1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Functions related to mapping data to requests
4 */
5#include <linux/kernel.h>
6#include <linux/sched/task_stack.h>
7#include <linux/module.h>
8#include <linux/bio.h>
9#include <linux/blkdev.h>
10#include <linux/uio.h>
11
12#include "blk.h"
13
14struct bio_map_data {
15	bool is_our_pages : 1;
16	bool is_null_mapped : 1;
17	struct iov_iter iter;
18	struct iovec iov[];
19};
20
21static struct bio_map_data *bio_alloc_map_data(struct iov_iter *data,
22					       gfp_t gfp_mask)
23{
24	struct bio_map_data *bmd;
25
26	if (data->nr_segs > UIO_MAXIOV)
27		return NULL;
28
29	bmd = kmalloc(struct_size(bmd, iov, data->nr_segs), gfp_mask);
30	if (!bmd)
31		return NULL;
32	bmd->iter = *data;
33	if (iter_is_iovec(data)) {
34		memcpy(bmd->iov, iter_iov(data), sizeof(struct iovec) * data->nr_segs);
35		bmd->iter.__iov = bmd->iov;
36	}
37	return bmd;
38}
39
40/**
41 * bio_copy_from_iter - copy all pages from iov_iter to bio
42 * @bio: The &struct bio which describes the I/O as destination
43 * @iter: iov_iter as source
44 *
45 * Copy all pages from iov_iter to bio.
46 * Returns 0 on success, or error on failure.
47 */
48static int bio_copy_from_iter(struct bio *bio, struct iov_iter *iter)
49{
50	struct bio_vec *bvec;
51	struct bvec_iter_all iter_all;
52
53	bio_for_each_segment_all(bvec, bio, iter_all) {
54		ssize_t ret;
55
56		ret = copy_page_from_iter(bvec->bv_page,
57					  bvec->bv_offset,
58					  bvec->bv_len,
59					  iter);
60
61		if (!iov_iter_count(iter))
62			break;
63
64		if (ret < bvec->bv_len)
65			return -EFAULT;
66	}
67
68	return 0;
69}
70
71/**
72 * bio_copy_to_iter - copy all pages from bio to iov_iter
73 * @bio: The &struct bio which describes the I/O as source
74 * @iter: iov_iter as destination
75 *
76 * Copy all pages from bio to iov_iter.
77 * Returns 0 on success, or error on failure.
78 */
79static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter)
80{
81	struct bio_vec *bvec;
82	struct bvec_iter_all iter_all;
83
84	bio_for_each_segment_all(bvec, bio, iter_all) {
85		ssize_t ret;
86
87		ret = copy_page_to_iter(bvec->bv_page,
88					bvec->bv_offset,
89					bvec->bv_len,
90					&iter);
91
92		if (!iov_iter_count(&iter))
93			break;
94
95		if (ret < bvec->bv_len)
96			return -EFAULT;
97	}
98
99	return 0;
100}
101
102/**
103 *	bio_uncopy_user	-	finish previously mapped bio
104 *	@bio: bio being terminated
105 *
106 *	Free pages allocated from bio_copy_user_iov() and write back data
107 *	to user space in case of a read.
108 */
109static int bio_uncopy_user(struct bio *bio)
110{
111	struct bio_map_data *bmd = bio->bi_private;
112	int ret = 0;
113
114	if (!bmd->is_null_mapped) {
115		/*
116		 * if we're in a workqueue, the request is orphaned, so
117		 * don't copy into a random user address space, just free
118		 * and return -EINTR so user space doesn't expect any data.
119		 */
120		if (!current->mm)
121			ret = -EINTR;
122		else if (bio_data_dir(bio) == READ)
123			ret = bio_copy_to_iter(bio, bmd->iter);
124		if (bmd->is_our_pages)
125			bio_free_pages(bio);
126	}
127	kfree(bmd);
128	return ret;
129}
130
131static int bio_copy_user_iov(struct request *rq, struct rq_map_data *map_data,
132		struct iov_iter *iter, gfp_t gfp_mask)
133{
134	struct bio_map_data *bmd;
135	struct page *page;
136	struct bio *bio;
137	int i = 0, ret;
138	int nr_pages;
139	unsigned int len = iter->count;
140	unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0;
141
142	bmd = bio_alloc_map_data(iter, gfp_mask);
143	if (!bmd)
144		return -ENOMEM;
145
146	/*
147	 * We need to do a deep copy of the iov_iter including the iovecs.
148	 * The caller provided iov might point to an on-stack or otherwise
149	 * shortlived one.
150	 */
151	bmd->is_our_pages = !map_data;
152	bmd->is_null_mapped = (map_data && map_data->null_mapped);
153
154	nr_pages = bio_max_segs(DIV_ROUND_UP(offset + len, PAGE_SIZE));
155
156	ret = -ENOMEM;
157	bio = bio_kmalloc(nr_pages, gfp_mask);
158	if (!bio)
159		goto out_bmd;
160	bio_init(bio, NULL, bio->bi_inline_vecs, nr_pages, req_op(rq));
161
162	if (map_data) {
163		nr_pages = 1U << map_data->page_order;
164		i = map_data->offset / PAGE_SIZE;
165	}
166	while (len) {
167		unsigned int bytes = PAGE_SIZE;
168
169		bytes -= offset;
170
171		if (bytes > len)
172			bytes = len;
173
174		if (map_data) {
175			if (i == map_data->nr_entries * nr_pages) {
176				ret = -ENOMEM;
177				goto cleanup;
178			}
179
180			page = map_data->pages[i / nr_pages];
181			page += (i % nr_pages);
182
183			i++;
184		} else {
185			page = alloc_page(GFP_NOIO | gfp_mask);
186			if (!page) {
187				ret = -ENOMEM;
188				goto cleanup;
189			}
190		}
191
192		if (bio_add_pc_page(rq->q, bio, page, bytes, offset) < bytes) {
193			if (!map_data)
194				__free_page(page);
195			break;
196		}
197
198		len -= bytes;
199		offset = 0;
200	}
201
202	if (map_data)
203		map_data->offset += bio->bi_iter.bi_size;
204
205	/*
206	 * success
207	 */
208	if (iov_iter_rw(iter) == WRITE &&
209	     (!map_data || !map_data->null_mapped)) {
210		ret = bio_copy_from_iter(bio, iter);
211		if (ret)
212			goto cleanup;
213	} else if (map_data && map_data->from_user) {
214		struct iov_iter iter2 = *iter;
215
216		/* This is the copy-in part of SG_DXFER_TO_FROM_DEV. */
217		iter2.data_source = ITER_SOURCE;
218		ret = bio_copy_from_iter(bio, &iter2);
219		if (ret)
220			goto cleanup;
221	} else {
222		if (bmd->is_our_pages)
223			zero_fill_bio(bio);
224		iov_iter_advance(iter, bio->bi_iter.bi_size);
225	}
226
227	bio->bi_private = bmd;
228
229	ret = blk_rq_append_bio(rq, bio);
230	if (ret)
231		goto cleanup;
232	return 0;
233cleanup:
234	if (!map_data)
235		bio_free_pages(bio);
236	bio_uninit(bio);
237	kfree(bio);
238out_bmd:
239	kfree(bmd);
240	return ret;
241}
242
243static void blk_mq_map_bio_put(struct bio *bio)
244{
245	if (bio->bi_opf & REQ_ALLOC_CACHE) {
246		bio_put(bio);
247	} else {
248		bio_uninit(bio);
249		kfree(bio);
250	}
251}
252
253static struct bio *blk_rq_map_bio_alloc(struct request *rq,
254		unsigned int nr_vecs, gfp_t gfp_mask)
255{
256	struct bio *bio;
257
258	if (rq->cmd_flags & REQ_ALLOC_CACHE && (nr_vecs <= BIO_INLINE_VECS)) {
259		bio = bio_alloc_bioset(NULL, nr_vecs, rq->cmd_flags, gfp_mask,
260					&fs_bio_set);
261		if (!bio)
262			return NULL;
263	} else {
264		bio = bio_kmalloc(nr_vecs, gfp_mask);
265		if (!bio)
266			return NULL;
267		bio_init(bio, NULL, bio->bi_inline_vecs, nr_vecs, req_op(rq));
268	}
269	return bio;
270}
271
272static int bio_map_user_iov(struct request *rq, struct iov_iter *iter,
273		gfp_t gfp_mask)
274{
275	iov_iter_extraction_t extraction_flags = 0;
276	unsigned int max_sectors = queue_max_hw_sectors(rq->q);
277	unsigned int nr_vecs = iov_iter_npages(iter, BIO_MAX_VECS);
278	struct bio *bio;
279	int ret;
280	int j;
281
282	if (!iov_iter_count(iter))
283		return -EINVAL;
284
285	bio = blk_rq_map_bio_alloc(rq, nr_vecs, gfp_mask);
286	if (bio == NULL)
287		return -ENOMEM;
288
289	if (blk_queue_pci_p2pdma(rq->q))
290		extraction_flags |= ITER_ALLOW_P2PDMA;
291	if (iov_iter_extract_will_pin(iter))
292		bio_set_flag(bio, BIO_PAGE_PINNED);
293
294	while (iov_iter_count(iter)) {
295		struct page *stack_pages[UIO_FASTIOV];
296		struct page **pages = stack_pages;
297		ssize_t bytes;
298		size_t offs;
299		int npages;
300
301		if (nr_vecs > ARRAY_SIZE(stack_pages))
302			pages = NULL;
303
304		bytes = iov_iter_extract_pages(iter, &pages, LONG_MAX,
305					       nr_vecs, extraction_flags, &offs);
306		if (unlikely(bytes <= 0)) {
307			ret = bytes ? bytes : -EFAULT;
308			goto out_unmap;
309		}
310
311		npages = DIV_ROUND_UP(offs + bytes, PAGE_SIZE);
312
313		if (unlikely(offs & queue_dma_alignment(rq->q)))
314			j = 0;
315		else {
316			for (j = 0; j < npages; j++) {
317				struct page *page = pages[j];
318				unsigned int n = PAGE_SIZE - offs;
319				bool same_page = false;
320
321				if (n > bytes)
322					n = bytes;
323
324				if (!bio_add_hw_page(rq->q, bio, page, n, offs,
325						     max_sectors, &same_page))
326					break;
327
328				if (same_page)
329					bio_release_page(bio, page);
330				bytes -= n;
331				offs = 0;
332			}
333		}
334		/*
335		 * release the pages we didn't map into the bio, if any
336		 */
337		while (j < npages)
338			bio_release_page(bio, pages[j++]);
339		if (pages != stack_pages)
340			kvfree(pages);
341		/* couldn't stuff something into bio? */
342		if (bytes) {
343			iov_iter_revert(iter, bytes);
344			break;
345		}
346	}
347
348	ret = blk_rq_append_bio(rq, bio);
349	if (ret)
350		goto out_unmap;
351	return 0;
352
353 out_unmap:
354	bio_release_pages(bio, false);
355	blk_mq_map_bio_put(bio);
356	return ret;
357}
358
359static void bio_invalidate_vmalloc_pages(struct bio *bio)
360{
361#ifdef ARCH_IMPLEMENTS_FLUSH_KERNEL_VMAP_RANGE
362	if (bio->bi_private && !op_is_write(bio_op(bio))) {
363		unsigned long i, len = 0;
364
365		for (i = 0; i < bio->bi_vcnt; i++)
366			len += bio->bi_io_vec[i].bv_len;
367		invalidate_kernel_vmap_range(bio->bi_private, len);
368	}
369#endif
370}
371
372static void bio_map_kern_endio(struct bio *bio)
373{
374	bio_invalidate_vmalloc_pages(bio);
375	bio_uninit(bio);
376	kfree(bio);
377}
378
379/**
380 *	bio_map_kern	-	map kernel address into bio
381 *	@q: the struct request_queue for the bio
382 *	@data: pointer to buffer to map
383 *	@len: length in bytes
384 *	@gfp_mask: allocation flags for bio allocation
385 *
386 *	Map the kernel address into a bio suitable for io to a block
387 *	device. Returns an error pointer in case of error.
388 */
389static struct bio *bio_map_kern(struct request_queue *q, void *data,
390		unsigned int len, gfp_t gfp_mask)
391{
392	unsigned long kaddr = (unsigned long)data;
393	unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
394	unsigned long start = kaddr >> PAGE_SHIFT;
395	const int nr_pages = end - start;
396	bool is_vmalloc = is_vmalloc_addr(data);
397	struct page *page;
398	int offset, i;
399	struct bio *bio;
400
401	bio = bio_kmalloc(nr_pages, gfp_mask);
402	if (!bio)
403		return ERR_PTR(-ENOMEM);
404	bio_init(bio, NULL, bio->bi_inline_vecs, nr_pages, 0);
405
406	if (is_vmalloc) {
407		flush_kernel_vmap_range(data, len);
408		bio->bi_private = data;
409	}
410
411	offset = offset_in_page(kaddr);
412	for (i = 0; i < nr_pages; i++) {
413		unsigned int bytes = PAGE_SIZE - offset;
414
415		if (len <= 0)
416			break;
417
418		if (bytes > len)
419			bytes = len;
420
421		if (!is_vmalloc)
422			page = virt_to_page(data);
423		else
424			page = vmalloc_to_page(data);
425		if (bio_add_pc_page(q, bio, page, bytes,
426				    offset) < bytes) {
427			/* we don't support partial mappings */
428			bio_uninit(bio);
429			kfree(bio);
430			return ERR_PTR(-EINVAL);
431		}
432
433		data += bytes;
434		len -= bytes;
435		offset = 0;
436	}
437
438	bio->bi_end_io = bio_map_kern_endio;
439	return bio;
440}
441
442static void bio_copy_kern_endio(struct bio *bio)
443{
444	bio_free_pages(bio);
445	bio_uninit(bio);
446	kfree(bio);
447}
448
449static void bio_copy_kern_endio_read(struct bio *bio)
450{
451	char *p = bio->bi_private;
452	struct bio_vec *bvec;
453	struct bvec_iter_all iter_all;
454
455	bio_for_each_segment_all(bvec, bio, iter_all) {
456		memcpy_from_bvec(p, bvec);
457		p += bvec->bv_len;
458	}
459
460	bio_copy_kern_endio(bio);
461}
462
463/**
464 *	bio_copy_kern	-	copy kernel address into bio
465 *	@q: the struct request_queue for the bio
466 *	@data: pointer to buffer to copy
467 *	@len: length in bytes
468 *	@gfp_mask: allocation flags for bio and page allocation
469 *	@reading: data direction is READ
470 *
471 *	copy the kernel address into a bio suitable for io to a block
472 *	device. Returns an error pointer in case of error.
473 */
474static struct bio *bio_copy_kern(struct request_queue *q, void *data,
475		unsigned int len, gfp_t gfp_mask, int reading)
476{
477	unsigned long kaddr = (unsigned long)data;
478	unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
479	unsigned long start = kaddr >> PAGE_SHIFT;
480	struct bio *bio;
481	void *p = data;
482	int nr_pages = 0;
483
484	/*
485	 * Overflow, abort
486	 */
487	if (end < start)
488		return ERR_PTR(-EINVAL);
489
490	nr_pages = end - start;
491	bio = bio_kmalloc(nr_pages, gfp_mask);
492	if (!bio)
493		return ERR_PTR(-ENOMEM);
494	bio_init(bio, NULL, bio->bi_inline_vecs, nr_pages, 0);
495
496	while (len) {
497		struct page *page;
498		unsigned int bytes = PAGE_SIZE;
499
500		if (bytes > len)
501			bytes = len;
502
503		page = alloc_page(GFP_NOIO | __GFP_ZERO | gfp_mask);
504		if (!page)
505			goto cleanup;
506
507		if (!reading)
508			memcpy(page_address(page), p, bytes);
509
510		if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes)
511			break;
512
513		len -= bytes;
514		p += bytes;
515	}
516
517	if (reading) {
518		bio->bi_end_io = bio_copy_kern_endio_read;
519		bio->bi_private = data;
520	} else {
521		bio->bi_end_io = bio_copy_kern_endio;
522	}
523
524	return bio;
525
526cleanup:
527	bio_free_pages(bio);
528	bio_uninit(bio);
529	kfree(bio);
530	return ERR_PTR(-ENOMEM);
531}
532
533/*
534 * Append a bio to a passthrough request.  Only works if the bio can be merged
535 * into the request based on the driver constraints.
536 */
537int blk_rq_append_bio(struct request *rq, struct bio *bio)
538{
539	struct bvec_iter iter;
540	struct bio_vec bv;
541	unsigned int nr_segs = 0;
542
543	bio_for_each_bvec(bv, bio, iter)
544		nr_segs++;
545
546	if (!rq->bio) {
547		blk_rq_bio_prep(rq, bio, nr_segs);
548	} else {
549		if (!ll_back_merge_fn(rq, bio, nr_segs))
550			return -EINVAL;
551		rq->biotail->bi_next = bio;
552		rq->biotail = bio;
553		rq->__data_len += (bio)->bi_iter.bi_size;
554		bio_crypt_free_ctx(bio);
555	}
556
557	return 0;
558}
559EXPORT_SYMBOL(blk_rq_append_bio);
560
561/* Prepare bio for passthrough IO given ITER_BVEC iter */
562static int blk_rq_map_user_bvec(struct request *rq, const struct iov_iter *iter)
563{
564	struct request_queue *q = rq->q;
565	size_t nr_iter = iov_iter_count(iter);
566	size_t nr_segs = iter->nr_segs;
567	struct bio_vec *bvecs, *bvprvp = NULL;
568	const struct queue_limits *lim = &q->limits;
569	unsigned int nsegs = 0, bytes = 0;
570	struct bio *bio;
571	size_t i;
572
573	if (!nr_iter || (nr_iter >> SECTOR_SHIFT) > queue_max_hw_sectors(q))
574		return -EINVAL;
575	if (nr_segs > queue_max_segments(q))
576		return -EINVAL;
577
578	/* no iovecs to alloc, as we already have a BVEC iterator */
579	bio = blk_rq_map_bio_alloc(rq, 0, GFP_KERNEL);
580	if (bio == NULL)
581		return -ENOMEM;
582
583	bio_iov_bvec_set(bio, (struct iov_iter *)iter);
584	blk_rq_bio_prep(rq, bio, nr_segs);
585
586	/* loop to perform a bunch of sanity checks */
587	bvecs = (struct bio_vec *)iter->bvec;
588	for (i = 0; i < nr_segs; i++) {
589		struct bio_vec *bv = &bvecs[i];
590
591		/*
592		 * If the queue doesn't support SG gaps and adding this
593		 * offset would create a gap, fallback to copy.
594		 */
595		if (bvprvp && bvec_gap_to_prev(lim, bvprvp, bv->bv_offset)) {
596			blk_mq_map_bio_put(bio);
597			return -EREMOTEIO;
598		}
599		/* check full condition */
600		if (nsegs >= nr_segs || bytes > UINT_MAX - bv->bv_len)
601			goto put_bio;
602		if (bytes + bv->bv_len > nr_iter)
603			goto put_bio;
604		if (bv->bv_offset + bv->bv_len > PAGE_SIZE)
605			goto put_bio;
606
607		nsegs++;
608		bytes += bv->bv_len;
609		bvprvp = bv;
610	}
611	return 0;
612put_bio:
613	blk_mq_map_bio_put(bio);
614	return -EINVAL;
615}
616
617/**
618 * blk_rq_map_user_iov - map user data to a request, for passthrough requests
619 * @q:		request queue where request should be inserted
620 * @rq:		request to map data to
621 * @map_data:   pointer to the rq_map_data holding pages (if necessary)
622 * @iter:	iovec iterator
623 * @gfp_mask:	memory allocation flags
624 *
625 * Description:
626 *    Data will be mapped directly for zero copy I/O, if possible. Otherwise
627 *    a kernel bounce buffer is used.
628 *
629 *    A matching blk_rq_unmap_user() must be issued at the end of I/O, while
630 *    still in process context.
631 */
632int blk_rq_map_user_iov(struct request_queue *q, struct request *rq,
633			struct rq_map_data *map_data,
634			const struct iov_iter *iter, gfp_t gfp_mask)
635{
636	bool copy = false, map_bvec = false;
637	unsigned long align = q->dma_pad_mask | queue_dma_alignment(q);
638	struct bio *bio = NULL;
639	struct iov_iter i;
640	int ret = -EINVAL;
641
642	if (map_data)
643		copy = true;
644	else if (blk_queue_may_bounce(q))
645		copy = true;
646	else if (iov_iter_alignment(iter) & align)
647		copy = true;
648	else if (iov_iter_is_bvec(iter))
649		map_bvec = true;
650	else if (!user_backed_iter(iter))
651		copy = true;
652	else if (queue_virt_boundary(q))
653		copy = queue_virt_boundary(q) & iov_iter_gap_alignment(iter);
654
655	if (map_bvec) {
656		ret = blk_rq_map_user_bvec(rq, iter);
657		if (!ret)
658			return 0;
659		if (ret != -EREMOTEIO)
660			goto fail;
661		/* fall back to copying the data on limits mismatches */
662		copy = true;
663	}
664
665	i = *iter;
666	do {
667		if (copy)
668			ret = bio_copy_user_iov(rq, map_data, &i, gfp_mask);
669		else
670			ret = bio_map_user_iov(rq, &i, gfp_mask);
671		if (ret)
672			goto unmap_rq;
673		if (!bio)
674			bio = rq->bio;
675	} while (iov_iter_count(&i));
676
677	return 0;
678
679unmap_rq:
680	blk_rq_unmap_user(bio);
681fail:
682	rq->bio = NULL;
683	return ret;
684}
685EXPORT_SYMBOL(blk_rq_map_user_iov);
686
687int blk_rq_map_user(struct request_queue *q, struct request *rq,
688		    struct rq_map_data *map_data, void __user *ubuf,
689		    unsigned long len, gfp_t gfp_mask)
690{
691	struct iov_iter i;
692	int ret = import_ubuf(rq_data_dir(rq), ubuf, len, &i);
693
694	if (unlikely(ret < 0))
695		return ret;
696
697	return blk_rq_map_user_iov(q, rq, map_data, &i, gfp_mask);
698}
699EXPORT_SYMBOL(blk_rq_map_user);
700
701int blk_rq_map_user_io(struct request *req, struct rq_map_data *map_data,
702		void __user *ubuf, unsigned long buf_len, gfp_t gfp_mask,
703		bool vec, int iov_count, bool check_iter_count, int rw)
704{
705	int ret = 0;
706
707	if (vec) {
708		struct iovec fast_iov[UIO_FASTIOV];
709		struct iovec *iov = fast_iov;
710		struct iov_iter iter;
711
712		ret = import_iovec(rw, ubuf, iov_count ? iov_count : buf_len,
713				UIO_FASTIOV, &iov, &iter);
714		if (ret < 0)
715			return ret;
716
717		if (iov_count) {
718			/* SG_IO howto says that the shorter of the two wins */
719			iov_iter_truncate(&iter, buf_len);
720			if (check_iter_count && !iov_iter_count(&iter)) {
721				kfree(iov);
722				return -EINVAL;
723			}
724		}
725
726		ret = blk_rq_map_user_iov(req->q, req, map_data, &iter,
727				gfp_mask);
728		kfree(iov);
729	} else if (buf_len) {
730		ret = blk_rq_map_user(req->q, req, map_data, ubuf, buf_len,
731				gfp_mask);
732	}
733	return ret;
734}
735EXPORT_SYMBOL(blk_rq_map_user_io);
736
737/**
738 * blk_rq_unmap_user - unmap a request with user data
739 * @bio:	       start of bio list
740 *
741 * Description:
742 *    Unmap a rq previously mapped by blk_rq_map_user(). The caller must
743 *    supply the original rq->bio from the blk_rq_map_user() return, since
744 *    the I/O completion may have changed rq->bio.
745 */
746int blk_rq_unmap_user(struct bio *bio)
747{
748	struct bio *next_bio;
749	int ret = 0, ret2;
750
751	while (bio) {
752		if (bio->bi_private) {
753			ret2 = bio_uncopy_user(bio);
754			if (ret2 && !ret)
755				ret = ret2;
756		} else {
757			bio_release_pages(bio, bio_data_dir(bio) == READ);
758		}
759
760		next_bio = bio;
761		bio = bio->bi_next;
762		blk_mq_map_bio_put(next_bio);
763	}
764
765	return ret;
766}
767EXPORT_SYMBOL(blk_rq_unmap_user);
768
769/**
770 * blk_rq_map_kern - map kernel data to a request, for passthrough requests
771 * @q:		request queue where request should be inserted
772 * @rq:		request to fill
773 * @kbuf:	the kernel buffer
774 * @len:	length of user data
775 * @gfp_mask:	memory allocation flags
776 *
777 * Description:
778 *    Data will be mapped directly if possible. Otherwise a bounce
779 *    buffer is used. Can be called multiple times to append multiple
780 *    buffers.
781 */
782int blk_rq_map_kern(struct request_queue *q, struct request *rq, void *kbuf,
783		    unsigned int len, gfp_t gfp_mask)
784{
785	int reading = rq_data_dir(rq) == READ;
786	unsigned long addr = (unsigned long) kbuf;
787	struct bio *bio;
788	int ret;
789
790	if (len > (queue_max_hw_sectors(q) << 9))
791		return -EINVAL;
792	if (!len || !kbuf)
793		return -EINVAL;
794
795	if (!blk_rq_aligned(q, addr, len) || object_is_on_stack(kbuf) ||
796	    blk_queue_may_bounce(q))
797		bio = bio_copy_kern(q, kbuf, len, gfp_mask, reading);
798	else
799		bio = bio_map_kern(q, kbuf, len, gfp_mask);
800
801	if (IS_ERR(bio))
802		return PTR_ERR(bio);
803
804	bio->bi_opf &= ~REQ_OP_MASK;
805	bio->bi_opf |= req_op(rq);
806
807	ret = blk_rq_append_bio(rq, bio);
808	if (unlikely(ret)) {
809		bio_uninit(bio);
810		kfree(bio);
811	}
812	return ret;
813}
814EXPORT_SYMBOL(blk_rq_map_kern);
815