1/* SPDX-License-Identifier: GPL-2.0
2 *
3 * IO cost model based controller.
4 *
5 * Copyright (C) 2019 Tejun Heo <tj@kernel.org>
6 * Copyright (C) 2019 Andy Newell <newella@fb.com>
7 * Copyright (C) 2019 Facebook
8 *
9 * One challenge of controlling IO resources is the lack of trivially
10 * observable cost metric.  This is distinguished from CPU and memory where
11 * wallclock time and the number of bytes can serve as accurate enough
12 * approximations.
13 *
14 * Bandwidth and iops are the most commonly used metrics for IO devices but
15 * depending on the type and specifics of the device, different IO patterns
16 * easily lead to multiple orders of magnitude variations rendering them
17 * useless for the purpose of IO capacity distribution.  While on-device
18 * time, with a lot of clutches, could serve as a useful approximation for
19 * non-queued rotational devices, this is no longer viable with modern
20 * devices, even the rotational ones.
21 *
22 * While there is no cost metric we can trivially observe, it isn't a
23 * complete mystery.  For example, on a rotational device, seek cost
24 * dominates while a contiguous transfer contributes a smaller amount
25 * proportional to the size.  If we can characterize at least the relative
26 * costs of these different types of IOs, it should be possible to
27 * implement a reasonable work-conserving proportional IO resource
28 * distribution.
29 *
30 * 1. IO Cost Model
31 *
32 * IO cost model estimates the cost of an IO given its basic parameters and
33 * history (e.g. the end sector of the last IO).  The cost is measured in
34 * device time.  If a given IO is estimated to cost 10ms, the device should
35 * be able to process ~100 of those IOs in a second.
36 *
37 * Currently, there's only one builtin cost model - linear.  Each IO is
38 * classified as sequential or random and given a base cost accordingly.
39 * On top of that, a size cost proportional to the length of the IO is
40 * added.  While simple, this model captures the operational
41 * characteristics of a wide varienty of devices well enough.  Default
42 * parameters for several different classes of devices are provided and the
43 * parameters can be configured from userspace via
44 * /sys/fs/cgroup/io.cost.model.
45 *
46 * If needed, tools/cgroup/iocost_coef_gen.py can be used to generate
47 * device-specific coefficients.
48 *
49 * 2. Control Strategy
50 *
51 * The device virtual time (vtime) is used as the primary control metric.
52 * The control strategy is composed of the following three parts.
53 *
54 * 2-1. Vtime Distribution
55 *
56 * When a cgroup becomes active in terms of IOs, its hierarchical share is
57 * calculated.  Please consider the following hierarchy where the numbers
58 * inside parentheses denote the configured weights.
59 *
60 *           root
61 *         /       \
62 *      A (w:100)  B (w:300)
63 *      /       \
64 *  A0 (w:100)  A1 (w:100)
65 *
66 * If B is idle and only A0 and A1 are actively issuing IOs, as the two are
67 * of equal weight, each gets 50% share.  If then B starts issuing IOs, B
68 * gets 300/(100+300) or 75% share, and A0 and A1 equally splits the rest,
69 * 12.5% each.  The distribution mechanism only cares about these flattened
70 * shares.  They're called hweights (hierarchical weights) and always add
71 * upto 1 (WEIGHT_ONE).
72 *
73 * A given cgroup's vtime runs slower in inverse proportion to its hweight.
74 * For example, with 12.5% weight, A0's time runs 8 times slower (100/12.5)
75 * against the device vtime - an IO which takes 10ms on the underlying
76 * device is considered to take 80ms on A0.
77 *
78 * This constitutes the basis of IO capacity distribution.  Each cgroup's
79 * vtime is running at a rate determined by its hweight.  A cgroup tracks
80 * the vtime consumed by past IOs and can issue a new IO if doing so
81 * wouldn't outrun the current device vtime.  Otherwise, the IO is
82 * suspended until the vtime has progressed enough to cover it.
83 *
84 * 2-2. Vrate Adjustment
85 *
86 * It's unrealistic to expect the cost model to be perfect.  There are too
87 * many devices and even on the same device the overall performance
88 * fluctuates depending on numerous factors such as IO mixture and device
89 * internal garbage collection.  The controller needs to adapt dynamically.
90 *
91 * This is achieved by adjusting the overall IO rate according to how busy
92 * the device is.  If the device becomes overloaded, we're sending down too
93 * many IOs and should generally slow down.  If there are waiting issuers
94 * but the device isn't saturated, we're issuing too few and should
95 * generally speed up.
96 *
97 * To slow down, we lower the vrate - the rate at which the device vtime
98 * passes compared to the wall clock.  For example, if the vtime is running
99 * at the vrate of 75%, all cgroups added up would only be able to issue
100 * 750ms worth of IOs per second, and vice-versa for speeding up.
101 *
102 * Device business is determined using two criteria - rq wait and
103 * completion latencies.
104 *
105 * When a device gets saturated, the on-device and then the request queues
106 * fill up and a bio which is ready to be issued has to wait for a request
107 * to become available.  When this delay becomes noticeable, it's a clear
108 * indication that the device is saturated and we lower the vrate.  This
109 * saturation signal is fairly conservative as it only triggers when both
110 * hardware and software queues are filled up, and is used as the default
111 * busy signal.
112 *
113 * As devices can have deep queues and be unfair in how the queued commands
114 * are executed, solely depending on rq wait may not result in satisfactory
115 * control quality.  For a better control quality, completion latency QoS
116 * parameters can be configured so that the device is considered saturated
117 * if N'th percentile completion latency rises above the set point.
118 *
119 * The completion latency requirements are a function of both the
120 * underlying device characteristics and the desired IO latency quality of
121 * service.  There is an inherent trade-off - the tighter the latency QoS,
122 * the higher the bandwidth lossage.  Latency QoS is disabled by default
123 * and can be set through /sys/fs/cgroup/io.cost.qos.
124 *
125 * 2-3. Work Conservation
126 *
127 * Imagine two cgroups A and B with equal weights.  A is issuing a small IO
128 * periodically while B is sending out enough parallel IOs to saturate the
129 * device on its own.  Let's say A's usage amounts to 100ms worth of IO
130 * cost per second, i.e., 10% of the device capacity.  The naive
131 * distribution of half and half would lead to 60% utilization of the
132 * device, a significant reduction in the total amount of work done
133 * compared to free-for-all competition.  This is too high a cost to pay
134 * for IO control.
135 *
136 * To conserve the total amount of work done, we keep track of how much
137 * each active cgroup is actually using and yield part of its weight if
138 * there are other cgroups which can make use of it.  In the above case,
139 * A's weight will be lowered so that it hovers above the actual usage and
140 * B would be able to use the rest.
141 *
142 * As we don't want to penalize a cgroup for donating its weight, the
143 * surplus weight adjustment factors in a margin and has an immediate
144 * snapback mechanism in case the cgroup needs more IO vtime for itself.
145 *
146 * Note that adjusting down surplus weights has the same effects as
147 * accelerating vtime for other cgroups and work conservation can also be
148 * implemented by adjusting vrate dynamically.  However, squaring who can
149 * donate and should take back how much requires hweight propagations
150 * anyway making it easier to implement and understand as a separate
151 * mechanism.
152 *
153 * 3. Monitoring
154 *
155 * Instead of debugfs or other clumsy monitoring mechanisms, this
156 * controller uses a drgn based monitoring script -
157 * tools/cgroup/iocost_monitor.py.  For details on drgn, please see
158 * https://github.com/osandov/drgn.  The output looks like the following.
159 *
160 *  sdb RUN   per=300ms cur_per=234.218:v203.695 busy= +1 vrate= 62.12%
161 *                 active      weight      hweight% inflt% dbt  delay usages%
162 *  test/a              *    50/   50  33.33/ 33.33  27.65   2  0*041 033:033:033
163 *  test/b              *   100/  100  66.67/ 66.67  17.56   0  0*000 066:079:077
164 *
165 * - per	: Timer period
166 * - cur_per	: Internal wall and device vtime clock
167 * - vrate	: Device virtual time rate against wall clock
168 * - weight	: Surplus-adjusted and configured weights
169 * - hweight	: Surplus-adjusted and configured hierarchical weights
170 * - inflt	: The percentage of in-flight IO cost at the end of last period
171 * - del_ms	: Deferred issuer delay induction level and duration
172 * - usages	: Usage history
173 */
174
175#include <linux/kernel.h>
176#include <linux/module.h>
177#include <linux/timer.h>
178#include <linux/time64.h>
179#include <linux/parser.h>
180#include <linux/sched/signal.h>
181#include <asm/local.h>
182#include <asm/local64.h>
183#include "blk-rq-qos.h"
184#include "blk-stat.h"
185#include "blk-wbt.h"
186#include "blk-cgroup.h"
187
188#ifdef CONFIG_TRACEPOINTS
189
190/* copied from TRACE_CGROUP_PATH, see cgroup-internal.h */
191#define TRACE_IOCG_PATH_LEN 1024
192static DEFINE_SPINLOCK(trace_iocg_path_lock);
193static char trace_iocg_path[TRACE_IOCG_PATH_LEN];
194
195#define TRACE_IOCG_PATH(type, iocg, ...)					\
196	do {									\
197		unsigned long flags;						\
198		if (trace_iocost_##type##_enabled()) {				\
199			spin_lock_irqsave(&trace_iocg_path_lock, flags);	\
200			cgroup_path(iocg_to_blkg(iocg)->blkcg->css.cgroup,	\
201				    trace_iocg_path, TRACE_IOCG_PATH_LEN);	\
202			trace_iocost_##type(iocg, trace_iocg_path,		\
203					      ##__VA_ARGS__);			\
204			spin_unlock_irqrestore(&trace_iocg_path_lock, flags);	\
205		}								\
206	} while (0)
207
208#else	/* CONFIG_TRACE_POINTS */
209#define TRACE_IOCG_PATH(type, iocg, ...)	do { } while (0)
210#endif	/* CONFIG_TRACE_POINTS */
211
212enum {
213	MILLION			= 1000000,
214
215	/* timer period is calculated from latency requirements, bound it */
216	MIN_PERIOD		= USEC_PER_MSEC,
217	MAX_PERIOD		= USEC_PER_SEC,
218
219	/*
220	 * iocg->vtime is targeted at 50% behind the device vtime, which
221	 * serves as its IO credit buffer.  Surplus weight adjustment is
222	 * immediately canceled if the vtime margin runs below 10%.
223	 */
224	MARGIN_MIN_PCT		= 10,
225	MARGIN_LOW_PCT		= 20,
226	MARGIN_TARGET_PCT	= 50,
227
228	INUSE_ADJ_STEP_PCT	= 25,
229
230	/* Have some play in timer operations */
231	TIMER_SLACK_PCT		= 1,
232
233	/* 1/64k is granular enough and can easily be handled w/ u32 */
234	WEIGHT_ONE		= 1 << 16,
235};
236
237enum {
238	/*
239	 * As vtime is used to calculate the cost of each IO, it needs to
240	 * be fairly high precision.  For example, it should be able to
241	 * represent the cost of a single page worth of discard with
242	 * suffificient accuracy.  At the same time, it should be able to
243	 * represent reasonably long enough durations to be useful and
244	 * convenient during operation.
245	 *
246	 * 1s worth of vtime is 2^37.  This gives us both sub-nanosecond
247	 * granularity and days of wrap-around time even at extreme vrates.
248	 */
249	VTIME_PER_SEC_SHIFT	= 37,
250	VTIME_PER_SEC		= 1LLU << VTIME_PER_SEC_SHIFT,
251	VTIME_PER_USEC		= VTIME_PER_SEC / USEC_PER_SEC,
252	VTIME_PER_NSEC		= VTIME_PER_SEC / NSEC_PER_SEC,
253
254	/* bound vrate adjustments within two orders of magnitude */
255	VRATE_MIN_PPM		= 10000,	/* 1% */
256	VRATE_MAX_PPM		= 100000000,	/* 10000% */
257
258	VRATE_MIN		= VTIME_PER_USEC * VRATE_MIN_PPM / MILLION,
259	VRATE_CLAMP_ADJ_PCT	= 4,
260
261	/* switch iff the conditions are met for longer than this */
262	AUTOP_CYCLE_NSEC	= 10LLU * NSEC_PER_SEC,
263};
264
265enum {
266	/* if IOs end up waiting for requests, issue less */
267	RQ_WAIT_BUSY_PCT	= 5,
268
269	/* unbusy hysterisis */
270	UNBUSY_THR_PCT		= 75,
271
272	/*
273	 * The effect of delay is indirect and non-linear and a huge amount of
274	 * future debt can accumulate abruptly while unthrottled. Linearly scale
275	 * up delay as debt is going up and then let it decay exponentially.
276	 * This gives us quick ramp ups while delay is accumulating and long
277	 * tails which can help reducing the frequency of debt explosions on
278	 * unthrottle. The parameters are experimentally determined.
279	 *
280	 * The delay mechanism provides adequate protection and behavior in many
281	 * cases. However, this is far from ideal and falls shorts on both
282	 * fronts. The debtors are often throttled too harshly costing a
283	 * significant level of fairness and possibly total work while the
284	 * protection against their impacts on the system can be choppy and
285	 * unreliable.
286	 *
287	 * The shortcoming primarily stems from the fact that, unlike for page
288	 * cache, the kernel doesn't have well-defined back-pressure propagation
289	 * mechanism and policies for anonymous memory. Fully addressing this
290	 * issue will likely require substantial improvements in the area.
291	 */
292	MIN_DELAY_THR_PCT	= 500,
293	MAX_DELAY_THR_PCT	= 25000,
294	MIN_DELAY		= 250,
295	MAX_DELAY		= 250 * USEC_PER_MSEC,
296
297	/* halve debts if avg usage over 100ms is under 50% */
298	DFGV_USAGE_PCT		= 50,
299	DFGV_PERIOD		= 100 * USEC_PER_MSEC,
300
301	/* don't let cmds which take a very long time pin lagging for too long */
302	MAX_LAGGING_PERIODS	= 10,
303
304	/*
305	 * Count IO size in 4k pages.  The 12bit shift helps keeping
306	 * size-proportional components of cost calculation in closer
307	 * numbers of digits to per-IO cost components.
308	 */
309	IOC_PAGE_SHIFT		= 12,
310	IOC_PAGE_SIZE		= 1 << IOC_PAGE_SHIFT,
311	IOC_SECT_TO_PAGE_SHIFT	= IOC_PAGE_SHIFT - SECTOR_SHIFT,
312
313	/* if apart further than 16M, consider randio for linear model */
314	LCOEF_RANDIO_PAGES	= 4096,
315};
316
317enum ioc_running {
318	IOC_IDLE,
319	IOC_RUNNING,
320	IOC_STOP,
321};
322
323/* io.cost.qos controls including per-dev enable of the whole controller */
324enum {
325	QOS_ENABLE,
326	QOS_CTRL,
327	NR_QOS_CTRL_PARAMS,
328};
329
330/* io.cost.qos params */
331enum {
332	QOS_RPPM,
333	QOS_RLAT,
334	QOS_WPPM,
335	QOS_WLAT,
336	QOS_MIN,
337	QOS_MAX,
338	NR_QOS_PARAMS,
339};
340
341/* io.cost.model controls */
342enum {
343	COST_CTRL,
344	COST_MODEL,
345	NR_COST_CTRL_PARAMS,
346};
347
348/* builtin linear cost model coefficients */
349enum {
350	I_LCOEF_RBPS,
351	I_LCOEF_RSEQIOPS,
352	I_LCOEF_RRANDIOPS,
353	I_LCOEF_WBPS,
354	I_LCOEF_WSEQIOPS,
355	I_LCOEF_WRANDIOPS,
356	NR_I_LCOEFS,
357};
358
359enum {
360	LCOEF_RPAGE,
361	LCOEF_RSEQIO,
362	LCOEF_RRANDIO,
363	LCOEF_WPAGE,
364	LCOEF_WSEQIO,
365	LCOEF_WRANDIO,
366	NR_LCOEFS,
367};
368
369enum {
370	AUTOP_INVALID,
371	AUTOP_HDD,
372	AUTOP_SSD_QD1,
373	AUTOP_SSD_DFL,
374	AUTOP_SSD_FAST,
375};
376
377struct ioc_params {
378	u32				qos[NR_QOS_PARAMS];
379	u64				i_lcoefs[NR_I_LCOEFS];
380	u64				lcoefs[NR_LCOEFS];
381	u32				too_fast_vrate_pct;
382	u32				too_slow_vrate_pct;
383};
384
385struct ioc_margins {
386	s64				min;
387	s64				low;
388	s64				target;
389};
390
391struct ioc_missed {
392	local_t				nr_met;
393	local_t				nr_missed;
394	u32				last_met;
395	u32				last_missed;
396};
397
398struct ioc_pcpu_stat {
399	struct ioc_missed		missed[2];
400
401	local64_t			rq_wait_ns;
402	u64				last_rq_wait_ns;
403};
404
405/* per device */
406struct ioc {
407	struct rq_qos			rqos;
408
409	bool				enabled;
410
411	struct ioc_params		params;
412	struct ioc_margins		margins;
413	u32				period_us;
414	u32				timer_slack_ns;
415	u64				vrate_min;
416	u64				vrate_max;
417
418	spinlock_t			lock;
419	struct timer_list		timer;
420	struct list_head		active_iocgs;	/* active cgroups */
421	struct ioc_pcpu_stat __percpu	*pcpu_stat;
422
423	enum ioc_running		running;
424	atomic64_t			vtime_rate;
425	u64				vtime_base_rate;
426	s64				vtime_err;
427
428	seqcount_spinlock_t		period_seqcount;
429	u64				period_at;	/* wallclock starttime */
430	u64				period_at_vtime; /* vtime starttime */
431
432	atomic64_t			cur_period;	/* inc'd each period */
433	int				busy_level;	/* saturation history */
434
435	bool				weights_updated;
436	atomic_t			hweight_gen;	/* for lazy hweights */
437
438	/* debt forgivness */
439	u64				dfgv_period_at;
440	u64				dfgv_period_rem;
441	u64				dfgv_usage_us_sum;
442
443	u64				autop_too_fast_at;
444	u64				autop_too_slow_at;
445	int				autop_idx;
446	bool				user_qos_params:1;
447	bool				user_cost_model:1;
448};
449
450struct iocg_pcpu_stat {
451	local64_t			abs_vusage;
452};
453
454struct iocg_stat {
455	u64				usage_us;
456	u64				wait_us;
457	u64				indebt_us;
458	u64				indelay_us;
459};
460
461/* per device-cgroup pair */
462struct ioc_gq {
463	struct blkg_policy_data		pd;
464	struct ioc			*ioc;
465
466	/*
467	 * A iocg can get its weight from two sources - an explicit
468	 * per-device-cgroup configuration or the default weight of the
469	 * cgroup.  `cfg_weight` is the explicit per-device-cgroup
470	 * configuration.  `weight` is the effective considering both
471	 * sources.
472	 *
473	 * When an idle cgroup becomes active its `active` goes from 0 to
474	 * `weight`.  `inuse` is the surplus adjusted active weight.
475	 * `active` and `inuse` are used to calculate `hweight_active` and
476	 * `hweight_inuse`.
477	 *
478	 * `last_inuse` remembers `inuse` while an iocg is idle to persist
479	 * surplus adjustments.
480	 *
481	 * `inuse` may be adjusted dynamically during period. `saved_*` are used
482	 * to determine and track adjustments.
483	 */
484	u32				cfg_weight;
485	u32				weight;
486	u32				active;
487	u32				inuse;
488
489	u32				last_inuse;
490	s64				saved_margin;
491
492	sector_t			cursor;		/* to detect randio */
493
494	/*
495	 * `vtime` is this iocg's vtime cursor which progresses as IOs are
496	 * issued.  If lagging behind device vtime, the delta represents
497	 * the currently available IO budget.  If running ahead, the
498	 * overage.
499	 *
500	 * `vtime_done` is the same but progressed on completion rather
501	 * than issue.  The delta behind `vtime` represents the cost of
502	 * currently in-flight IOs.
503	 */
504	atomic64_t			vtime;
505	atomic64_t			done_vtime;
506	u64				abs_vdebt;
507
508	/* current delay in effect and when it started */
509	u64				delay;
510	u64				delay_at;
511
512	/*
513	 * The period this iocg was last active in.  Used for deactivation
514	 * and invalidating `vtime`.
515	 */
516	atomic64_t			active_period;
517	struct list_head		active_list;
518
519	/* see __propagate_weights() and current_hweight() for details */
520	u64				child_active_sum;
521	u64				child_inuse_sum;
522	u64				child_adjusted_sum;
523	int				hweight_gen;
524	u32				hweight_active;
525	u32				hweight_inuse;
526	u32				hweight_donating;
527	u32				hweight_after_donation;
528
529	struct list_head		walk_list;
530	struct list_head		surplus_list;
531
532	struct wait_queue_head		waitq;
533	struct hrtimer			waitq_timer;
534
535	/* timestamp at the latest activation */
536	u64				activated_at;
537
538	/* statistics */
539	struct iocg_pcpu_stat __percpu	*pcpu_stat;
540	struct iocg_stat		stat;
541	struct iocg_stat		last_stat;
542	u64				last_stat_abs_vusage;
543	u64				usage_delta_us;
544	u64				wait_since;
545	u64				indebt_since;
546	u64				indelay_since;
547
548	/* this iocg's depth in the hierarchy and ancestors including self */
549	int				level;
550	struct ioc_gq			*ancestors[];
551};
552
553/* per cgroup */
554struct ioc_cgrp {
555	struct blkcg_policy_data	cpd;
556	unsigned int			dfl_weight;
557};
558
559struct ioc_now {
560	u64				now_ns;
561	u64				now;
562	u64				vnow;
563};
564
565struct iocg_wait {
566	struct wait_queue_entry		wait;
567	struct bio			*bio;
568	u64				abs_cost;
569	bool				committed;
570};
571
572struct iocg_wake_ctx {
573	struct ioc_gq			*iocg;
574	u32				hw_inuse;
575	s64				vbudget;
576};
577
578static const struct ioc_params autop[] = {
579	[AUTOP_HDD] = {
580		.qos				= {
581			[QOS_RLAT]		=        250000, /* 250ms */
582			[QOS_WLAT]		=        250000,
583			[QOS_MIN]		= VRATE_MIN_PPM,
584			[QOS_MAX]		= VRATE_MAX_PPM,
585		},
586		.i_lcoefs			= {
587			[I_LCOEF_RBPS]		=     174019176,
588			[I_LCOEF_RSEQIOPS]	=         41708,
589			[I_LCOEF_RRANDIOPS]	=           370,
590			[I_LCOEF_WBPS]		=     178075866,
591			[I_LCOEF_WSEQIOPS]	=         42705,
592			[I_LCOEF_WRANDIOPS]	=           378,
593		},
594	},
595	[AUTOP_SSD_QD1] = {
596		.qos				= {
597			[QOS_RLAT]		=         25000, /* 25ms */
598			[QOS_WLAT]		=         25000,
599			[QOS_MIN]		= VRATE_MIN_PPM,
600			[QOS_MAX]		= VRATE_MAX_PPM,
601		},
602		.i_lcoefs			= {
603			[I_LCOEF_RBPS]		=     245855193,
604			[I_LCOEF_RSEQIOPS]	=         61575,
605			[I_LCOEF_RRANDIOPS]	=          6946,
606			[I_LCOEF_WBPS]		=     141365009,
607			[I_LCOEF_WSEQIOPS]	=         33716,
608			[I_LCOEF_WRANDIOPS]	=         26796,
609		},
610	},
611	[AUTOP_SSD_DFL] = {
612		.qos				= {
613			[QOS_RLAT]		=         25000, /* 25ms */
614			[QOS_WLAT]		=         25000,
615			[QOS_MIN]		= VRATE_MIN_PPM,
616			[QOS_MAX]		= VRATE_MAX_PPM,
617		},
618		.i_lcoefs			= {
619			[I_LCOEF_RBPS]		=     488636629,
620			[I_LCOEF_RSEQIOPS]	=          8932,
621			[I_LCOEF_RRANDIOPS]	=          8518,
622			[I_LCOEF_WBPS]		=     427891549,
623			[I_LCOEF_WSEQIOPS]	=         28755,
624			[I_LCOEF_WRANDIOPS]	=         21940,
625		},
626		.too_fast_vrate_pct		=           500,
627	},
628	[AUTOP_SSD_FAST] = {
629		.qos				= {
630			[QOS_RLAT]		=          5000, /* 5ms */
631			[QOS_WLAT]		=          5000,
632			[QOS_MIN]		= VRATE_MIN_PPM,
633			[QOS_MAX]		= VRATE_MAX_PPM,
634		},
635		.i_lcoefs			= {
636			[I_LCOEF_RBPS]		=    3102524156LLU,
637			[I_LCOEF_RSEQIOPS]	=        724816,
638			[I_LCOEF_RRANDIOPS]	=        778122,
639			[I_LCOEF_WBPS]		=    1742780862LLU,
640			[I_LCOEF_WSEQIOPS]	=        425702,
641			[I_LCOEF_WRANDIOPS]	=	 443193,
642		},
643		.too_slow_vrate_pct		=            10,
644	},
645};
646
647/*
648 * vrate adjust percentages indexed by ioc->busy_level.  We adjust up on
649 * vtime credit shortage and down on device saturation.
650 */
651static u32 vrate_adj_pct[] =
652	{ 0, 0, 0, 0,
653	  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
654	  2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
655	  4, 4, 4, 4, 4, 4, 4, 4, 8, 8, 8, 8, 8, 8, 8, 8, 16 };
656
657static struct blkcg_policy blkcg_policy_iocost;
658
659/* accessors and helpers */
660static struct ioc *rqos_to_ioc(struct rq_qos *rqos)
661{
662	return container_of(rqos, struct ioc, rqos);
663}
664
665static struct ioc *q_to_ioc(struct request_queue *q)
666{
667	return rqos_to_ioc(rq_qos_id(q, RQ_QOS_COST));
668}
669
670static const char __maybe_unused *ioc_name(struct ioc *ioc)
671{
672	struct gendisk *disk = ioc->rqos.disk;
673
674	if (!disk)
675		return "<unknown>";
676	return disk->disk_name;
677}
678
679static struct ioc_gq *pd_to_iocg(struct blkg_policy_data *pd)
680{
681	return pd ? container_of(pd, struct ioc_gq, pd) : NULL;
682}
683
684static struct ioc_gq *blkg_to_iocg(struct blkcg_gq *blkg)
685{
686	return pd_to_iocg(blkg_to_pd(blkg, &blkcg_policy_iocost));
687}
688
689static struct blkcg_gq *iocg_to_blkg(struct ioc_gq *iocg)
690{
691	return pd_to_blkg(&iocg->pd);
692}
693
694static struct ioc_cgrp *blkcg_to_iocc(struct blkcg *blkcg)
695{
696	return container_of(blkcg_to_cpd(blkcg, &blkcg_policy_iocost),
697			    struct ioc_cgrp, cpd);
698}
699
700/*
701 * Scale @abs_cost to the inverse of @hw_inuse.  The lower the hierarchical
702 * weight, the more expensive each IO.  Must round up.
703 */
704static u64 abs_cost_to_cost(u64 abs_cost, u32 hw_inuse)
705{
706	return DIV64_U64_ROUND_UP(abs_cost * WEIGHT_ONE, hw_inuse);
707}
708
709/*
710 * The inverse of abs_cost_to_cost().  Must round up.
711 */
712static u64 cost_to_abs_cost(u64 cost, u32 hw_inuse)
713{
714	return DIV64_U64_ROUND_UP(cost * hw_inuse, WEIGHT_ONE);
715}
716
717static void iocg_commit_bio(struct ioc_gq *iocg, struct bio *bio,
718			    u64 abs_cost, u64 cost)
719{
720	struct iocg_pcpu_stat *gcs;
721
722	bio->bi_iocost_cost = cost;
723	atomic64_add(cost, &iocg->vtime);
724
725	gcs = get_cpu_ptr(iocg->pcpu_stat);
726	local64_add(abs_cost, &gcs->abs_vusage);
727	put_cpu_ptr(gcs);
728}
729
730static void iocg_lock(struct ioc_gq *iocg, bool lock_ioc, unsigned long *flags)
731{
732	if (lock_ioc) {
733		spin_lock_irqsave(&iocg->ioc->lock, *flags);
734		spin_lock(&iocg->waitq.lock);
735	} else {
736		spin_lock_irqsave(&iocg->waitq.lock, *flags);
737	}
738}
739
740static void iocg_unlock(struct ioc_gq *iocg, bool unlock_ioc, unsigned long *flags)
741{
742	if (unlock_ioc) {
743		spin_unlock(&iocg->waitq.lock);
744		spin_unlock_irqrestore(&iocg->ioc->lock, *flags);
745	} else {
746		spin_unlock_irqrestore(&iocg->waitq.lock, *flags);
747	}
748}
749
750#define CREATE_TRACE_POINTS
751#include <trace/events/iocost.h>
752
753static void ioc_refresh_margins(struct ioc *ioc)
754{
755	struct ioc_margins *margins = &ioc->margins;
756	u32 period_us = ioc->period_us;
757	u64 vrate = ioc->vtime_base_rate;
758
759	margins->min = (period_us * MARGIN_MIN_PCT / 100) * vrate;
760	margins->low = (period_us * MARGIN_LOW_PCT / 100) * vrate;
761	margins->target = (period_us * MARGIN_TARGET_PCT / 100) * vrate;
762}
763
764/* latency Qos params changed, update period_us and all the dependent params */
765static void ioc_refresh_period_us(struct ioc *ioc)
766{
767	u32 ppm, lat, multi, period_us;
768
769	lockdep_assert_held(&ioc->lock);
770
771	/* pick the higher latency target */
772	if (ioc->params.qos[QOS_RLAT] >= ioc->params.qos[QOS_WLAT]) {
773		ppm = ioc->params.qos[QOS_RPPM];
774		lat = ioc->params.qos[QOS_RLAT];
775	} else {
776		ppm = ioc->params.qos[QOS_WPPM];
777		lat = ioc->params.qos[QOS_WLAT];
778	}
779
780	/*
781	 * We want the period to be long enough to contain a healthy number
782	 * of IOs while short enough for granular control.  Define it as a
783	 * multiple of the latency target.  Ideally, the multiplier should
784	 * be scaled according to the percentile so that it would nominally
785	 * contain a certain number of requests.  Let's be simpler and
786	 * scale it linearly so that it's 2x >= pct(90) and 10x at pct(50).
787	 */
788	if (ppm)
789		multi = max_t(u32, (MILLION - ppm) / 50000, 2);
790	else
791		multi = 2;
792	period_us = multi * lat;
793	period_us = clamp_t(u32, period_us, MIN_PERIOD, MAX_PERIOD);
794
795	/* calculate dependent params */
796	ioc->period_us = period_us;
797	ioc->timer_slack_ns = div64_u64(
798		(u64)period_us * NSEC_PER_USEC * TIMER_SLACK_PCT,
799		100);
800	ioc_refresh_margins(ioc);
801}
802
803/*
804 *  ioc->rqos.disk isn't initialized when this function is called from
805 *  the init path.
806 */
807static int ioc_autop_idx(struct ioc *ioc, struct gendisk *disk)
808{
809	int idx = ioc->autop_idx;
810	const struct ioc_params *p = &autop[idx];
811	u32 vrate_pct;
812	u64 now_ns;
813
814	/* rotational? */
815	if (!blk_queue_nonrot(disk->queue))
816		return AUTOP_HDD;
817
818	/* handle SATA SSDs w/ broken NCQ */
819	if (blk_queue_depth(disk->queue) == 1)
820		return AUTOP_SSD_QD1;
821
822	/* use one of the normal ssd sets */
823	if (idx < AUTOP_SSD_DFL)
824		return AUTOP_SSD_DFL;
825
826	/* if user is overriding anything, maintain what was there */
827	if (ioc->user_qos_params || ioc->user_cost_model)
828		return idx;
829
830	/* step up/down based on the vrate */
831	vrate_pct = div64_u64(ioc->vtime_base_rate * 100, VTIME_PER_USEC);
832	now_ns = blk_time_get_ns();
833
834	if (p->too_fast_vrate_pct && p->too_fast_vrate_pct <= vrate_pct) {
835		if (!ioc->autop_too_fast_at)
836			ioc->autop_too_fast_at = now_ns;
837		if (now_ns - ioc->autop_too_fast_at >= AUTOP_CYCLE_NSEC)
838			return idx + 1;
839	} else {
840		ioc->autop_too_fast_at = 0;
841	}
842
843	if (p->too_slow_vrate_pct && p->too_slow_vrate_pct >= vrate_pct) {
844		if (!ioc->autop_too_slow_at)
845			ioc->autop_too_slow_at = now_ns;
846		if (now_ns - ioc->autop_too_slow_at >= AUTOP_CYCLE_NSEC)
847			return idx - 1;
848	} else {
849		ioc->autop_too_slow_at = 0;
850	}
851
852	return idx;
853}
854
855/*
856 * Take the followings as input
857 *
858 *  @bps	maximum sequential throughput
859 *  @seqiops	maximum sequential 4k iops
860 *  @randiops	maximum random 4k iops
861 *
862 * and calculate the linear model cost coefficients.
863 *
864 *  *@page	per-page cost		1s / (@bps / 4096)
865 *  *@seqio	base cost of a seq IO	max((1s / @seqiops) - *@page, 0)
866 *  @randiops	base cost of a rand IO	max((1s / @randiops) - *@page, 0)
867 */
868static void calc_lcoefs(u64 bps, u64 seqiops, u64 randiops,
869			u64 *page, u64 *seqio, u64 *randio)
870{
871	u64 v;
872
873	*page = *seqio = *randio = 0;
874
875	if (bps) {
876		u64 bps_pages = DIV_ROUND_UP_ULL(bps, IOC_PAGE_SIZE);
877
878		if (bps_pages)
879			*page = DIV64_U64_ROUND_UP(VTIME_PER_SEC, bps_pages);
880		else
881			*page = 1;
882	}
883
884	if (seqiops) {
885		v = DIV64_U64_ROUND_UP(VTIME_PER_SEC, seqiops);
886		if (v > *page)
887			*seqio = v - *page;
888	}
889
890	if (randiops) {
891		v = DIV64_U64_ROUND_UP(VTIME_PER_SEC, randiops);
892		if (v > *page)
893			*randio = v - *page;
894	}
895}
896
897static void ioc_refresh_lcoefs(struct ioc *ioc)
898{
899	u64 *u = ioc->params.i_lcoefs;
900	u64 *c = ioc->params.lcoefs;
901
902	calc_lcoefs(u[I_LCOEF_RBPS], u[I_LCOEF_RSEQIOPS], u[I_LCOEF_RRANDIOPS],
903		    &c[LCOEF_RPAGE], &c[LCOEF_RSEQIO], &c[LCOEF_RRANDIO]);
904	calc_lcoefs(u[I_LCOEF_WBPS], u[I_LCOEF_WSEQIOPS], u[I_LCOEF_WRANDIOPS],
905		    &c[LCOEF_WPAGE], &c[LCOEF_WSEQIO], &c[LCOEF_WRANDIO]);
906}
907
908/*
909 * struct gendisk is required as an argument because ioc->rqos.disk
910 * is not properly initialized when called from the init path.
911 */
912static bool ioc_refresh_params_disk(struct ioc *ioc, bool force,
913				    struct gendisk *disk)
914{
915	const struct ioc_params *p;
916	int idx;
917
918	lockdep_assert_held(&ioc->lock);
919
920	idx = ioc_autop_idx(ioc, disk);
921	p = &autop[idx];
922
923	if (idx == ioc->autop_idx && !force)
924		return false;
925
926	if (idx != ioc->autop_idx) {
927		atomic64_set(&ioc->vtime_rate, VTIME_PER_USEC);
928		ioc->vtime_base_rate = VTIME_PER_USEC;
929	}
930
931	ioc->autop_idx = idx;
932	ioc->autop_too_fast_at = 0;
933	ioc->autop_too_slow_at = 0;
934
935	if (!ioc->user_qos_params)
936		memcpy(ioc->params.qos, p->qos, sizeof(p->qos));
937	if (!ioc->user_cost_model)
938		memcpy(ioc->params.i_lcoefs, p->i_lcoefs, sizeof(p->i_lcoefs));
939
940	ioc_refresh_period_us(ioc);
941	ioc_refresh_lcoefs(ioc);
942
943	ioc->vrate_min = DIV64_U64_ROUND_UP((u64)ioc->params.qos[QOS_MIN] *
944					    VTIME_PER_USEC, MILLION);
945	ioc->vrate_max = DIV64_U64_ROUND_UP((u64)ioc->params.qos[QOS_MAX] *
946					    VTIME_PER_USEC, MILLION);
947
948	return true;
949}
950
951static bool ioc_refresh_params(struct ioc *ioc, bool force)
952{
953	return ioc_refresh_params_disk(ioc, force, ioc->rqos.disk);
954}
955
956/*
957 * When an iocg accumulates too much vtime or gets deactivated, we throw away
958 * some vtime, which lowers the overall device utilization. As the exact amount
959 * which is being thrown away is known, we can compensate by accelerating the
960 * vrate accordingly so that the extra vtime generated in the current period
961 * matches what got lost.
962 */
963static void ioc_refresh_vrate(struct ioc *ioc, struct ioc_now *now)
964{
965	s64 pleft = ioc->period_at + ioc->period_us - now->now;
966	s64 vperiod = ioc->period_us * ioc->vtime_base_rate;
967	s64 vcomp, vcomp_min, vcomp_max;
968
969	lockdep_assert_held(&ioc->lock);
970
971	/* we need some time left in this period */
972	if (pleft <= 0)
973		goto done;
974
975	/*
976	 * Calculate how much vrate should be adjusted to offset the error.
977	 * Limit the amount of adjustment and deduct the adjusted amount from
978	 * the error.
979	 */
980	vcomp = -div64_s64(ioc->vtime_err, pleft);
981	vcomp_min = -(ioc->vtime_base_rate >> 1);
982	vcomp_max = ioc->vtime_base_rate;
983	vcomp = clamp(vcomp, vcomp_min, vcomp_max);
984
985	ioc->vtime_err += vcomp * pleft;
986
987	atomic64_set(&ioc->vtime_rate, ioc->vtime_base_rate + vcomp);
988done:
989	/* bound how much error can accumulate */
990	ioc->vtime_err = clamp(ioc->vtime_err, -vperiod, vperiod);
991}
992
993static void ioc_adjust_base_vrate(struct ioc *ioc, u32 rq_wait_pct,
994				  int nr_lagging, int nr_shortages,
995				  int prev_busy_level, u32 *missed_ppm)
996{
997	u64 vrate = ioc->vtime_base_rate;
998	u64 vrate_min = ioc->vrate_min, vrate_max = ioc->vrate_max;
999
1000	if (!ioc->busy_level || (ioc->busy_level < 0 && nr_lagging)) {
1001		if (ioc->busy_level != prev_busy_level || nr_lagging)
1002			trace_iocost_ioc_vrate_adj(ioc, vrate,
1003						   missed_ppm, rq_wait_pct,
1004						   nr_lagging, nr_shortages);
1005
1006		return;
1007	}
1008
1009	/*
1010	 * If vrate is out of bounds, apply clamp gradually as the
1011	 * bounds can change abruptly.  Otherwise, apply busy_level
1012	 * based adjustment.
1013	 */
1014	if (vrate < vrate_min) {
1015		vrate = div64_u64(vrate * (100 + VRATE_CLAMP_ADJ_PCT), 100);
1016		vrate = min(vrate, vrate_min);
1017	} else if (vrate > vrate_max) {
1018		vrate = div64_u64(vrate * (100 - VRATE_CLAMP_ADJ_PCT), 100);
1019		vrate = max(vrate, vrate_max);
1020	} else {
1021		int idx = min_t(int, abs(ioc->busy_level),
1022				ARRAY_SIZE(vrate_adj_pct) - 1);
1023		u32 adj_pct = vrate_adj_pct[idx];
1024
1025		if (ioc->busy_level > 0)
1026			adj_pct = 100 - adj_pct;
1027		else
1028			adj_pct = 100 + adj_pct;
1029
1030		vrate = clamp(DIV64_U64_ROUND_UP(vrate * adj_pct, 100),
1031			      vrate_min, vrate_max);
1032	}
1033
1034	trace_iocost_ioc_vrate_adj(ioc, vrate, missed_ppm, rq_wait_pct,
1035				   nr_lagging, nr_shortages);
1036
1037	ioc->vtime_base_rate = vrate;
1038	ioc_refresh_margins(ioc);
1039}
1040
1041/* take a snapshot of the current [v]time and vrate */
1042static void ioc_now(struct ioc *ioc, struct ioc_now *now)
1043{
1044	unsigned seq;
1045	u64 vrate;
1046
1047	now->now_ns = blk_time_get_ns();
1048	now->now = ktime_to_us(now->now_ns);
1049	vrate = atomic64_read(&ioc->vtime_rate);
1050
1051	/*
1052	 * The current vtime is
1053	 *
1054	 *   vtime at period start + (wallclock time since the start) * vrate
1055	 *
1056	 * As a consistent snapshot of `period_at_vtime` and `period_at` is
1057	 * needed, they're seqcount protected.
1058	 */
1059	do {
1060		seq = read_seqcount_begin(&ioc->period_seqcount);
1061		now->vnow = ioc->period_at_vtime +
1062			(now->now - ioc->period_at) * vrate;
1063	} while (read_seqcount_retry(&ioc->period_seqcount, seq));
1064}
1065
1066static void ioc_start_period(struct ioc *ioc, struct ioc_now *now)
1067{
1068	WARN_ON_ONCE(ioc->running != IOC_RUNNING);
1069
1070	write_seqcount_begin(&ioc->period_seqcount);
1071	ioc->period_at = now->now;
1072	ioc->period_at_vtime = now->vnow;
1073	write_seqcount_end(&ioc->period_seqcount);
1074
1075	ioc->timer.expires = jiffies + usecs_to_jiffies(ioc->period_us);
1076	add_timer(&ioc->timer);
1077}
1078
1079/*
1080 * Update @iocg's `active` and `inuse` to @active and @inuse, update level
1081 * weight sums and propagate upwards accordingly. If @save, the current margin
1082 * is saved to be used as reference for later inuse in-period adjustments.
1083 */
1084static void __propagate_weights(struct ioc_gq *iocg, u32 active, u32 inuse,
1085				bool save, struct ioc_now *now)
1086{
1087	struct ioc *ioc = iocg->ioc;
1088	int lvl;
1089
1090	lockdep_assert_held(&ioc->lock);
1091
1092	/*
1093	 * For an active leaf node, its inuse shouldn't be zero or exceed
1094	 * @active. An active internal node's inuse is solely determined by the
1095	 * inuse to active ratio of its children regardless of @inuse.
1096	 */
1097	if (list_empty(&iocg->active_list) && iocg->child_active_sum) {
1098		inuse = DIV64_U64_ROUND_UP(active * iocg->child_inuse_sum,
1099					   iocg->child_active_sum);
1100	} else {
1101		inuse = clamp_t(u32, inuse, 1, active);
1102	}
1103
1104	iocg->last_inuse = iocg->inuse;
1105	if (save)
1106		iocg->saved_margin = now->vnow - atomic64_read(&iocg->vtime);
1107
1108	if (active == iocg->active && inuse == iocg->inuse)
1109		return;
1110
1111	for (lvl = iocg->level - 1; lvl >= 0; lvl--) {
1112		struct ioc_gq *parent = iocg->ancestors[lvl];
1113		struct ioc_gq *child = iocg->ancestors[lvl + 1];
1114		u32 parent_active = 0, parent_inuse = 0;
1115
1116		/* update the level sums */
1117		parent->child_active_sum += (s32)(active - child->active);
1118		parent->child_inuse_sum += (s32)(inuse - child->inuse);
1119		/* apply the updates */
1120		child->active = active;
1121		child->inuse = inuse;
1122
1123		/*
1124		 * The delta between inuse and active sums indicates that
1125		 * much of weight is being given away.  Parent's inuse
1126		 * and active should reflect the ratio.
1127		 */
1128		if (parent->child_active_sum) {
1129			parent_active = parent->weight;
1130			parent_inuse = DIV64_U64_ROUND_UP(
1131				parent_active * parent->child_inuse_sum,
1132				parent->child_active_sum);
1133		}
1134
1135		/* do we need to keep walking up? */
1136		if (parent_active == parent->active &&
1137		    parent_inuse == parent->inuse)
1138			break;
1139
1140		active = parent_active;
1141		inuse = parent_inuse;
1142	}
1143
1144	ioc->weights_updated = true;
1145}
1146
1147static void commit_weights(struct ioc *ioc)
1148{
1149	lockdep_assert_held(&ioc->lock);
1150
1151	if (ioc->weights_updated) {
1152		/* paired with rmb in current_hweight(), see there */
1153		smp_wmb();
1154		atomic_inc(&ioc->hweight_gen);
1155		ioc->weights_updated = false;
1156	}
1157}
1158
1159static void propagate_weights(struct ioc_gq *iocg, u32 active, u32 inuse,
1160			      bool save, struct ioc_now *now)
1161{
1162	__propagate_weights(iocg, active, inuse, save, now);
1163	commit_weights(iocg->ioc);
1164}
1165
1166static void current_hweight(struct ioc_gq *iocg, u32 *hw_activep, u32 *hw_inusep)
1167{
1168	struct ioc *ioc = iocg->ioc;
1169	int lvl;
1170	u32 hwa, hwi;
1171	int ioc_gen;
1172
1173	/* hot path - if uptodate, use cached */
1174	ioc_gen = atomic_read(&ioc->hweight_gen);
1175	if (ioc_gen == iocg->hweight_gen)
1176		goto out;
1177
1178	/*
1179	 * Paired with wmb in commit_weights(). If we saw the updated
1180	 * hweight_gen, all the weight updates from __propagate_weights() are
1181	 * visible too.
1182	 *
1183	 * We can race with weight updates during calculation and get it
1184	 * wrong.  However, hweight_gen would have changed and a future
1185	 * reader will recalculate and we're guaranteed to discard the
1186	 * wrong result soon.
1187	 */
1188	smp_rmb();
1189
1190	hwa = hwi = WEIGHT_ONE;
1191	for (lvl = 0; lvl <= iocg->level - 1; lvl++) {
1192		struct ioc_gq *parent = iocg->ancestors[lvl];
1193		struct ioc_gq *child = iocg->ancestors[lvl + 1];
1194		u64 active_sum = READ_ONCE(parent->child_active_sum);
1195		u64 inuse_sum = READ_ONCE(parent->child_inuse_sum);
1196		u32 active = READ_ONCE(child->active);
1197		u32 inuse = READ_ONCE(child->inuse);
1198
1199		/* we can race with deactivations and either may read as zero */
1200		if (!active_sum || !inuse_sum)
1201			continue;
1202
1203		active_sum = max_t(u64, active, active_sum);
1204		hwa = div64_u64((u64)hwa * active, active_sum);
1205
1206		inuse_sum = max_t(u64, inuse, inuse_sum);
1207		hwi = div64_u64((u64)hwi * inuse, inuse_sum);
1208	}
1209
1210	iocg->hweight_active = max_t(u32, hwa, 1);
1211	iocg->hweight_inuse = max_t(u32, hwi, 1);
1212	iocg->hweight_gen = ioc_gen;
1213out:
1214	if (hw_activep)
1215		*hw_activep = iocg->hweight_active;
1216	if (hw_inusep)
1217		*hw_inusep = iocg->hweight_inuse;
1218}
1219
1220/*
1221 * Calculate the hweight_inuse @iocg would get with max @inuse assuming all the
1222 * other weights stay unchanged.
1223 */
1224static u32 current_hweight_max(struct ioc_gq *iocg)
1225{
1226	u32 hwm = WEIGHT_ONE;
1227	u32 inuse = iocg->active;
1228	u64 child_inuse_sum;
1229	int lvl;
1230
1231	lockdep_assert_held(&iocg->ioc->lock);
1232
1233	for (lvl = iocg->level - 1; lvl >= 0; lvl--) {
1234		struct ioc_gq *parent = iocg->ancestors[lvl];
1235		struct ioc_gq *child = iocg->ancestors[lvl + 1];
1236
1237		child_inuse_sum = parent->child_inuse_sum + inuse - child->inuse;
1238		hwm = div64_u64((u64)hwm * inuse, child_inuse_sum);
1239		inuse = DIV64_U64_ROUND_UP(parent->active * child_inuse_sum,
1240					   parent->child_active_sum);
1241	}
1242
1243	return max_t(u32, hwm, 1);
1244}
1245
1246static void weight_updated(struct ioc_gq *iocg, struct ioc_now *now)
1247{
1248	struct ioc *ioc = iocg->ioc;
1249	struct blkcg_gq *blkg = iocg_to_blkg(iocg);
1250	struct ioc_cgrp *iocc = blkcg_to_iocc(blkg->blkcg);
1251	u32 weight;
1252
1253	lockdep_assert_held(&ioc->lock);
1254
1255	weight = iocg->cfg_weight ?: iocc->dfl_weight;
1256	if (weight != iocg->weight && iocg->active)
1257		propagate_weights(iocg, weight, iocg->inuse, true, now);
1258	iocg->weight = weight;
1259}
1260
1261static bool iocg_activate(struct ioc_gq *iocg, struct ioc_now *now)
1262{
1263	struct ioc *ioc = iocg->ioc;
1264	u64 __maybe_unused last_period, cur_period;
1265	u64 vtime, vtarget;
1266	int i;
1267
1268	/*
1269	 * If seem to be already active, just update the stamp to tell the
1270	 * timer that we're still active.  We don't mind occassional races.
1271	 */
1272	if (!list_empty(&iocg->active_list)) {
1273		ioc_now(ioc, now);
1274		cur_period = atomic64_read(&ioc->cur_period);
1275		if (atomic64_read(&iocg->active_period) != cur_period)
1276			atomic64_set(&iocg->active_period, cur_period);
1277		return true;
1278	}
1279
1280	/* racy check on internal node IOs, treat as root level IOs */
1281	if (iocg->child_active_sum)
1282		return false;
1283
1284	spin_lock_irq(&ioc->lock);
1285
1286	ioc_now(ioc, now);
1287
1288	/* update period */
1289	cur_period = atomic64_read(&ioc->cur_period);
1290	last_period = atomic64_read(&iocg->active_period);
1291	atomic64_set(&iocg->active_period, cur_period);
1292
1293	/* already activated or breaking leaf-only constraint? */
1294	if (!list_empty(&iocg->active_list))
1295		goto succeed_unlock;
1296	for (i = iocg->level - 1; i > 0; i--)
1297		if (!list_empty(&iocg->ancestors[i]->active_list))
1298			goto fail_unlock;
1299
1300	if (iocg->child_active_sum)
1301		goto fail_unlock;
1302
1303	/*
1304	 * Always start with the target budget. On deactivation, we throw away
1305	 * anything above it.
1306	 */
1307	vtarget = now->vnow - ioc->margins.target;
1308	vtime = atomic64_read(&iocg->vtime);
1309
1310	atomic64_add(vtarget - vtime, &iocg->vtime);
1311	atomic64_add(vtarget - vtime, &iocg->done_vtime);
1312	vtime = vtarget;
1313
1314	/*
1315	 * Activate, propagate weight and start period timer if not
1316	 * running.  Reset hweight_gen to avoid accidental match from
1317	 * wrapping.
1318	 */
1319	iocg->hweight_gen = atomic_read(&ioc->hweight_gen) - 1;
1320	list_add(&iocg->active_list, &ioc->active_iocgs);
1321
1322	propagate_weights(iocg, iocg->weight,
1323			  iocg->last_inuse ?: iocg->weight, true, now);
1324
1325	TRACE_IOCG_PATH(iocg_activate, iocg, now,
1326			last_period, cur_period, vtime);
1327
1328	iocg->activated_at = now->now;
1329
1330	if (ioc->running == IOC_IDLE) {
1331		ioc->running = IOC_RUNNING;
1332		ioc->dfgv_period_at = now->now;
1333		ioc->dfgv_period_rem = 0;
1334		ioc_start_period(ioc, now);
1335	}
1336
1337succeed_unlock:
1338	spin_unlock_irq(&ioc->lock);
1339	return true;
1340
1341fail_unlock:
1342	spin_unlock_irq(&ioc->lock);
1343	return false;
1344}
1345
1346static bool iocg_kick_delay(struct ioc_gq *iocg, struct ioc_now *now)
1347{
1348	struct ioc *ioc = iocg->ioc;
1349	struct blkcg_gq *blkg = iocg_to_blkg(iocg);
1350	u64 tdelta, delay, new_delay, shift;
1351	s64 vover, vover_pct;
1352	u32 hwa;
1353
1354	lockdep_assert_held(&iocg->waitq.lock);
1355
1356	/*
1357	 * If the delay is set by another CPU, we may be in the past. No need to
1358	 * change anything if so. This avoids decay calculation underflow.
1359	 */
1360	if (time_before64(now->now, iocg->delay_at))
1361		return false;
1362
1363	/* calculate the current delay in effect - 1/2 every second */
1364	tdelta = now->now - iocg->delay_at;
1365	shift = div64_u64(tdelta, USEC_PER_SEC);
1366	if (iocg->delay && shift < BITS_PER_LONG)
1367		delay = iocg->delay >> shift;
1368	else
1369		delay = 0;
1370
1371	/* calculate the new delay from the debt amount */
1372	current_hweight(iocg, &hwa, NULL);
1373	vover = atomic64_read(&iocg->vtime) +
1374		abs_cost_to_cost(iocg->abs_vdebt, hwa) - now->vnow;
1375	vover_pct = div64_s64(100 * vover,
1376			      ioc->period_us * ioc->vtime_base_rate);
1377
1378	if (vover_pct <= MIN_DELAY_THR_PCT)
1379		new_delay = 0;
1380	else if (vover_pct >= MAX_DELAY_THR_PCT)
1381		new_delay = MAX_DELAY;
1382	else
1383		new_delay = MIN_DELAY +
1384			div_u64((MAX_DELAY - MIN_DELAY) *
1385				(vover_pct - MIN_DELAY_THR_PCT),
1386				MAX_DELAY_THR_PCT - MIN_DELAY_THR_PCT);
1387
1388	/* pick the higher one and apply */
1389	if (new_delay > delay) {
1390		iocg->delay = new_delay;
1391		iocg->delay_at = now->now;
1392		delay = new_delay;
1393	}
1394
1395	if (delay >= MIN_DELAY) {
1396		if (!iocg->indelay_since)
1397			iocg->indelay_since = now->now;
1398		blkcg_set_delay(blkg, delay * NSEC_PER_USEC);
1399		return true;
1400	} else {
1401		if (iocg->indelay_since) {
1402			iocg->stat.indelay_us += now->now - iocg->indelay_since;
1403			iocg->indelay_since = 0;
1404		}
1405		iocg->delay = 0;
1406		blkcg_clear_delay(blkg);
1407		return false;
1408	}
1409}
1410
1411static void iocg_incur_debt(struct ioc_gq *iocg, u64 abs_cost,
1412			    struct ioc_now *now)
1413{
1414	struct iocg_pcpu_stat *gcs;
1415
1416	lockdep_assert_held(&iocg->ioc->lock);
1417	lockdep_assert_held(&iocg->waitq.lock);
1418	WARN_ON_ONCE(list_empty(&iocg->active_list));
1419
1420	/*
1421	 * Once in debt, debt handling owns inuse. @iocg stays at the minimum
1422	 * inuse donating all of it share to others until its debt is paid off.
1423	 */
1424	if (!iocg->abs_vdebt && abs_cost) {
1425		iocg->indebt_since = now->now;
1426		propagate_weights(iocg, iocg->active, 0, false, now);
1427	}
1428
1429	iocg->abs_vdebt += abs_cost;
1430
1431	gcs = get_cpu_ptr(iocg->pcpu_stat);
1432	local64_add(abs_cost, &gcs->abs_vusage);
1433	put_cpu_ptr(gcs);
1434}
1435
1436static void iocg_pay_debt(struct ioc_gq *iocg, u64 abs_vpay,
1437			  struct ioc_now *now)
1438{
1439	lockdep_assert_held(&iocg->ioc->lock);
1440	lockdep_assert_held(&iocg->waitq.lock);
1441
1442	/*
1443	 * make sure that nobody messed with @iocg. Check iocg->pd.online
1444	 * to avoid warn when removing blkcg or disk.
1445	 */
1446	WARN_ON_ONCE(list_empty(&iocg->active_list) && iocg->pd.online);
1447	WARN_ON_ONCE(iocg->inuse > 1);
1448
1449	iocg->abs_vdebt -= min(abs_vpay, iocg->abs_vdebt);
1450
1451	/* if debt is paid in full, restore inuse */
1452	if (!iocg->abs_vdebt) {
1453		iocg->stat.indebt_us += now->now - iocg->indebt_since;
1454		iocg->indebt_since = 0;
1455
1456		propagate_weights(iocg, iocg->active, iocg->last_inuse,
1457				  false, now);
1458	}
1459}
1460
1461static int iocg_wake_fn(struct wait_queue_entry *wq_entry, unsigned mode,
1462			int flags, void *key)
1463{
1464	struct iocg_wait *wait = container_of(wq_entry, struct iocg_wait, wait);
1465	struct iocg_wake_ctx *ctx = key;
1466	u64 cost = abs_cost_to_cost(wait->abs_cost, ctx->hw_inuse);
1467
1468	ctx->vbudget -= cost;
1469
1470	if (ctx->vbudget < 0)
1471		return -1;
1472
1473	iocg_commit_bio(ctx->iocg, wait->bio, wait->abs_cost, cost);
1474	wait->committed = true;
1475
1476	/*
1477	 * autoremove_wake_function() removes the wait entry only when it
1478	 * actually changed the task state. We want the wait always removed.
1479	 * Remove explicitly and use default_wake_function(). Note that the
1480	 * order of operations is important as finish_wait() tests whether
1481	 * @wq_entry is removed without grabbing the lock.
1482	 */
1483	default_wake_function(wq_entry, mode, flags, key);
1484	list_del_init_careful(&wq_entry->entry);
1485	return 0;
1486}
1487
1488/*
1489 * Calculate the accumulated budget, pay debt if @pay_debt and wake up waiters
1490 * accordingly. When @pay_debt is %true, the caller must be holding ioc->lock in
1491 * addition to iocg->waitq.lock.
1492 */
1493static void iocg_kick_waitq(struct ioc_gq *iocg, bool pay_debt,
1494			    struct ioc_now *now)
1495{
1496	struct ioc *ioc = iocg->ioc;
1497	struct iocg_wake_ctx ctx = { .iocg = iocg };
1498	u64 vshortage, expires, oexpires;
1499	s64 vbudget;
1500	u32 hwa;
1501
1502	lockdep_assert_held(&iocg->waitq.lock);
1503
1504	current_hweight(iocg, &hwa, NULL);
1505	vbudget = now->vnow - atomic64_read(&iocg->vtime);
1506
1507	/* pay off debt */
1508	if (pay_debt && iocg->abs_vdebt && vbudget > 0) {
1509		u64 abs_vbudget = cost_to_abs_cost(vbudget, hwa);
1510		u64 abs_vpay = min_t(u64, abs_vbudget, iocg->abs_vdebt);
1511		u64 vpay = abs_cost_to_cost(abs_vpay, hwa);
1512
1513		lockdep_assert_held(&ioc->lock);
1514
1515		atomic64_add(vpay, &iocg->vtime);
1516		atomic64_add(vpay, &iocg->done_vtime);
1517		iocg_pay_debt(iocg, abs_vpay, now);
1518		vbudget -= vpay;
1519	}
1520
1521	if (iocg->abs_vdebt || iocg->delay)
1522		iocg_kick_delay(iocg, now);
1523
1524	/*
1525	 * Debt can still be outstanding if we haven't paid all yet or the
1526	 * caller raced and called without @pay_debt. Shouldn't wake up waiters
1527	 * under debt. Make sure @vbudget reflects the outstanding amount and is
1528	 * not positive.
1529	 */
1530	if (iocg->abs_vdebt) {
1531		s64 vdebt = abs_cost_to_cost(iocg->abs_vdebt, hwa);
1532		vbudget = min_t(s64, 0, vbudget - vdebt);
1533	}
1534
1535	/*
1536	 * Wake up the ones which are due and see how much vtime we'll need for
1537	 * the next one. As paying off debt restores hw_inuse, it must be read
1538	 * after the above debt payment.
1539	 */
1540	ctx.vbudget = vbudget;
1541	current_hweight(iocg, NULL, &ctx.hw_inuse);
1542
1543	__wake_up_locked_key(&iocg->waitq, TASK_NORMAL, &ctx);
1544
1545	if (!waitqueue_active(&iocg->waitq)) {
1546		if (iocg->wait_since) {
1547			iocg->stat.wait_us += now->now - iocg->wait_since;
1548			iocg->wait_since = 0;
1549		}
1550		return;
1551	}
1552
1553	if (!iocg->wait_since)
1554		iocg->wait_since = now->now;
1555
1556	if (WARN_ON_ONCE(ctx.vbudget >= 0))
1557		return;
1558
1559	/* determine next wakeup, add a timer margin to guarantee chunking */
1560	vshortage = -ctx.vbudget;
1561	expires = now->now_ns +
1562		DIV64_U64_ROUND_UP(vshortage, ioc->vtime_base_rate) *
1563		NSEC_PER_USEC;
1564	expires += ioc->timer_slack_ns;
1565
1566	/* if already active and close enough, don't bother */
1567	oexpires = ktime_to_ns(hrtimer_get_softexpires(&iocg->waitq_timer));
1568	if (hrtimer_is_queued(&iocg->waitq_timer) &&
1569	    abs(oexpires - expires) <= ioc->timer_slack_ns)
1570		return;
1571
1572	hrtimer_start_range_ns(&iocg->waitq_timer, ns_to_ktime(expires),
1573			       ioc->timer_slack_ns, HRTIMER_MODE_ABS);
1574}
1575
1576static enum hrtimer_restart iocg_waitq_timer_fn(struct hrtimer *timer)
1577{
1578	struct ioc_gq *iocg = container_of(timer, struct ioc_gq, waitq_timer);
1579	bool pay_debt = READ_ONCE(iocg->abs_vdebt);
1580	struct ioc_now now;
1581	unsigned long flags;
1582
1583	ioc_now(iocg->ioc, &now);
1584
1585	iocg_lock(iocg, pay_debt, &flags);
1586	iocg_kick_waitq(iocg, pay_debt, &now);
1587	iocg_unlock(iocg, pay_debt, &flags);
1588
1589	return HRTIMER_NORESTART;
1590}
1591
1592static void ioc_lat_stat(struct ioc *ioc, u32 *missed_ppm_ar, u32 *rq_wait_pct_p)
1593{
1594	u32 nr_met[2] = { };
1595	u32 nr_missed[2] = { };
1596	u64 rq_wait_ns = 0;
1597	int cpu, rw;
1598
1599	for_each_online_cpu(cpu) {
1600		struct ioc_pcpu_stat *stat = per_cpu_ptr(ioc->pcpu_stat, cpu);
1601		u64 this_rq_wait_ns;
1602
1603		for (rw = READ; rw <= WRITE; rw++) {
1604			u32 this_met = local_read(&stat->missed[rw].nr_met);
1605			u32 this_missed = local_read(&stat->missed[rw].nr_missed);
1606
1607			nr_met[rw] += this_met - stat->missed[rw].last_met;
1608			nr_missed[rw] += this_missed - stat->missed[rw].last_missed;
1609			stat->missed[rw].last_met = this_met;
1610			stat->missed[rw].last_missed = this_missed;
1611		}
1612
1613		this_rq_wait_ns = local64_read(&stat->rq_wait_ns);
1614		rq_wait_ns += this_rq_wait_ns - stat->last_rq_wait_ns;
1615		stat->last_rq_wait_ns = this_rq_wait_ns;
1616	}
1617
1618	for (rw = READ; rw <= WRITE; rw++) {
1619		if (nr_met[rw] + nr_missed[rw])
1620			missed_ppm_ar[rw] =
1621				DIV64_U64_ROUND_UP((u64)nr_missed[rw] * MILLION,
1622						   nr_met[rw] + nr_missed[rw]);
1623		else
1624			missed_ppm_ar[rw] = 0;
1625	}
1626
1627	*rq_wait_pct_p = div64_u64(rq_wait_ns * 100,
1628				   ioc->period_us * NSEC_PER_USEC);
1629}
1630
1631/* was iocg idle this period? */
1632static bool iocg_is_idle(struct ioc_gq *iocg)
1633{
1634	struct ioc *ioc = iocg->ioc;
1635
1636	/* did something get issued this period? */
1637	if (atomic64_read(&iocg->active_period) ==
1638	    atomic64_read(&ioc->cur_period))
1639		return false;
1640
1641	/* is something in flight? */
1642	if (atomic64_read(&iocg->done_vtime) != atomic64_read(&iocg->vtime))
1643		return false;
1644
1645	return true;
1646}
1647
1648/*
1649 * Call this function on the target leaf @iocg's to build pre-order traversal
1650 * list of all the ancestors in @inner_walk. The inner nodes are linked through
1651 * ->walk_list and the caller is responsible for dissolving the list after use.
1652 */
1653static void iocg_build_inner_walk(struct ioc_gq *iocg,
1654				  struct list_head *inner_walk)
1655{
1656	int lvl;
1657
1658	WARN_ON_ONCE(!list_empty(&iocg->walk_list));
1659
1660	/* find the first ancestor which hasn't been visited yet */
1661	for (lvl = iocg->level - 1; lvl >= 0; lvl--) {
1662		if (!list_empty(&iocg->ancestors[lvl]->walk_list))
1663			break;
1664	}
1665
1666	/* walk down and visit the inner nodes to get pre-order traversal */
1667	while (++lvl <= iocg->level - 1) {
1668		struct ioc_gq *inner = iocg->ancestors[lvl];
1669
1670		/* record traversal order */
1671		list_add_tail(&inner->walk_list, inner_walk);
1672	}
1673}
1674
1675/* propagate the deltas to the parent */
1676static void iocg_flush_stat_upward(struct ioc_gq *iocg)
1677{
1678	if (iocg->level > 0) {
1679		struct iocg_stat *parent_stat =
1680			&iocg->ancestors[iocg->level - 1]->stat;
1681
1682		parent_stat->usage_us +=
1683			iocg->stat.usage_us - iocg->last_stat.usage_us;
1684		parent_stat->wait_us +=
1685			iocg->stat.wait_us - iocg->last_stat.wait_us;
1686		parent_stat->indebt_us +=
1687			iocg->stat.indebt_us - iocg->last_stat.indebt_us;
1688		parent_stat->indelay_us +=
1689			iocg->stat.indelay_us - iocg->last_stat.indelay_us;
1690	}
1691
1692	iocg->last_stat = iocg->stat;
1693}
1694
1695/* collect per-cpu counters and propagate the deltas to the parent */
1696static void iocg_flush_stat_leaf(struct ioc_gq *iocg, struct ioc_now *now)
1697{
1698	struct ioc *ioc = iocg->ioc;
1699	u64 abs_vusage = 0;
1700	u64 vusage_delta;
1701	int cpu;
1702
1703	lockdep_assert_held(&iocg->ioc->lock);
1704
1705	/* collect per-cpu counters */
1706	for_each_possible_cpu(cpu) {
1707		abs_vusage += local64_read(
1708				per_cpu_ptr(&iocg->pcpu_stat->abs_vusage, cpu));
1709	}
1710	vusage_delta = abs_vusage - iocg->last_stat_abs_vusage;
1711	iocg->last_stat_abs_vusage = abs_vusage;
1712
1713	iocg->usage_delta_us = div64_u64(vusage_delta, ioc->vtime_base_rate);
1714	iocg->stat.usage_us += iocg->usage_delta_us;
1715
1716	iocg_flush_stat_upward(iocg);
1717}
1718
1719/* get stat counters ready for reading on all active iocgs */
1720static void iocg_flush_stat(struct list_head *target_iocgs, struct ioc_now *now)
1721{
1722	LIST_HEAD(inner_walk);
1723	struct ioc_gq *iocg, *tiocg;
1724
1725	/* flush leaves and build inner node walk list */
1726	list_for_each_entry(iocg, target_iocgs, active_list) {
1727		iocg_flush_stat_leaf(iocg, now);
1728		iocg_build_inner_walk(iocg, &inner_walk);
1729	}
1730
1731	/* keep flushing upwards by walking the inner list backwards */
1732	list_for_each_entry_safe_reverse(iocg, tiocg, &inner_walk, walk_list) {
1733		iocg_flush_stat_upward(iocg);
1734		list_del_init(&iocg->walk_list);
1735	}
1736}
1737
1738/*
1739 * Determine what @iocg's hweight_inuse should be after donating unused
1740 * capacity. @hwm is the upper bound and used to signal no donation. This
1741 * function also throws away @iocg's excess budget.
1742 */
1743static u32 hweight_after_donation(struct ioc_gq *iocg, u32 old_hwi, u32 hwm,
1744				  u32 usage, struct ioc_now *now)
1745{
1746	struct ioc *ioc = iocg->ioc;
1747	u64 vtime = atomic64_read(&iocg->vtime);
1748	s64 excess, delta, target, new_hwi;
1749
1750	/* debt handling owns inuse for debtors */
1751	if (iocg->abs_vdebt)
1752		return 1;
1753
1754	/* see whether minimum margin requirement is met */
1755	if (waitqueue_active(&iocg->waitq) ||
1756	    time_after64(vtime, now->vnow - ioc->margins.min))
1757		return hwm;
1758
1759	/* throw away excess above target */
1760	excess = now->vnow - vtime - ioc->margins.target;
1761	if (excess > 0) {
1762		atomic64_add(excess, &iocg->vtime);
1763		atomic64_add(excess, &iocg->done_vtime);
1764		vtime += excess;
1765		ioc->vtime_err -= div64_u64(excess * old_hwi, WEIGHT_ONE);
1766	}
1767
1768	/*
1769	 * Let's say the distance between iocg's and device's vtimes as a
1770	 * fraction of period duration is delta. Assuming that the iocg will
1771	 * consume the usage determined above, we want to determine new_hwi so
1772	 * that delta equals MARGIN_TARGET at the end of the next period.
1773	 *
1774	 * We need to execute usage worth of IOs while spending the sum of the
1775	 * new budget (1 - MARGIN_TARGET) and the leftover from the last period
1776	 * (delta):
1777	 *
1778	 *   usage = (1 - MARGIN_TARGET + delta) * new_hwi
1779	 *
1780	 * Therefore, the new_hwi is:
1781	 *
1782	 *   new_hwi = usage / (1 - MARGIN_TARGET + delta)
1783	 */
1784	delta = div64_s64(WEIGHT_ONE * (now->vnow - vtime),
1785			  now->vnow - ioc->period_at_vtime);
1786	target = WEIGHT_ONE * MARGIN_TARGET_PCT / 100;
1787	new_hwi = div64_s64(WEIGHT_ONE * usage, WEIGHT_ONE - target + delta);
1788
1789	return clamp_t(s64, new_hwi, 1, hwm);
1790}
1791
1792/*
1793 * For work-conservation, an iocg which isn't using all of its share should
1794 * donate the leftover to other iocgs. There are two ways to achieve this - 1.
1795 * bumping up vrate accordingly 2. lowering the donating iocg's inuse weight.
1796 *
1797 * #1 is mathematically simpler but has the drawback of requiring synchronous
1798 * global hweight_inuse updates when idle iocg's get activated or inuse weights
1799 * change due to donation snapbacks as it has the possibility of grossly
1800 * overshooting what's allowed by the model and vrate.
1801 *
1802 * #2 is inherently safe with local operations. The donating iocg can easily
1803 * snap back to higher weights when needed without worrying about impacts on
1804 * other nodes as the impacts will be inherently correct. This also makes idle
1805 * iocg activations safe. The only effect activations have is decreasing
1806 * hweight_inuse of others, the right solution to which is for those iocgs to
1807 * snap back to higher weights.
1808 *
1809 * So, we go with #2. The challenge is calculating how each donating iocg's
1810 * inuse should be adjusted to achieve the target donation amounts. This is done
1811 * using Andy's method described in the following pdf.
1812 *
1813 *   https://drive.google.com/file/d/1PsJwxPFtjUnwOY1QJ5AeICCcsL7BM3bo
1814 *
1815 * Given the weights and target after-donation hweight_inuse values, Andy's
1816 * method determines how the proportional distribution should look like at each
1817 * sibling level to maintain the relative relationship between all non-donating
1818 * pairs. To roughly summarize, it divides the tree into donating and
1819 * non-donating parts, calculates global donation rate which is used to
1820 * determine the target hweight_inuse for each node, and then derives per-level
1821 * proportions.
1822 *
1823 * The following pdf shows that global distribution calculated this way can be
1824 * achieved by scaling inuse weights of donating leaves and propagating the
1825 * adjustments upwards proportionally.
1826 *
1827 *   https://drive.google.com/file/d/1vONz1-fzVO7oY5DXXsLjSxEtYYQbOvsE
1828 *
1829 * Combining the above two, we can determine how each leaf iocg's inuse should
1830 * be adjusted to achieve the target donation.
1831 *
1832 *   https://drive.google.com/file/d/1WcrltBOSPN0qXVdBgnKm4mdp9FhuEFQN
1833 *
1834 * The inline comments use symbols from the last pdf.
1835 *
1836 *   b is the sum of the absolute budgets in the subtree. 1 for the root node.
1837 *   f is the sum of the absolute budgets of non-donating nodes in the subtree.
1838 *   t is the sum of the absolute budgets of donating nodes in the subtree.
1839 *   w is the weight of the node. w = w_f + w_t
1840 *   w_f is the non-donating portion of w. w_f = w * f / b
1841 *   w_b is the donating portion of w. w_t = w * t / b
1842 *   s is the sum of all sibling weights. s = Sum(w) for siblings
1843 *   s_f and s_t are the non-donating and donating portions of s.
1844 *
1845 * Subscript p denotes the parent's counterpart and ' the adjusted value - e.g.
1846 * w_pt is the donating portion of the parent's weight and w'_pt the same value
1847 * after adjustments. Subscript r denotes the root node's values.
1848 */
1849static void transfer_surpluses(struct list_head *surpluses, struct ioc_now *now)
1850{
1851	LIST_HEAD(over_hwa);
1852	LIST_HEAD(inner_walk);
1853	struct ioc_gq *iocg, *tiocg, *root_iocg;
1854	u32 after_sum, over_sum, over_target, gamma;
1855
1856	/*
1857	 * It's pretty unlikely but possible for the total sum of
1858	 * hweight_after_donation's to be higher than WEIGHT_ONE, which will
1859	 * confuse the following calculations. If such condition is detected,
1860	 * scale down everyone over its full share equally to keep the sum below
1861	 * WEIGHT_ONE.
1862	 */
1863	after_sum = 0;
1864	over_sum = 0;
1865	list_for_each_entry(iocg, surpluses, surplus_list) {
1866		u32 hwa;
1867
1868		current_hweight(iocg, &hwa, NULL);
1869		after_sum += iocg->hweight_after_donation;
1870
1871		if (iocg->hweight_after_donation > hwa) {
1872			over_sum += iocg->hweight_after_donation;
1873			list_add(&iocg->walk_list, &over_hwa);
1874		}
1875	}
1876
1877	if (after_sum >= WEIGHT_ONE) {
1878		/*
1879		 * The delta should be deducted from the over_sum, calculate
1880		 * target over_sum value.
1881		 */
1882		u32 over_delta = after_sum - (WEIGHT_ONE - 1);
1883		WARN_ON_ONCE(over_sum <= over_delta);
1884		over_target = over_sum - over_delta;
1885	} else {
1886		over_target = 0;
1887	}
1888
1889	list_for_each_entry_safe(iocg, tiocg, &over_hwa, walk_list) {
1890		if (over_target)
1891			iocg->hweight_after_donation =
1892				div_u64((u64)iocg->hweight_after_donation *
1893					over_target, over_sum);
1894		list_del_init(&iocg->walk_list);
1895	}
1896
1897	/*
1898	 * Build pre-order inner node walk list and prepare for donation
1899	 * adjustment calculations.
1900	 */
1901	list_for_each_entry(iocg, surpluses, surplus_list) {
1902		iocg_build_inner_walk(iocg, &inner_walk);
1903	}
1904
1905	root_iocg = list_first_entry(&inner_walk, struct ioc_gq, walk_list);
1906	WARN_ON_ONCE(root_iocg->level > 0);
1907
1908	list_for_each_entry(iocg, &inner_walk, walk_list) {
1909		iocg->child_adjusted_sum = 0;
1910		iocg->hweight_donating = 0;
1911		iocg->hweight_after_donation = 0;
1912	}
1913
1914	/*
1915	 * Propagate the donating budget (b_t) and after donation budget (b'_t)
1916	 * up the hierarchy.
1917	 */
1918	list_for_each_entry(iocg, surpluses, surplus_list) {
1919		struct ioc_gq *parent = iocg->ancestors[iocg->level - 1];
1920
1921		parent->hweight_donating += iocg->hweight_donating;
1922		parent->hweight_after_donation += iocg->hweight_after_donation;
1923	}
1924
1925	list_for_each_entry_reverse(iocg, &inner_walk, walk_list) {
1926		if (iocg->level > 0) {
1927			struct ioc_gq *parent = iocg->ancestors[iocg->level - 1];
1928
1929			parent->hweight_donating += iocg->hweight_donating;
1930			parent->hweight_after_donation += iocg->hweight_after_donation;
1931		}
1932	}
1933
1934	/*
1935	 * Calculate inner hwa's (b) and make sure the donation values are
1936	 * within the accepted ranges as we're doing low res calculations with
1937	 * roundups.
1938	 */
1939	list_for_each_entry(iocg, &inner_walk, walk_list) {
1940		if (iocg->level) {
1941			struct ioc_gq *parent = iocg->ancestors[iocg->level - 1];
1942
1943			iocg->hweight_active = DIV64_U64_ROUND_UP(
1944				(u64)parent->hweight_active * iocg->active,
1945				parent->child_active_sum);
1946
1947		}
1948
1949		iocg->hweight_donating = min(iocg->hweight_donating,
1950					     iocg->hweight_active);
1951		iocg->hweight_after_donation = min(iocg->hweight_after_donation,
1952						   iocg->hweight_donating - 1);
1953		if (WARN_ON_ONCE(iocg->hweight_active <= 1 ||
1954				 iocg->hweight_donating <= 1 ||
1955				 iocg->hweight_after_donation == 0)) {
1956			pr_warn("iocg: invalid donation weights in ");
1957			pr_cont_cgroup_path(iocg_to_blkg(iocg)->blkcg->css.cgroup);
1958			pr_cont(": active=%u donating=%u after=%u\n",
1959				iocg->hweight_active, iocg->hweight_donating,
1960				iocg->hweight_after_donation);
1961		}
1962	}
1963
1964	/*
1965	 * Calculate the global donation rate (gamma) - the rate to adjust
1966	 * non-donating budgets by.
1967	 *
1968	 * No need to use 64bit multiplication here as the first operand is
1969	 * guaranteed to be smaller than WEIGHT_ONE (1<<16).
1970	 *
1971	 * We know that there are beneficiary nodes and the sum of the donating
1972	 * hweights can't be whole; however, due to the round-ups during hweight
1973	 * calculations, root_iocg->hweight_donating might still end up equal to
1974	 * or greater than whole. Limit the range when calculating the divider.
1975	 *
1976	 * gamma = (1 - t_r') / (1 - t_r)
1977	 */
1978	gamma = DIV_ROUND_UP(
1979		(WEIGHT_ONE - root_iocg->hweight_after_donation) * WEIGHT_ONE,
1980		WEIGHT_ONE - min_t(u32, root_iocg->hweight_donating, WEIGHT_ONE - 1));
1981
1982	/*
1983	 * Calculate adjusted hwi, child_adjusted_sum and inuse for the inner
1984	 * nodes.
1985	 */
1986	list_for_each_entry(iocg, &inner_walk, walk_list) {
1987		struct ioc_gq *parent;
1988		u32 inuse, wpt, wptp;
1989		u64 st, sf;
1990
1991		if (iocg->level == 0) {
1992			/* adjusted weight sum for 1st level: s' = s * b_pf / b'_pf */
1993			iocg->child_adjusted_sum = DIV64_U64_ROUND_UP(
1994				iocg->child_active_sum * (WEIGHT_ONE - iocg->hweight_donating),
1995				WEIGHT_ONE - iocg->hweight_after_donation);
1996			continue;
1997		}
1998
1999		parent = iocg->ancestors[iocg->level - 1];
2000
2001		/* b' = gamma * b_f + b_t' */
2002		iocg->hweight_inuse = DIV64_U64_ROUND_UP(
2003			(u64)gamma * (iocg->hweight_active - iocg->hweight_donating),
2004			WEIGHT_ONE) + iocg->hweight_after_donation;
2005
2006		/* w' = s' * b' / b'_p */
2007		inuse = DIV64_U64_ROUND_UP(
2008			(u64)parent->child_adjusted_sum * iocg->hweight_inuse,
2009			parent->hweight_inuse);
2010
2011		/* adjusted weight sum for children: s' = s_f + s_t * w'_pt / w_pt */
2012		st = DIV64_U64_ROUND_UP(
2013			iocg->child_active_sum * iocg->hweight_donating,
2014			iocg->hweight_active);
2015		sf = iocg->child_active_sum - st;
2016		wpt = DIV64_U64_ROUND_UP(
2017			(u64)iocg->active * iocg->hweight_donating,
2018			iocg->hweight_active);
2019		wptp = DIV64_U64_ROUND_UP(
2020			(u64)inuse * iocg->hweight_after_donation,
2021			iocg->hweight_inuse);
2022
2023		iocg->child_adjusted_sum = sf + DIV64_U64_ROUND_UP(st * wptp, wpt);
2024	}
2025
2026	/*
2027	 * All inner nodes now have ->hweight_inuse and ->child_adjusted_sum and
2028	 * we can finally determine leaf adjustments.
2029	 */
2030	list_for_each_entry(iocg, surpluses, surplus_list) {
2031		struct ioc_gq *parent = iocg->ancestors[iocg->level - 1];
2032		u32 inuse;
2033
2034		/*
2035		 * In-debt iocgs participated in the donation calculation with
2036		 * the minimum target hweight_inuse. Configuring inuse
2037		 * accordingly would work fine but debt handling expects
2038		 * @iocg->inuse stay at the minimum and we don't wanna
2039		 * interfere.
2040		 */
2041		if (iocg->abs_vdebt) {
2042			WARN_ON_ONCE(iocg->inuse > 1);
2043			continue;
2044		}
2045
2046		/* w' = s' * b' / b'_p, note that b' == b'_t for donating leaves */
2047		inuse = DIV64_U64_ROUND_UP(
2048			parent->child_adjusted_sum * iocg->hweight_after_donation,
2049			parent->hweight_inuse);
2050
2051		TRACE_IOCG_PATH(inuse_transfer, iocg, now,
2052				iocg->inuse, inuse,
2053				iocg->hweight_inuse,
2054				iocg->hweight_after_donation);
2055
2056		__propagate_weights(iocg, iocg->active, inuse, true, now);
2057	}
2058
2059	/* walk list should be dissolved after use */
2060	list_for_each_entry_safe(iocg, tiocg, &inner_walk, walk_list)
2061		list_del_init(&iocg->walk_list);
2062}
2063
2064/*
2065 * A low weight iocg can amass a large amount of debt, for example, when
2066 * anonymous memory gets reclaimed aggressively. If the system has a lot of
2067 * memory paired with a slow IO device, the debt can span multiple seconds or
2068 * more. If there are no other subsequent IO issuers, the in-debt iocg may end
2069 * up blocked paying its debt while the IO device is idle.
2070 *
2071 * The following protects against such cases. If the device has been
2072 * sufficiently idle for a while, the debts are halved and delays are
2073 * recalculated.
2074 */
2075static void ioc_forgive_debts(struct ioc *ioc, u64 usage_us_sum, int nr_debtors,
2076			      struct ioc_now *now)
2077{
2078	struct ioc_gq *iocg;
2079	u64 dur, usage_pct, nr_cycles;
2080
2081	/* if no debtor, reset the cycle */
2082	if (!nr_debtors) {
2083		ioc->dfgv_period_at = now->now;
2084		ioc->dfgv_period_rem = 0;
2085		ioc->dfgv_usage_us_sum = 0;
2086		return;
2087	}
2088
2089	/*
2090	 * Debtors can pass through a lot of writes choking the device and we
2091	 * don't want to be forgiving debts while the device is struggling from
2092	 * write bursts. If we're missing latency targets, consider the device
2093	 * fully utilized.
2094	 */
2095	if (ioc->busy_level > 0)
2096		usage_us_sum = max_t(u64, usage_us_sum, ioc->period_us);
2097
2098	ioc->dfgv_usage_us_sum += usage_us_sum;
2099	if (time_before64(now->now, ioc->dfgv_period_at + DFGV_PERIOD))
2100		return;
2101
2102	/*
2103	 * At least DFGV_PERIOD has passed since the last period. Calculate the
2104	 * average usage and reset the period counters.
2105	 */
2106	dur = now->now - ioc->dfgv_period_at;
2107	usage_pct = div64_u64(100 * ioc->dfgv_usage_us_sum, dur);
2108
2109	ioc->dfgv_period_at = now->now;
2110	ioc->dfgv_usage_us_sum = 0;
2111
2112	/* if was too busy, reset everything */
2113	if (usage_pct > DFGV_USAGE_PCT) {
2114		ioc->dfgv_period_rem = 0;
2115		return;
2116	}
2117
2118	/*
2119	 * Usage is lower than threshold. Let's forgive some debts. Debt
2120	 * forgiveness runs off of the usual ioc timer but its period usually
2121	 * doesn't match ioc's. Compensate the difference by performing the
2122	 * reduction as many times as would fit in the duration since the last
2123	 * run and carrying over the left-over duration in @ioc->dfgv_period_rem
2124	 * - if ioc period is 75% of DFGV_PERIOD, one out of three consecutive
2125	 * reductions is doubled.
2126	 */
2127	nr_cycles = dur + ioc->dfgv_period_rem;
2128	ioc->dfgv_period_rem = do_div(nr_cycles, DFGV_PERIOD);
2129
2130	list_for_each_entry(iocg, &ioc->active_iocgs, active_list) {
2131		u64 __maybe_unused old_debt, __maybe_unused old_delay;
2132
2133		if (!iocg->abs_vdebt && !iocg->delay)
2134			continue;
2135
2136		spin_lock(&iocg->waitq.lock);
2137
2138		old_debt = iocg->abs_vdebt;
2139		old_delay = iocg->delay;
2140
2141		if (iocg->abs_vdebt)
2142			iocg->abs_vdebt = iocg->abs_vdebt >> nr_cycles ?: 1;
2143		if (iocg->delay)
2144			iocg->delay = iocg->delay >> nr_cycles ?: 1;
2145
2146		iocg_kick_waitq(iocg, true, now);
2147
2148		TRACE_IOCG_PATH(iocg_forgive_debt, iocg, now, usage_pct,
2149				old_debt, iocg->abs_vdebt,
2150				old_delay, iocg->delay);
2151
2152		spin_unlock(&iocg->waitq.lock);
2153	}
2154}
2155
2156/*
2157 * Check the active iocgs' state to avoid oversleeping and deactive
2158 * idle iocgs.
2159 *
2160 * Since waiters determine the sleep durations based on the vrate
2161 * they saw at the time of sleep, if vrate has increased, some
2162 * waiters could be sleeping for too long. Wake up tardy waiters
2163 * which should have woken up in the last period and expire idle
2164 * iocgs.
2165 */
2166static int ioc_check_iocgs(struct ioc *ioc, struct ioc_now *now)
2167{
2168	int nr_debtors = 0;
2169	struct ioc_gq *iocg, *tiocg;
2170
2171	list_for_each_entry_safe(iocg, tiocg, &ioc->active_iocgs, active_list) {
2172		if (!waitqueue_active(&iocg->waitq) && !iocg->abs_vdebt &&
2173		    !iocg->delay && !iocg_is_idle(iocg))
2174			continue;
2175
2176		spin_lock(&iocg->waitq.lock);
2177
2178		/* flush wait and indebt stat deltas */
2179		if (iocg->wait_since) {
2180			iocg->stat.wait_us += now->now - iocg->wait_since;
2181			iocg->wait_since = now->now;
2182		}
2183		if (iocg->indebt_since) {
2184			iocg->stat.indebt_us +=
2185				now->now - iocg->indebt_since;
2186			iocg->indebt_since = now->now;
2187		}
2188		if (iocg->indelay_since) {
2189			iocg->stat.indelay_us +=
2190				now->now - iocg->indelay_since;
2191			iocg->indelay_since = now->now;
2192		}
2193
2194		if (waitqueue_active(&iocg->waitq) || iocg->abs_vdebt ||
2195		    iocg->delay) {
2196			/* might be oversleeping vtime / hweight changes, kick */
2197			iocg_kick_waitq(iocg, true, now);
2198			if (iocg->abs_vdebt || iocg->delay)
2199				nr_debtors++;
2200		} else if (iocg_is_idle(iocg)) {
2201			/* no waiter and idle, deactivate */
2202			u64 vtime = atomic64_read(&iocg->vtime);
2203			s64 excess;
2204
2205			/*
2206			 * @iocg has been inactive for a full duration and will
2207			 * have a high budget. Account anything above target as
2208			 * error and throw away. On reactivation, it'll start
2209			 * with the target budget.
2210			 */
2211			excess = now->vnow - vtime - ioc->margins.target;
2212			if (excess > 0) {
2213				u32 old_hwi;
2214
2215				current_hweight(iocg, NULL, &old_hwi);
2216				ioc->vtime_err -= div64_u64(excess * old_hwi,
2217							    WEIGHT_ONE);
2218			}
2219
2220			TRACE_IOCG_PATH(iocg_idle, iocg, now,
2221					atomic64_read(&iocg->active_period),
2222					atomic64_read(&ioc->cur_period), vtime);
2223			__propagate_weights(iocg, 0, 0, false, now);
2224			list_del_init(&iocg->active_list);
2225		}
2226
2227		spin_unlock(&iocg->waitq.lock);
2228	}
2229
2230	commit_weights(ioc);
2231	return nr_debtors;
2232}
2233
2234static void ioc_timer_fn(struct timer_list *timer)
2235{
2236	struct ioc *ioc = container_of(timer, struct ioc, timer);
2237	struct ioc_gq *iocg, *tiocg;
2238	struct ioc_now now;
2239	LIST_HEAD(surpluses);
2240	int nr_debtors, nr_shortages = 0, nr_lagging = 0;
2241	u64 usage_us_sum = 0;
2242	u32 ppm_rthr;
2243	u32 ppm_wthr;
2244	u32 missed_ppm[2], rq_wait_pct;
2245	u64 period_vtime;
2246	int prev_busy_level;
2247
2248	/* how were the latencies during the period? */
2249	ioc_lat_stat(ioc, missed_ppm, &rq_wait_pct);
2250
2251	/* take care of active iocgs */
2252	spin_lock_irq(&ioc->lock);
2253
2254	ppm_rthr = MILLION - ioc->params.qos[QOS_RPPM];
2255	ppm_wthr = MILLION - ioc->params.qos[QOS_WPPM];
2256	ioc_now(ioc, &now);
2257
2258	period_vtime = now.vnow - ioc->period_at_vtime;
2259	if (WARN_ON_ONCE(!period_vtime)) {
2260		spin_unlock_irq(&ioc->lock);
2261		return;
2262	}
2263
2264	nr_debtors = ioc_check_iocgs(ioc, &now);
2265
2266	/*
2267	 * Wait and indebt stat are flushed above and the donation calculation
2268	 * below needs updated usage stat. Let's bring stat up-to-date.
2269	 */
2270	iocg_flush_stat(&ioc->active_iocgs, &now);
2271
2272	/* calc usage and see whether some weights need to be moved around */
2273	list_for_each_entry(iocg, &ioc->active_iocgs, active_list) {
2274		u64 vdone, vtime, usage_us;
2275		u32 hw_active, hw_inuse;
2276
2277		/*
2278		 * Collect unused and wind vtime closer to vnow to prevent
2279		 * iocgs from accumulating a large amount of budget.
2280		 */
2281		vdone = atomic64_read(&iocg->done_vtime);
2282		vtime = atomic64_read(&iocg->vtime);
2283		current_hweight(iocg, &hw_active, &hw_inuse);
2284
2285		/*
2286		 * Latency QoS detection doesn't account for IOs which are
2287		 * in-flight for longer than a period.  Detect them by
2288		 * comparing vdone against period start.  If lagging behind
2289		 * IOs from past periods, don't increase vrate.
2290		 */
2291		if ((ppm_rthr != MILLION || ppm_wthr != MILLION) &&
2292		    !atomic_read(&iocg_to_blkg(iocg)->use_delay) &&
2293		    time_after64(vtime, vdone) &&
2294		    time_after64(vtime, now.vnow -
2295				 MAX_LAGGING_PERIODS * period_vtime) &&
2296		    time_before64(vdone, now.vnow - period_vtime))
2297			nr_lagging++;
2298
2299		/*
2300		 * Determine absolute usage factoring in in-flight IOs to avoid
2301		 * high-latency completions appearing as idle.
2302		 */
2303		usage_us = iocg->usage_delta_us;
2304		usage_us_sum += usage_us;
2305
2306		/* see whether there's surplus vtime */
2307		WARN_ON_ONCE(!list_empty(&iocg->surplus_list));
2308		if (hw_inuse < hw_active ||
2309		    (!waitqueue_active(&iocg->waitq) &&
2310		     time_before64(vtime, now.vnow - ioc->margins.low))) {
2311			u32 hwa, old_hwi, hwm, new_hwi, usage;
2312			u64 usage_dur;
2313
2314			if (vdone != vtime) {
2315				u64 inflight_us = DIV64_U64_ROUND_UP(
2316					cost_to_abs_cost(vtime - vdone, hw_inuse),
2317					ioc->vtime_base_rate);
2318
2319				usage_us = max(usage_us, inflight_us);
2320			}
2321
2322			/* convert to hweight based usage ratio */
2323			if (time_after64(iocg->activated_at, ioc->period_at))
2324				usage_dur = max_t(u64, now.now - iocg->activated_at, 1);
2325			else
2326				usage_dur = max_t(u64, now.now - ioc->period_at, 1);
2327
2328			usage = clamp_t(u32,
2329				DIV64_U64_ROUND_UP(usage_us * WEIGHT_ONE,
2330						   usage_dur),
2331				1, WEIGHT_ONE);
2332
2333			/*
2334			 * Already donating or accumulated enough to start.
2335			 * Determine the donation amount.
2336			 */
2337			current_hweight(iocg, &hwa, &old_hwi);
2338			hwm = current_hweight_max(iocg);
2339			new_hwi = hweight_after_donation(iocg, old_hwi, hwm,
2340							 usage, &now);
2341			/*
2342			 * Donation calculation assumes hweight_after_donation
2343			 * to be positive, a condition that a donor w/ hwa < 2
2344			 * can't meet. Don't bother with donation if hwa is
2345			 * below 2. It's not gonna make a meaningful difference
2346			 * anyway.
2347			 */
2348			if (new_hwi < hwm && hwa >= 2) {
2349				iocg->hweight_donating = hwa;
2350				iocg->hweight_after_donation = new_hwi;
2351				list_add(&iocg->surplus_list, &surpluses);
2352			} else if (!iocg->abs_vdebt) {
2353				/*
2354				 * @iocg doesn't have enough to donate. Reset
2355				 * its inuse to active.
2356				 *
2357				 * Don't reset debtors as their inuse's are
2358				 * owned by debt handling. This shouldn't affect
2359				 * donation calculuation in any meaningful way
2360				 * as @iocg doesn't have a meaningful amount of
2361				 * share anyway.
2362				 */
2363				TRACE_IOCG_PATH(inuse_shortage, iocg, &now,
2364						iocg->inuse, iocg->active,
2365						iocg->hweight_inuse, new_hwi);
2366
2367				__propagate_weights(iocg, iocg->active,
2368						    iocg->active, true, &now);
2369				nr_shortages++;
2370			}
2371		} else {
2372			/* genuinely short on vtime */
2373			nr_shortages++;
2374		}
2375	}
2376
2377	if (!list_empty(&surpluses) && nr_shortages)
2378		transfer_surpluses(&surpluses, &now);
2379
2380	commit_weights(ioc);
2381
2382	/* surplus list should be dissolved after use */
2383	list_for_each_entry_safe(iocg, tiocg, &surpluses, surplus_list)
2384		list_del_init(&iocg->surplus_list);
2385
2386	/*
2387	 * If q is getting clogged or we're missing too much, we're issuing
2388	 * too much IO and should lower vtime rate.  If we're not missing
2389	 * and experiencing shortages but not surpluses, we're too stingy
2390	 * and should increase vtime rate.
2391	 */
2392	prev_busy_level = ioc->busy_level;
2393	if (rq_wait_pct > RQ_WAIT_BUSY_PCT ||
2394	    missed_ppm[READ] > ppm_rthr ||
2395	    missed_ppm[WRITE] > ppm_wthr) {
2396		/* clearly missing QoS targets, slow down vrate */
2397		ioc->busy_level = max(ioc->busy_level, 0);
2398		ioc->busy_level++;
2399	} else if (rq_wait_pct <= RQ_WAIT_BUSY_PCT * UNBUSY_THR_PCT / 100 &&
2400		   missed_ppm[READ] <= ppm_rthr * UNBUSY_THR_PCT / 100 &&
2401		   missed_ppm[WRITE] <= ppm_wthr * UNBUSY_THR_PCT / 100) {
2402		/* QoS targets are being met with >25% margin */
2403		if (nr_shortages) {
2404			/*
2405			 * We're throttling while the device has spare
2406			 * capacity.  If vrate was being slowed down, stop.
2407			 */
2408			ioc->busy_level = min(ioc->busy_level, 0);
2409
2410			/*
2411			 * If there are IOs spanning multiple periods, wait
2412			 * them out before pushing the device harder.
2413			 */
2414			if (!nr_lagging)
2415				ioc->busy_level--;
2416		} else {
2417			/*
2418			 * Nobody is being throttled and the users aren't
2419			 * issuing enough IOs to saturate the device.  We
2420			 * simply don't know how close the device is to
2421			 * saturation.  Coast.
2422			 */
2423			ioc->busy_level = 0;
2424		}
2425	} else {
2426		/* inside the hysterisis margin, we're good */
2427		ioc->busy_level = 0;
2428	}
2429
2430	ioc->busy_level = clamp(ioc->busy_level, -1000, 1000);
2431
2432	ioc_adjust_base_vrate(ioc, rq_wait_pct, nr_lagging, nr_shortages,
2433			      prev_busy_level, missed_ppm);
2434
2435	ioc_refresh_params(ioc, false);
2436
2437	ioc_forgive_debts(ioc, usage_us_sum, nr_debtors, &now);
2438
2439	/*
2440	 * This period is done.  Move onto the next one.  If nothing's
2441	 * going on with the device, stop the timer.
2442	 */
2443	atomic64_inc(&ioc->cur_period);
2444
2445	if (ioc->running != IOC_STOP) {
2446		if (!list_empty(&ioc->active_iocgs)) {
2447			ioc_start_period(ioc, &now);
2448		} else {
2449			ioc->busy_level = 0;
2450			ioc->vtime_err = 0;
2451			ioc->running = IOC_IDLE;
2452		}
2453
2454		ioc_refresh_vrate(ioc, &now);
2455	}
2456
2457	spin_unlock_irq(&ioc->lock);
2458}
2459
2460static u64 adjust_inuse_and_calc_cost(struct ioc_gq *iocg, u64 vtime,
2461				      u64 abs_cost, struct ioc_now *now)
2462{
2463	struct ioc *ioc = iocg->ioc;
2464	struct ioc_margins *margins = &ioc->margins;
2465	u32 __maybe_unused old_inuse = iocg->inuse, __maybe_unused old_hwi;
2466	u32 hwi, adj_step;
2467	s64 margin;
2468	u64 cost, new_inuse;
2469	unsigned long flags;
2470
2471	current_hweight(iocg, NULL, &hwi);
2472	old_hwi = hwi;
2473	cost = abs_cost_to_cost(abs_cost, hwi);
2474	margin = now->vnow - vtime - cost;
2475
2476	/* debt handling owns inuse for debtors */
2477	if (iocg->abs_vdebt)
2478		return cost;
2479
2480	/*
2481	 * We only increase inuse during period and do so if the margin has
2482	 * deteriorated since the previous adjustment.
2483	 */
2484	if (margin >= iocg->saved_margin || margin >= margins->low ||
2485	    iocg->inuse == iocg->active)
2486		return cost;
2487
2488	spin_lock_irqsave(&ioc->lock, flags);
2489
2490	/* we own inuse only when @iocg is in the normal active state */
2491	if (iocg->abs_vdebt || list_empty(&iocg->active_list)) {
2492		spin_unlock_irqrestore(&ioc->lock, flags);
2493		return cost;
2494	}
2495
2496	/*
2497	 * Bump up inuse till @abs_cost fits in the existing budget.
2498	 * adj_step must be determined after acquiring ioc->lock - we might
2499	 * have raced and lost to another thread for activation and could
2500	 * be reading 0 iocg->active before ioc->lock which will lead to
2501	 * infinite loop.
2502	 */
2503	new_inuse = iocg->inuse;
2504	adj_step = DIV_ROUND_UP(iocg->active * INUSE_ADJ_STEP_PCT, 100);
2505	do {
2506		new_inuse = new_inuse + adj_step;
2507		propagate_weights(iocg, iocg->active, new_inuse, true, now);
2508		current_hweight(iocg, NULL, &hwi);
2509		cost = abs_cost_to_cost(abs_cost, hwi);
2510	} while (time_after64(vtime + cost, now->vnow) &&
2511		 iocg->inuse != iocg->active);
2512
2513	spin_unlock_irqrestore(&ioc->lock, flags);
2514
2515	TRACE_IOCG_PATH(inuse_adjust, iocg, now,
2516			old_inuse, iocg->inuse, old_hwi, hwi);
2517
2518	return cost;
2519}
2520
2521static void calc_vtime_cost_builtin(struct bio *bio, struct ioc_gq *iocg,
2522				    bool is_merge, u64 *costp)
2523{
2524	struct ioc *ioc = iocg->ioc;
2525	u64 coef_seqio, coef_randio, coef_page;
2526	u64 pages = max_t(u64, bio_sectors(bio) >> IOC_SECT_TO_PAGE_SHIFT, 1);
2527	u64 seek_pages = 0;
2528	u64 cost = 0;
2529
2530	/* Can't calculate cost for empty bio */
2531	if (!bio->bi_iter.bi_size)
2532		goto out;
2533
2534	switch (bio_op(bio)) {
2535	case REQ_OP_READ:
2536		coef_seqio	= ioc->params.lcoefs[LCOEF_RSEQIO];
2537		coef_randio	= ioc->params.lcoefs[LCOEF_RRANDIO];
2538		coef_page	= ioc->params.lcoefs[LCOEF_RPAGE];
2539		break;
2540	case REQ_OP_WRITE:
2541		coef_seqio	= ioc->params.lcoefs[LCOEF_WSEQIO];
2542		coef_randio	= ioc->params.lcoefs[LCOEF_WRANDIO];
2543		coef_page	= ioc->params.lcoefs[LCOEF_WPAGE];
2544		break;
2545	default:
2546		goto out;
2547	}
2548
2549	if (iocg->cursor) {
2550		seek_pages = abs(bio->bi_iter.bi_sector - iocg->cursor);
2551		seek_pages >>= IOC_SECT_TO_PAGE_SHIFT;
2552	}
2553
2554	if (!is_merge) {
2555		if (seek_pages > LCOEF_RANDIO_PAGES) {
2556			cost += coef_randio;
2557		} else {
2558			cost += coef_seqio;
2559		}
2560	}
2561	cost += pages * coef_page;
2562out:
2563	*costp = cost;
2564}
2565
2566static u64 calc_vtime_cost(struct bio *bio, struct ioc_gq *iocg, bool is_merge)
2567{
2568	u64 cost;
2569
2570	calc_vtime_cost_builtin(bio, iocg, is_merge, &cost);
2571	return cost;
2572}
2573
2574static void calc_size_vtime_cost_builtin(struct request *rq, struct ioc *ioc,
2575					 u64 *costp)
2576{
2577	unsigned int pages = blk_rq_stats_sectors(rq) >> IOC_SECT_TO_PAGE_SHIFT;
2578
2579	switch (req_op(rq)) {
2580	case REQ_OP_READ:
2581		*costp = pages * ioc->params.lcoefs[LCOEF_RPAGE];
2582		break;
2583	case REQ_OP_WRITE:
2584		*costp = pages * ioc->params.lcoefs[LCOEF_WPAGE];
2585		break;
2586	default:
2587		*costp = 0;
2588	}
2589}
2590
2591static u64 calc_size_vtime_cost(struct request *rq, struct ioc *ioc)
2592{
2593	u64 cost;
2594
2595	calc_size_vtime_cost_builtin(rq, ioc, &cost);
2596	return cost;
2597}
2598
2599static void ioc_rqos_throttle(struct rq_qos *rqos, struct bio *bio)
2600{
2601	struct blkcg_gq *blkg = bio->bi_blkg;
2602	struct ioc *ioc = rqos_to_ioc(rqos);
2603	struct ioc_gq *iocg = blkg_to_iocg(blkg);
2604	struct ioc_now now;
2605	struct iocg_wait wait;
2606	u64 abs_cost, cost, vtime;
2607	bool use_debt, ioc_locked;
2608	unsigned long flags;
2609
2610	/* bypass IOs if disabled, still initializing, or for root cgroup */
2611	if (!ioc->enabled || !iocg || !iocg->level)
2612		return;
2613
2614	/* calculate the absolute vtime cost */
2615	abs_cost = calc_vtime_cost(bio, iocg, false);
2616	if (!abs_cost)
2617		return;
2618
2619	if (!iocg_activate(iocg, &now))
2620		return;
2621
2622	iocg->cursor = bio_end_sector(bio);
2623	vtime = atomic64_read(&iocg->vtime);
2624	cost = adjust_inuse_and_calc_cost(iocg, vtime, abs_cost, &now);
2625
2626	/*
2627	 * If no one's waiting and within budget, issue right away.  The
2628	 * tests are racy but the races aren't systemic - we only miss once
2629	 * in a while which is fine.
2630	 */
2631	if (!waitqueue_active(&iocg->waitq) && !iocg->abs_vdebt &&
2632	    time_before_eq64(vtime + cost, now.vnow)) {
2633		iocg_commit_bio(iocg, bio, abs_cost, cost);
2634		return;
2635	}
2636
2637	/*
2638	 * We're over budget. This can be handled in two ways. IOs which may
2639	 * cause priority inversions are punted to @ioc->aux_iocg and charged as
2640	 * debt. Otherwise, the issuer is blocked on @iocg->waitq. Debt handling
2641	 * requires @ioc->lock, waitq handling @iocg->waitq.lock. Determine
2642	 * whether debt handling is needed and acquire locks accordingly.
2643	 */
2644	use_debt = bio_issue_as_root_blkg(bio) || fatal_signal_pending(current);
2645	ioc_locked = use_debt || READ_ONCE(iocg->abs_vdebt);
2646retry_lock:
2647	iocg_lock(iocg, ioc_locked, &flags);
2648
2649	/*
2650	 * @iocg must stay activated for debt and waitq handling. Deactivation
2651	 * is synchronized against both ioc->lock and waitq.lock and we won't
2652	 * get deactivated as long as we're waiting or has debt, so we're good
2653	 * if we're activated here. In the unlikely cases that we aren't, just
2654	 * issue the IO.
2655	 */
2656	if (unlikely(list_empty(&iocg->active_list))) {
2657		iocg_unlock(iocg, ioc_locked, &flags);
2658		iocg_commit_bio(iocg, bio, abs_cost, cost);
2659		return;
2660	}
2661
2662	/*
2663	 * We're over budget. If @bio has to be issued regardless, remember
2664	 * the abs_cost instead of advancing vtime. iocg_kick_waitq() will pay
2665	 * off the debt before waking more IOs.
2666	 *
2667	 * This way, the debt is continuously paid off each period with the
2668	 * actual budget available to the cgroup. If we just wound vtime, we
2669	 * would incorrectly use the current hw_inuse for the entire amount
2670	 * which, for example, can lead to the cgroup staying blocked for a
2671	 * long time even with substantially raised hw_inuse.
2672	 *
2673	 * An iocg with vdebt should stay online so that the timer can keep
2674	 * deducting its vdebt and [de]activate use_delay mechanism
2675	 * accordingly. We don't want to race against the timer trying to
2676	 * clear them and leave @iocg inactive w/ dangling use_delay heavily
2677	 * penalizing the cgroup and its descendants.
2678	 */
2679	if (use_debt) {
2680		iocg_incur_debt(iocg, abs_cost, &now);
2681		if (iocg_kick_delay(iocg, &now))
2682			blkcg_schedule_throttle(rqos->disk,
2683					(bio->bi_opf & REQ_SWAP) == REQ_SWAP);
2684		iocg_unlock(iocg, ioc_locked, &flags);
2685		return;
2686	}
2687
2688	/* guarantee that iocgs w/ waiters have maximum inuse */
2689	if (!iocg->abs_vdebt && iocg->inuse != iocg->active) {
2690		if (!ioc_locked) {
2691			iocg_unlock(iocg, false, &flags);
2692			ioc_locked = true;
2693			goto retry_lock;
2694		}
2695		propagate_weights(iocg, iocg->active, iocg->active, true,
2696				  &now);
2697	}
2698
2699	/*
2700	 * Append self to the waitq and schedule the wakeup timer if we're
2701	 * the first waiter.  The timer duration is calculated based on the
2702	 * current vrate.  vtime and hweight changes can make it too short
2703	 * or too long.  Each wait entry records the absolute cost it's
2704	 * waiting for to allow re-evaluation using a custom wait entry.
2705	 *
2706	 * If too short, the timer simply reschedules itself.  If too long,
2707	 * the period timer will notice and trigger wakeups.
2708	 *
2709	 * All waiters are on iocg->waitq and the wait states are
2710	 * synchronized using waitq.lock.
2711	 */
2712	init_waitqueue_func_entry(&wait.wait, iocg_wake_fn);
2713	wait.wait.private = current;
2714	wait.bio = bio;
2715	wait.abs_cost = abs_cost;
2716	wait.committed = false;	/* will be set true by waker */
2717
2718	__add_wait_queue_entry_tail(&iocg->waitq, &wait.wait);
2719	iocg_kick_waitq(iocg, ioc_locked, &now);
2720
2721	iocg_unlock(iocg, ioc_locked, &flags);
2722
2723	while (true) {
2724		set_current_state(TASK_UNINTERRUPTIBLE);
2725		if (wait.committed)
2726			break;
2727		io_schedule();
2728	}
2729
2730	/* waker already committed us, proceed */
2731	finish_wait(&iocg->waitq, &wait.wait);
2732}
2733
2734static void ioc_rqos_merge(struct rq_qos *rqos, struct request *rq,
2735			   struct bio *bio)
2736{
2737	struct ioc_gq *iocg = blkg_to_iocg(bio->bi_blkg);
2738	struct ioc *ioc = rqos_to_ioc(rqos);
2739	sector_t bio_end = bio_end_sector(bio);
2740	struct ioc_now now;
2741	u64 vtime, abs_cost, cost;
2742	unsigned long flags;
2743
2744	/* bypass if disabled, still initializing, or for root cgroup */
2745	if (!ioc->enabled || !iocg || !iocg->level)
2746		return;
2747
2748	abs_cost = calc_vtime_cost(bio, iocg, true);
2749	if (!abs_cost)
2750		return;
2751
2752	ioc_now(ioc, &now);
2753
2754	vtime = atomic64_read(&iocg->vtime);
2755	cost = adjust_inuse_and_calc_cost(iocg, vtime, abs_cost, &now);
2756
2757	/* update cursor if backmerging into the request at the cursor */
2758	if (blk_rq_pos(rq) < bio_end &&
2759	    blk_rq_pos(rq) + blk_rq_sectors(rq) == iocg->cursor)
2760		iocg->cursor = bio_end;
2761
2762	/*
2763	 * Charge if there's enough vtime budget and the existing request has
2764	 * cost assigned.
2765	 */
2766	if (rq->bio && rq->bio->bi_iocost_cost &&
2767	    time_before_eq64(atomic64_read(&iocg->vtime) + cost, now.vnow)) {
2768		iocg_commit_bio(iocg, bio, abs_cost, cost);
2769		return;
2770	}
2771
2772	/*
2773	 * Otherwise, account it as debt if @iocg is online, which it should
2774	 * be for the vast majority of cases. See debt handling in
2775	 * ioc_rqos_throttle() for details.
2776	 */
2777	spin_lock_irqsave(&ioc->lock, flags);
2778	spin_lock(&iocg->waitq.lock);
2779
2780	if (likely(!list_empty(&iocg->active_list))) {
2781		iocg_incur_debt(iocg, abs_cost, &now);
2782		if (iocg_kick_delay(iocg, &now))
2783			blkcg_schedule_throttle(rqos->disk,
2784					(bio->bi_opf & REQ_SWAP) == REQ_SWAP);
2785	} else {
2786		iocg_commit_bio(iocg, bio, abs_cost, cost);
2787	}
2788
2789	spin_unlock(&iocg->waitq.lock);
2790	spin_unlock_irqrestore(&ioc->lock, flags);
2791}
2792
2793static void ioc_rqos_done_bio(struct rq_qos *rqos, struct bio *bio)
2794{
2795	struct ioc_gq *iocg = blkg_to_iocg(bio->bi_blkg);
2796
2797	if (iocg && bio->bi_iocost_cost)
2798		atomic64_add(bio->bi_iocost_cost, &iocg->done_vtime);
2799}
2800
2801static void ioc_rqos_done(struct rq_qos *rqos, struct request *rq)
2802{
2803	struct ioc *ioc = rqos_to_ioc(rqos);
2804	struct ioc_pcpu_stat *ccs;
2805	u64 on_q_ns, rq_wait_ns, size_nsec;
2806	int pidx, rw;
2807
2808	if (!ioc->enabled || !rq->alloc_time_ns || !rq->start_time_ns)
2809		return;
2810
2811	switch (req_op(rq)) {
2812	case REQ_OP_READ:
2813		pidx = QOS_RLAT;
2814		rw = READ;
2815		break;
2816	case REQ_OP_WRITE:
2817		pidx = QOS_WLAT;
2818		rw = WRITE;
2819		break;
2820	default:
2821		return;
2822	}
2823
2824	on_q_ns = blk_time_get_ns() - rq->alloc_time_ns;
2825	rq_wait_ns = rq->start_time_ns - rq->alloc_time_ns;
2826	size_nsec = div64_u64(calc_size_vtime_cost(rq, ioc), VTIME_PER_NSEC);
2827
2828	ccs = get_cpu_ptr(ioc->pcpu_stat);
2829
2830	if (on_q_ns <= size_nsec ||
2831	    on_q_ns - size_nsec <= ioc->params.qos[pidx] * NSEC_PER_USEC)
2832		local_inc(&ccs->missed[rw].nr_met);
2833	else
2834		local_inc(&ccs->missed[rw].nr_missed);
2835
2836	local64_add(rq_wait_ns, &ccs->rq_wait_ns);
2837
2838	put_cpu_ptr(ccs);
2839}
2840
2841static void ioc_rqos_queue_depth_changed(struct rq_qos *rqos)
2842{
2843	struct ioc *ioc = rqos_to_ioc(rqos);
2844
2845	spin_lock_irq(&ioc->lock);
2846	ioc_refresh_params(ioc, false);
2847	spin_unlock_irq(&ioc->lock);
2848}
2849
2850static void ioc_rqos_exit(struct rq_qos *rqos)
2851{
2852	struct ioc *ioc = rqos_to_ioc(rqos);
2853
2854	blkcg_deactivate_policy(rqos->disk, &blkcg_policy_iocost);
2855
2856	spin_lock_irq(&ioc->lock);
2857	ioc->running = IOC_STOP;
2858	spin_unlock_irq(&ioc->lock);
2859
2860	timer_shutdown_sync(&ioc->timer);
2861	free_percpu(ioc->pcpu_stat);
2862	kfree(ioc);
2863}
2864
2865static const struct rq_qos_ops ioc_rqos_ops = {
2866	.throttle = ioc_rqos_throttle,
2867	.merge = ioc_rqos_merge,
2868	.done_bio = ioc_rqos_done_bio,
2869	.done = ioc_rqos_done,
2870	.queue_depth_changed = ioc_rqos_queue_depth_changed,
2871	.exit = ioc_rqos_exit,
2872};
2873
2874static int blk_iocost_init(struct gendisk *disk)
2875{
2876	struct ioc *ioc;
2877	int i, cpu, ret;
2878
2879	ioc = kzalloc(sizeof(*ioc), GFP_KERNEL);
2880	if (!ioc)
2881		return -ENOMEM;
2882
2883	ioc->pcpu_stat = alloc_percpu(struct ioc_pcpu_stat);
2884	if (!ioc->pcpu_stat) {
2885		kfree(ioc);
2886		return -ENOMEM;
2887	}
2888
2889	for_each_possible_cpu(cpu) {
2890		struct ioc_pcpu_stat *ccs = per_cpu_ptr(ioc->pcpu_stat, cpu);
2891
2892		for (i = 0; i < ARRAY_SIZE(ccs->missed); i++) {
2893			local_set(&ccs->missed[i].nr_met, 0);
2894			local_set(&ccs->missed[i].nr_missed, 0);
2895		}
2896		local64_set(&ccs->rq_wait_ns, 0);
2897	}
2898
2899	spin_lock_init(&ioc->lock);
2900	timer_setup(&ioc->timer, ioc_timer_fn, 0);
2901	INIT_LIST_HEAD(&ioc->active_iocgs);
2902
2903	ioc->running = IOC_IDLE;
2904	ioc->vtime_base_rate = VTIME_PER_USEC;
2905	atomic64_set(&ioc->vtime_rate, VTIME_PER_USEC);
2906	seqcount_spinlock_init(&ioc->period_seqcount, &ioc->lock);
2907	ioc->period_at = ktime_to_us(blk_time_get());
2908	atomic64_set(&ioc->cur_period, 0);
2909	atomic_set(&ioc->hweight_gen, 0);
2910
2911	spin_lock_irq(&ioc->lock);
2912	ioc->autop_idx = AUTOP_INVALID;
2913	ioc_refresh_params_disk(ioc, true, disk);
2914	spin_unlock_irq(&ioc->lock);
2915
2916	/*
2917	 * rqos must be added before activation to allow ioc_pd_init() to
2918	 * lookup the ioc from q. This means that the rqos methods may get
2919	 * called before policy activation completion, can't assume that the
2920	 * target bio has an iocg associated and need to test for NULL iocg.
2921	 */
2922	ret = rq_qos_add(&ioc->rqos, disk, RQ_QOS_COST, &ioc_rqos_ops);
2923	if (ret)
2924		goto err_free_ioc;
2925
2926	ret = blkcg_activate_policy(disk, &blkcg_policy_iocost);
2927	if (ret)
2928		goto err_del_qos;
2929	return 0;
2930
2931err_del_qos:
2932	rq_qos_del(&ioc->rqos);
2933err_free_ioc:
2934	free_percpu(ioc->pcpu_stat);
2935	kfree(ioc);
2936	return ret;
2937}
2938
2939static struct blkcg_policy_data *ioc_cpd_alloc(gfp_t gfp)
2940{
2941	struct ioc_cgrp *iocc;
2942
2943	iocc = kzalloc(sizeof(struct ioc_cgrp), gfp);
2944	if (!iocc)
2945		return NULL;
2946
2947	iocc->dfl_weight = CGROUP_WEIGHT_DFL * WEIGHT_ONE;
2948	return &iocc->cpd;
2949}
2950
2951static void ioc_cpd_free(struct blkcg_policy_data *cpd)
2952{
2953	kfree(container_of(cpd, struct ioc_cgrp, cpd));
2954}
2955
2956static struct blkg_policy_data *ioc_pd_alloc(struct gendisk *disk,
2957		struct blkcg *blkcg, gfp_t gfp)
2958{
2959	int levels = blkcg->css.cgroup->level + 1;
2960	struct ioc_gq *iocg;
2961
2962	iocg = kzalloc_node(struct_size(iocg, ancestors, levels), gfp,
2963			    disk->node_id);
2964	if (!iocg)
2965		return NULL;
2966
2967	iocg->pcpu_stat = alloc_percpu_gfp(struct iocg_pcpu_stat, gfp);
2968	if (!iocg->pcpu_stat) {
2969		kfree(iocg);
2970		return NULL;
2971	}
2972
2973	return &iocg->pd;
2974}
2975
2976static void ioc_pd_init(struct blkg_policy_data *pd)
2977{
2978	struct ioc_gq *iocg = pd_to_iocg(pd);
2979	struct blkcg_gq *blkg = pd_to_blkg(&iocg->pd);
2980	struct ioc *ioc = q_to_ioc(blkg->q);
2981	struct ioc_now now;
2982	struct blkcg_gq *tblkg;
2983	unsigned long flags;
2984
2985	ioc_now(ioc, &now);
2986
2987	iocg->ioc = ioc;
2988	atomic64_set(&iocg->vtime, now.vnow);
2989	atomic64_set(&iocg->done_vtime, now.vnow);
2990	atomic64_set(&iocg->active_period, atomic64_read(&ioc->cur_period));
2991	INIT_LIST_HEAD(&iocg->active_list);
2992	INIT_LIST_HEAD(&iocg->walk_list);
2993	INIT_LIST_HEAD(&iocg->surplus_list);
2994	iocg->hweight_active = WEIGHT_ONE;
2995	iocg->hweight_inuse = WEIGHT_ONE;
2996
2997	init_waitqueue_head(&iocg->waitq);
2998	hrtimer_init(&iocg->waitq_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
2999	iocg->waitq_timer.function = iocg_waitq_timer_fn;
3000
3001	iocg->level = blkg->blkcg->css.cgroup->level;
3002
3003	for (tblkg = blkg; tblkg; tblkg = tblkg->parent) {
3004		struct ioc_gq *tiocg = blkg_to_iocg(tblkg);
3005		iocg->ancestors[tiocg->level] = tiocg;
3006	}
3007
3008	spin_lock_irqsave(&ioc->lock, flags);
3009	weight_updated(iocg, &now);
3010	spin_unlock_irqrestore(&ioc->lock, flags);
3011}
3012
3013static void ioc_pd_free(struct blkg_policy_data *pd)
3014{
3015	struct ioc_gq *iocg = pd_to_iocg(pd);
3016	struct ioc *ioc = iocg->ioc;
3017	unsigned long flags;
3018
3019	if (ioc) {
3020		spin_lock_irqsave(&ioc->lock, flags);
3021
3022		if (!list_empty(&iocg->active_list)) {
3023			struct ioc_now now;
3024
3025			ioc_now(ioc, &now);
3026			propagate_weights(iocg, 0, 0, false, &now);
3027			list_del_init(&iocg->active_list);
3028		}
3029
3030		WARN_ON_ONCE(!list_empty(&iocg->walk_list));
3031		WARN_ON_ONCE(!list_empty(&iocg->surplus_list));
3032
3033		spin_unlock_irqrestore(&ioc->lock, flags);
3034
3035		hrtimer_cancel(&iocg->waitq_timer);
3036	}
3037	free_percpu(iocg->pcpu_stat);
3038	kfree(iocg);
3039}
3040
3041static void ioc_pd_stat(struct blkg_policy_data *pd, struct seq_file *s)
3042{
3043	struct ioc_gq *iocg = pd_to_iocg(pd);
3044	struct ioc *ioc = iocg->ioc;
3045
3046	if (!ioc->enabled)
3047		return;
3048
3049	if (iocg->level == 0) {
3050		unsigned vp10k = DIV64_U64_ROUND_CLOSEST(
3051			ioc->vtime_base_rate * 10000,
3052			VTIME_PER_USEC);
3053		seq_printf(s, " cost.vrate=%u.%02u", vp10k / 100, vp10k % 100);
3054	}
3055
3056	seq_printf(s, " cost.usage=%llu", iocg->last_stat.usage_us);
3057
3058	if (blkcg_debug_stats)
3059		seq_printf(s, " cost.wait=%llu cost.indebt=%llu cost.indelay=%llu",
3060			iocg->last_stat.wait_us,
3061			iocg->last_stat.indebt_us,
3062			iocg->last_stat.indelay_us);
3063}
3064
3065static u64 ioc_weight_prfill(struct seq_file *sf, struct blkg_policy_data *pd,
3066			     int off)
3067{
3068	const char *dname = blkg_dev_name(pd->blkg);
3069	struct ioc_gq *iocg = pd_to_iocg(pd);
3070
3071	if (dname && iocg->cfg_weight)
3072		seq_printf(sf, "%s %u\n", dname, iocg->cfg_weight / WEIGHT_ONE);
3073	return 0;
3074}
3075
3076
3077static int ioc_weight_show(struct seq_file *sf, void *v)
3078{
3079	struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
3080	struct ioc_cgrp *iocc = blkcg_to_iocc(blkcg);
3081
3082	seq_printf(sf, "default %u\n", iocc->dfl_weight / WEIGHT_ONE);
3083	blkcg_print_blkgs(sf, blkcg, ioc_weight_prfill,
3084			  &blkcg_policy_iocost, seq_cft(sf)->private, false);
3085	return 0;
3086}
3087
3088static ssize_t ioc_weight_write(struct kernfs_open_file *of, char *buf,
3089				size_t nbytes, loff_t off)
3090{
3091	struct blkcg *blkcg = css_to_blkcg(of_css(of));
3092	struct ioc_cgrp *iocc = blkcg_to_iocc(blkcg);
3093	struct blkg_conf_ctx ctx;
3094	struct ioc_now now;
3095	struct ioc_gq *iocg;
3096	u32 v;
3097	int ret;
3098
3099	if (!strchr(buf, ':')) {
3100		struct blkcg_gq *blkg;
3101
3102		if (!sscanf(buf, "default %u", &v) && !sscanf(buf, "%u", &v))
3103			return -EINVAL;
3104
3105		if (v < CGROUP_WEIGHT_MIN || v > CGROUP_WEIGHT_MAX)
3106			return -EINVAL;
3107
3108		spin_lock_irq(&blkcg->lock);
3109		iocc->dfl_weight = v * WEIGHT_ONE;
3110		hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) {
3111			struct ioc_gq *iocg = blkg_to_iocg(blkg);
3112
3113			if (iocg) {
3114				spin_lock(&iocg->ioc->lock);
3115				ioc_now(iocg->ioc, &now);
3116				weight_updated(iocg, &now);
3117				spin_unlock(&iocg->ioc->lock);
3118			}
3119		}
3120		spin_unlock_irq(&blkcg->lock);
3121
3122		return nbytes;
3123	}
3124
3125	blkg_conf_init(&ctx, buf);
3126
3127	ret = blkg_conf_prep(blkcg, &blkcg_policy_iocost, &ctx);
3128	if (ret)
3129		goto err;
3130
3131	iocg = blkg_to_iocg(ctx.blkg);
3132
3133	if (!strncmp(ctx.body, "default", 7)) {
3134		v = 0;
3135	} else {
3136		if (!sscanf(ctx.body, "%u", &v))
3137			goto einval;
3138		if (v < CGROUP_WEIGHT_MIN || v > CGROUP_WEIGHT_MAX)
3139			goto einval;
3140	}
3141
3142	spin_lock(&iocg->ioc->lock);
3143	iocg->cfg_weight = v * WEIGHT_ONE;
3144	ioc_now(iocg->ioc, &now);
3145	weight_updated(iocg, &now);
3146	spin_unlock(&iocg->ioc->lock);
3147
3148	blkg_conf_exit(&ctx);
3149	return nbytes;
3150
3151einval:
3152	ret = -EINVAL;
3153err:
3154	blkg_conf_exit(&ctx);
3155	return ret;
3156}
3157
3158static u64 ioc_qos_prfill(struct seq_file *sf, struct blkg_policy_data *pd,
3159			  int off)
3160{
3161	const char *dname = blkg_dev_name(pd->blkg);
3162	struct ioc *ioc = pd_to_iocg(pd)->ioc;
3163
3164	if (!dname)
3165		return 0;
3166
3167	spin_lock_irq(&ioc->lock);
3168	seq_printf(sf, "%s enable=%d ctrl=%s rpct=%u.%02u rlat=%u wpct=%u.%02u wlat=%u min=%u.%02u max=%u.%02u\n",
3169		   dname, ioc->enabled, ioc->user_qos_params ? "user" : "auto",
3170		   ioc->params.qos[QOS_RPPM] / 10000,
3171		   ioc->params.qos[QOS_RPPM] % 10000 / 100,
3172		   ioc->params.qos[QOS_RLAT],
3173		   ioc->params.qos[QOS_WPPM] / 10000,
3174		   ioc->params.qos[QOS_WPPM] % 10000 / 100,
3175		   ioc->params.qos[QOS_WLAT],
3176		   ioc->params.qos[QOS_MIN] / 10000,
3177		   ioc->params.qos[QOS_MIN] % 10000 / 100,
3178		   ioc->params.qos[QOS_MAX] / 10000,
3179		   ioc->params.qos[QOS_MAX] % 10000 / 100);
3180	spin_unlock_irq(&ioc->lock);
3181	return 0;
3182}
3183
3184static int ioc_qos_show(struct seq_file *sf, void *v)
3185{
3186	struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
3187
3188	blkcg_print_blkgs(sf, blkcg, ioc_qos_prfill,
3189			  &blkcg_policy_iocost, seq_cft(sf)->private, false);
3190	return 0;
3191}
3192
3193static const match_table_t qos_ctrl_tokens = {
3194	{ QOS_ENABLE,		"enable=%u"	},
3195	{ QOS_CTRL,		"ctrl=%s"	},
3196	{ NR_QOS_CTRL_PARAMS,	NULL		},
3197};
3198
3199static const match_table_t qos_tokens = {
3200	{ QOS_RPPM,		"rpct=%s"	},
3201	{ QOS_RLAT,		"rlat=%u"	},
3202	{ QOS_WPPM,		"wpct=%s"	},
3203	{ QOS_WLAT,		"wlat=%u"	},
3204	{ QOS_MIN,		"min=%s"	},
3205	{ QOS_MAX,		"max=%s"	},
3206	{ NR_QOS_PARAMS,	NULL		},
3207};
3208
3209static ssize_t ioc_qos_write(struct kernfs_open_file *of, char *input,
3210			     size_t nbytes, loff_t off)
3211{
3212	struct blkg_conf_ctx ctx;
3213	struct gendisk *disk;
3214	struct ioc *ioc;
3215	u32 qos[NR_QOS_PARAMS];
3216	bool enable, user;
3217	char *body, *p;
3218	int ret;
3219
3220	blkg_conf_init(&ctx, input);
3221
3222	ret = blkg_conf_open_bdev(&ctx);
3223	if (ret)
3224		goto err;
3225
3226	body = ctx.body;
3227	disk = ctx.bdev->bd_disk;
3228	if (!queue_is_mq(disk->queue)) {
3229		ret = -EOPNOTSUPP;
3230		goto err;
3231	}
3232
3233	ioc = q_to_ioc(disk->queue);
3234	if (!ioc) {
3235		ret = blk_iocost_init(disk);
3236		if (ret)
3237			goto err;
3238		ioc = q_to_ioc(disk->queue);
3239	}
3240
3241	blk_mq_freeze_queue(disk->queue);
3242	blk_mq_quiesce_queue(disk->queue);
3243
3244	spin_lock_irq(&ioc->lock);
3245	memcpy(qos, ioc->params.qos, sizeof(qos));
3246	enable = ioc->enabled;
3247	user = ioc->user_qos_params;
3248
3249	while ((p = strsep(&body, " \t\n"))) {
3250		substring_t args[MAX_OPT_ARGS];
3251		char buf[32];
3252		int tok;
3253		s64 v;
3254
3255		if (!*p)
3256			continue;
3257
3258		switch (match_token(p, qos_ctrl_tokens, args)) {
3259		case QOS_ENABLE:
3260			if (match_u64(&args[0], &v))
3261				goto einval;
3262			enable = v;
3263			continue;
3264		case QOS_CTRL:
3265			match_strlcpy(buf, &args[0], sizeof(buf));
3266			if (!strcmp(buf, "auto"))
3267				user = false;
3268			else if (!strcmp(buf, "user"))
3269				user = true;
3270			else
3271				goto einval;
3272			continue;
3273		}
3274
3275		tok = match_token(p, qos_tokens, args);
3276		switch (tok) {
3277		case QOS_RPPM:
3278		case QOS_WPPM:
3279			if (match_strlcpy(buf, &args[0], sizeof(buf)) >=
3280			    sizeof(buf))
3281				goto einval;
3282			if (cgroup_parse_float(buf, 2, &v))
3283				goto einval;
3284			if (v < 0 || v > 10000)
3285				goto einval;
3286			qos[tok] = v * 100;
3287			break;
3288		case QOS_RLAT:
3289		case QOS_WLAT:
3290			if (match_u64(&args[0], &v))
3291				goto einval;
3292			qos[tok] = v;
3293			break;
3294		case QOS_MIN:
3295		case QOS_MAX:
3296			if (match_strlcpy(buf, &args[0], sizeof(buf)) >=
3297			    sizeof(buf))
3298				goto einval;
3299			if (cgroup_parse_float(buf, 2, &v))
3300				goto einval;
3301			if (v < 0)
3302				goto einval;
3303			qos[tok] = clamp_t(s64, v * 100,
3304					   VRATE_MIN_PPM, VRATE_MAX_PPM);
3305			break;
3306		default:
3307			goto einval;
3308		}
3309		user = true;
3310	}
3311
3312	if (qos[QOS_MIN] > qos[QOS_MAX])
3313		goto einval;
3314
3315	if (enable && !ioc->enabled) {
3316		blk_stat_enable_accounting(disk->queue);
3317		blk_queue_flag_set(QUEUE_FLAG_RQ_ALLOC_TIME, disk->queue);
3318		ioc->enabled = true;
3319	} else if (!enable && ioc->enabled) {
3320		blk_stat_disable_accounting(disk->queue);
3321		blk_queue_flag_clear(QUEUE_FLAG_RQ_ALLOC_TIME, disk->queue);
3322		ioc->enabled = false;
3323	}
3324
3325	if (user) {
3326		memcpy(ioc->params.qos, qos, sizeof(qos));
3327		ioc->user_qos_params = true;
3328	} else {
3329		ioc->user_qos_params = false;
3330	}
3331
3332	ioc_refresh_params(ioc, true);
3333	spin_unlock_irq(&ioc->lock);
3334
3335	if (enable)
3336		wbt_disable_default(disk);
3337	else
3338		wbt_enable_default(disk);
3339
3340	blk_mq_unquiesce_queue(disk->queue);
3341	blk_mq_unfreeze_queue(disk->queue);
3342
3343	blkg_conf_exit(&ctx);
3344	return nbytes;
3345einval:
3346	spin_unlock_irq(&ioc->lock);
3347
3348	blk_mq_unquiesce_queue(disk->queue);
3349	blk_mq_unfreeze_queue(disk->queue);
3350
3351	ret = -EINVAL;
3352err:
3353	blkg_conf_exit(&ctx);
3354	return ret;
3355}
3356
3357static u64 ioc_cost_model_prfill(struct seq_file *sf,
3358				 struct blkg_policy_data *pd, int off)
3359{
3360	const char *dname = blkg_dev_name(pd->blkg);
3361	struct ioc *ioc = pd_to_iocg(pd)->ioc;
3362	u64 *u = ioc->params.i_lcoefs;
3363
3364	if (!dname)
3365		return 0;
3366
3367	spin_lock_irq(&ioc->lock);
3368	seq_printf(sf, "%s ctrl=%s model=linear "
3369		   "rbps=%llu rseqiops=%llu rrandiops=%llu "
3370		   "wbps=%llu wseqiops=%llu wrandiops=%llu\n",
3371		   dname, ioc->user_cost_model ? "user" : "auto",
3372		   u[I_LCOEF_RBPS], u[I_LCOEF_RSEQIOPS], u[I_LCOEF_RRANDIOPS],
3373		   u[I_LCOEF_WBPS], u[I_LCOEF_WSEQIOPS], u[I_LCOEF_WRANDIOPS]);
3374	spin_unlock_irq(&ioc->lock);
3375	return 0;
3376}
3377
3378static int ioc_cost_model_show(struct seq_file *sf, void *v)
3379{
3380	struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
3381
3382	blkcg_print_blkgs(sf, blkcg, ioc_cost_model_prfill,
3383			  &blkcg_policy_iocost, seq_cft(sf)->private, false);
3384	return 0;
3385}
3386
3387static const match_table_t cost_ctrl_tokens = {
3388	{ COST_CTRL,		"ctrl=%s"	},
3389	{ COST_MODEL,		"model=%s"	},
3390	{ NR_COST_CTRL_PARAMS,	NULL		},
3391};
3392
3393static const match_table_t i_lcoef_tokens = {
3394	{ I_LCOEF_RBPS,		"rbps=%u"	},
3395	{ I_LCOEF_RSEQIOPS,	"rseqiops=%u"	},
3396	{ I_LCOEF_RRANDIOPS,	"rrandiops=%u"	},
3397	{ I_LCOEF_WBPS,		"wbps=%u"	},
3398	{ I_LCOEF_WSEQIOPS,	"wseqiops=%u"	},
3399	{ I_LCOEF_WRANDIOPS,	"wrandiops=%u"	},
3400	{ NR_I_LCOEFS,		NULL		},
3401};
3402
3403static ssize_t ioc_cost_model_write(struct kernfs_open_file *of, char *input,
3404				    size_t nbytes, loff_t off)
3405{
3406	struct blkg_conf_ctx ctx;
3407	struct request_queue *q;
3408	struct ioc *ioc;
3409	u64 u[NR_I_LCOEFS];
3410	bool user;
3411	char *body, *p;
3412	int ret;
3413
3414	blkg_conf_init(&ctx, input);
3415
3416	ret = blkg_conf_open_bdev(&ctx);
3417	if (ret)
3418		goto err;
3419
3420	body = ctx.body;
3421	q = bdev_get_queue(ctx.bdev);
3422	if (!queue_is_mq(q)) {
3423		ret = -EOPNOTSUPP;
3424		goto err;
3425	}
3426
3427	ioc = q_to_ioc(q);
3428	if (!ioc) {
3429		ret = blk_iocost_init(ctx.bdev->bd_disk);
3430		if (ret)
3431			goto err;
3432		ioc = q_to_ioc(q);
3433	}
3434
3435	blk_mq_freeze_queue(q);
3436	blk_mq_quiesce_queue(q);
3437
3438	spin_lock_irq(&ioc->lock);
3439	memcpy(u, ioc->params.i_lcoefs, sizeof(u));
3440	user = ioc->user_cost_model;
3441
3442	while ((p = strsep(&body, " \t\n"))) {
3443		substring_t args[MAX_OPT_ARGS];
3444		char buf[32];
3445		int tok;
3446		u64 v;
3447
3448		if (!*p)
3449			continue;
3450
3451		switch (match_token(p, cost_ctrl_tokens, args)) {
3452		case COST_CTRL:
3453			match_strlcpy(buf, &args[0], sizeof(buf));
3454			if (!strcmp(buf, "auto"))
3455				user = false;
3456			else if (!strcmp(buf, "user"))
3457				user = true;
3458			else
3459				goto einval;
3460			continue;
3461		case COST_MODEL:
3462			match_strlcpy(buf, &args[0], sizeof(buf));
3463			if (strcmp(buf, "linear"))
3464				goto einval;
3465			continue;
3466		}
3467
3468		tok = match_token(p, i_lcoef_tokens, args);
3469		if (tok == NR_I_LCOEFS)
3470			goto einval;
3471		if (match_u64(&args[0], &v))
3472			goto einval;
3473		u[tok] = v;
3474		user = true;
3475	}
3476
3477	if (user) {
3478		memcpy(ioc->params.i_lcoefs, u, sizeof(u));
3479		ioc->user_cost_model = true;
3480	} else {
3481		ioc->user_cost_model = false;
3482	}
3483	ioc_refresh_params(ioc, true);
3484	spin_unlock_irq(&ioc->lock);
3485
3486	blk_mq_unquiesce_queue(q);
3487	blk_mq_unfreeze_queue(q);
3488
3489	blkg_conf_exit(&ctx);
3490	return nbytes;
3491
3492einval:
3493	spin_unlock_irq(&ioc->lock);
3494
3495	blk_mq_unquiesce_queue(q);
3496	blk_mq_unfreeze_queue(q);
3497
3498	ret = -EINVAL;
3499err:
3500	blkg_conf_exit(&ctx);
3501	return ret;
3502}
3503
3504static struct cftype ioc_files[] = {
3505	{
3506		.name = "weight",
3507		.flags = CFTYPE_NOT_ON_ROOT,
3508		.seq_show = ioc_weight_show,
3509		.write = ioc_weight_write,
3510	},
3511	{
3512		.name = "cost.qos",
3513		.flags = CFTYPE_ONLY_ON_ROOT,
3514		.seq_show = ioc_qos_show,
3515		.write = ioc_qos_write,
3516	},
3517	{
3518		.name = "cost.model",
3519		.flags = CFTYPE_ONLY_ON_ROOT,
3520		.seq_show = ioc_cost_model_show,
3521		.write = ioc_cost_model_write,
3522	},
3523	{}
3524};
3525
3526static struct blkcg_policy blkcg_policy_iocost = {
3527	.dfl_cftypes	= ioc_files,
3528	.cpd_alloc_fn	= ioc_cpd_alloc,
3529	.cpd_free_fn	= ioc_cpd_free,
3530	.pd_alloc_fn	= ioc_pd_alloc,
3531	.pd_init_fn	= ioc_pd_init,
3532	.pd_free_fn	= ioc_pd_free,
3533	.pd_stat_fn	= ioc_pd_stat,
3534};
3535
3536static int __init ioc_init(void)
3537{
3538	return blkcg_policy_register(&blkcg_policy_iocost);
3539}
3540
3541static void __exit ioc_exit(void)
3542{
3543	blkcg_policy_unregister(&blkcg_policy_iocost);
3544}
3545
3546module_init(ioc_init);
3547module_exit(ioc_exit);
3548