_each_entry_safe(rq, next, entry, ipi_list)
1129		rq->q->mq_ops->complete(rq);
1130}
1131
1132static __latent_entropy void blk_done_softirq(struct softirq_action *h)
1133{
1134	blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
1135}
1136
1137static int blk_softirq_cpu_dead(unsigned int cpu)
1138{
1139	blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
1140	return 0;
1141}
1142
1143static void __blk_mq_complete_request_remote(void *data)
1144{
1145	__raise_softirq_irqoff(BLOCK_SOFTIRQ);
1146}
1147
1148static inline bool blk_mq_complete_need_ipi(struct request *rq)
1149{
1150	int cpu = raw_smp_processor_id();
1151
1152	if (!IS_ENABLED(CONFIG_SMP) ||
1153	    !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
1154		return false;
1155	/*
1156	 * With force threaded interrupts enabled, raising softirq from an SMP
1157	 * function call will always result in waking the ksoftirqd thread.
1158	 * This is probably worse than completing the request on a different
1159	 * cache domain.
1160	 */
1161	if (force_irqthreads())
1162		return false;
1163
1164	/* same CPU or cache domain and capacity?  Complete locally */
1165	if (cpu == rq->mq_ctx->cpu ||
1166	    (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
1167	     cpus_share_cache(cpu, rq->mq_ctx->cpu) &&
1168	     cpus_equal_capacity(cpu, rq->mq_ctx->cpu)))
1169		return false;
1170
1171	/* don't try to IPI to an offline CPU */
1172	return cpu_online(rq->mq_ctx->cpu);
1173}
1174
1175static void blk_mq_complete_send_ipi(struct request *rq)
1176{
1177	unsigned int cpu;
1178
1179	cpu = rq->mq_ctx->cpu;
1180	if (llist_add(&rq->ipi_list, &per_cpu(blk_cpu_done, cpu)))
1181		smp_call_function_single_async(cpu, &per_cpu(blk_cpu_csd, cpu));
1182}
1183
1184static void blk_mq_raise_softirq(struct request *rq)
1185{
1186	struct llist_head *list;
1187
1188	preempt_disable();
1189	list = this_cpu_ptr(&blk_cpu_done);
1190	if (llist_add(&rq->ipi_list, list))
1191		raise_softirq(BLOCK_SOFTIRQ);
1192	preempt_enable();
1193}
1194
1195bool blk_mq_complete_request_remote(struct request *rq)
1196{
1197	WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
1198
1199	/*
1200	 * For request which hctx has only one ctx mapping,
1201	 * or a polled request, always complete locally,
1202	 * it's pointless to redirect the completion.
1203	 */
1204	if ((rq->mq_hctx->nr_ctx == 1 &&
1205	     rq->mq_ctx->cpu == raw_smp_processor_id()) ||
1206	     rq->cmd_flags & REQ_POLLED)
1207		return false;
1208
1209	if (blk_mq_complete_need_ipi(rq)) {
1210		blk_mq_complete_send_ipi(rq);
1211		return true;
1212	}
1213
1214	if (rq->q->nr_hw_queues == 1) {
1215		blk_mq_raise_softirq(rq);
1216		return true;
1217	}
1218	return false;
1219}
1220EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
1221
1222/**
1223 * blk_mq_complete_request - end I/O on a request
1224 * @rq:		the request being processed
1225 *
1226 * Description:
1227 *	Complete a request by scheduling the ->complete_rq operation.
1228 **/
1229void blk_mq_complete_request(struct request *rq)
1230{
1231	if (!blk_mq_complete_request_remote(rq))
1232		rq->q->mq_ops->complete(rq);
1233}
1234EXPORT_SYMBOL(blk_mq_complete_request);
1235
1236/**
1237 * blk_mq_start_request - Start processing a request
1238 * @rq: Pointer to request to be started
1239 *
1240 * Function used by device drivers to notify the block layer that a request
1241 * is going to be processed now, so blk layer can do proper initializations
1242 * such as starting the timeout timer.
1243 */
1244void blk_mq_start_request(struct request *rq)
1245{
1246	struct request_queue *q = rq->q;
1247
1248	trace_block_rq_issue(rq);
1249
1250	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags) &&
1251	    !blk_rq_is_passthrough(rq)) {
1252		rq->io_start_time_ns = blk_time_get_ns();
1253		rq->stats_sectors = blk_rq_sectors(rq);
1254		rq->rq_flags |= RQF_STATS;
1255		rq_qos_issue(q, rq);
1256	}
1257
1258	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
1259
1260	blk_add_timer(rq);
1261	WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
1262	rq->mq_hctx->tags->rqs[rq->tag] = rq;
1263
1264#ifdef CONFIG_BLK_DEV_INTEGRITY
1265	if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
1266		q->integrity.profile->prepare_fn(rq);
1267#endif
1268	if (rq->bio && rq->bio->bi_opf & REQ_POLLED)
1269	        WRITE_ONCE(rq->bio->bi_cookie, rq->mq_hctx->queue_num);
1270}
1271EXPORT_SYMBOL(blk_mq_start_request);
1272
1273/*
1274 * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
1275 * queues. This is important for md arrays to benefit from merging
1276 * requests.
1277 */
1278static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
1279{
1280	if (plug->multiple_queues)
1281		return BLK_MAX_REQUEST_COUNT * 2;
1282	return BLK_MAX_REQUEST_COUNT;
1283}
1284
1285static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
1286{
1287	struct request *last = rq_list_peek(&plug->mq_list);
1288
1289	if (!plug->rq_count) {
1290		trace_block_plug(rq->q);
1291	} else if (plug->rq_count >= blk_plug_max_rq_count(plug) ||
1292		   (!blk_queue_nomerges(rq->q) &&
1293		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1294		blk_mq_flush_plug_list(plug, false);
1295		last = NULL;
1296		trace_block_plug(rq->q);
1297	}
1298
1299	if (!plug->multiple_queues && last && last->q != rq->q)
1300		plug->multiple_queues = true;
1301	/*
1302	 * Any request allocated from sched tags can't be issued to
1303	 * ->queue_rqs() directly
1304	 */
1305	if (!plug->has_elevator && (rq->rq_flags & RQF_SCHED_TAGS))
1306		plug->has_elevator = true;
1307	rq->rq_next = NULL;
1308	rq_list_add(&plug->mq_list, rq);
1309	plug->rq_count++;
1310}
1311
1312/**
1313 * blk_execute_rq_nowait - insert a request to I/O scheduler for execution
1314 * @rq:		request to insert
1315 * @at_head:    insert request at head or tail of queue
1316 *
1317 * Description:
1318 *    Insert a fully prepared request at the back of the I/O scheduler queue
1319 *    for execution.  Don't wait for completion.
1320 *
1321 * Note:
1322 *    This function will invoke @done directly if the queue is dead.
1323 */
1324void blk_execute_rq_nowait(struct request *rq, bool at_head)
1325{
1326	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1327
1328	WARN_ON(irqs_disabled());
1329	WARN_ON(!blk_rq_is_passthrough(rq));
1330
1331	blk_account_io_start(rq);
1332
1333	/*
1334	 * As plugging can be enabled for passthrough requests on a zoned
1335	 * device, directly accessing the plug instead of using blk_mq_plug()
1336	 * should not have any consequences.
1337	 */
1338	if (current->plug && !at_head) {
1339		blk_add_rq_to_plug(current->plug, rq);
1340		return;
1341	}
1342
1343	blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0);
1344	blk_mq_run_hw_queue(hctx, hctx->flags & BLK_MQ_F_BLOCKING);
1345}
1346EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
1347
1348struct blk_rq_wait {
1349	struct completion done;
1350	blk_status_t ret;
1351};
1352
1353static enum rq_end_io_ret blk_end_sync_rq(struct request *rq, blk_status_t ret)
1354{
1355	struct blk_rq_wait *wait = rq->end_io_data;
1356
1357	wait->ret = ret;
1358	complete(&wait->done);
1359	return RQ_END_IO_NONE;
1360}
1361
1362bool blk_rq_is_poll(struct request *rq)
1363{
1364	if (!rq->mq_hctx)
1365		return false;
1366	if (rq->mq_hctx->type != HCTX_TYPE_POLL)
1367		return false;
1368	return true;
1369}
1370EXPORT_SYMBOL_GPL(blk_rq_is_poll);
1371
1372static void blk_rq_poll_completion(struct request *rq, struct completion *wait)
1373{
1374	do {
1375		blk_hctx_poll(rq->q, rq->mq_hctx, NULL, 0);
1376		cond_resched();
1377	} while (!completion_done(wait));
1378}
1379
1380/**
1381 * blk_execute_rq - insert a request into queue for execution
1382 * @rq:		request to insert
1383 * @at_head:    insert request at head or tail of queue
1384 *
1385 * Description:
1386 *    Insert a fully prepared request at the back of the I/O scheduler queue
1387 *    for execution and wait for completion.
1388 * Return: The blk_status_t result provided to blk_mq_end_request().
1389 */
1390blk_status_t blk_execute_rq(struct request *rq, bool at_head)
1391{
1392	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1393	struct blk_rq_wait wait = {
1394		.done = COMPLETION_INITIALIZER_ONSTACK(wait.done),
1395	};
1396
1397	WARN_ON(irqs_disabled());
1398	WARN_ON(!blk_rq_is_passthrough(rq));
1399
1400	rq->end_io_data = &wait;
1401	rq->end_io = blk_end_sync_rq;
1402
1403	blk_account_io_start(rq);
1404	blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0);
1405	blk_mq_run_hw_queue(hctx, false);
1406
1407	if (blk_rq_is_poll(rq))
1408		blk_rq_poll_completion(rq, &wait.done);
1409	else
1410		blk_wait_io(&wait.done);
1411
1412	return wait.ret;
1413}
1414EXPORT_SYMBOL(blk_execute_rq);
1415
1416static void __blk_mq_requeue_request(struct request *rq)
1417{
1418	struct request_queue *q = rq->q;
1419
1420	blk_mq_put_driver_tag(rq);
1421
1422	trace_block_rq_requeue(rq);
1423	rq_qos_requeue(q, rq);
1424
1425	if (blk_mq_request_started(rq)) {
1426		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1427		rq->rq_flags &= ~RQF_TIMED_OUT;
1428	}
1429}
1430
1431void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
1432{
1433	struct request_queue *q = rq->q;
1434	unsigned long flags;
1435
1436	__blk_mq_requeue_request(rq);
1437
1438	/* this request will be re-inserted to io scheduler queue */
1439	blk_mq_sched_requeue_request(rq);
1440
1441	spin_lock_irqsave(&q->requeue_lock, flags);
1442	list_add_tail(&rq->queuelist, &q->requeue_list);
1443	spin_unlock_irqrestore(&q->requeue_lock, flags);
1444
1445	if (kick_requeue_list)
1446		blk_mq_kick_requeue_list(q);
1447}
1448EXPORT_SYMBOL(blk_mq_requeue_request);
1449
1450static void blk_mq_requeue_work(struct work_struct *work)
1451{
1452	struct request_queue *q =
1453		container_of(work, struct request_queue, requeue_work.work);
1454	LIST_HEAD(rq_list);
1455	LIST_HEAD(flush_list);
1456	struct request *rq;
1457
1458	spin_lock_irq(&q->requeue_lock);
1459	list_splice_init(&q->requeue_list, &rq_list);
1460	list_splice_init(&q->flush_list, &flush_list);
1461	spin_unlock_irq(&q->requeue_lock);
1462
1463	while (!list_empty(&rq_list)) {
1464		rq = list_entry(rq_list.next, struct request, queuelist);
1465		/*
1466		 * If RQF_DONTPREP ist set, the request has been started by the
1467		 * driver already and might have driver-specific data allocated
1468		 * already.  Insert it into the hctx dispatch list to avoid
1469		 * block layer merges for the request.
1470		 */
1471		if (rq->rq_flags & RQF_DONTPREP) {
1472			list_del_init(&rq->queuelist);
1473			blk_mq_request_bypass_insert(rq, 0);
1474		} else {
1475			list_del_init(&rq->queuelist);
1476			blk_mq_insert_request(rq, BLK_MQ_INSERT_AT_HEAD);
1477		}
1478	}
1479
1480	while (!list_empty(&flush_list)) {
1481		rq = list_entry(flush_list.next, struct request, queuelist);
1482		list_del_init(&rq->queuelist);
1483		blk_mq_insert_request(rq, 0);
1484	}
1485
1486	blk_mq_run_hw_queues(q, false);
1487}
1488
1489void blk_mq_kick_requeue_list(struct request_queue *q)
1490{
1491	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
1492}
1493EXPORT_SYMBOL(blk_mq_kick_requeue_list);
1494
1495void blk_mq_delay_kick_requeue_list(struct request_queue *q,
1496				    unsigned long msecs)
1497{
1498	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
1499				    msecs_to_jiffies(msecs));
1500}
1501EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
1502
1503static bool blk_is_flush_data_rq(struct request *rq)
1504{
1505	return (rq->rq_flags & RQF_FLUSH_SEQ) && !is_flush_rq(rq);
1506}
1507
1508static bool blk_mq_rq_inflight(struct request *rq, void *priv)
1509{
1510	/*
1511	 * If we find a request that isn't idle we know the queue is busy
1512	 * as it's checked in the iter.
1513	 * Return false to stop the iteration.
1514	 *
1515	 * In case of queue quiesce, if one flush data request is completed,
1516	 * don't count it as inflight given the flush sequence is suspended,
1517	 * and the original flush data request is invisible to driver, just
1518	 * like other pending requests because of quiesce
1519	 */
1520	if (blk_mq_request_started(rq) && !(blk_queue_quiesced(rq->q) &&
1521				blk_is_flush_data_rq(rq) &&
1522				blk_mq_request_completed(rq))) {
1523		bool *busy = priv;
1524
1525		*busy = true;
1526		return false;
1527	}
1528
1529	return true;
1530}
1531
1532bool blk_mq_queue_inflight(struct request_queue *q)
1533{
1534	bool busy = false;
1535
1536	blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
1537	return busy;
1538}
1539EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
1540
1541static void blk_mq_rq_timed_out(struct request *req)
1542{
1543	req->rq_flags |= RQF_TIMED_OUT;
1544	if (req->q->mq_ops->timeout) {
1545		enum blk_eh_timer_return ret;
1546
1547		ret = req->q->mq_ops->timeout(req);
1548		if (ret == BLK_EH_DONE)
1549			return;
1550		WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
1551	}
1552
1553	blk_add_timer(req);
1554}
1555
1556struct blk_expired_data {
1557	bool has_timedout_rq;
1558	unsigned long next;
1559	unsigned long timeout_start;
1560};
1561
1562static bool blk_mq_req_expired(struct request *rq, struct blk_expired_data *expired)
1563{
1564	unsigned long deadline;
1565
1566	if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
1567		return false;
1568	if (rq->rq_flags & RQF_TIMED_OUT)
1569		return false;
1570
1571	deadline = READ_ONCE(rq->deadline);
1572	if (time_after_eq(expired->timeout_start, deadline))
1573		return true;
1574
1575	if (expired->next == 0)
1576		expired->next = deadline;
1577	else if (time_after(expired->next, deadline))
1578		expired->next = deadline;
1579	return false;
1580}
1581
1582void blk_mq_put_rq_ref(struct request *rq)
1583{
1584	if (is_flush_rq(rq)) {
1585		if (rq->end_io(rq, 0) == RQ_END_IO_FREE)
1586			blk_mq_free_request(rq);
1587	} else if (req_ref_put_and_test(rq)) {
1588		__blk_mq_free_request(rq);
1589	}
1590}
1591
1592static bool blk_mq_check_expired(struct request *rq, void *priv)
1593{
1594	struct blk_expired_data *expired = priv;
1595
1596	/*
1597	 * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
1598	 * be reallocated underneath the timeout handler's processing, then
1599	 * the expire check is reliable. If the request is not expired, then
1600	 * it was completed and reallocated as a new request after returning
1601	 * from blk_mq_check_expired().
1602	 */
1603	if (blk_mq_req_expired(rq, expired)) {
1604		expired->has_timedout_rq = true;
1605		return false;
1606	}
1607	return true;
1608}
1609
1610static bool blk_mq_handle_expired(struct request *rq, void *priv)
1611{
1612	struct blk_expired_data *expired = priv;
1613
1614	if (blk_mq_req_expired(rq, expired))
1615		blk_mq_rq_timed_out(rq);
1616	return true;
1617}
1618
1619static void blk_mq_timeout_work(struct work_struct *work)
1620{
1621	struct request_queue *q =
1622		container_of(work, struct request_queue, timeout_work);
1623	struct blk_expired_data expired = {
1624		.timeout_start = jiffies,
1625	};
1626	struct blk_mq_hw_ctx *hctx;
1627	unsigned long i;
1628
1629	/* A deadlock might occur if a request is stuck requiring a
1630	 * timeout at the same time a queue freeze is waiting
1631	 * completion, since the timeout code would not be able to
1632	 * acquire the queue reference here.
1633	 *
1634	 * That's why we don't use blk_queue_enter here; instead, we use
1635	 * percpu_ref_tryget directly, because we need to be able to
1636	 * obtain a reference even in the short window between the queue
1637	 * starting to freeze, by dropping the first reference in
1638	 * blk_freeze_queue_start, and the moment the last request is
1639	 * consumed, marked by the instant q_usage_counter reaches
1640	 * zero.
1641	 */
1642	if (!percpu_ref_tryget(&q->q_usage_counter))
1643		return;
1644
1645	/* check if there is any timed-out request */
1646	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &expired);
1647	if (expired.has_timedout_rq) {
1648		/*
1649		 * Before walking tags, we must ensure any submit started
1650		 * before the current time has finished. Since the submit
1651		 * uses srcu or rcu, wait for a synchronization point to
1652		 * ensure all running submits have finished
1653		 */
1654		blk_mq_wait_quiesce_done(q->tag_set);
1655
1656		expired.next = 0;
1657		blk_mq_queue_tag_busy_iter(q, blk_mq_handle_expired, &expired);
1658	}
1659
1660	if (expired.next != 0) {
1661		mod_timer(&q->timeout, expired.next);
1662	} else {
1663		/*
1664		 * Request timeouts are handled as a forward rolling timer. If
1665		 * we end up here it means that no requests are pending and
1666		 * also that no request has been pending for a while. Mark
1667		 * each hctx as idle.
1668		 */
1669		queue_for_each_hw_ctx(q, hctx, i) {
1670			/* the hctx may be unmapped, so check it here */
1671			if (blk_mq_hw_queue_mapped(hctx))
1672				blk_mq_tag_idle(hctx);
1673		}
1674	}
1675	blk_queue_exit(q);
1676}
1677
1678struct flush_busy_ctx_data {
1679	struct blk_mq_hw_ctx *hctx;
1680	struct list_head *list;
1681};
1682
1683static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1684{
1685	struct flush_busy_ctx_data *flush_data = data;
1686	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1687	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1688	enum hctx_type type = hctx->type;
1689
1690	spin_lock(&ctx->lock);
1691	list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1692	sbitmap_clear_bit(sb, bitnr);
1693	spin_unlock(&ctx->lock);
1694	return true;
1695}
1696
1697/*
1698 * Process software queues that have been marked busy, splicing them
1699 * to the for-dispatch
1700 */
1701void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1702{
1703	struct flush_busy_ctx_data data = {
1704		.hctx = hctx,
1705		.list = list,
1706	};
1707
1708	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1709}
1710EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1711
1712struct dispatch_rq_data {
1713	struct blk_mq_hw_ctx *hctx;
1714	struct request *rq;
1715};
1716
1717static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1718		void *data)
1719{
1720	struct dispatch_rq_data *dispatch_data = data;
1721	struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1722	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1723	enum hctx_type type = hctx->type;
1724
1725	spin_lock(&ctx->lock);
1726	if (!list_empty(&ctx->rq_lists[type])) {
1727		dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1728		list_del_init(&dispatch_data->rq->queuelist);
1729		if (list_empty(&ctx->rq_lists[type]))
1730			sbitmap_clear_bit(sb, bitnr);
1731	}
1732	spin_unlock(&ctx->lock);
1733
1734	return !dispatch_data->rq;
1735}
1736
1737struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1738					struct blk_mq_ctx *start)
1739{
1740	unsigned off = start ? start->index_hw[hctx->type] : 0;
1741	struct dispatch_rq_data data = {
1742		.hctx = hctx,
1743		.rq   = NULL,
1744	};
1745
1746	__sbitmap_for_each_set(&hctx->ctx_map, off,
1747			       dispatch_rq_from_ctx, &data);
1748
1749	return data.rq;
1750}
1751
1752bool __blk_mq_alloc_driver_tag(struct request *rq)
1753{
1754	struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags;
1755	unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1756	int tag;
1757
1758	blk_mq_tag_busy(rq->mq_hctx);
1759
1760	if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1761		bt = &rq->mq_hctx->tags->breserved_tags;
1762		tag_offset = 0;
1763	} else {
1764		if (!hctx_may_queue(rq->mq_hctx, bt))
1765			return false;
1766	}
1767
1768	tag = __sbitmap_queue_get(bt);
1769	if (tag == BLK_MQ_NO_TAG)
1770		return false;
1771
1772	rq->tag = tag + tag_offset;
1773	blk_mq_inc_active_requests(rq->mq_hctx);
1774	return true;
1775}
1776
1777static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1778				int flags, void *key)
1779{
1780	struct blk_mq_hw_ctx *hctx;
1781
1782	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1783
1784	spin_lock(&hctx->dispatch_wait_lock);
1785	if (!list_empty(&wait->entry)) {
1786		struct sbitmap_queue *sbq;
1787
1788		list_del_init(&wait->entry);
1789		sbq = &hctx->tags->bitmap_tags;
1790		atomic_dec(&sbq->ws_active);
1791	}
1792	spin_unlock(&hctx->dispatch_wait_lock);
1793
1794	blk_mq_run_hw_queue(hctx, true);
1795	return 1;
1796}
1797
1798/*
1799 * Mark us waiting for a tag. For shared tags, this involves hooking us into
1800 * the tag wakeups. For non-shared tags, we can simply mark us needing a
1801 * restart. For both cases, take care to check the condition again after
1802 * marking us as waiting.
1803 */
1804static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1805				 struct request *rq)
1806{
1807	struct sbitmap_queue *sbq;
1808	struct wait_queue_head *wq;
1809	wait_queue_entry_t *wait;
1810	bool ret;
1811
1812	if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1813	    !(blk_mq_is_shared_tags(hctx->flags))) {
1814		blk_mq_sched_mark_restart_hctx(hctx);
1815
1816		/*
1817		 * It's possible that a tag was freed in the window between the
1818		 * allocation failure and adding the hardware queue to the wait
1819		 * queue.
1820		 *
1821		 * Don't clear RESTART here, someone else could have set it.
1822		 * At most this will cost an extra queue run.
1823		 */
1824		return blk_mq_get_driver_tag(rq);
1825	}
1826
1827	wait = &hctx->dispatch_wait;
1828	if (!list_empty_careful(&wait->entry))
1829		return false;
1830
1831	if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag))
1832		sbq = &hctx->tags->breserved_tags;
1833	else
1834		sbq = &hctx->tags->bitmap_tags;
1835	wq = &bt_wait_ptr(sbq, hctx)->wait;
1836
1837	spin_lock_irq(&wq->lock);
1838	spin_lock(&hctx->dispatch_wait_lock);
1839	if (!list_empty(&wait->entry)) {
1840		spin_unlock(&hctx->dispatch_wait_lock);
1841		spin_unlock_irq(&wq->lock);
1842		return false;
1843	}
1844
1845	atomic_inc(&sbq->ws_active);
1846	wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1847	__add_wait_queue(wq, wait);
1848
1849	/*
1850	 * Add one explicit barrier since blk_mq_get_driver_tag() may
1851	 * not imply barrier in case of failure.
1852	 *
1853	 * Order adding us to wait queue and allocating driver tag.
1854	 *
1855	 * The pair is the one implied in sbitmap_queue_wake_up() which
1856	 * orders clearing sbitmap tag bits and waitqueue_active() in
1857	 * __sbitmap_queue_wake_up(), since waitqueue_active() is lockless
1858	 *
1859	 * Otherwise, re-order of adding wait queue and getting driver tag
1860	 * may cause __sbitmap_queue_wake_up() to wake up nothing because
1861	 * the waitqueue_active() may not observe us in wait queue.
1862	 */
1863	smp_mb();
1864
1865	/*
1866	 * It's possible that a tag was freed in the window between the
1867	 * allocation failure and adding the hardware queue to the wait
1868	 * queue.
1869	 */
1870	ret = blk_mq_get_driver_tag(rq);
1871	if (!ret) {
1872		spin_unlock(&hctx->dispatch_wait_lock);
1873		spin_unlock_irq(&wq->lock);
1874		return false;
1875	}
1876
1877	/*
1878	 * We got a tag, remove ourselves from the wait queue to ensure
1879	 * someone else gets the wakeup.
1880	 */
1881	list_del_init(&wait->entry);
1882	atomic_dec(&sbq->ws_active);
1883	spin_unlock(&hctx->dispatch_wait_lock);
1884	spin_unlock_irq(&wq->lock);
1885
1886	return true;
1887}
1888
1889#define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1890#define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1891/*
1892 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1893 * - EWMA is one simple way to compute running average value
1894 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1895 * - take 4 as factor for avoiding to get too small(0) result, and this
1896 *   factor doesn't matter because EWMA decreases exponentially
1897 */
1898static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1899{
1900	unsigned int ewma;
1901
1902	ewma = hctx->dispatch_busy;
1903
1904	if (!ewma && !busy)
1905		return;
1906
1907	ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1908	if (busy)
1909		ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1910	ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1911
1912	hctx->dispatch_busy = ewma;
1913}
1914
1915#define BLK_MQ_RESOURCE_DELAY	3		/* ms units */
1916
1917static void blk_mq_handle_dev_resource(struct request *rq,
1918				       struct list_head *list)
1919{
1920	list_add(&rq->queuelist, list);
1921	__blk_mq_requeue_request(rq);
1922}
1923
1924static void blk_mq_handle_zone_resource(struct request *rq,
1925					struct list_head *zone_list)
1926{
1927	/*
1928	 * If we end up here it is because we cannot dispatch a request to a
1929	 * specific zone due to LLD level zone-write locking or other zone
1930	 * related resource not being available. In this case, set the request
1931	 * aside in zone_list for retrying it later.
1932	 */
1933	list_add(&rq->queuelist, zone_list);
1934	__blk_mq_requeue_request(rq);
1935}
1936
1937enum prep_dispatch {
1938	PREP_DISPATCH_OK,
1939	PREP_DISPATCH_NO_TAG,
1940	PREP_DISPATCH_NO_BUDGET,
1941};
1942
1943static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1944						  bool need_budget)
1945{
1946	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1947	int budget_token = -1;
1948
1949	if (need_budget) {
1950		budget_token = blk_mq_get_dispatch_budget(rq->q);
1951		if (budget_token < 0) {
1952			blk_mq_put_driver_tag(rq);
1953			return PREP_DISPATCH_NO_BUDGET;
1954		}
1955		blk_mq_set_rq_budget_token(rq, budget_token);
1956	}
1957
1958	if (!blk_mq_get_driver_tag(rq)) {
1959		/*
1960		 * The initial allocation attempt failed, so we need to
1961		 * rerun the hardware queue when a tag is freed. The
1962		 * waitqueue takes care of that. If the queue is run
1963		 * before we add this entry back on the dispatch list,
1964		 * we'll re-run it below.
1965		 */
1966		if (!blk_mq_mark_tag_wait(hctx, rq)) {
1967			/*
1968			 * All budgets not got from this function will be put
1969			 * together during handling partial dispatch
1970			 */
1971			if (need_budget)
1972				blk_mq_put_dispatch_budget(rq->q, budget_token);
1973			return PREP_DISPATCH_NO_TAG;
1974		}
1975	}
1976
1977	return PREP_DISPATCH_OK;
1978}
1979
1980/* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
1981static void blk_mq_release_budgets(struct request_queue *q,
1982		struct list_head *list)
1983{
1984	struct request *rq;
1985
1986	list_for_each_entry(rq, list, queuelist) {
1987		int budget_token = blk_mq_get_rq_budget_token(rq);
1988
1989		if (budget_token >= 0)
1990			blk_mq_put_dispatch_budget(q, budget_token);
1991	}
1992}
1993
1994/*
1995 * blk_mq_commit_rqs will notify driver using bd->last that there is no
1996 * more requests. (See comment in struct blk_mq_ops for commit_rqs for
1997 * details)
1998 * Attention, we should explicitly call this in unusual cases:
1999 *  1) did not queue everything initially scheduled to queue
2000 *  2) the last attempt to queue a request failed
2001 */
2002static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int queued,
2003			      bool from_schedule)
2004{
2005	if (hctx->queue->mq_ops->commit_rqs && queued) {
2006		trace_block_unplug(hctx->queue, queued, !from_schedule);
2007		hctx->queue->mq_ops->commit_rqs(hctx);
2008	}
2009}
2010
2011/*
2012 * Returns true if we did some work AND can potentially do more.
2013 */
2014bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
2015			     unsigned int nr_budgets)
2016{
2017	enum prep_dispatch prep;
2018	struct request_queue *q = hctx->queue;
2019	struct request *rq;
2020	int queued;
2021	blk_status_t ret = BLK_STS_OK;
2022	LIST_HEAD(zone_list);
2023	bool needs_resource = false;
2024
2025	if (list_empty(list))
2026		return false;
2027
2028	/*
2029	 * Now process all the entries, sending them to the driver.
2030	 */
2031	queued = 0;
2032	do {
2033		struct blk_mq_queue_data bd;
2034
2035		rq = list_first_entry(list, struct request, queuelist);
2036
2037		WARN_ON_ONCE(hctx != rq->mq_hctx);
2038		prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
2039		if (prep != PREP_DISPATCH_OK)
2040			break;
2041
2042		list_del_init(&rq->queuelist);
2043
2044		bd.rq = rq;
2045		bd.last = list_empty(list);
2046
2047		/*
2048		 * once the request is queued to lld, no need to cover the
2049		 * budget any more
2050		 */
2051		if (nr_budgets)
2052			nr_budgets--;
2053		ret = q->mq_ops->queue_rq(hctx, &bd);
2054		switch (ret) {
2055		case BLK_STS_OK:
2056			queued++;
2057			break;
2058		case BLK_STS_RESOURCE:
2059			needs_resource = true;
2060			fallthrough;
2061		case BLK_STS_DEV_RESOURCE:
2062			blk_mq_handle_dev_resource(rq, list);
2063			goto out;
2064		case BLK_STS_ZONE_RESOURCE:
2065			/*
2066			 * Move the request to zone_list and keep going through
2067			 * the dispatch list to find more requests the drive can
2068			 * accept.
2069			 */
2070			blk_mq_handle_zone_resource(rq, &zone_list);
2071			needs_resource = true;
2072			break;
2073		default:
2074			blk_mq_end_request(rq, ret);
2075		}
2076	} while (!list_empty(list));
2077out:
2078	if (!list_empty(&zone_list))
2079		list_splice_tail_init(&zone_list, list);
2080
2081	/* If we didn't flush the entire list, we could have told the driver
2082	 * there was more coming, but that turned out to be a lie.
2083	 */
2084	if (!list_empty(list) || ret != BLK_STS_OK)
2085		blk_mq_commit_rqs(hctx, queued, false);
2086
2087	/*
2088	 * Any items that need requeuing? Stuff them into hctx->dispatch,
2089	 * that is where we will continue on next queue run.
2090	 */
2091	if (!list_empty(list)) {
2092		bool needs_restart;
2093		/* For non-shared tags, the RESTART check will suffice */
2094		bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
2095			((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) ||
2096			blk_mq_is_shared_tags(hctx->flags));
2097
2098		if (nr_budgets)
2099			blk_mq_release_budgets(q, list);
2100
2101		spin_lock(&hctx->lock);
2102		list_splice_tail_init(list, &hctx->dispatch);
2103		spin_unlock(&hctx->lock);
2104
2105		/*
2106		 * Order adding requests to hctx->dispatch and checking
2107		 * SCHED_RESTART flag. The pair of this smp_mb() is the one
2108		 * in blk_mq_sched_restart(). Avoid restart code path to
2109		 * miss the new added requests to hctx->dispatch, meantime
2110		 * SCHED_RESTART is observed here.
2111		 */
2112		smp_mb();
2113
2114		/*
2115		 * If SCHED_RESTART was set by the caller of this function and
2116		 * it is no longer set that means that it was cleared by another
2117		 * thread and hence that a queue rerun is needed.
2118		 *
2119		 * If 'no_tag' is set, that means that we failed getting
2120		 * a driver tag with an I/O scheduler attached. If our dispatch
2121		 * waitqueue is no longer active, ensure that we run the queue
2122		 * AFTER adding our entries back to the list.
2123		 *
2124		 * If no I/O scheduler has been configured it is possible that
2125		 * the hardware queue got stopped and restarted before requests
2126		 * were pushed back onto the dispatch list. Rerun the queue to
2127		 * avoid starvation. Notes:
2128		 * - blk_mq_run_hw_queue() checks whether or not a queue has
2129		 *   been stopped before rerunning a queue.
2130		 * - Some but not all block drivers stop a queue before
2131		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
2132		 *   and dm-rq.
2133		 *
2134		 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
2135		 * bit is set, run queue after a delay to avoid IO stalls
2136		 * that could otherwise occur if the queue is idle.  We'll do
2137		 * similar if we couldn't get budget or couldn't lock a zone
2138		 * and SCHED_RESTART is set.
2139		 */
2140		needs_restart = blk_mq_sched_needs_restart(hctx);
2141		if (prep == PREP_DISPATCH_NO_BUDGET)
2142			needs_resource = true;
2143		if (!needs_restart ||
2144		    (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
2145			blk_mq_run_hw_queue(hctx, true);
2146		else if (needs_resource)
2147			blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
2148
2149		blk_mq_update_dispatch_busy(hctx, true);
2150		return false;
2151	}
2152
2153	blk_mq_update_dispatch_busy(hctx, false);
2154	return true;
2155}
2156
2157static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
2158{
2159	int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
2160
2161	if (cpu >= nr_cpu_ids)
2162		cpu = cpumask_first(hctx->cpumask);
2163	return cpu;
2164}
2165
2166/*
2167 * It'd be great if the workqueue API had a way to pass
2168 * in a mask and had some smarts for more clever placement.
2169 * For now we just round-robin here, switching for every
2170 * BLK_MQ_CPU_WORK_BATCH queued items.
2171 */
2172static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
2173{
2174	bool tried = false;
2175	int next_cpu = hctx->next_cpu;
2176
2177	if (hctx->queue->nr_hw_queues == 1)
2178		return WORK_CPU_UNBOUND;
2179
2180	if (--hctx->next_cpu_batch <= 0) {
2181select_cpu:
2182		next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
2183				cpu_online_mask);
2184		if (next_cpu >= nr_cpu_ids)
2185			next_cpu = blk_mq_first_mapped_cpu(hctx);
2186		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2187	}
2188
2189	/*
2190	 * Do unbound schedule if we can't find a online CPU for this hctx,
2191	 * and it should only happen in the path of handling CPU DEAD.
2192	 */
2193	if (!cpu_online(next_cpu)) {
2194		if (!tried) {
2195			tried = true;
2196			goto select_cpu;
2197		}
2198
2199		/*
2200		 * Make sure to re-select CPU next time once after CPUs
2201		 * in hctx->cpumask become online again.
2202		 */
2203		hctx->next_cpu = next_cpu;
2204		hctx->next_cpu_batch = 1;
2205		return WORK_CPU_UNBOUND;
2206	}
2207
2208	hctx->next_cpu = next_cpu;
2209	return next_cpu;
2210}
2211
2212/**
2213 * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
2214 * @hctx: Pointer to the hardware queue to run.
2215 * @msecs: Milliseconds of delay to wait before running the queue.
2216 *
2217 * Run a hardware queue asynchronously with a delay of @msecs.
2218 */
2219void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
2220{
2221	if (unlikely(blk_mq_hctx_stopped(hctx)))
2222		return;
2223	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
2224				    msecs_to_jiffies(msecs));
2225}
2226EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
2227
2228/**
2229 * blk_mq_run_hw_queue - Start to run a hardware queue.
2230 * @hctx: Pointer to the hardware queue to run.
2231 * @async: If we want to run the queue asynchronously.
2232 *
2233 * Check if the request queue is not in a quiesced state and if there are
2234 * pending requests to be sent. If this is true, run the queue to send requests
2235 * to hardware.
2236 */
2237void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2238{
2239	bool need_run;
2240
2241	/*
2242	 * We can't run the queue inline with interrupts disabled.
2243	 */
2244	WARN_ON_ONCE(!async && in_interrupt());
2245
2246	might_sleep_if(!async && hctx->flags & BLK_MQ_F_BLOCKING);
2247
2248	/*
2249	 * When queue is quiesced, we may be switching io scheduler, or
2250	 * updating nr_hw_queues, or other things, and we can't run queue
2251	 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
2252	 *
2253	 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
2254	 * quiesced.
2255	 */
2256	__blk_mq_run_dispatch_ops(hctx->queue, false,
2257		need_run = !blk_queue_quiesced(hctx->queue) &&
2258		blk_mq_hctx_has_pending(hctx));
2259
2260	if (!need_run)
2261		return;
2262
2263	if (async || !cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask)) {
2264		blk_mq_delay_run_hw_queue(hctx, 0);
2265		return;
2266	}
2267
2268	blk_mq_run_dispatch_ops(hctx->queue,
2269				blk_mq_sched_dispatch_requests(hctx));
2270}
2271EXPORT_SYMBOL(blk_mq_run_hw_queue);
2272
2273/*
2274 * Return prefered queue to dispatch from (if any) for non-mq aware IO
2275 * scheduler.
2276 */
2277static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
2278{
2279	struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
2280	/*
2281	 * If the IO scheduler does not respect hardware queues when
2282	 * dispatching, we just don't bother with multiple HW queues and
2283	 * dispatch from hctx for the current CPU since running multiple queues
2284	 * just causes lock contention inside the scheduler and pointless cache
2285	 * bouncing.
2286	 */
2287	struct blk_mq_hw_ctx *hctx = ctx->hctxs[HCTX_TYPE_DEFAULT];
2288
2289	if (!blk_mq_hctx_stopped(hctx))
2290		return hctx;
2291	return NULL;
2292}
2293
2294/**
2295 * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
2296 * @q: Pointer to the request queue to run.
2297 * @async: If we want to run the queue asynchronously.
2298 */
2299void blk_mq_run_hw_queues(struct request_queue *q, bool async)
2300{
2301	struct blk_mq_hw_ctx *hctx, *sq_hctx;
2302	unsigned long i;
2303
2304	sq_hctx = NULL;
2305	if (blk_queue_sq_sched(q))
2306		sq_hctx = blk_mq_get_sq_hctx(q);
2307	queue_for_each_hw_ctx(q, hctx, i) {
2308		if (blk_mq_hctx_stopped(hctx))
2309			continue;
2310		/*
2311		 * Dispatch from this hctx either if there's no hctx preferred
2312		 * by IO scheduler or if it has requests that bypass the
2313		 * scheduler.
2314		 */
2315		if (!sq_hctx || sq_hctx == hctx ||
2316		    !list_empty_careful(&hctx->dispatch))
2317			blk_mq_run_hw_queue(hctx, async);
2318	}
2319}
2320EXPORT_SYMBOL(blk_mq_run_hw_queues);
2321
2322/**
2323 * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
2324 * @q: Pointer to the request queue to run.
2325 * @msecs: Milliseconds of delay to wait before running the queues.
2326 */
2327void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
2328{
2329	struct blk_mq_hw_ctx *hctx, *sq_hctx;
2330	unsigned long i;
2331
2332	sq_hctx = NULL;
2333	if (blk_queue_sq_sched(q))
2334		sq_hctx = blk_mq_get_sq_hctx(q);
2335	queue_for_each_hw_ctx(q, hctx, i) {
2336		if (blk_mq_hctx_stopped(hctx))
2337			continue;
2338		/*
2339		 * If there is already a run_work pending, leave the
2340		 * pending delay untouched. Otherwise, a hctx can stall
2341		 * if another hctx is re-delaying the other's work
2342		 * before the work executes.
2343		 */
2344		if (delayed_work_pending(&hctx->run_work))
2345			continue;
2346		/*
2347		 * Dispatch from this hctx either if there's no hctx preferred
2348		 * by IO scheduler or if it has requests that bypass the
2349		 * scheduler.
2350		 */
2351		if (!sq_hctx || sq_hctx == hctx ||
2352		    !list_empty_careful(&hctx->dispatch))
2353			blk_mq_delay_run_hw_queue(hctx, msecs);
2354	}
2355}
2356EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
2357
2358/*
2359 * This function is often used for pausing .queue_rq() by driver when
2360 * there isn't enough resource or some conditions aren't satisfied, and
2361 * BLK_STS_RESOURCE is usually returned.
2362 *
2363 * We do not guarantee that dispatch can be drained or blocked
2364 * after blk_mq_stop_hw_queue() returns. Please use
2365 * blk_mq_quiesce_queue() for that requirement.
2366 */
2367void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
2368{
2369	cancel_delayed_work(&hctx->run_work);
2370
2371	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2372}
2373EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2374
2375/*
2376 * This function is often used for pausing .queue_rq() by driver when
2377 * there isn't enough resource or some conditions aren't satisfied, and
2378 * BLK_STS_RESOURCE is usually returned.
2379 *
2380 * We do not guarantee that dispatch can be drained or blocked
2381 * after blk_mq_stop_hw_queues() returns. Please use
2382 * blk_mq_quiesce_queue() for that requirement.
2383 */
2384void blk_mq_stop_hw_queues(struct request_queue *q)
2385{
2386	struct blk_mq_hw_ctx *hctx;
2387	unsigned long i;
2388
2389	queue_for_each_hw_ctx(q, hctx, i)
2390		blk_mq_stop_hw_queue(hctx);
2391}
2392EXPORT_SYMBOL(blk_mq_stop_hw_queues);
2393
2394void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
2395{
2396	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2397
2398	blk_mq_run_hw_queue(hctx, hctx->flags & BLK_MQ_F_BLOCKING);
2399}
2400EXPORT_SYMBOL(blk_mq_start_hw_queue);
2401
2402void blk_mq_start_hw_queues(struct request_queue *q)
2403{
2404	struct blk_mq_hw_ctx *hctx;
2405	unsigned long i;
2406
2407	queue_for_each_hw_ctx(q, hctx, i)
2408		blk_mq_start_hw_queue(hctx);
2409}
2410EXPORT_SYMBOL(blk_mq_start_hw_queues);
2411
2412void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2413{
2414	if (!blk_mq_hctx_stopped(hctx))
2415		return;
2416
2417	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2418	blk_mq_run_hw_queue(hctx, async);
2419}
2420EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
2421
2422void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
2423{
2424	struct blk_mq_hw_ctx *hctx;
2425	unsigned long i;
2426
2427	queue_for_each_hw_ctx(q, hctx, i)
2428		blk_mq_start_stopped_hw_queue(hctx, async ||
2429					(hctx->flags & BLK_MQ_F_BLOCKING));
2430}
2431EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
2432
2433static void blk_mq_run_work_fn(struct work_struct *work)
2434{
2435	struct blk_mq_hw_ctx *hctx =
2436		container_of(work, struct blk_mq_hw_ctx, run_work.work);
2437
2438	blk_mq_run_dispatch_ops(hctx->queue,
2439				blk_mq_sched_dispatch_requests(hctx));
2440}
2441
2442/**
2443 * blk_mq_request_bypass_insert - Insert a request at dispatch list.
2444 * @rq: Pointer to request to be inserted.
2445 * @flags: BLK_MQ_INSERT_*
2446 *
2447 * Should only be used carefully, when the caller knows we want to
2448 * bypass a potential IO scheduler on the target device.
2449 */
2450static void blk_mq_request_bypass_insert(struct request *rq, blk_insert_t flags)
2451{
2452	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2453
2454	spin_lock(&hctx->lock);
2455	if (flags & BLK_MQ_INSERT_AT_HEAD)
2456		list_add(&rq->queuelist, &hctx->dispatch);
2457	else
2458		list_add_tail(&rq->queuelist, &hctx->dispatch);
2459	spin_unlock(&hctx->lock);
2460}
2461
2462static void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx,
2463		struct blk_mq_ctx *ctx, struct list_head *list,
2464		bool run_queue_async)
2465{
2466	struct request *rq;
2467	enum hctx_type type = hctx->type;
2468
2469	/*
2470	 * Try to issue requests directly if the hw queue isn't busy to save an
2471	 * extra enqueue & dequeue to the sw queue.
2472	 */
2473	if (!hctx->dispatch_busy && !run_queue_async) {
2474		blk_mq_run_dispatch_ops(hctx->queue,
2475			blk_mq_try_issue_list_directly(hctx, list));
2476		if (list_empty(list))
2477			goto out;
2478	}
2479
2480	/*
2481	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
2482	 * offline now
2483	 */
2484	list_for_each_entry(rq, list, queuelist) {
2485		BUG_ON(rq->mq_ctx != ctx);
2486		trace_block_rq_insert(rq);
2487		if (rq->cmd_flags & REQ_NOWAIT)
2488			run_queue_async = true;
2489	}
2490
2491	spin_lock(&ctx->lock);
2492	list_splice_tail_init(list, &ctx->rq_lists[type]);
2493	blk_mq_hctx_mark_pending(hctx, ctx);
2494	spin_unlock(&ctx->lock);
2495out:
2496	blk_mq_run_hw_queue(hctx, run_queue_async);
2497}
2498
2499static void blk_mq_insert_request(struct request *rq, blk_insert_t flags)
2500{
2501	struct request_queue *q = rq->q;
2502	struct blk_mq_ctx *ctx = rq->mq_ctx;
2503	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2504
2505	if (blk_rq_is_passthrough(rq)) {
2506		/*
2507		 * Passthrough request have to be added to hctx->dispatch
2508		 * directly.  The device may be in a situation where it can't
2509		 * handle FS request, and always returns BLK_STS_RESOURCE for
2510		 * them, which gets them added to hctx->dispatch.
2511		 *
2512		 * If a passthrough request is required to unblock the queues,
2513		 * and it is added to the scheduler queue, there is no chance to
2514		 * dispatch it given we prioritize requests in hctx->dispatch.
2515		 */
2516		blk_mq_request_bypass_insert(rq, flags);
2517	} else if (req_op(rq) == REQ_OP_FLUSH) {
2518		/*
2519		 * Firstly normal IO request is inserted to scheduler queue or
2520		 * sw queue, meantime we add flush request to dispatch queue(
2521		 * hctx->dispatch) directly and there is at most one in-flight
2522		 * flush request for each hw queue, so it doesn't matter to add
2523		 * flush request to tail or front of the dispatch queue.
2524		 *
2525		 * Secondly in case of NCQ, flush request belongs to non-NCQ
2526		 * command, and queueing it will fail when there is any
2527		 * in-flight normal IO request(NCQ command). When adding flush
2528		 * rq to the front of hctx->dispatch, it is easier to introduce
2529		 * extra time to flush rq's latency because of S_SCHED_RESTART
2530		 * compared with adding to the tail of dispatch queue, then
2531		 * chance of flush merge is increased, and less flush requests
2532		 * will be issued to controller. It is observed that ~10% time
2533		 * is saved in blktests block/004 on disk attached to AHCI/NCQ
2534		 * drive when adding flush rq to the front of hctx->dispatch.
2535		 *
2536		 * Simply queue flush rq to the front of hctx->dispatch so that
2537		 * intensive flush workloads can benefit in case of NCQ HW.
2538		 */
2539		blk_mq_request_bypass_insert(rq, BLK_MQ_INSERT_AT_HEAD);
2540	} else if (q->elevator) {
2541		LIST_HEAD(list);
2542
2543		WARN_ON_ONCE(rq->tag != BLK_MQ_NO_TAG);
2544
2545		list_add(&rq->queuelist, &list);
2546		q->elevator->type->ops.insert_requests(hctx, &list, flags);
2547	} else {
2548		trace_block_rq_insert(rq);
2549
2550		spin_lock(&ctx->lock);
2551		if (flags & BLK_MQ_INSERT_AT_HEAD)
2552			list_add(&rq->queuelist, &ctx->rq_lists[hctx->type]);
2553		else
2554			list_add_tail(&rq->queuelist,
2555				      &ctx->rq_lists[hctx->type]);
2556		blk_mq_hctx_mark_pending(hctx, ctx);
2557		spin_unlock(&ctx->lock);
2558	}
2559}
2560
2561static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
2562		unsigned int nr_segs)
2563{
2564	int err;
2565
2566	if (bio->bi_opf & REQ_RAHEAD)
2567		rq->cmd_flags |= REQ_FAILFAST_MASK;
2568
2569	rq->__sector = bio->bi_iter.bi_sector;
2570	rq->write_hint = bio->bi_write_hint;
2571	blk_rq_bio_prep(rq, bio, nr_segs);
2572
2573	/* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
2574	err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
2575	WARN_ON_ONCE(err);
2576
2577	blk_account_io_start(rq);
2578}
2579
2580static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
2581					    struct request *rq, bool last)
2582{
2583	struct request_queue *q = rq->q;
2584	struct blk_mq_queue_data bd = {
2585		.rq = rq,
2586		.last = last,
2587	};
2588	blk_status_t ret;
2589
2590	/*
2591	 * For OK queue, we are done. For error, caller may kill it.
2592	 * Any other error (busy), just add it to our list as we
2593	 * previously would have done.
2594	 */
2595	ret = q->mq_ops->queue_rq(hctx, &bd);
2596	switch (ret) {
2597	case BLK_STS_OK:
2598		blk_mq_update_dispatch_busy(hctx, false);
2599		break;
2600	case BLK_STS_RESOURCE:
2601	case BLK_STS_DEV_RESOURCE:
2602		blk_mq_update_dispatch_busy(hctx, true);
2603		__blk_mq_requeue_request(rq);
2604		break;
2605	default:
2606		blk_mq_update_dispatch_busy(hctx, false);
2607		break;
2608	}
2609
2610	return ret;
2611}
2612
2613static bool blk_mq_get_budget_and_tag(struct request *rq)
2614{
2615	int budget_token;
2616
2617	budget_token = blk_mq_get_dispatch_budget(rq->q);
2618	if (budget_token < 0)
2619		return false;
2620	blk_mq_set_rq_budget_token(rq, budget_token);
2621	if (!blk_mq_get_driver_tag(rq)) {
2622		blk_mq_put_dispatch_budget(rq->q, budget_token);
2623		return false;
2624	}
2625	return true;
2626}
2627
2628/**
2629 * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2630 * @hctx: Pointer of the associated hardware queue.
2631 * @rq: Pointer to request to be sent.
2632 *
2633 * If the device has enough resources to accept a new request now, send the
2634 * request directly to device driver. Else, insert at hctx->dispatch queue, so
2635 * we can try send it another time in the future. Requests inserted at this
2636 * queue have higher priority.
2637 */
2638static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2639		struct request *rq)
2640{
2641	blk_status_t ret;
2642
2643	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) {
2644		blk_mq_insert_request(rq, 0);
2645		return;
2646	}
2647
2648	if ((rq->rq_flags & RQF_USE_SCHED) || !blk_mq_get_budget_and_tag(rq)) {
2649		blk_mq_insert_request(rq, 0);
2650		blk_mq_run_hw_queue(hctx, rq->cmd_flags & REQ_NOWAIT);
2651		return;
2652	}
2653
2654	ret = __blk_mq_issue_directly(hctx, rq, true);
2655	switch (ret) {
2656	case BLK_STS_OK:
2657		break;
2658	case BLK_STS_RESOURCE:
2659	case BLK_STS_DEV_RESOURCE:
2660		blk_mq_request_bypass_insert(rq, 0);
2661		blk_mq_run_hw_queue(hctx, false);
2662		break;
2663	default:
2664		blk_mq_end_request(rq, ret);
2665		break;
2666	}
2667}
2668
2669static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2670{
2671	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2672
2673	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) {
2674		blk_mq_insert_request(rq, 0);
2675		return BLK_STS_OK;
2676	}
2677
2678	if (!blk_mq_get_budget_and_tag(rq))
2679		return BLK_STS_RESOURCE;
2680	return __blk_mq_issue_directly(hctx, rq, last);
2681}
2682
2683static void blk_mq_plug_issue_direct(struct blk_plug *plug)
2684{
2685	struct blk_mq_hw_ctx *hctx = NULL;
2686	struct request *rq;
2687	int queued = 0;
2688	blk_status_t ret = BLK_STS_OK;
2689
2690	while ((rq = rq_list_pop(&plug->mq_list))) {
2691		bool last = rq_list_empty(plug->mq_list);
2692
2693		if (hctx != rq->mq_hctx) {
2694			if (hctx) {
2695				blk_mq_commit_rqs(hctx, queued, false);
2696				queued = 0;
2697			}
2698			hctx = rq->mq_hctx;
2699		}
2700
2701		ret = blk_mq_request_issue_directly(rq, last);
2702		switch (ret) {
2703		case BLK_STS_OK:
2704			queued++;
2705			break;
2706		case BLK_STS_RESOURCE:
2707		case BLK_STS_DEV_RESOURCE:
2708			blk_mq_request_bypass_insert(rq, 0);
2709			blk_mq_run_hw_queue(hctx, false);
2710			goto out;
2711		default:
2712			blk_mq_end_request(rq, ret);
2713			break;
2714		}
2715	}
2716
2717out:
2718	if (ret != BLK_STS_OK)
2719		blk_mq_commit_rqs(hctx, queued, false);
2720}
2721
2722static void __blk_mq_flush_plug_list(struct request_queue *q,
2723				     struct blk_plug *plug)
2724{
2725	if (blk_queue_quiesced(q))
2726		return;
2727	q->mq_ops->queue_rqs(&plug->mq_list);
2728}
2729
2730static void blk_mq_dispatch_plug_list(struct blk_plug *plug, bool from_sched)
2731{
2732	struct blk_mq_hw_ctx *this_hctx = NULL;
2733	struct blk_mq_ctx *this_ctx = NULL;
2734	struct request *requeue_list = NULL;
2735	struct request **requeue_lastp = &requeue_list;
2736	unsigned int depth = 0;
2737	bool is_passthrough = false;
2738	LIST_HEAD(list);
2739
2740	do {
2741		struct request *rq = rq_list_pop(&plug->mq_list);
2742
2743		if (!this_hctx) {
2744			this_hctx = rq->mq_hctx;
2745			this_ctx = rq->mq_ctx;
2746			is_passthrough = blk_rq_is_passthrough(rq);
2747		} else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx ||
2748			   is_passthrough != blk_rq_is_passthrough(rq)) {
2749			rq_list_add_tail(&requeue_lastp, rq);
2750			continue;
2751		}
2752		list_add(&rq->queuelist, &list);
2753		depth++;
2754	} while (!rq_list_empty(plug->mq_list));
2755
2756	plug->mq_list = requeue_list;
2757	trace_block_unplug(this_hctx->queue, depth, !from_sched);
2758
2759	percpu_ref_get(&this_hctx->queue->q_usage_counter);
2760	/* passthrough requests should never be issued to the I/O scheduler */
2761	if (is_passthrough) {
2762		spin_lock(&this_hctx->lock);
2763		list_splice_tail_init(&list, &this_hctx->dispatch);
2764		spin_unlock(&this_hctx->lock);
2765		blk_mq_run_hw_queue(this_hctx, from_sched);
2766	} else if (this_hctx->queue->elevator) {
2767		this_hctx->queue->elevator->type->ops.insert_requests(this_hctx,
2768				&list, 0);
2769		blk_mq_run_hw_queue(this_hctx, from_sched);
2770	} else {
2771		blk_mq_insert_requests(this_hctx, this_ctx, &list, from_sched);
2772	}
2773	percpu_ref_put(&this_hctx->queue->q_usage_counter);
2774}
2775
2776void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2777{
2778	struct request *rq;
2779
2780	/*
2781	 * We may have been called recursively midway through handling
2782	 * plug->mq_list via a schedule() in the driver's queue_rq() callback.
2783	 * To avoid mq_list changing under our feet, clear rq_count early and
2784	 * bail out specifically if rq_count is 0 rather than checking
2785	 * whether the mq_list is empty.
2786	 */
2787	if (plug->rq_count == 0)
2788		return;
2789	plug->rq_count = 0;
2790
2791	if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) {
2792		struct request_queue *q;
2793
2794		rq = rq_list_peek(&plug->mq_list);
2795		q = rq->q;
2796
2797		/*
2798		 * Peek first request and see if we have a ->queue_rqs() hook.
2799		 * If we do, we can dispatch the whole plug list in one go. We
2800		 * already know at this point that all requests belong to the
2801		 * same queue, caller must ensure that's the case.
2802		 */
2803		if (q->mq_ops->queue_rqs) {
2804			blk_mq_run_dispatch_ops(q,
2805				__blk_mq_flush_plug_list(q, plug));
2806			if (rq_list_empty(plug->mq_list))
2807				return;
2808		}
2809
2810		blk_mq_run_dispatch_ops(q,
2811				blk_mq_plug_issue_direct(plug));
2812		if (rq_list_empty(plug->mq_list))
2813			return;
2814	}
2815
2816	do {
2817		blk_mq_dispatch_plug_list(plug, from_schedule);
2818	} while (!rq_list_empty(plug->mq_list));
2819}
2820
2821static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2822		struct list_head *list)
2823{
2824	int queued = 0;
2825	blk_status_t ret = BLK_STS_OK;
2826
2827	while (!list_empty(list)) {
2828		struct request *rq = list_first_entry(list, struct request,
2829				queuelist);
2830
2831		list_del_init(&rq->queuelist);
2832		ret = blk_mq_request_issue_directly(rq, list_empty(list));
2833		switch (ret) {
2834		case BLK_STS_OK:
2835			queued++;
2836			break;
2837		case BLK_STS_RESOURCE:
2838		case BLK_STS_DEV_RESOURCE:
2839			blk_mq_request_bypass_insert(rq, 0);
2840			if (list_empty(list))
2841				blk_mq_run_hw_queue(hctx, false);
2842			goto out;
2843		default:
2844			blk_mq_end_request(rq, ret);
2845			break;
2846		}
2847	}
2848
2849out:
2850	if (ret != BLK_STS_OK)
2851		blk_mq_commit_rqs(hctx, queued, false);
2852}
2853
2854static bool blk_mq_attempt_bio_merge(struct request_queue *q,
2855				     struct bio *bio, unsigned int nr_segs)
2856{
2857	if (!blk_queue_nomerges(q) && bio_mergeable(bio)) {
2858		if (blk_attempt_plug_merge(q, bio, nr_segs))
2859			return true;
2860		if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2861			return true;
2862	}
2863	return false;
2864}
2865
2866static struct request *blk_mq_get_new_requests(struct request_queue *q,
2867					       struct blk_plug *plug,
2868					       struct bio *bio,
2869					       unsigned int nsegs)
2870{
2871	struct blk_mq_alloc_data data = {
2872		.q		= q,
2873		.nr_tags	= 1,
2874		.cmd_flags	= bio->bi_opf,
2875	};
2876	struct request *rq;
2877
2878	rq_qos_throttle(q, bio);
2879
2880	if (plug) {
2881		data.nr_tags = plug->nr_ios;
2882		plug->nr_ios = 1;
2883		data.cached_rq = &plug->cached_rq;
2884	}
2885
2886	rq = __blk_mq_alloc_requests(&data);
2887	if (rq)
2888		return rq;
2889	rq_qos_cleanup(q, bio);
2890	if (bio->bi_opf & REQ_NOWAIT)
2891		bio_wouldblock_error(bio);
2892	return NULL;
2893}
2894
2895/*
2896 * Check if there is a suitable cached request and return it.
2897 */
2898static struct request *blk_mq_peek_cached_request(struct blk_plug *plug,
2899		struct request_queue *q, blk_opf_t opf)
2900{
2901	enum hctx_type type = blk_mq_get_hctx_type(opf);
2902	struct request *rq;
2903
2904	if (!plug)
2905		return NULL;
2906	rq = rq_list_peek(&plug->cached_rq);
2907	if (!rq || rq->q != q)
2908		return NULL;
2909	if (type != rq->mq_hctx->type &&
2910	    (type != HCTX_TYPE_READ || rq->mq_hctx->type != HCTX_TYPE_DEFAULT))
2911		return NULL;
2912	if (op_is_flush(rq->cmd_flags) != op_is_flush(opf))
2913		return NULL;
2914	return rq;
2915}
2916
2917static void blk_mq_use_cached_rq(struct request *rq, struct blk_plug *plug,
2918		struct bio *bio)
2919{
2920	WARN_ON_ONCE(rq_list_peek(&plug->cached_rq) != rq);
2921
2922	/*
2923	 * If any qos ->throttle() end up blocking, we will have flushed the
2924	 * plug and hence killed the cached_rq list as well. Pop this entry
2925	 * before we throttle.
2926	 */
2927	plug->cached_rq = rq_list_next(rq);
2928	rq_qos_throttle(rq->q, bio);
2929
2930	blk_mq_rq_time_init(rq, 0);
2931	rq->cmd_flags = bio->bi_opf;
2932	INIT_LIST_HEAD(&rq->queuelist);
2933}
2934
2935/**
2936 * blk_mq_submit_bio - Create and send a request to block device.
2937 * @bio: Bio pointer.
2938 *
2939 * Builds up a request structure from @q and @bio and send to the device. The
2940 * request may not be queued directly to hardware if:
2941 * * This request can be merged with another one
2942 * * We want to place request at plug queue for possible future merging
2943 * * There is an IO scheduler active at this queue
2944 *
2945 * It will not queue the request if there is an error with the bio, or at the
2946 * request creation.
2947 */
2948void blk_mq_submit_bio(struct bio *bio)
2949{
2950	struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2951	struct blk_plug *plug = blk_mq_plug(bio);
2952	const int is_sync = op_is_sync(bio->bi_opf);
2953	struct blk_mq_hw_ctx *hctx;
2954	unsigned int nr_segs = 1;
2955	struct request *rq;
2956	blk_status_t ret;
2957
2958	bio = blk_queue_bounce(bio, q);
2959
2960	/*
2961	 * If the plug has a cached request for this queue, try use it.
2962	 *
2963	 * The cached request already holds a q_usage_counter reference and we
2964	 * don't have to acquire a new one if we use it.
2965	 */
2966	rq = blk_mq_peek_cached_request(plug, q, bio->bi_opf);
2967	if (!rq) {
2968		if (unlikely(bio_queue_enter(bio)))
2969			return;
2970	}
2971
2972	if (unlikely(bio_may_exceed_limits(bio, &q->limits))) {
2973		bio = __bio_split_to_limits(bio, &q->limits, &nr_segs);
2974		if (!bio)
2975			goto queue_exit;
2976	}
2977	if (!bio_integrity_prep(bio))
2978		goto queue_exit;
2979
2980	if (blk_mq_attempt_bio_merge(q, bio, nr_segs))
2981		goto queue_exit;
2982
2983	if (!rq) {
2984		rq = blk_mq_get_new_requests(q, plug, bio, nr_segs);
2985		if (unlikely(!rq))
2986			goto queue_exit;
2987	} else {
2988		blk_mq_use_cached_rq(rq, plug, bio);
2989	}
2990
2991	trace_block_getrq(bio);
2992
2993	rq_qos_track(q, rq, bio);
2994
2995	blk_mq_bio_to_request(rq, bio, nr_segs);
2996
2997	ret = blk_crypto_rq_get_keyslot(rq);
2998	if (ret != BLK_STS_OK) {
2999		bio->bi_status = ret;
3000		bio_endio(bio);
3001		blk_mq_free_request(rq);
3002		return;
3003	}
3004
3005	if (op_is_flush(bio->bi_opf) && blk_insert_flush(rq))
3006		return;
3007
3008	if (plug) {
3009		blk_add_rq_to_plug(plug, rq);
3010		return;
3011	}
3012
3013	hctx = rq->mq_hctx;
3014	if ((rq->rq_flags & RQF_USE_SCHED) ||
3015	    (hctx->dispatch_busy && (q->nr_hw_queues == 1 || !is_sync))) {
3016		blk_mq_insert_request(rq, 0);
3017		blk_mq_run_hw_queue(hctx, true);
3018	} else {
3019		blk_mq_run_dispatch_ops(q, blk_mq_try_issue_directly(hctx, rq));
3020	}
3021	return;
3022
3023queue_exit:
3024	/*
3025	 * Don't drop the queue reference if we were trying to use a cached
3026	 * request and thus didn't acquire one.
3027	 */
3028	if (!rq)
3029		blk_queue_exit(q);
3030}
3031
3032#ifdef CONFIG_BLK_MQ_STACKING
3033/**
3034 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
3035 * @rq: the request being queued
3036 */
3037blk_status_t blk_insert_cloned_request(struct request *rq)
3038{
3039	struct request_queue *q = rq->q;
3040	unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq));
3041	unsigned int max_segments = blk_rq_get_max_segments(rq);
3042	blk_status_t ret;
3043
3044	if (blk_rq_sectors(rq) > max_sectors) {
3045		/*
3046		 * SCSI device does not have a good way to return if
3047		 * Write Same/Zero is actually supported. If a device rejects
3048		 * a non-read/write command (discard, write same,etc.) the
3049		 * low-level device driver will set the relevant queue limit to
3050		 * 0 to prevent blk-lib from issuing more of the offending
3051		 * operations. Commands queued prior to the queue limit being
3052		 * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
3053		 * errors being propagated to upper layers.
3054		 */
3055		if (max_sectors == 0)
3056			return BLK_STS_NOTSUPP;
3057
3058		printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
3059			__func__, blk_rq_sectors(rq), max_sectors);
3060		return BLK_STS_IOERR;
3061	}
3062
3063	/*
3064	 * The queue settings related to segment counting may differ from the
3065	 * original queue.
3066	 */
3067	rq->nr_phys_segments = blk_recalc_rq_segments(rq);
3068	if (rq->nr_phys_segments > max_segments) {
3069		printk(KERN_ERR "%s: over max segments limit. (%u > %u)\n",
3070			__func__, rq->nr_phys_segments, max_segments);
3071		return BLK_STS_IOERR;
3072	}
3073
3074	if (q->disk && should_fail_request(q->disk->part0, blk_rq_bytes(rq)))
3075		return BLK_STS_IOERR;
3076
3077	ret = blk_crypto_rq_get_keyslot(rq);
3078	if (ret != BLK_STS_OK)
3079		return ret;
3080
3081	blk_account_io_start(rq);
3082
3083	/*
3084	 * Since we have a scheduler attached on the top device,
3085	 * bypass a potential scheduler on the bottom device for
3086	 * insert.
3087	 */
3088	blk_mq_run_dispatch_ops(q,
3089			ret = blk_mq_request_issue_directly(rq, true));
3090	if (ret)
3091		blk_account_io_done(rq, blk_time_get_ns());
3092	return ret;
3093}
3094EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
3095
3096/**
3097 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3098 * @rq: the clone request to be cleaned up
3099 *
3100 * Description:
3101 *     Free all bios in @rq for a cloned request.
3102 */
3103void blk_rq_unprep_clone(struct request *rq)
3104{
3105	struct bio *bio;
3106
3107	while ((bio = rq->bio) != NULL) {
3108		rq->bio = bio->bi_next;
3109
3110		bio_put(bio);
3111	}
3112}
3113EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3114
3115/**
3116 * blk_rq_prep_clone - Helper function to setup clone request
3117 * @rq: the request to be setup
3118 * @rq_src: original request to be cloned
3119 * @bs: bio_set that bios for clone are allocated from
3120 * @gfp_mask: memory allocation mask for bio
3121 * @bio_ctr: setup function to be called for each clone bio.
3122 *           Returns %0 for success, non %0 for failure.
3123 * @data: private data to be passed to @bio_ctr
3124 *
3125 * Description:
3126 *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3127 *     Also, pages which the original bios are pointing to are not copied
3128 *     and the cloned bios just point same pages.
3129 *     So cloned bios must be completed before original bios, which means
3130 *     the caller must complete @rq before @rq_src.
3131 */
3132int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3133		      struct bio_set *bs, gfp_t gfp_mask,
3134		      int (*bio_ctr)(struct bio *, struct bio *, void *),
3135		      void *data)
3136{
3137	struct bio *bio, *bio_src;
3138
3139	if (!bs)
3140		bs = &fs_bio_set;
3141
3142	__rq_for_each_bio(bio_src, rq_src) {
3143		bio = bio_alloc_clone(rq->q->disk->part0, bio_src, gfp_mask,
3144				      bs);
3145		if (!bio)
3146			goto free_and_out;
3147
3148		if (bio_ctr && bio_ctr(bio, bio_src, data))
3149			goto free_and_out;
3150
3151		if (rq->bio) {
3152			rq->biotail->bi_next = bio;
3153			rq->biotail = bio;
3154		} else {
3155			rq->bio = rq->biotail = bio;
3156		}
3157		bio = NULL;
3158	}
3159
3160	/* Copy attributes of the original request to the clone request. */
3161	rq->__sector = blk_rq_pos(rq_src);
3162	rq->__data_len = blk_rq_bytes(rq_src);
3163	if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
3164		rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
3165		rq->special_vec = rq_src->special_vec;
3166	}
3167	rq->nr_phys_segments = rq_src->nr_phys_segments;
3168	rq->ioprio = rq_src->ioprio;
3169	rq->write_hint = rq_src->write_hint;
3170
3171	if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
3172		goto free_and_out;
3173
3174	return 0;
3175
3176free_and_out:
3177	if (bio)
3178		bio_put(bio);
3179	blk_rq_unprep_clone(rq);
3180
3181	return -ENOMEM;
3182}
3183EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3184#endif /* CONFIG_BLK_MQ_STACKING */
3185
3186/*
3187 * Steal bios from a request and add them to a bio list.
3188 * The request must not have been partially completed before.
3189 */
3190void blk_steal_bios(struct bio_list *list, struct request *rq)
3191{
3192	if (rq->bio) {
3193		if (list->tail)
3194			list->tail->bi_next = rq->bio;
3195		else
3196			list->head = rq->bio;
3197		list->tail = rq->biotail;
3198
3199		rq->bio = NULL;
3200		rq->biotail = NULL;
3201	}
3202
3203	rq->__data_len = 0;
3204}
3205EXPORT_SYMBOL_GPL(blk_steal_bios);
3206
3207static size_t order_to_size(unsigned int order)
3208{
3209	return (size_t)PAGE_SIZE << order;
3210}
3211
3212/* called before freeing request pool in @tags */
3213static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags,
3214				    struct blk_mq_tags *tags)
3215{
3216	struct page *page;
3217	unsigned long flags;
3218
3219	/*
3220	 * There is no need to clear mapping if driver tags is not initialized
3221	 * or the mapping belongs to the driver tags.
3222	 */
3223	if (!drv_tags || drv_tags == tags)
3224		return;
3225
3226	list_for_each_entry(page, &tags->page_list, lru) {
3227		unsigned long start = (unsigned long)page_address(page);
3228		unsigned long end = start + order_to_size(page->private);
3229		int i;
3230
3231		for (i = 0; i < drv_tags->nr_tags; i++) {
3232			struct request *rq = drv_tags->rqs[i];
3233			unsigned long rq_addr = (unsigned long)rq;
3234
3235			if (rq_addr >= start && rq_addr < end) {
3236				WARN_ON_ONCE(req_ref_read(rq) != 0);
3237				cmpxchg(&drv_tags->rqs[i], rq, NULL);
3238			}
3239		}
3240	}
3241
3242	/*
3243	 * Wait until all pending iteration is done.
3244	 *
3245	 * Request reference is cleared and it is guaranteed to be observed
3246	 * after the ->lock is released.
3247	 */
3248	spin_lock_irqsave(&drv_tags->lock, flags);
3249	spin_unlock_irqrestore(&drv_tags->lock, flags);
3250}
3251
3252void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
3253		     unsigned int hctx_idx)
3254{
3255	struct blk_mq_tags *drv_tags;
3256	struct page *page;
3257
3258	if (list_empty(&tags->page_list))
3259		return;
3260
3261	if (blk_mq_is_shared_tags(set->flags))
3262		drv_tags = set->shared_tags;
3263	else
3264		drv_tags = set->tags[hctx_idx];
3265
3266	if (tags->static_rqs && set->ops->exit_request) {
3267		int i;
3268
3269		for (i = 0; i < tags->nr_tags; i++) {
3270			struct request *rq = tags->static_rqs[i];
3271
3272			if (!rq)
3273				continue;
3274			set->ops->exit_request(set, rq, hctx_idx);
3275			tags->static_rqs[i] = NULL;
3276		}
3277	}
3278
3279	blk_mq_clear_rq_mapping(drv_tags, tags);
3280
3281	while (!list_empty(&tags->page_list)) {
3282		page = list_first_entry(&tags->page_list, struct page, lru);
3283		list_del_init(&page->lru);
3284		/*
3285		 * Remove kmemleak object previously allocated in
3286		 * blk_mq_alloc_rqs().
3287		 */
3288		kmemleak_free(page_address(page));
3289		__free_pages(page, page->private);
3290	}
3291}
3292
3293void blk_mq_free_rq_map(struct blk_mq_tags *tags)
3294{
3295	kfree(tags->rqs);
3296	tags->rqs = NULL;
3297	kfree(tags->static_rqs);
3298	tags->static_rqs = NULL;
3299
3300	blk_mq_free_tags(tags);
3301}
3302
3303static enum hctx_type hctx_idx_to_type(struct blk_mq_tag_set *set,
3304		unsigned int hctx_idx)
3305{
3306	int i;
3307
3308	for (i = 0; i < set->nr_maps; i++) {
3309		unsigned int start = set->map[i].queue_offset;
3310		unsigned int end = start + set->map[i].nr_queues;
3311
3312		if (hctx_idx >= start && hctx_idx < end)
3313			break;
3314	}
3315
3316	if (i >= set->nr_maps)
3317		i = HCTX_TYPE_DEFAULT;
3318
3319	return i;
3320}
3321
3322static int blk_mq_get_hctx_node(struct blk_mq_tag_set *set,
3323		unsigned int hctx_idx)
3324{
3325	enum hctx_type type = hctx_idx_to_type(set, hctx_idx);
3326
3327	return blk_mq_hw_queue_to_node(&set->map[type], hctx_idx);
3328}
3329
3330static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
3331					       unsigned int hctx_idx,
3332					       unsigned int nr_tags,
3333					       unsigned int reserved_tags)
3334{
3335	int node = blk_mq_get_hctx_node(set, hctx_idx);
3336	struct blk_mq_tags *tags;
3337
3338	if (node == NUMA_NO_NODE)
3339		node = set->numa_node;
3340
3341	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
3342				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
3343	if (!tags)
3344		return NULL;
3345
3346	tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3347				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3348				 node);
3349	if (!tags->rqs)
3350		goto err_free_tags;
3351
3352	tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3353					GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3354					node);
3355	if (!tags->static_rqs)
3356		goto err_free_rqs;
3357
3358	return tags;
3359
3360err_free_rqs:
3361	kfree(tags->rqs);
3362err_free_tags:
3363	blk_mq_free_tags(tags);
3364	return NULL;
3365}
3366
3367static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
3368			       unsigned int hctx_idx, int node)
3369{
3370	int ret;
3371
3372	if (set->ops->init_request) {
3373		ret = set->ops->init_request(set, rq, hctx_idx, node);
3374		if (ret)
3375			return ret;
3376	}
3377
3378	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
3379	return 0;
3380}
3381
3382static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set,
3383			    struct blk_mq_tags *tags,
3384			    unsigned int hctx_idx, unsigned int depth)
3385{
3386	unsigned int i, j, entries_per_page, max_order = 4;
3387	int node = blk_mq_get_hctx_node(set, hctx_idx);
3388	size_t rq_size, left;
3389
3390	if (node == NUMA_NO_NODE)
3391		node = set->numa_node;
3392
3393	INIT_LIST_HEAD(&tags->page_list);
3394
3395	/*
3396	 * rq_size is the size of the request plus driver payload, rounded
3397	 * to the cacheline size
3398	 */
3399	rq_size = round_up(sizeof(struct request) + set->cmd_size,
3400				cache_line_size());
3401	left = rq_size * depth;
3402
3403	for (i = 0; i < depth; ) {
3404		int this_order = max_order;
3405		struct page *page;
3406		int to_do;
3407		void *p;
3408
3409		while (this_order && left < order_to_size(this_order - 1))
3410			this_order--;
3411
3412		do {
3413			page = alloc_pages_node(node,
3414				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
3415				this_order);
3416			if (page)
3417				break;
3418			if (!this_order--)
3419				break;
3420			if (order_to_size(this_order) < rq_size)
3421				break;
3422		} while (1);
3423
3424		if (!page)
3425			goto fail;
3426
3427		page->private = this_order;
3428		list_add_tail(&page->lru, &tags->page_list);
3429
3430		p = page_address(page);
3431		/*
3432		 * Allow kmemleak to scan these pages as they contain pointers
3433		 * to additional allocations like via ops->init_request().
3434		 */
3435		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
3436		entries_per_page = order_to_size(this_order) / rq_size;
3437		to_do = min(entries_per_page, depth - i);
3438		left -= to_do * rq_size;
3439		for (j = 0; j < to_do; j++) {
3440			struct request *rq = p;
3441
3442			tags->static_rqs[i] = rq;
3443			if (blk_mq_init_request(set, rq, hctx_idx, node)) {
3444				tags->static_rqs[i] = NULL;
3445				goto fail;
3446			}
3447
3448			p += rq_size;
3449			i++;
3450		}
3451	}
3452	return 0;
3453
3454fail:
3455	blk_mq_free_rqs(set, tags, hctx_idx);
3456	return -ENOMEM;
3457}
3458
3459struct rq_iter_data {
3460	struct blk_mq_hw_ctx *hctx;
3461	bool has_rq;
3462};
3463
3464static bool blk_mq_has_request(struct request *rq, void *data)
3465{
3466	struct rq_iter_data *iter_data = data;
3467
3468	if (rq->mq_hctx != iter_data->hctx)
3469		return true;
3470	iter_data->has_rq = true;
3471	return false;
3472}
3473
3474static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
3475{
3476	struct blk_mq_tags *tags = hctx->sched_tags ?
3477			hctx->sched_tags : hctx->tags;
3478	struct rq_iter_data data = {
3479		.hctx	= hctx,
3480	};
3481
3482	blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
3483	return data.has_rq;
3484}
3485
3486static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
3487		struct blk_mq_hw_ctx *hctx)
3488{
3489	if (cpumask_first_and(hctx->cpumask, cpu_online_mask) != cpu)
3490		return false;
3491	if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
3492		return false;
3493	return true;
3494}
3495
3496static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
3497{
3498	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3499			struct blk_mq_hw_ctx, cpuhp_online);
3500
3501	if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
3502	    !blk_mq_last_cpu_in_hctx(cpu, hctx))
3503		return 0;
3504
3505	/*
3506	 * Prevent new request from being allocated on the current hctx.
3507	 *
3508	 * The smp_mb__after_atomic() Pairs with the implied barrier in
3509	 * test_and_set_bit_lock in sbitmap_get().  Ensures the inactive flag is
3510	 * seen once we return from the tag allocator.
3511	 */
3512	set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3513	smp_mb__after_atomic();
3514
3515	/*
3516	 * Try to grab a reference to the queue and wait for any outstanding
3517	 * requests.  If we could not grab a reference the queue has been
3518	 * frozen and there are no requests.
3519	 */
3520	if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
3521		while (blk_mq_hctx_has_requests(hctx))
3522			msleep(5);
3523		percpu_ref_put(&hctx->queue->q_usage_counter);
3524	}
3525
3526	return 0;
3527}
3528
3529static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
3530{
3531	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3532			struct blk_mq_hw_ctx, cpuhp_online);
3533
3534	if (cpumask_test_cpu(cpu, hctx->cpumask))
3535		clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3536	return 0;
3537}
3538
3539/*
3540 * 'cpu' is going away. splice any existing rq_list entries from this
3541 * software queue to the hw queue dispatch list, and ensure that it
3542 * gets run.
3543 */
3544static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
3545{
3546	struct blk_mq_hw_ctx *hctx;
3547	struct blk_mq_ctx *ctx;
3548	LIST_HEAD(tmp);
3549	enum hctx_type type;
3550
3551	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
3552	if (!cpumask_test_cpu(cpu, hctx->cpumask))
3553		return 0;
3554
3555	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
3556	type = hctx->type;
3557
3558	spin_lock(&ctx->lock);
3559	if (!list_empty(&ctx->rq_lists[type])) {
3560		list_splice_init(&ctx->rq_lists[type], &tmp);
3561		blk_mq_hctx_clear_pending(hctx, ctx);
3562	}
3563	spin_unlock(&ctx->lock);
3564
3565	if (list_empty(&tmp))
3566		return 0;
3567
3568	spin_lock(&hctx->lock);
3569	list_splice_tail_init(&tmp, &hctx->dispatch);
3570	spin_unlock(&hctx->lock);
3571
3572	blk_mq_run_hw_queue(hctx, true);
3573	return 0;
3574}
3575
3576static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
3577{
3578	if (!(hctx->flags & BLK_MQ_F_STACKING))
3579		cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3580						    &hctx->cpuhp_online);
3581	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
3582					    &hctx->cpuhp_dead);
3583}
3584
3585/*
3586 * Before freeing hw queue, clearing the flush request reference in
3587 * tags->rqs[] for avoiding potential UAF.
3588 */
3589static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
3590		unsigned int queue_depth, struct request *flush_rq)
3591{
3592	int i;
3593	unsigned long flags;
3594
3595	/* The hw queue may not be mapped yet */
3596	if (!tags)
3597		return;
3598
3599	WARN_ON_ONCE(req_ref_read(flush_rq) != 0);
3600
3601	for (i = 0; i < queue_depth; i++)
3602		cmpxchg(&tags->rqs[i], flush_rq, NULL);
3603
3604	/*
3605	 * Wait until all pending iteration is done.
3606	 *
3607	 * Request reference is cleared and it is guaranteed to be observed
3608	 * after the ->lock is released.
3609	 */
3610	spin_lock_irqsave(&tags->lock, flags);
3611	spin_unlock_irqrestore(&tags->lock, flags);
3612}
3613
3614/* hctx->ctxs will be freed in queue's release handler */
3615static void blk_mq_exit_hctx(struct request_queue *q,
3616		struct blk_mq_tag_set *set,
3617		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
3618{
3619	struct request *flush_rq = hctx->fq->flush_rq;
3620
3621	if (blk_mq_hw_queue_mapped(hctx))
3622		blk_mq_tag_idle(hctx);
3623
3624	if (blk_queue_init_done(q))
3625		blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
3626				set->queue_depth, flush_rq);
3627	if (set->ops->exit_request)
3628		set->ops->exit_request(set, flush_rq, hctx_idx);
3629
3630	if (set->ops->exit_hctx)
3631		set->ops->exit_hctx(hctx, hctx_idx);
3632
3633	blk_mq_remove_cpuhp(hctx);
3634
3635	xa_erase(&q->hctx_table, hctx_idx);
3636
3637	spin_lock(&q->unused_hctx_lock);
3638	list_add(&hctx->hctx_list, &q->unused_hctx_list);
3639	spin_unlock(&q->unused_hctx_lock);
3640}
3641
3642static void blk_mq_exit_hw_queues(struct request_queue *q,
3643		struct blk_mq_tag_set *set, int nr_queue)
3644{
3645	struct blk_mq_hw_ctx *hctx;
3646	unsigned long i;
3647
3648	queue_for_each_hw_ctx(q, hctx, i) {
3649		if (i == nr_queue)
3650			break;
3651		blk_mq_exit_hctx(q, set, hctx, i);
3652	}
3653}
3654
3655static int blk_mq_init_hctx(struct request_queue *q,
3656		struct blk_mq_tag_set *set,
3657		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
3658{
3659	hctx->queue_num = hctx_idx;
3660
3661	if (!(hctx->flags & BLK_MQ_F_STACKING))
3662		cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3663				&hctx->cpuhp_online);
3664	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
3665
3666	hctx->tags = set->tags[hctx_idx];
3667
3668	if (set->ops->init_hctx &&
3669	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
3670		goto unregister_cpu_notifier;
3671
3672	if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
3673				hctx->numa_node))
3674		goto exit_hctx;
3675
3676	if (xa_insert(&q->hctx_table, hctx_idx, hctx, GFP_KERNEL))
3677		goto exit_flush_rq;
3678
3679	return 0;
3680
3681 exit_flush_rq:
3682	if (set->ops->exit_request)
3683		set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
3684 exit_hctx:
3685	if (set->ops->exit_hctx)
3686		set->ops->exit_hctx(hctx, hctx_idx);
3687 unregister_cpu_notifier:
3688	blk_mq_remove_cpuhp(hctx);
3689	return -1;
3690}
3691
3692static struct blk_mq_hw_ctx *
3693blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
3694		int node)
3695{
3696	struct blk_mq_hw_ctx *hctx;
3697	gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
3698
3699	hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node);
3700	if (!hctx)
3701		goto fail_alloc_hctx;
3702
3703	if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
3704		goto free_hctx;
3705
3706	atomic_set(&hctx->nr_active, 0);
3707	if (node == NUMA_NO_NODE)
3708		node = set->numa_node;
3709	hctx->numa_node = node;
3710
3711	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
3712	spin_lock_init(&hctx->lock);
3713	INIT_LIST_HEAD(&hctx->dispatch);
3714	hctx->queue = q;
3715	hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
3716
3717	INIT_LIST_HEAD(&hctx->hctx_list);
3718
3719	/*
3720	 * Allocate space for all possible cpus to avoid allocation at
3721	 * runtime
3722	 */
3723	hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
3724			gfp, node);
3725	if (!hctx->ctxs)
3726		goto free_cpumask;
3727
3728	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
3729				gfp, node, false, false))
3730		goto free_ctxs;
3731	hctx->nr_ctx = 0;
3732
3733	spin_lock_init(&hctx->dispatch_wait_lock);
3734	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
3735	INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
3736
3737	hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
3738	if (!hctx->fq)
3739		goto free_bitmap;
3740
3741	blk_mq_hctx_kobj_init(hctx);
3742
3743	return hctx;
3744
3745 free_bitmap:
3746	sbitmap_free(&hctx->ctx_map);
3747 free_ctxs:
3748	kfree(hctx->ctxs);
3749 free_cpumask:
3750	free_cpumask_var(hctx->cpumask);
3751 free_hctx:
3752	kfree(hctx);
3753 fail_alloc_hctx:
3754	return NULL;
3755}
3756
3757static void blk_mq_init_cpu_queues(struct request_queue *q,
3758				   unsigned int nr_hw_queues)
3759{
3760	struct blk_mq_tag_set *set = q->tag_set;
3761	unsigned int i, j;
3762
3763	for_each_possible_cpu(i) {
3764		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
3765		struct blk_mq_hw_ctx *hctx;
3766		int k;
3767
3768		__ctx->cpu = i;
3769		spin_lock_init(&__ctx->lock);
3770		for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
3771			INIT_LIST_HEAD(&__ctx->rq_lists[k]);
3772
3773		__ctx->queue = q;
3774
3775		/*
3776		 * Set local node, IFF we have more than one hw queue. If
3777		 * not, we remain on the home node of the device
3778		 */
3779		for (j = 0; j < set->nr_maps; j++) {
3780			hctx = blk_mq_map_queue_type(q, j, i);
3781			if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
3782				hctx->numa_node = cpu_to_node(i);
3783		}
3784	}
3785}
3786
3787struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3788					     unsigned int hctx_idx,
3789					     unsigned int depth)
3790{
3791	struct blk_mq_tags *tags;
3792	int ret;
3793
3794	tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags);
3795	if (!tags)
3796		return NULL;
3797
3798	ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth);
3799	if (ret) {
3800		blk_mq_free_rq_map(tags);
3801		return NULL;
3802	}
3803
3804	return tags;
3805}
3806
3807static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3808				       int hctx_idx)
3809{
3810	if (blk_mq_is_shared_tags(set->flags)) {
3811		set->tags[hctx_idx] = set->shared_tags;
3812
3813		return true;
3814	}
3815
3816	set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx,
3817						       set->queue_depth);
3818
3819	return set->tags[hctx_idx];
3820}
3821
3822void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3823			     struct blk_mq_tags *tags,
3824			     unsigned int hctx_idx)
3825{
3826	if (tags) {
3827		blk_mq_free_rqs(set, tags, hctx_idx);
3828		blk_mq_free_rq_map(tags);
3829	}
3830}
3831
3832static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3833				      unsigned int hctx_idx)
3834{
3835	if (!blk_mq_is_shared_tags(set->flags))
3836		blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx);
3837
3838	set->tags[hctx_idx] = NULL;
3839}
3840
3841static void blk_mq_map_swqueue(struct request_queue *q)
3842{
3843	unsigned int j, hctx_idx;
3844	unsigned long i;
3845	struct blk_mq_hw_ctx *hctx;
3846	struct blk_mq_ctx *ctx;
3847	struct blk_mq_tag_set *set = q->tag_set;
3848
3849	queue_for_each_hw_ctx(q, hctx, i) {
3850		cpumask_clear(hctx->cpumask);
3851		hctx->nr_ctx = 0;
3852		hctx->dispatch_from = NULL;
3853	}
3854
3855	/*
3856	 * Map software to hardware queues.
3857	 *
3858	 * If the cpu isn't present, the cpu is mapped to first hctx.
3859	 */
3860	for_each_possible_cpu(i) {
3861
3862		ctx = per_cpu_ptr(q->queue_ctx, i);
3863		for (j = 0; j < set->nr_maps; j++) {
3864			if (!set->map[j].nr_queues) {
3865				ctx->hctxs[j] = blk_mq_map_queue_type(q,
3866						HCTX_TYPE_DEFAULT, i);
3867				continue;
3868			}
3869			hctx_idx = set->map[j].mq_map[i];
3870			/* unmapped hw queue can be remapped after CPU topo changed */
3871			if (!set->tags[hctx_idx] &&
3872			    !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) {
3873				/*
3874				 * If tags initialization fail for some hctx,
3875				 * that hctx won't be brought online.  In this
3876				 * case, remap the current ctx to hctx[0] which
3877				 * is guaranteed to always have tags allocated
3878				 */
3879				set->map[j].mq_map[i] = 0;
3880			}
3881
3882			hctx = blk_mq_map_queue_type(q, j, i);
3883			ctx->hctxs[j] = hctx;
3884			/*
3885			 * If the CPU is already set in the mask, then we've
3886			 * mapped this one already. This can happen if
3887			 * devices share queues across queue maps.
3888			 */
3889			if (cpumask_test_cpu(i, hctx->cpumask))
3890				continue;
3891
3892			cpumask_set_cpu(i, hctx->cpumask);
3893			hctx->type = j;
3894			ctx->index_hw[hctx->type] = hctx->nr_ctx;
3895			hctx->ctxs[hctx->nr_ctx++] = ctx;
3896
3897			/*
3898			 * If the nr_ctx type overflows, we have exceeded the
3899			 * amount of sw queues we can support.
3900			 */
3901			BUG_ON(!hctx->nr_ctx);
3902		}
3903
3904		for (; j < HCTX_MAX_TYPES; j++)
3905			ctx->hctxs[j] = blk_mq_map_queue_type(q,
3906					HCTX_TYPE_DEFAULT, i);
3907	}
3908
3909	queue_for_each_hw_ctx(q, hctx, i) {
3910		/*
3911		 * If no software queues are mapped to this hardware queue,
3912		 * disable it and free the request entries.
3913		 */
3914		if (!hctx->nr_ctx) {
3915			/* Never unmap queue 0.  We need it as a
3916			 * fallback in case of a new remap fails
3917			 * allocation
3918			 */
3919			if (i)
3920				__blk_mq_free_map_and_rqs(set, i);
3921
3922			hctx->tags = NULL;
3923			continue;
3924		}
3925
3926		hctx->tags = set->tags[i];
3927		WARN_ON(!hctx->tags);
3928
3929		/*
3930		 * Set the map size to the number of mapped software queues.
3931		 * This is more accurate and more efficient than looping
3932		 * over all possibly mapped software queues.
3933		 */
3934		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
3935
3936		/*
3937		 * Initialize batch roundrobin counts
3938		 */
3939		hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
3940		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
3941	}
3942}
3943
3944/*
3945 * Caller needs to ensure that we're either frozen/quiesced, or that
3946 * the queue isn't live yet.
3947 */
3948static void queue_set_hctx_shared(struct request_queue *q, bool shared)
3949{
3950	struct blk_mq_hw_ctx *hctx;
3951	unsigned long i;
3952
3953	queue_for_each_hw_ctx(q, hctx, i) {
3954		if (shared) {
3955			hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3956		} else {
3957			blk_mq_tag_idle(hctx);
3958			hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3959		}
3960	}
3961}
3962
3963static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
3964					 bool shared)
3965{
3966	struct request_queue *q;
3967
3968	lockdep_assert_held(&set->tag_list_lock);
3969
3970	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3971		blk_mq_freeze_queue(q);
3972		queue_set_hctx_shared(q, shared);
3973		blk_mq_unfreeze_queue(q);
3974	}
3975}
3976
3977static void blk_mq_del_queue_tag_set(struct request_queue *q)
3978{
3979	struct blk_mq_tag_set *set = q->tag_set;
3980
3981	mutex_lock(&set->tag_list_lock);
3982	list_del(&q->tag_set_list);
3983	if (list_is_singular(&set->tag_list)) {
3984		/* just transitioned to unshared */
3985		set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3986		/* update existing queue */
3987		blk_mq_update_tag_set_shared(set, false);
3988	}
3989	mutex_unlock(&set->tag_list_lock);
3990	INIT_LIST_HEAD(&q->tag_set_list);
3991}
3992
3993static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
3994				     struct request_queue *q)
3995{
3996	mutex_lock(&set->tag_list_lock);
3997
3998	/*
3999	 * Check to see if we're transitioning to shared (from 1 to 2 queues).
4000	 */
4001	if (!list_empty(&set->tag_list) &&
4002	    !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
4003		set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
4004		/* update existing queue */
4005		blk_mq_update_tag_set_shared(set, true);
4006	}
4007	if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
4008		queue_set_hctx_shared(q, true);
4009	list_add_tail(&q->tag_set_list, &set->tag_list);
4010
4011	mutex_unlock(&set->tag_list_lock);
4012}
4013
4014/* All allocations will be freed in release handler of q->mq_kobj */
4015static int blk_mq_alloc_ctxs(struct request_queue *q)
4016{
4017	struct blk_mq_ctxs *ctxs;
4018	int cpu;
4019
4020	ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
4021	if (!ctxs)
4022		return -ENOMEM;
4023
4024	ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
4025	if (!ctxs->queue_ctx)
4026		goto fail;
4027
4028	for_each_possible_cpu(cpu) {
4029		struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
4030		ctx->ctxs = ctxs;
4031	}
4032
4033	q->mq_kobj = &ctxs->kobj;
4034	q->queue_ctx = ctxs->queue_ctx;
4035
4036	return 0;
4037 fail:
4038	kfree(ctxs);
4039	return -ENOMEM;
4040}
4041
4042/*
4043 * It is the actual release handler for mq, but we do it from
4044 * request queue's release handler for avoiding use-after-free
4045 * and headache because q->mq_kobj shouldn't have been introduced,
4046 * but we can't group ctx/kctx kobj without it.
4047 */
4048void blk_mq_release(struct request_queue *q)
4049{
4050	struct blk_mq_hw_ctx *hctx, *next;
4051	unsigned long i;
4052
4053	queue_for_each_hw_ctx(q, hctx, i)
4054		WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
4055
4056	/* all hctx are in .unused_hctx_list now */
4057	list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
4058		list_del_init(&hctx->hctx_list);
4059		kobject_put(&hctx->kobj);
4060	}
4061
4062	xa_destroy(&q->hctx_table);
4063
4064	/*
4065	 * release .mq_kobj and sw queue's kobject now because
4066	 * both share lifetime with request queue.
4067	 */
4068	blk_mq_sysfs_deinit(q);
4069}
4070
4071struct request_queue *blk_mq_alloc_queue(struct blk_mq_tag_set *set,
4072		struct queue_limits *lim, void *queuedata)
4073{
4074	struct queue_limits default_lim = { };
4075	struct request_queue *q;
4076	int ret;
4077
4078	q = blk_alloc_queue(lim ? lim : &default_lim, set->numa_node);
4079	if (IS_ERR(q))
4080		return q;
4081	q->queuedata = queuedata;
4082	ret = blk_mq_init_allocated_queue(set, q);
4083	if (ret) {
4084		blk_put_queue(q);
4085		return ERR_PTR(ret);
4086	}
4087	return q;
4088}
4089EXPORT_SYMBOL(blk_mq_alloc_queue);
4090
4091/**
4092 * blk_mq_destroy_queue - shutdown a request queue
4093 * @q: request queue to shutdown
4094 *
4095 * This shuts down a request queue allocated by blk_mq_alloc_queue(). All future
4096 * requests will be failed with -ENODEV. The caller is responsible for dropping
4097 * the reference from blk_mq_alloc_queue() by calling blk_put_queue().
4098 *
4099 * Context: can sleep
4100 */
4101void blk_mq_destroy_queue(struct request_queue *q)
4102{
4103	WARN_ON_ONCE(!queue_is_mq(q));
4104	WARN_ON_ONCE(blk_queue_registered(q));
4105
4106	might_sleep();
4107
4108	blk_queue_flag_set(QUEUE_FLAG_DYING, q);
4109	blk_queue_start_drain(q);
4110	blk_mq_freeze_queue_wait(q);
4111
4112	blk_sync_queue(q);
4113	blk_mq_cancel_work_sync(q);
4114	blk_mq_exit_queue(q);
4115}
4116EXPORT_SYMBOL(blk_mq_destroy_queue);
4117
4118struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set,
4119		struct queue_limits *lim, void *queuedata,
4120		struct lock_class_key *lkclass)
4121{
4122	struct request_queue *q;
4123	struct gendisk *disk;
4124
4125	q = blk_mq_alloc_queue(set, lim, queuedata);
4126	if (IS_ERR(q))
4127		return ERR_CAST(q);
4128
4129	disk = __alloc_disk_node(q, set->numa_node, lkclass);
4130	if (!disk) {
4131		blk_mq_destroy_queue(q);
4132		blk_put_queue(q);
4133		return ERR_PTR(-ENOMEM);
4134	}
4135	set_bit(GD_OWNS_QUEUE, &disk->state);
4136	return disk;
4137}
4138EXPORT_SYMBOL(__blk_mq_alloc_disk);
4139
4140struct gendisk *blk_mq_alloc_disk_for_queue(struct request_queue *q,
4141		struct lock_class_key *lkclass)
4142{
4143	struct gendisk *disk;
4144
4145	if (!blk_get_queue(q))
4146		return NULL;
4147	disk = __alloc_disk_node(q, NUMA_NO_NODE, lkclass);
4148	if (!disk)
4149		blk_put_queue(q);
4150	return disk;
4151}
4152EXPORT_SYMBOL(blk_mq_alloc_disk_for_queue);
4153
4154static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
4155		struct blk_mq_tag_set *set, struct request_queue *q,
4156		int hctx_idx, int node)
4157{
4158	struct blk_mq_hw_ctx *hctx = NULL, *tmp;
4159
4160	/* reuse dead hctx first */
4161	spin_lock(&q->unused_hctx_lock);
4162	list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
4163		if (tmp->numa_node == node) {
4164			hctx = tmp;
4165			break;
4166		}
4167	}
4168	if (hctx)
4169		list_del_init(&hctx->hctx_list);
4170	spin_unlock(&q->unused_hctx_lock);
4171
4172	if (!hctx)
4173		hctx = blk_mq_alloc_hctx(q, set, node);
4174	if (!hctx)
4175		goto fail;
4176
4177	if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
4178		goto free_hctx;
4179
4180	return hctx;
4181
4182 free_hctx:
4183	kobject_put(&hctx->kobj);
4184 fail:
4185	return NULL;
4186}
4187
4188static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
4189						struct request_queue *q)
4190{
4191	struct blk_mq_hw_ctx *hctx;
4192	unsigned long i, j;
4193
4194	/* protect against switching io scheduler  */
4195	mutex_lock(&q->sysfs_lock);
4196	for (i = 0; i < set->nr_hw_queues; i++) {
4197		int old_node;
4198		int node = blk_mq_get_hctx_node(set, i);
4199		struct blk_mq_hw_ctx *old_hctx = xa_load(&q->hctx_table, i);
4200
4201		if (old_hctx) {
4202			old_node = old_hctx->numa_node;
4203			blk_mq_exit_hctx(q, set, old_hctx, i);
4204		}
4205
4206		if (!blk_mq_alloc_and_init_hctx(set, q, i, node)) {
4207			if (!old_hctx)
4208				break;
4209			pr_warn("Allocate new hctx on node %d fails, fallback to previous one on node %d\n",
4210					node, old_node);
4211			hctx = blk_mq_alloc_and_init_hctx(set, q, i, old_node);
4212			WARN_ON_ONCE(!hctx);
4213		}
4214	}
4215	/*
4216	 * Increasing nr_hw_queues fails. Free the newly allocated
4217	 * hctxs and keep the previous q->nr_hw_queues.
4218	 */
4219	if (i != set->nr_hw_queues) {
4220		j = q->nr_hw_queues;
4221	} else {
4222		j = i;
4223		q->nr_hw_queues = set->nr_hw_queues;
4224	}
4225
4226	xa_for_each_start(&q->hctx_table, j, hctx, j)
4227		blk_mq_exit_hctx(q, set, hctx, j);
4228	mutex_unlock(&q->sysfs_lock);
4229}
4230
4231static void blk_mq_update_poll_flag(struct request_queue *q)
4232{
4233	struct blk_mq_tag_set *set = q->tag_set;
4234
4235	if (set->nr_maps > HCTX_TYPE_POLL &&
4236	    set->map[HCTX_TYPE_POLL].nr_queues)
4237		blk_queue_flag_set(QUEUE_FLAG_POLL, q);
4238	else
4239		blk_queue_flag_clear(QUEUE_FLAG_POLL, q);
4240}
4241
4242int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
4243		struct request_queue *q)
4244{
4245	/* mark the queue as mq asap */
4246	q->mq_ops = set->ops;
4247
4248	if (blk_mq_alloc_ctxs(q))
4249		goto err_exit;
4250
4251	/* init q->mq_kobj and sw queues' kobjects */
4252	blk_mq_sysfs_init(q);
4253
4254	INIT_LIST_HEAD(&q->unused_hctx_list);
4255	spin_lock_init(&q->unused_hctx_lock);
4256
4257	xa_init(&q->hctx_table);
4258
4259	blk_mq_realloc_hw_ctxs(set, q);
4260	if (!q->nr_hw_queues)
4261		goto err_hctxs;
4262
4263	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
4264	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
4265
4266	q->tag_set = set;
4267
4268	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
4269	blk_mq_update_poll_flag(q);
4270
4271	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
4272	INIT_LIST_HEAD(&q->flush_list);
4273	INIT_LIST_HEAD(&q->requeue_list);
4274	spin_lock_init(&q->requeue_lock);
4275
4276	q->nr_requests = set->queue_depth;
4277
4278	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
4279	blk_mq_add_queue_tag_set(set, q);
4280	blk_mq_map_swqueue(q);
4281	return 0;
4282
4283err_hctxs:
4284	blk_mq_release(q);
4285err_exit:
4286	q->mq_ops = NULL;
4287	return -ENOMEM;
4288}
4289EXPORT_SYMBOL(blk_mq_init_allocated_queue);
4290
4291/* tags can _not_ be used after returning from blk_mq_exit_queue */
4292void blk_mq_exit_queue(struct request_queue *q)
4293{
4294	struct blk_mq_tag_set *set = q->tag_set;
4295
4296	/* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
4297	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
4298	/* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
4299	blk_mq_del_queue_tag_set(q);
4300}
4301
4302static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
4303{
4304	int i;
4305
4306	if (blk_mq_is_shared_tags(set->flags)) {
4307		set->shared_tags = blk_mq_alloc_map_and_rqs(set,
4308						BLK_MQ_NO_HCTX_IDX,
4309						set->queue_depth);
4310		if (!set->shared_tags)
4311			return -ENOMEM;
4312	}
4313
4314	for (i = 0; i < set->nr_hw_queues; i++) {
4315		if (!__blk_mq_alloc_map_and_rqs(set, i))
4316			goto out_unwind;
4317		cond_resched();
4318	}
4319
4320	return 0;
4321
4322out_unwind:
4323	while (--i >= 0)
4324		__blk_mq_free_map_and_rqs(set, i);
4325
4326	if (blk_mq_is_shared_tags(set->flags)) {
4327		blk_mq_free_map_and_rqs(set, set->shared_tags,
4328					BLK_MQ_NO_HCTX_IDX);
4329	}
4330
4331	return -ENOMEM;
4332}
4333
4334/*
4335 * Allocate the request maps associated with this tag_set. Note that this
4336 * may reduce the depth asked for, if memory is tight. set->queue_depth
4337 * will be updated to reflect the allocated depth.
4338 */
4339static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set)
4340{
4341	unsigned int depth;
4342	int err;
4343
4344	depth = set->queue_depth;
4345	do {
4346		err = __blk_mq_alloc_rq_maps(set);
4347		if (!err)
4348			break;
4349
4350		set->queue_depth >>= 1;
4351		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
4352			err = -ENOMEM;
4353			break;
4354		}
4355	} while (set->queue_depth);
4356
4357	if (!set->queue_depth || err) {
4358		pr_err("blk-mq: failed to allocate request map\n");
4359		return -ENOMEM;
4360	}
4361
4362	if (depth != set->queue_depth)
4363		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
4364						depth, set->queue_depth);
4365
4366	return 0;
4367}
4368
4369static void blk_mq_update_queue_map(struct blk_mq_tag_set *set)
4370{
4371	/*
4372	 * blk_mq_map_queues() and multiple .map_queues() implementations
4373	 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
4374	 * number of hardware queues.
4375	 */
4376	if (set->nr_maps == 1)
4377		set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
4378
4379	if (set->ops->map_queues) {
4380		int i;
4381
4382		/*
4383		 * transport .map_queues is usually done in the following
4384		 * way:
4385		 *
4386		 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
4387		 * 	mask = get_cpu_mask(queue)
4388		 * 	for_each_cpu(cpu, mask)
4389		 * 		set->map[x].mq_map[cpu] = queue;
4390		 * }
4391		 *
4392		 * When we need to remap, the table has to be cleared for
4393		 * killing stale mapping since one CPU may not be mapped
4394		 * to any hw queue.
4395		 */
4396		for (i = 0; i < set->nr_maps; i++)
4397			blk_mq_clear_mq_map(&set->map[i]);
4398
4399		set->ops->map_queues(set);
4400	} else {
4401		BUG_ON(set->nr_maps > 1);
4402		blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4403	}
4404}
4405
4406static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
4407				       int new_nr_hw_queues)
4408{
4409	struct blk_mq_tags **new_tags;
4410	int i;
4411
4412	if (set->nr_hw_queues >= new_nr_hw_queues)
4413		goto done;
4414
4415	new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
4416				GFP_KERNEL, set->numa_node);
4417	if (!new_tags)
4418		return -ENOMEM;
4419
4420	if (set->tags)
4421		memcpy(new_tags, set->tags, set->nr_hw_queues *
4422		       sizeof(*set->tags));
4423	kfree(set->tags);
4424	set->tags = new_tags;
4425
4426	for (i = set->nr_hw_queues; i < new_nr_hw_queues; i++) {
4427		if (!__blk_mq_alloc_map_and_rqs(set, i)) {
4428			while (--i >= set->nr_hw_queues)
4429				__blk_mq_free_map_and_rqs(set, i);
4430			return -ENOMEM;
4431		}
4432		cond_resched();
4433	}
4434
4435done:
4436	set->nr_hw_queues = new_nr_hw_queues;
4437	return 0;
4438}
4439
4440/*
4441 * Alloc a tag set to be associated with one or more request queues.
4442 * May fail with EINVAL for various error conditions. May adjust the
4443 * requested depth down, if it's too large. In that case, the set
4444 * value will be stored in set->queue_depth.
4445 */
4446int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
4447{
4448	int i, ret;
4449
4450	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
4451
4452	if (!set->nr_hw_queues)
4453		return -EINVAL;
4454	if (!set->queue_depth)
4455		return -EINVAL;
4456	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
4457		return -EINVAL;
4458
4459	if (!set->ops->queue_rq)
4460		return -EINVAL;
4461
4462	if (!set->ops->get_budget ^ !set->ops->put_budget)
4463		return -EINVAL;
4464
4465	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
4466		pr_info("blk-mq: reduced tag depth to %u\n",
4467			BLK_MQ_MAX_DEPTH);
4468		set->queue_depth = BLK_MQ_MAX_DEPTH;
4469	}
4470
4471	if (!set->nr_maps)
4472		set->nr_maps = 1;
4473	else if (set->nr_maps > HCTX_MAX_TYPES)
4474		return -EINVAL;
4475
4476	/*
4477	 * If a crashdump is active, then we are potentially in a very
4478	 * memory constrained environment. Limit us to  64 tags to prevent
4479	 * using too much memory.
4480	 */
4481	if (is_kdump_kernel())
4482		set->queue_depth = min(64U, set->queue_depth);
4483
4484	/*
4485	 * There is no use for more h/w queues than cpus if we just have
4486	 * a single map
4487	 */
4488	if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
4489		set->nr_hw_queues = nr_cpu_ids;
4490
4491	if (set->flags & BLK_MQ_F_BLOCKING) {
4492		set->srcu = kmalloc(sizeof(*set->srcu), GFP_KERNEL);
4493		if (!set->srcu)
4494			return -ENOMEM;
4495		ret = init_srcu_struct(set->srcu);
4496		if (ret)
4497			goto out_free_srcu;
4498	}
4499
4500	ret = -ENOMEM;
4501	set->tags = kcalloc_node(set->nr_hw_queues,
4502				 sizeof(struct blk_mq_tags *), GFP_KERNEL,
4503				 set->numa_node);
4504	if (!set->tags)
4505		goto out_cleanup_srcu;
4506
4507	for (i = 0; i < set->nr_maps; i++) {
4508		set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
4509						  sizeof(set->map[i].mq_map[0]),
4510						  GFP_KERNEL, set->numa_node);
4511		if (!set->map[i].mq_map)
4512			goto out_free_mq_map;
4513		set->map[i].nr_queues = set->nr_hw_queues;
4514	}
4515
4516	blk_mq_update_queue_map(set);
4517
4518	ret = blk_mq_alloc_set_map_and_rqs(set);
4519	if (ret)
4520		goto out_free_mq_map;
4521
4522	mutex_init(&set->tag_list_lock);
4523	INIT_LIST_HEAD(&set->tag_list);
4524
4525	return 0;
4526
4527out_free_mq_map:
4528	for (i = 0; i < set->nr_maps; i++) {
4529		kfree(set->map[i].mq_map);
4530		set->map[i].mq_map = NULL;
4531	}
4532	kfree(set->tags);
4533	set->tags = NULL;
4534out_cleanup_srcu:
4535	if (set->flags & BLK_MQ_F_BLOCKING)
4536		cleanup_srcu_struct(set->srcu);
4537out_free_srcu:
4538	if (set->flags & BLK_MQ_F_BLOCKING)
4539		kfree(set->srcu);
4540	return ret;
4541}
4542EXPORT_SYMBOL(blk_mq_alloc_tag_set);
4543
4544/* allocate and initialize a tagset for a simple single-queue device */
4545int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
4546		const struct blk_mq_ops *ops, unsigned int queue_depth,
4547		unsigned int set_flags)
4548{
4549	memset(set, 0, sizeof(*set));
4550	set->ops = ops;
4551	set->nr_hw_queues = 1;
4552	set->nr_maps = 1;
4553	set->queue_depth = queue_depth;
4554	set->numa_node = NUMA_NO_NODE;
4555	set->flags = set_flags;
4556	return blk_mq_alloc_tag_set(set);
4557}
4558EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set);
4559
4560void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
4561{
4562	int i, j;
4563
4564	for (i = 0; i < set->nr_hw_queues; i++)
4565		__blk_mq_free_map_and_rqs(set, i);
4566
4567	if (blk_mq_is_shared_tags(set->flags)) {
4568		blk_mq_free_map_and_rqs(set, set->shared_tags,
4569					BLK_MQ_NO_HCTX_IDX);
4570	}
4571
4572	for (j = 0; j < set->nr_maps; j++) {
4573		kfree(set->map[j].mq_map);
4574		set->map[j].mq_map = NULL;
4575	}
4576
4577	kfree(set->tags);
4578	set->tags = NULL;
4579	if (set->flags & BLK_MQ_F_BLOCKING) {
4580		cleanup_srcu_struct(set->srcu);
4581		kfree(set->srcu);
4582	}
4583}
4584EXPORT_SYMBOL(blk_mq_free_tag_set);
4585
4586int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
4587{
4588	struct blk_mq_tag_set *set = q->tag_set;
4589	struct blk_mq_hw_ctx *hctx;
4590	int ret;
4591	unsigned long i;
4592
4593	if (!set)
4594		return -EINVAL;
4595
4596	if (q->nr_requests == nr)
4597		return 0;
4598
4599	blk_mq_freeze_queue(q);
4600	blk_mq_quiesce_queue(q);
4601
4602	ret = 0;
4603	queue_for_each_hw_ctx(q, hctx, i) {
4604		if (!hctx->tags)
4605			continue;
4606		/*
4607		 * If we're using an MQ scheduler, just update the scheduler
4608		 * queue depth. This is similar to what the old code would do.
4609		 */
4610		if (hctx->sched_tags) {
4611			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
4612						      nr, true);
4613		} else {
4614			ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
4615						      false);
4616		}
4617		if (ret)
4618			break;
4619		if (q->elevator && q->elevator->type->ops.depth_updated)
4620			q->elevator->type->ops.depth_updated(hctx);
4621	}
4622	if (!ret) {
4623		q->nr_requests = nr;
4624		if (blk_mq_is_shared_tags(set->flags)) {
4625			if (q->elevator)
4626				blk_mq_tag_update_sched_shared_tags(q);
4627			else
4628				blk_mq_tag_resize_shared_tags(set, nr);
4629		}
4630	}
4631
4632	blk_mq_unquiesce_queue(q);
4633	blk_mq_unfreeze_queue(q);
4634
4635	return ret;
4636}
4637
4638/*
4639 * request_queue and elevator_type pair.
4640 * It is just used by __blk_mq_update_nr_hw_queues to cache
4641 * the elevator_type associated with a request_queue.
4642 */
4643struct blk_mq_qe_pair {
4644	struct list_head node;
4645	struct request_queue *q;
4646	struct elevator_type *type;
4647};
4648
4649/*
4650 * Cache the elevator_type in qe pair list and switch the
4651 * io scheduler to 'none'
4652 */
4653static bool blk_mq_elv_switch_none(struct list_head *head,
4654		struct request_queue *q)
4655{
4656	struct blk_mq_qe_pair *qe;
4657
4658	qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
4659	if (!qe)
4660		return false;
4661
4662	/* q->elevator needs protection from ->sysfs_lock */
4663	mutex_lock(&q->sysfs_lock);
4664
4665	/* the check has to be done with holding sysfs_lock */
4666	if (!q->elevator) {
4667		kfree(qe);
4668		goto unlock;
4669	}
4670
4671	INIT_LIST_HEAD(&qe->node);
4672	qe->q = q;
4673	qe->type = q->elevator->type;
4674	/* keep a reference to the elevator module as we'll switch back */
4675	__elevator_get(qe->type);
4676	list_add(&qe->node, head);
4677	elevator_disable(q);
4678unlock:
4679	mutex_unlock(&q->sysfs_lock);
4680
4681	return true;
4682}
4683
4684static struct blk_mq_qe_pair *blk_lookup_qe_pair(struct list_head *head,
4685						struct request_queue *q)
4686{
4687	struct blk_mq_qe_pair *qe;
4688
4689	list_for_each_entry(qe, head, node)
4690		if (qe->q == q)
4691			return qe;
4692
4693	return NULL;
4694}
4695
4696static void blk_mq_elv_switch_back(struct list_head *head,
4697				  struct request_queue *q)
4698{
4699	struct blk_mq_qe_pair *qe;
4700	struct elevator_type *t;
4701
4702	qe = blk_lookup_qe_pair(head, q);
4703	if (!qe)
4704		return;
4705	t = qe->type;
4706	list_del(&qe->node);
4707	kfree(qe);
4708
4709	mutex_lock(&q->sysfs_lock);
4710	elevator_switch(q, t);
4711	/* drop the reference acquired in blk_mq_elv_switch_none */
4712	elevator_put(t);
4713	mutex_unlock(&q->sysfs_lock);
4714}
4715
4716static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
4717							int nr_hw_queues)
4718{
4719	struct request_queue *q;
4720	LIST_HEAD(head);
4721	int prev_nr_hw_queues = set->nr_hw_queues;
4722	int i;
4723
4724	lockdep_assert_held(&set->tag_list_lock);
4725
4726	if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
4727		nr_hw_queues = nr_cpu_ids;
4728	if (nr_hw_queues < 1)
4729		return;
4730	if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
4731		return;
4732
4733	list_for_each_entry(q, &set->tag_list, tag_set_list)
4734		blk_mq_freeze_queue(q);
4735	/*
4736	 * Switch IO scheduler to 'none', cleaning up the data associated
4737	 * with the previous scheduler. We will switch back once we are done
4738	 * updating the new sw to hw queue mappings.
4739	 */
4740	list_for_each_entry(q, &set->tag_list, tag_set_list)
4741		if (!blk_mq_elv_switch_none(&head, q))
4742			goto switch_back;
4743
4744	list_for_each_entry(q, &set->tag_list, tag_set_list) {
4745		blk_mq_debugfs_unregister_hctxs(q);
4746		blk_mq_sysfs_unregister_hctxs(q);
4747	}
4748
4749	if (blk_mq_realloc_tag_set_tags(set, nr_hw_queues) < 0)
4750		goto reregister;
4751
4752fallback:
4753	blk_mq_update_queue_map(set);
4754	list_for_each_entry(q, &set->tag_list, tag_set_list) {
4755		blk_mq_realloc_hw_ctxs(set, q);
4756		blk_mq_update_poll_flag(q);
4757		if (q->nr_hw_queues != set->nr_hw_queues) {
4758			int i = prev_nr_hw_queues;
4759
4760			pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
4761					nr_hw_queues, prev_nr_hw_queues);
4762			for (; i < set->nr_hw_queues; i++)
4763				__blk_mq_free_map_and_rqs(set, i);
4764
4765			set->nr_hw_queues = prev_nr_hw_queues;
4766			goto fallback;
4767		}
4768		blk_mq_map_swqueue(q);
4769	}
4770
4771reregister:
4772	list_for_each_entry(q, &set->tag_list, tag_set_list) {
4773		blk_mq_sysfs_register_hctxs(q);
4774		blk_mq_debugfs_register_hctxs(q);
4775	}
4776
4777switch_back:
4778	list_for_each_entry(q, &set->tag_list, tag_set_list)
4779		blk_mq_elv_switch_back(&head, q);
4780
4781	list_for_each_entry(q, &set->tag_list, tag_set_list)
4782		blk_mq_unfreeze_queue(q);
4783
4784	/* Free the excess tags when nr_hw_queues shrink. */
4785	for (i = set->nr_hw_queues; i < prev_nr_hw_queues; i++)
4786		__blk_mq_free_map_and_rqs(set, i);
4787}
4788
4789void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
4790{
4791	mutex_lock(&set->tag_list_lock);
4792	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
4793	mutex_unlock(&set->tag_list_lock);
4794}
4795EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
4796
4797static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
4798			 struct io_comp_batch *iob, unsigned int flags)
4799{
4800	long state = get_current_state();
4801	int ret;
4802
4803	do {
4804		ret = q->mq_ops->poll(hctx, iob);
4805		if (ret > 0) {
4806			__set_current_state(TASK_RUNNING);
4807			return ret;
4808		}
4809
4810		if (signal_pending_state(state, current))
4811			__set_current_state(TASK_RUNNING);
4812		if (task_is_running(current))
4813			return 1;
4814
4815		if (ret < 0 || (flags & BLK_POLL_ONESHOT))
4816			break;
4817		cpu_relax();
4818	} while (!need_resched());
4819
4820	__set_current_state(TASK_RUNNING);
4821	return 0;
4822}
4823
4824int blk_mq_poll(struct request_queue *q, blk_qc_t cookie,
4825		struct io_comp_batch *iob, unsigned int flags)
4826{
4827	struct blk_mq_hw_ctx *hctx = xa_load(&q->hctx_table, cookie);
4828
4829	return blk_hctx_poll(q, hctx, iob, flags);
4830}
4831
4832int blk_rq_poll(struct request *rq, struct io_comp_batch *iob,
4833		unsigned int poll_flags)
4834{
4835	struct request_queue *q = rq->q;
4836	int ret;
4837
4838	if (!blk_rq_is_poll(rq))
4839		return 0;
4840	if (!percpu_ref_tryget(&q->q_usage_counter))
4841		return 0;
4842
4843	ret = blk_hctx_poll(q, rq->mq_hctx, iob, poll_flags);
4844	blk_queue_exit(q);
4845
4846	return ret;
4847}
4848EXPORT_SYMBOL_GPL(blk_rq_poll);
4849
4850unsigned int blk_mq_rq_cpu(struct request *rq)
4851{
4852	return rq->mq_ctx->cpu;
4853}
4854EXPORT_SYMBOL(blk_mq_rq_cpu);
4855
4856void blk_mq_cancel_work_sync(struct request_queue *q)
4857{
4858	struct blk_mq_hw_ctx *hctx;
4859	unsigned long i;
4860
4861	cancel_delayed_work_sync(&q->requeue_work);
4862
4863	queue_for_each_hw_ctx(q, hctx, i)
4864		cancel_delayed_work_sync(&hctx->run_work);
4865}
4866
4867static int __init blk_mq_init(void)
4868{
4869	int i;
4870
4871	for_each_possible_cpu(i)
4872		init_llist_head(&per_cpu(blk_cpu_done, i));
4873	for_each_possible_cpu(i)
4874		INIT_CSD(&per_cpu(blk_cpu_csd, i),
4875			 __blk_mq_complete_request_remote, NULL);
4876	open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
4877
4878	cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
4879				  "block/softirq:dead", NULL,
4880				  blk_softirq_cpu_dead);
4881	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
4882				blk_mq_hctx_notify_dead);
4883	cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
4884				blk_mq_hctx_notify_online,
4885				blk_mq_hctx_notify_offline);
4886	return 0;
4887}
4888subsys_initcall(blk_mq_init);
4889