1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Tag allocation using scalable bitmaps. Uses active queue tracking to support
4 * fairer distribution of tags between multiple submitters when a shared tag map
5 * is used.
6 *
7 * Copyright (C) 2013-2014 Jens Axboe
8 */
9#include <linux/kernel.h>
10#include <linux/module.h>
11
12#include <linux/delay.h>
13#include "blk.h"
14#include "blk-mq.h"
15#include "blk-mq-sched.h"
16
17/*
18 * Recalculate wakeup batch when tag is shared by hctx.
19 */
20static void blk_mq_update_wake_batch(struct blk_mq_tags *tags,
21		unsigned int users)
22{
23	if (!users)
24		return;
25
26	sbitmap_queue_recalculate_wake_batch(&tags->bitmap_tags,
27			users);
28	sbitmap_queue_recalculate_wake_batch(&tags->breserved_tags,
29			users);
30}
31
32/*
33 * If a previously inactive queue goes active, bump the active user count.
34 * We need to do this before try to allocate driver tag, then even if fail
35 * to get tag when first time, the other shared-tag users could reserve
36 * budget for it.
37 */
38void __blk_mq_tag_busy(struct blk_mq_hw_ctx *hctx)
39{
40	unsigned int users;
41	struct blk_mq_tags *tags = hctx->tags;
42
43	/*
44	 * calling test_bit() prior to test_and_set_bit() is intentional,
45	 * it avoids dirtying the cacheline if the queue is already active.
46	 */
47	if (blk_mq_is_shared_tags(hctx->flags)) {
48		struct request_queue *q = hctx->queue;
49
50		if (test_bit(QUEUE_FLAG_HCTX_ACTIVE, &q->queue_flags) ||
51		    test_and_set_bit(QUEUE_FLAG_HCTX_ACTIVE, &q->queue_flags))
52			return;
53	} else {
54		if (test_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state) ||
55		    test_and_set_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state))
56			return;
57	}
58
59	spin_lock_irq(&tags->lock);
60	users = tags->active_queues + 1;
61	WRITE_ONCE(tags->active_queues, users);
62	blk_mq_update_wake_batch(tags, users);
63	spin_unlock_irq(&tags->lock);
64}
65
66/*
67 * Wakeup all potentially sleeping on tags
68 */
69void blk_mq_tag_wakeup_all(struct blk_mq_tags *tags, bool include_reserve)
70{
71	sbitmap_queue_wake_all(&tags->bitmap_tags);
72	if (include_reserve)
73		sbitmap_queue_wake_all(&tags->breserved_tags);
74}
75
76/*
77 * If a previously busy queue goes inactive, potential waiters could now
78 * be allowed to queue. Wake them up and check.
79 */
80void __blk_mq_tag_idle(struct blk_mq_hw_ctx *hctx)
81{
82	struct blk_mq_tags *tags = hctx->tags;
83	unsigned int users;
84
85	if (blk_mq_is_shared_tags(hctx->flags)) {
86		struct request_queue *q = hctx->queue;
87
88		if (!test_and_clear_bit(QUEUE_FLAG_HCTX_ACTIVE,
89					&q->queue_flags))
90			return;
91	} else {
92		if (!test_and_clear_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state))
93			return;
94	}
95
96	spin_lock_irq(&tags->lock);
97	users = tags->active_queues - 1;
98	WRITE_ONCE(tags->active_queues, users);
99	blk_mq_update_wake_batch(tags, users);
100	spin_unlock_irq(&tags->lock);
101
102	blk_mq_tag_wakeup_all(tags, false);
103}
104
105static int __blk_mq_get_tag(struct blk_mq_alloc_data *data,
106			    struct sbitmap_queue *bt)
107{
108	if (!data->q->elevator && !(data->flags & BLK_MQ_REQ_RESERVED) &&
109			!hctx_may_queue(data->hctx, bt))
110		return BLK_MQ_NO_TAG;
111
112	if (data->shallow_depth)
113		return sbitmap_queue_get_shallow(bt, data->shallow_depth);
114	else
115		return __sbitmap_queue_get(bt);
116}
117
118unsigned long blk_mq_get_tags(struct blk_mq_alloc_data *data, int nr_tags,
119			      unsigned int *offset)
120{
121	struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
122	struct sbitmap_queue *bt = &tags->bitmap_tags;
123	unsigned long ret;
124
125	if (data->shallow_depth ||data->flags & BLK_MQ_REQ_RESERVED ||
126	    data->hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
127		return 0;
128	ret = __sbitmap_queue_get_batch(bt, nr_tags, offset);
129	*offset += tags->nr_reserved_tags;
130	return ret;
131}
132
133unsigned int blk_mq_get_tag(struct blk_mq_alloc_data *data)
134{
135	struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
136	struct sbitmap_queue *bt;
137	struct sbq_wait_state *ws;
138	DEFINE_SBQ_WAIT(wait);
139	unsigned int tag_offset;
140	int tag;
141
142	if (data->flags & BLK_MQ_REQ_RESERVED) {
143		if (unlikely(!tags->nr_reserved_tags)) {
144			WARN_ON_ONCE(1);
145			return BLK_MQ_NO_TAG;
146		}
147		bt = &tags->breserved_tags;
148		tag_offset = 0;
149	} else {
150		bt = &tags->bitmap_tags;
151		tag_offset = tags->nr_reserved_tags;
152	}
153
154	tag = __blk_mq_get_tag(data, bt);
155	if (tag != BLK_MQ_NO_TAG)
156		goto found_tag;
157
158	if (data->flags & BLK_MQ_REQ_NOWAIT)
159		return BLK_MQ_NO_TAG;
160
161	ws = bt_wait_ptr(bt, data->hctx);
162	do {
163		struct sbitmap_queue *bt_prev;
164
165		/*
166		 * We're out of tags on this hardware queue, kick any
167		 * pending IO submits before going to sleep waiting for
168		 * some to complete.
169		 */
170		blk_mq_run_hw_queue(data->hctx, false);
171
172		/*
173		 * Retry tag allocation after running the hardware queue,
174		 * as running the queue may also have found completions.
175		 */
176		tag = __blk_mq_get_tag(data, bt);
177		if (tag != BLK_MQ_NO_TAG)
178			break;
179
180		sbitmap_prepare_to_wait(bt, ws, &wait, TASK_UNINTERRUPTIBLE);
181
182		tag = __blk_mq_get_tag(data, bt);
183		if (tag != BLK_MQ_NO_TAG)
184			break;
185
186		bt_prev = bt;
187		io_schedule();
188
189		sbitmap_finish_wait(bt, ws, &wait);
190
191		data->ctx = blk_mq_get_ctx(data->q);
192		data->hctx = blk_mq_map_queue(data->q, data->cmd_flags,
193						data->ctx);
194		tags = blk_mq_tags_from_data(data);
195		if (data->flags & BLK_MQ_REQ_RESERVED)
196			bt = &tags->breserved_tags;
197		else
198			bt = &tags->bitmap_tags;
199
200		/*
201		 * If destination hw queue is changed, fake wake up on
202		 * previous queue for compensating the wake up miss, so
203		 * other allocations on previous queue won't be starved.
204		 */
205		if (bt != bt_prev)
206			sbitmap_queue_wake_up(bt_prev, 1);
207
208		ws = bt_wait_ptr(bt, data->hctx);
209	} while (1);
210
211	sbitmap_finish_wait(bt, ws, &wait);
212
213found_tag:
214	/*
215	 * Give up this allocation if the hctx is inactive.  The caller will
216	 * retry on an active hctx.
217	 */
218	if (unlikely(test_bit(BLK_MQ_S_INACTIVE, &data->hctx->state))) {
219		blk_mq_put_tag(tags, data->ctx, tag + tag_offset);
220		return BLK_MQ_NO_TAG;
221	}
222	return tag + tag_offset;
223}
224
225void blk_mq_put_tag(struct blk_mq_tags *tags, struct blk_mq_ctx *ctx,
226		    unsigned int tag)
227{
228	if (!blk_mq_tag_is_reserved(tags, tag)) {
229		const int real_tag = tag - tags->nr_reserved_tags;
230
231		BUG_ON(real_tag >= tags->nr_tags);
232		sbitmap_queue_clear(&tags->bitmap_tags, real_tag, ctx->cpu);
233	} else {
234		sbitmap_queue_clear(&tags->breserved_tags, tag, ctx->cpu);
235	}
236}
237
238void blk_mq_put_tags(struct blk_mq_tags *tags, int *tag_array, int nr_tags)
239{
240	sbitmap_queue_clear_batch(&tags->bitmap_tags, tags->nr_reserved_tags,
241					tag_array, nr_tags);
242}
243
244struct bt_iter_data {
245	struct blk_mq_hw_ctx *hctx;
246	struct request_queue *q;
247	busy_tag_iter_fn *fn;
248	void *data;
249	bool reserved;
250};
251
252static struct request *blk_mq_find_and_get_req(struct blk_mq_tags *tags,
253		unsigned int bitnr)
254{
255	struct request *rq;
256	unsigned long flags;
257
258	spin_lock_irqsave(&tags->lock, flags);
259	rq = tags->rqs[bitnr];
260	if (!rq || rq->tag != bitnr || !req_ref_inc_not_zero(rq))
261		rq = NULL;
262	spin_unlock_irqrestore(&tags->lock, flags);
263	return rq;
264}
265
266static bool bt_iter(struct sbitmap *bitmap, unsigned int bitnr, void *data)
267{
268	struct bt_iter_data *iter_data = data;
269	struct blk_mq_hw_ctx *hctx = iter_data->hctx;
270	struct request_queue *q = iter_data->q;
271	struct blk_mq_tag_set *set = q->tag_set;
272	struct blk_mq_tags *tags;
273	struct request *rq;
274	bool ret = true;
275
276	if (blk_mq_is_shared_tags(set->flags))
277		tags = set->shared_tags;
278	else
279		tags = hctx->tags;
280
281	if (!iter_data->reserved)
282		bitnr += tags->nr_reserved_tags;
283	/*
284	 * We can hit rq == NULL here, because the tagging functions
285	 * test and set the bit before assigning ->rqs[].
286	 */
287	rq = blk_mq_find_and_get_req(tags, bitnr);
288	if (!rq)
289		return true;
290
291	if (rq->q == q && (!hctx || rq->mq_hctx == hctx))
292		ret = iter_data->fn(rq, iter_data->data);
293	blk_mq_put_rq_ref(rq);
294	return ret;
295}
296
297/**
298 * bt_for_each - iterate over the requests associated with a hardware queue
299 * @hctx:	Hardware queue to examine.
300 * @q:		Request queue to examine.
301 * @bt:		sbitmap to examine. This is either the breserved_tags member
302 *		or the bitmap_tags member of struct blk_mq_tags.
303 * @fn:		Pointer to the function that will be called for each request
304 *		associated with @hctx that has been assigned a driver tag.
305 *		@fn will be called as follows: @fn(@hctx, rq, @data, @reserved)
306 *		where rq is a pointer to a request. Return true to continue
307 *		iterating tags, false to stop.
308 * @data:	Will be passed as third argument to @fn.
309 * @reserved:	Indicates whether @bt is the breserved_tags member or the
310 *		bitmap_tags member of struct blk_mq_tags.
311 */
312static void bt_for_each(struct blk_mq_hw_ctx *hctx, struct request_queue *q,
313			struct sbitmap_queue *bt, busy_tag_iter_fn *fn,
314			void *data, bool reserved)
315{
316	struct bt_iter_data iter_data = {
317		.hctx = hctx,
318		.fn = fn,
319		.data = data,
320		.reserved = reserved,
321		.q = q,
322	};
323
324	sbitmap_for_each_set(&bt->sb, bt_iter, &iter_data);
325}
326
327struct bt_tags_iter_data {
328	struct blk_mq_tags *tags;
329	busy_tag_iter_fn *fn;
330	void *data;
331	unsigned int flags;
332};
333
334#define BT_TAG_ITER_RESERVED		(1 << 0)
335#define BT_TAG_ITER_STARTED		(1 << 1)
336#define BT_TAG_ITER_STATIC_RQS		(1 << 2)
337
338static bool bt_tags_iter(struct sbitmap *bitmap, unsigned int bitnr, void *data)
339{
340	struct bt_tags_iter_data *iter_data = data;
341	struct blk_mq_tags *tags = iter_data->tags;
342	struct request *rq;
343	bool ret = true;
344	bool iter_static_rqs = !!(iter_data->flags & BT_TAG_ITER_STATIC_RQS);
345
346	if (!(iter_data->flags & BT_TAG_ITER_RESERVED))
347		bitnr += tags->nr_reserved_tags;
348
349	/*
350	 * We can hit rq == NULL here, because the tagging functions
351	 * test and set the bit before assigning ->rqs[].
352	 */
353	if (iter_static_rqs)
354		rq = tags->static_rqs[bitnr];
355	else
356		rq = blk_mq_find_and_get_req(tags, bitnr);
357	if (!rq)
358		return true;
359
360	if (!(iter_data->flags & BT_TAG_ITER_STARTED) ||
361	    blk_mq_request_started(rq))
362		ret = iter_data->fn(rq, iter_data->data);
363	if (!iter_static_rqs)
364		blk_mq_put_rq_ref(rq);
365	return ret;
366}
367
368/**
369 * bt_tags_for_each - iterate over the requests in a tag map
370 * @tags:	Tag map to iterate over.
371 * @bt:		sbitmap to examine. This is either the breserved_tags member
372 *		or the bitmap_tags member of struct blk_mq_tags.
373 * @fn:		Pointer to the function that will be called for each started
374 *		request. @fn will be called as follows: @fn(rq, @data,
375 *		@reserved) where rq is a pointer to a request. Return true
376 *		to continue iterating tags, false to stop.
377 * @data:	Will be passed as second argument to @fn.
378 * @flags:	BT_TAG_ITER_*
379 */
380static void bt_tags_for_each(struct blk_mq_tags *tags, struct sbitmap_queue *bt,
381			     busy_tag_iter_fn *fn, void *data, unsigned int flags)
382{
383	struct bt_tags_iter_data iter_data = {
384		.tags = tags,
385		.fn = fn,
386		.data = data,
387		.flags = flags,
388	};
389
390	if (tags->rqs)
391		sbitmap_for_each_set(&bt->sb, bt_tags_iter, &iter_data);
392}
393
394static void __blk_mq_all_tag_iter(struct blk_mq_tags *tags,
395		busy_tag_iter_fn *fn, void *priv, unsigned int flags)
396{
397	WARN_ON_ONCE(flags & BT_TAG_ITER_RESERVED);
398
399	if (tags->nr_reserved_tags)
400		bt_tags_for_each(tags, &tags->breserved_tags, fn, priv,
401				 flags | BT_TAG_ITER_RESERVED);
402	bt_tags_for_each(tags, &tags->bitmap_tags, fn, priv, flags);
403}
404
405/**
406 * blk_mq_all_tag_iter - iterate over all requests in a tag map
407 * @tags:	Tag map to iterate over.
408 * @fn:		Pointer to the function that will be called for each
409 *		request. @fn will be called as follows: @fn(rq, @priv,
410 *		reserved) where rq is a pointer to a request. 'reserved'
411 *		indicates whether or not @rq is a reserved request. Return
412 *		true to continue iterating tags, false to stop.
413 * @priv:	Will be passed as second argument to @fn.
414 *
415 * Caller has to pass the tag map from which requests are allocated.
416 */
417void blk_mq_all_tag_iter(struct blk_mq_tags *tags, busy_tag_iter_fn *fn,
418		void *priv)
419{
420	__blk_mq_all_tag_iter(tags, fn, priv, BT_TAG_ITER_STATIC_RQS);
421}
422
423/**
424 * blk_mq_tagset_busy_iter - iterate over all started requests in a tag set
425 * @tagset:	Tag set to iterate over.
426 * @fn:		Pointer to the function that will be called for each started
427 *		request. @fn will be called as follows: @fn(rq, @priv,
428 *		reserved) where rq is a pointer to a request. 'reserved'
429 *		indicates whether or not @rq is a reserved request. Return
430 *		true to continue iterating tags, false to stop.
431 * @priv:	Will be passed as second argument to @fn.
432 *
433 * We grab one request reference before calling @fn and release it after
434 * @fn returns.
435 */
436void blk_mq_tagset_busy_iter(struct blk_mq_tag_set *tagset,
437		busy_tag_iter_fn *fn, void *priv)
438{
439	unsigned int flags = tagset->flags;
440	int i, nr_tags;
441
442	nr_tags = blk_mq_is_shared_tags(flags) ? 1 : tagset->nr_hw_queues;
443
444	for (i = 0; i < nr_tags; i++) {
445		if (tagset->tags && tagset->tags[i])
446			__blk_mq_all_tag_iter(tagset->tags[i], fn, priv,
447					      BT_TAG_ITER_STARTED);
448	}
449}
450EXPORT_SYMBOL(blk_mq_tagset_busy_iter);
451
452static bool blk_mq_tagset_count_completed_rqs(struct request *rq, void *data)
453{
454	unsigned *count = data;
455
456	if (blk_mq_request_completed(rq))
457		(*count)++;
458	return true;
459}
460
461/**
462 * blk_mq_tagset_wait_completed_request - Wait until all scheduled request
463 * completions have finished.
464 * @tagset:	Tag set to drain completed request
465 *
466 * Note: This function has to be run after all IO queues are shutdown
467 */
468void blk_mq_tagset_wait_completed_request(struct blk_mq_tag_set *tagset)
469{
470	while (true) {
471		unsigned count = 0;
472
473		blk_mq_tagset_busy_iter(tagset,
474				blk_mq_tagset_count_completed_rqs, &count);
475		if (!count)
476			break;
477		msleep(5);
478	}
479}
480EXPORT_SYMBOL(blk_mq_tagset_wait_completed_request);
481
482/**
483 * blk_mq_queue_tag_busy_iter - iterate over all requests with a driver tag
484 * @q:		Request queue to examine.
485 * @fn:		Pointer to the function that will be called for each request
486 *		on @q. @fn will be called as follows: @fn(hctx, rq, @priv,
487 *		reserved) where rq is a pointer to a request and hctx points
488 *		to the hardware queue associated with the request. 'reserved'
489 *		indicates whether or not @rq is a reserved request.
490 * @priv:	Will be passed as third argument to @fn.
491 *
492 * Note: if @q->tag_set is shared with other request queues then @fn will be
493 * called for all requests on all queues that share that tag set and not only
494 * for requests associated with @q.
495 */
496void blk_mq_queue_tag_busy_iter(struct request_queue *q, busy_tag_iter_fn *fn,
497		void *priv)
498{
499	/*
500	 * __blk_mq_update_nr_hw_queues() updates nr_hw_queues and hctx_table
501	 * while the queue is frozen. So we can use q_usage_counter to avoid
502	 * racing with it.
503	 */
504	if (!percpu_ref_tryget(&q->q_usage_counter))
505		return;
506
507	if (blk_mq_is_shared_tags(q->tag_set->flags)) {
508		struct blk_mq_tags *tags = q->tag_set->shared_tags;
509		struct sbitmap_queue *bresv = &tags->breserved_tags;
510		struct sbitmap_queue *btags = &tags->bitmap_tags;
511
512		if (tags->nr_reserved_tags)
513			bt_for_each(NULL, q, bresv, fn, priv, true);
514		bt_for_each(NULL, q, btags, fn, priv, false);
515	} else {
516		struct blk_mq_hw_ctx *hctx;
517		unsigned long i;
518
519		queue_for_each_hw_ctx(q, hctx, i) {
520			struct blk_mq_tags *tags = hctx->tags;
521			struct sbitmap_queue *bresv = &tags->breserved_tags;
522			struct sbitmap_queue *btags = &tags->bitmap_tags;
523
524			/*
525			 * If no software queues are currently mapped to this
526			 * hardware queue, there's nothing to check
527			 */
528			if (!blk_mq_hw_queue_mapped(hctx))
529				continue;
530
531			if (tags->nr_reserved_tags)
532				bt_for_each(hctx, q, bresv, fn, priv, true);
533			bt_for_each(hctx, q, btags, fn, priv, false);
534		}
535	}
536	blk_queue_exit(q);
537}
538
539static int bt_alloc(struct sbitmap_queue *bt, unsigned int depth,
540		    bool round_robin, int node)
541{
542	return sbitmap_queue_init_node(bt, depth, -1, round_robin, GFP_KERNEL,
543				       node);
544}
545
546int blk_mq_init_bitmaps(struct sbitmap_queue *bitmap_tags,
547			struct sbitmap_queue *breserved_tags,
548			unsigned int queue_depth, unsigned int reserved,
549			int node, int alloc_policy)
550{
551	unsigned int depth = queue_depth - reserved;
552	bool round_robin = alloc_policy == BLK_TAG_ALLOC_RR;
553
554	if (bt_alloc(bitmap_tags, depth, round_robin, node))
555		return -ENOMEM;
556	if (bt_alloc(breserved_tags, reserved, round_robin, node))
557		goto free_bitmap_tags;
558
559	return 0;
560
561free_bitmap_tags:
562	sbitmap_queue_free(bitmap_tags);
563	return -ENOMEM;
564}
565
566struct blk_mq_tags *blk_mq_init_tags(unsigned int total_tags,
567				     unsigned int reserved_tags,
568				     int node, int alloc_policy)
569{
570	struct blk_mq_tags *tags;
571
572	if (total_tags > BLK_MQ_TAG_MAX) {
573		pr_err("blk-mq: tag depth too large\n");
574		return NULL;
575	}
576
577	tags = kzalloc_node(sizeof(*tags), GFP_KERNEL, node);
578	if (!tags)
579		return NULL;
580
581	tags->nr_tags = total_tags;
582	tags->nr_reserved_tags = reserved_tags;
583	spin_lock_init(&tags->lock);
584
585	if (blk_mq_init_bitmaps(&tags->bitmap_tags, &tags->breserved_tags,
586				total_tags, reserved_tags, node,
587				alloc_policy) < 0) {
588		kfree(tags);
589		return NULL;
590	}
591	return tags;
592}
593
594void blk_mq_free_tags(struct blk_mq_tags *tags)
595{
596	sbitmap_queue_free(&tags->bitmap_tags);
597	sbitmap_queue_free(&tags->breserved_tags);
598	kfree(tags);
599}
600
601int blk_mq_tag_update_depth(struct blk_mq_hw_ctx *hctx,
602			    struct blk_mq_tags **tagsptr, unsigned int tdepth,
603			    bool can_grow)
604{
605	struct blk_mq_tags *tags = *tagsptr;
606
607	if (tdepth <= tags->nr_reserved_tags)
608		return -EINVAL;
609
610	/*
611	 * If we are allowed to grow beyond the original size, allocate
612	 * a new set of tags before freeing the old one.
613	 */
614	if (tdepth > tags->nr_tags) {
615		struct blk_mq_tag_set *set = hctx->queue->tag_set;
616		struct blk_mq_tags *new;
617
618		if (!can_grow)
619			return -EINVAL;
620
621		/*
622		 * We need some sort of upper limit, set it high enough that
623		 * no valid use cases should require more.
624		 */
625		if (tdepth > MAX_SCHED_RQ)
626			return -EINVAL;
627
628		/*
629		 * Only the sbitmap needs resizing since we allocated the max
630		 * initially.
631		 */
632		if (blk_mq_is_shared_tags(set->flags))
633			return 0;
634
635		new = blk_mq_alloc_map_and_rqs(set, hctx->queue_num, tdepth);
636		if (!new)
637			return -ENOMEM;
638
639		blk_mq_free_map_and_rqs(set, *tagsptr, hctx->queue_num);
640		*tagsptr = new;
641	} else {
642		/*
643		 * Don't need (or can't) update reserved tags here, they
644		 * remain static and should never need resizing.
645		 */
646		sbitmap_queue_resize(&tags->bitmap_tags,
647				tdepth - tags->nr_reserved_tags);
648	}
649
650	return 0;
651}
652
653void blk_mq_tag_resize_shared_tags(struct blk_mq_tag_set *set, unsigned int size)
654{
655	struct blk_mq_tags *tags = set->shared_tags;
656
657	sbitmap_queue_resize(&tags->bitmap_tags, size - set->reserved_tags);
658}
659
660void blk_mq_tag_update_sched_shared_tags(struct request_queue *q)
661{
662	sbitmap_queue_resize(&q->sched_shared_tags->bitmap_tags,
663			     q->nr_requests - q->tag_set->reserved_tags);
664}
665
666/**
667 * blk_mq_unique_tag() - return a tag that is unique queue-wide
668 * @rq: request for which to compute a unique tag
669 *
670 * The tag field in struct request is unique per hardware queue but not over
671 * all hardware queues. Hence this function that returns a tag with the
672 * hardware context index in the upper bits and the per hardware queue tag in
673 * the lower bits.
674 *
675 * Note: When called for a request that is queued on a non-multiqueue request
676 * queue, the hardware context index is set to zero.
677 */
678u32 blk_mq_unique_tag(struct request *rq)
679{
680	return (rq->mq_hctx->queue_num << BLK_MQ_UNIQUE_TAG_BITS) |
681		(rq->tag & BLK_MQ_UNIQUE_TAG_MASK);
682}
683EXPORT_SYMBOL(blk_mq_unique_tag);
684