1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright 2019 Google LLC
4 */
5
6/*
7 * Refer to Documentation/block/inline-encryption.rst for detailed explanation.
8 */
9
10#define pr_fmt(fmt) "blk-crypto-fallback: " fmt
11
12#include <crypto/skcipher.h>
13#include <linux/blk-crypto.h>
14#include <linux/blk-crypto-profile.h>
15#include <linux/blkdev.h>
16#include <linux/crypto.h>
17#include <linux/mempool.h>
18#include <linux/module.h>
19#include <linux/random.h>
20#include <linux/scatterlist.h>
21
22#include "blk-cgroup.h"
23#include "blk-crypto-internal.h"
24
25static unsigned int num_prealloc_bounce_pg = 32;
26module_param(num_prealloc_bounce_pg, uint, 0);
27MODULE_PARM_DESC(num_prealloc_bounce_pg,
28		 "Number of preallocated bounce pages for the blk-crypto crypto API fallback");
29
30static unsigned int blk_crypto_num_keyslots = 100;
31module_param_named(num_keyslots, blk_crypto_num_keyslots, uint, 0);
32MODULE_PARM_DESC(num_keyslots,
33		 "Number of keyslots for the blk-crypto crypto API fallback");
34
35static unsigned int num_prealloc_fallback_crypt_ctxs = 128;
36module_param(num_prealloc_fallback_crypt_ctxs, uint, 0);
37MODULE_PARM_DESC(num_prealloc_crypt_fallback_ctxs,
38		 "Number of preallocated bio fallback crypto contexts for blk-crypto to use during crypto API fallback");
39
40struct bio_fallback_crypt_ctx {
41	struct bio_crypt_ctx crypt_ctx;
42	/*
43	 * Copy of the bvec_iter when this bio was submitted.
44	 * We only want to en/decrypt the part of the bio as described by the
45	 * bvec_iter upon submission because bio might be split before being
46	 * resubmitted
47	 */
48	struct bvec_iter crypt_iter;
49	union {
50		struct {
51			struct work_struct work;
52			struct bio *bio;
53		};
54		struct {
55			void *bi_private_orig;
56			bio_end_io_t *bi_end_io_orig;
57		};
58	};
59};
60
61static struct kmem_cache *bio_fallback_crypt_ctx_cache;
62static mempool_t *bio_fallback_crypt_ctx_pool;
63
64/*
65 * Allocating a crypto tfm during I/O can deadlock, so we have to preallocate
66 * all of a mode's tfms when that mode starts being used. Since each mode may
67 * need all the keyslots at some point, each mode needs its own tfm for each
68 * keyslot; thus, a keyslot may contain tfms for multiple modes.  However, to
69 * match the behavior of real inline encryption hardware (which only supports a
70 * single encryption context per keyslot), we only allow one tfm per keyslot to
71 * be used at a time - the rest of the unused tfms have their keys cleared.
72 */
73static DEFINE_MUTEX(tfms_init_lock);
74static bool tfms_inited[BLK_ENCRYPTION_MODE_MAX];
75
76static struct blk_crypto_fallback_keyslot {
77	enum blk_crypto_mode_num crypto_mode;
78	struct crypto_skcipher *tfms[BLK_ENCRYPTION_MODE_MAX];
79} *blk_crypto_keyslots;
80
81static struct blk_crypto_profile *blk_crypto_fallback_profile;
82static struct workqueue_struct *blk_crypto_wq;
83static mempool_t *blk_crypto_bounce_page_pool;
84static struct bio_set crypto_bio_split;
85
86/*
87 * This is the key we set when evicting a keyslot. This *should* be the all 0's
88 * key, but AES-XTS rejects that key, so we use some random bytes instead.
89 */
90static u8 blank_key[BLK_CRYPTO_MAX_KEY_SIZE];
91
92static void blk_crypto_fallback_evict_keyslot(unsigned int slot)
93{
94	struct blk_crypto_fallback_keyslot *slotp = &blk_crypto_keyslots[slot];
95	enum blk_crypto_mode_num crypto_mode = slotp->crypto_mode;
96	int err;
97
98	WARN_ON(slotp->crypto_mode == BLK_ENCRYPTION_MODE_INVALID);
99
100	/* Clear the key in the skcipher */
101	err = crypto_skcipher_setkey(slotp->tfms[crypto_mode], blank_key,
102				     blk_crypto_modes[crypto_mode].keysize);
103	WARN_ON(err);
104	slotp->crypto_mode = BLK_ENCRYPTION_MODE_INVALID;
105}
106
107static int
108blk_crypto_fallback_keyslot_program(struct blk_crypto_profile *profile,
109				    const struct blk_crypto_key *key,
110				    unsigned int slot)
111{
112	struct blk_crypto_fallback_keyslot *slotp = &blk_crypto_keyslots[slot];
113	const enum blk_crypto_mode_num crypto_mode =
114						key->crypto_cfg.crypto_mode;
115	int err;
116
117	if (crypto_mode != slotp->crypto_mode &&
118	    slotp->crypto_mode != BLK_ENCRYPTION_MODE_INVALID)
119		blk_crypto_fallback_evict_keyslot(slot);
120
121	slotp->crypto_mode = crypto_mode;
122	err = crypto_skcipher_setkey(slotp->tfms[crypto_mode], key->raw,
123				     key->size);
124	if (err) {
125		blk_crypto_fallback_evict_keyslot(slot);
126		return err;
127	}
128	return 0;
129}
130
131static int blk_crypto_fallback_keyslot_evict(struct blk_crypto_profile *profile,
132					     const struct blk_crypto_key *key,
133					     unsigned int slot)
134{
135	blk_crypto_fallback_evict_keyslot(slot);
136	return 0;
137}
138
139static const struct blk_crypto_ll_ops blk_crypto_fallback_ll_ops = {
140	.keyslot_program        = blk_crypto_fallback_keyslot_program,
141	.keyslot_evict          = blk_crypto_fallback_keyslot_evict,
142};
143
144static void blk_crypto_fallback_encrypt_endio(struct bio *enc_bio)
145{
146	struct bio *src_bio = enc_bio->bi_private;
147	int i;
148
149	for (i = 0; i < enc_bio->bi_vcnt; i++)
150		mempool_free(enc_bio->bi_io_vec[i].bv_page,
151			     blk_crypto_bounce_page_pool);
152
153	src_bio->bi_status = enc_bio->bi_status;
154
155	bio_uninit(enc_bio);
156	kfree(enc_bio);
157	bio_endio(src_bio);
158}
159
160static struct bio *blk_crypto_fallback_clone_bio(struct bio *bio_src)
161{
162	unsigned int nr_segs = bio_segments(bio_src);
163	struct bvec_iter iter;
164	struct bio_vec bv;
165	struct bio *bio;
166
167	bio = bio_kmalloc(nr_segs, GFP_NOIO);
168	if (!bio)
169		return NULL;
170	bio_init(bio, bio_src->bi_bdev, bio->bi_inline_vecs, nr_segs,
171		 bio_src->bi_opf);
172	if (bio_flagged(bio_src, BIO_REMAPPED))
173		bio_set_flag(bio, BIO_REMAPPED);
174	bio->bi_ioprio		= bio_src->bi_ioprio;
175	bio->bi_write_hint	= bio_src->bi_write_hint;
176	bio->bi_iter.bi_sector	= bio_src->bi_iter.bi_sector;
177	bio->bi_iter.bi_size	= bio_src->bi_iter.bi_size;
178
179	bio_for_each_segment(bv, bio_src, iter)
180		bio->bi_io_vec[bio->bi_vcnt++] = bv;
181
182	bio_clone_blkg_association(bio, bio_src);
183
184	return bio;
185}
186
187static bool
188blk_crypto_fallback_alloc_cipher_req(struct blk_crypto_keyslot *slot,
189				     struct skcipher_request **ciph_req_ret,
190				     struct crypto_wait *wait)
191{
192	struct skcipher_request *ciph_req;
193	const struct blk_crypto_fallback_keyslot *slotp;
194	int keyslot_idx = blk_crypto_keyslot_index(slot);
195
196	slotp = &blk_crypto_keyslots[keyslot_idx];
197	ciph_req = skcipher_request_alloc(slotp->tfms[slotp->crypto_mode],
198					  GFP_NOIO);
199	if (!ciph_req)
200		return false;
201
202	skcipher_request_set_callback(ciph_req,
203				      CRYPTO_TFM_REQ_MAY_BACKLOG |
204				      CRYPTO_TFM_REQ_MAY_SLEEP,
205				      crypto_req_done, wait);
206	*ciph_req_ret = ciph_req;
207
208	return true;
209}
210
211static bool blk_crypto_fallback_split_bio_if_needed(struct bio **bio_ptr)
212{
213	struct bio *bio = *bio_ptr;
214	unsigned int i = 0;
215	unsigned int num_sectors = 0;
216	struct bio_vec bv;
217	struct bvec_iter iter;
218
219	bio_for_each_segment(bv, bio, iter) {
220		num_sectors += bv.bv_len >> SECTOR_SHIFT;
221		if (++i == BIO_MAX_VECS)
222			break;
223	}
224	if (num_sectors < bio_sectors(bio)) {
225		struct bio *split_bio;
226
227		split_bio = bio_split(bio, num_sectors, GFP_NOIO,
228				      &crypto_bio_split);
229		if (!split_bio) {
230			bio->bi_status = BLK_STS_RESOURCE;
231			return false;
232		}
233		bio_chain(split_bio, bio);
234		submit_bio_noacct(bio);
235		*bio_ptr = split_bio;
236	}
237
238	return true;
239}
240
241union blk_crypto_iv {
242	__le64 dun[BLK_CRYPTO_DUN_ARRAY_SIZE];
243	u8 bytes[BLK_CRYPTO_MAX_IV_SIZE];
244};
245
246static void blk_crypto_dun_to_iv(const u64 dun[BLK_CRYPTO_DUN_ARRAY_SIZE],
247				 union blk_crypto_iv *iv)
248{
249	int i;
250
251	for (i = 0; i < BLK_CRYPTO_DUN_ARRAY_SIZE; i++)
252		iv->dun[i] = cpu_to_le64(dun[i]);
253}
254
255/*
256 * The crypto API fallback's encryption routine.
257 * Allocate a bounce bio for encryption, encrypt the input bio using crypto API,
258 * and replace *bio_ptr with the bounce bio. May split input bio if it's too
259 * large. Returns true on success. Returns false and sets bio->bi_status on
260 * error.
261 */
262static bool blk_crypto_fallback_encrypt_bio(struct bio **bio_ptr)
263{
264	struct bio *src_bio, *enc_bio;
265	struct bio_crypt_ctx *bc;
266	struct blk_crypto_keyslot *slot;
267	int data_unit_size;
268	struct skcipher_request *ciph_req = NULL;
269	DECLARE_CRYPTO_WAIT(wait);
270	u64 curr_dun[BLK_CRYPTO_DUN_ARRAY_SIZE];
271	struct scatterlist src, dst;
272	union blk_crypto_iv iv;
273	unsigned int i, j;
274	bool ret = false;
275	blk_status_t blk_st;
276
277	/* Split the bio if it's too big for single page bvec */
278	if (!blk_crypto_fallback_split_bio_if_needed(bio_ptr))
279		return false;
280
281	src_bio = *bio_ptr;
282	bc = src_bio->bi_crypt_context;
283	data_unit_size = bc->bc_key->crypto_cfg.data_unit_size;
284
285	/* Allocate bounce bio for encryption */
286	enc_bio = blk_crypto_fallback_clone_bio(src_bio);
287	if (!enc_bio) {
288		src_bio->bi_status = BLK_STS_RESOURCE;
289		return false;
290	}
291
292	/*
293	 * Get a blk-crypto-fallback keyslot that contains a crypto_skcipher for
294	 * this bio's algorithm and key.
295	 */
296	blk_st = blk_crypto_get_keyslot(blk_crypto_fallback_profile,
297					bc->bc_key, &slot);
298	if (blk_st != BLK_STS_OK) {
299		src_bio->bi_status = blk_st;
300		goto out_put_enc_bio;
301	}
302
303	/* and then allocate an skcipher_request for it */
304	if (!blk_crypto_fallback_alloc_cipher_req(slot, &ciph_req, &wait)) {
305		src_bio->bi_status = BLK_STS_RESOURCE;
306		goto out_release_keyslot;
307	}
308
309	memcpy(curr_dun, bc->bc_dun, sizeof(curr_dun));
310	sg_init_table(&src, 1);
311	sg_init_table(&dst, 1);
312
313	skcipher_request_set_crypt(ciph_req, &src, &dst, data_unit_size,
314				   iv.bytes);
315
316	/* Encrypt each page in the bounce bio */
317	for (i = 0; i < enc_bio->bi_vcnt; i++) {
318		struct bio_vec *enc_bvec = &enc_bio->bi_io_vec[i];
319		struct page *plaintext_page = enc_bvec->bv_page;
320		struct page *ciphertext_page =
321			mempool_alloc(blk_crypto_bounce_page_pool, GFP_NOIO);
322
323		enc_bvec->bv_page = ciphertext_page;
324
325		if (!ciphertext_page) {
326			src_bio->bi_status = BLK_STS_RESOURCE;
327			goto out_free_bounce_pages;
328		}
329
330		sg_set_page(&src, plaintext_page, data_unit_size,
331			    enc_bvec->bv_offset);
332		sg_set_page(&dst, ciphertext_page, data_unit_size,
333			    enc_bvec->bv_offset);
334
335		/* Encrypt each data unit in this page */
336		for (j = 0; j < enc_bvec->bv_len; j += data_unit_size) {
337			blk_crypto_dun_to_iv(curr_dun, &iv);
338			if (crypto_wait_req(crypto_skcipher_encrypt(ciph_req),
339					    &wait)) {
340				i++;
341				src_bio->bi_status = BLK_STS_IOERR;
342				goto out_free_bounce_pages;
343			}
344			bio_crypt_dun_increment(curr_dun, 1);
345			src.offset += data_unit_size;
346			dst.offset += data_unit_size;
347		}
348	}
349
350	enc_bio->bi_private = src_bio;
351	enc_bio->bi_end_io = blk_crypto_fallback_encrypt_endio;
352	*bio_ptr = enc_bio;
353	ret = true;
354
355	enc_bio = NULL;
356	goto out_free_ciph_req;
357
358out_free_bounce_pages:
359	while (i > 0)
360		mempool_free(enc_bio->bi_io_vec[--i].bv_page,
361			     blk_crypto_bounce_page_pool);
362out_free_ciph_req:
363	skcipher_request_free(ciph_req);
364out_release_keyslot:
365	blk_crypto_put_keyslot(slot);
366out_put_enc_bio:
367	if (enc_bio)
368		bio_uninit(enc_bio);
369	kfree(enc_bio);
370	return ret;
371}
372
373/*
374 * The crypto API fallback's main decryption routine.
375 * Decrypts input bio in place, and calls bio_endio on the bio.
376 */
377static void blk_crypto_fallback_decrypt_bio(struct work_struct *work)
378{
379	struct bio_fallback_crypt_ctx *f_ctx =
380		container_of(work, struct bio_fallback_crypt_ctx, work);
381	struct bio *bio = f_ctx->bio;
382	struct bio_crypt_ctx *bc = &f_ctx->crypt_ctx;
383	struct blk_crypto_keyslot *slot;
384	struct skcipher_request *ciph_req = NULL;
385	DECLARE_CRYPTO_WAIT(wait);
386	u64 curr_dun[BLK_CRYPTO_DUN_ARRAY_SIZE];
387	union blk_crypto_iv iv;
388	struct scatterlist sg;
389	struct bio_vec bv;
390	struct bvec_iter iter;
391	const int data_unit_size = bc->bc_key->crypto_cfg.data_unit_size;
392	unsigned int i;
393	blk_status_t blk_st;
394
395	/*
396	 * Get a blk-crypto-fallback keyslot that contains a crypto_skcipher for
397	 * this bio's algorithm and key.
398	 */
399	blk_st = blk_crypto_get_keyslot(blk_crypto_fallback_profile,
400					bc->bc_key, &slot);
401	if (blk_st != BLK_STS_OK) {
402		bio->bi_status = blk_st;
403		goto out_no_keyslot;
404	}
405
406	/* and then allocate an skcipher_request for it */
407	if (!blk_crypto_fallback_alloc_cipher_req(slot, &ciph_req, &wait)) {
408		bio->bi_status = BLK_STS_RESOURCE;
409		goto out;
410	}
411
412	memcpy(curr_dun, bc->bc_dun, sizeof(curr_dun));
413	sg_init_table(&sg, 1);
414	skcipher_request_set_crypt(ciph_req, &sg, &sg, data_unit_size,
415				   iv.bytes);
416
417	/* Decrypt each segment in the bio */
418	__bio_for_each_segment(bv, bio, iter, f_ctx->crypt_iter) {
419		struct page *page = bv.bv_page;
420
421		sg_set_page(&sg, page, data_unit_size, bv.bv_offset);
422
423		/* Decrypt each data unit in the segment */
424		for (i = 0; i < bv.bv_len; i += data_unit_size) {
425			blk_crypto_dun_to_iv(curr_dun, &iv);
426			if (crypto_wait_req(crypto_skcipher_decrypt(ciph_req),
427					    &wait)) {
428				bio->bi_status = BLK_STS_IOERR;
429				goto out;
430			}
431			bio_crypt_dun_increment(curr_dun, 1);
432			sg.offset += data_unit_size;
433		}
434	}
435
436out:
437	skcipher_request_free(ciph_req);
438	blk_crypto_put_keyslot(slot);
439out_no_keyslot:
440	mempool_free(f_ctx, bio_fallback_crypt_ctx_pool);
441	bio_endio(bio);
442}
443
444/**
445 * blk_crypto_fallback_decrypt_endio - queue bio for fallback decryption
446 *
447 * @bio: the bio to queue
448 *
449 * Restore bi_private and bi_end_io, and queue the bio for decryption into a
450 * workqueue, since this function will be called from an atomic context.
451 */
452static void blk_crypto_fallback_decrypt_endio(struct bio *bio)
453{
454	struct bio_fallback_crypt_ctx *f_ctx = bio->bi_private;
455
456	bio->bi_private = f_ctx->bi_private_orig;
457	bio->bi_end_io = f_ctx->bi_end_io_orig;
458
459	/* If there was an IO error, don't queue for decrypt. */
460	if (bio->bi_status) {
461		mempool_free(f_ctx, bio_fallback_crypt_ctx_pool);
462		bio_endio(bio);
463		return;
464	}
465
466	INIT_WORK(&f_ctx->work, blk_crypto_fallback_decrypt_bio);
467	f_ctx->bio = bio;
468	queue_work(blk_crypto_wq, &f_ctx->work);
469}
470
471/**
472 * blk_crypto_fallback_bio_prep - Prepare a bio to use fallback en/decryption
473 *
474 * @bio_ptr: pointer to the bio to prepare
475 *
476 * If bio is doing a WRITE operation, this splits the bio into two parts if it's
477 * too big (see blk_crypto_fallback_split_bio_if_needed()). It then allocates a
478 * bounce bio for the first part, encrypts it, and updates bio_ptr to point to
479 * the bounce bio.
480 *
481 * For a READ operation, we mark the bio for decryption by using bi_private and
482 * bi_end_io.
483 *
484 * In either case, this function will make the bio look like a regular bio (i.e.
485 * as if no encryption context was ever specified) for the purposes of the rest
486 * of the stack except for blk-integrity (blk-integrity and blk-crypto are not
487 * currently supported together).
488 *
489 * Return: true on success. Sets bio->bi_status and returns false on error.
490 */
491bool blk_crypto_fallback_bio_prep(struct bio **bio_ptr)
492{
493	struct bio *bio = *bio_ptr;
494	struct bio_crypt_ctx *bc = bio->bi_crypt_context;
495	struct bio_fallback_crypt_ctx *f_ctx;
496
497	if (WARN_ON_ONCE(!tfms_inited[bc->bc_key->crypto_cfg.crypto_mode])) {
498		/* User didn't call blk_crypto_start_using_key() first */
499		bio->bi_status = BLK_STS_IOERR;
500		return false;
501	}
502
503	if (!__blk_crypto_cfg_supported(blk_crypto_fallback_profile,
504					&bc->bc_key->crypto_cfg)) {
505		bio->bi_status = BLK_STS_NOTSUPP;
506		return false;
507	}
508
509	if (bio_data_dir(bio) == WRITE)
510		return blk_crypto_fallback_encrypt_bio(bio_ptr);
511
512	/*
513	 * bio READ case: Set up a f_ctx in the bio's bi_private and set the
514	 * bi_end_io appropriately to trigger decryption when the bio is ended.
515	 */
516	f_ctx = mempool_alloc(bio_fallback_crypt_ctx_pool, GFP_NOIO);
517	f_ctx->crypt_ctx = *bc;
518	f_ctx->crypt_iter = bio->bi_iter;
519	f_ctx->bi_private_orig = bio->bi_private;
520	f_ctx->bi_end_io_orig = bio->bi_end_io;
521	bio->bi_private = (void *)f_ctx;
522	bio->bi_end_io = blk_crypto_fallback_decrypt_endio;
523	bio_crypt_free_ctx(bio);
524
525	return true;
526}
527
528int blk_crypto_fallback_evict_key(const struct blk_crypto_key *key)
529{
530	return __blk_crypto_evict_key(blk_crypto_fallback_profile, key);
531}
532
533static bool blk_crypto_fallback_inited;
534static int blk_crypto_fallback_init(void)
535{
536	int i;
537	int err;
538
539	if (blk_crypto_fallback_inited)
540		return 0;
541
542	get_random_bytes(blank_key, BLK_CRYPTO_MAX_KEY_SIZE);
543
544	err = bioset_init(&crypto_bio_split, 64, 0, 0);
545	if (err)
546		goto out;
547
548	/* Dynamic allocation is needed because of lockdep_register_key(). */
549	blk_crypto_fallback_profile =
550		kzalloc(sizeof(*blk_crypto_fallback_profile), GFP_KERNEL);
551	if (!blk_crypto_fallback_profile) {
552		err = -ENOMEM;
553		goto fail_free_bioset;
554	}
555
556	err = blk_crypto_profile_init(blk_crypto_fallback_profile,
557				      blk_crypto_num_keyslots);
558	if (err)
559		goto fail_free_profile;
560	err = -ENOMEM;
561
562	blk_crypto_fallback_profile->ll_ops = blk_crypto_fallback_ll_ops;
563	blk_crypto_fallback_profile->max_dun_bytes_supported = BLK_CRYPTO_MAX_IV_SIZE;
564
565	/* All blk-crypto modes have a crypto API fallback. */
566	for (i = 0; i < BLK_ENCRYPTION_MODE_MAX; i++)
567		blk_crypto_fallback_profile->modes_supported[i] = 0xFFFFFFFF;
568	blk_crypto_fallback_profile->modes_supported[BLK_ENCRYPTION_MODE_INVALID] = 0;
569
570	blk_crypto_wq = alloc_workqueue("blk_crypto_wq",
571					WQ_UNBOUND | WQ_HIGHPRI |
572					WQ_MEM_RECLAIM, num_online_cpus());
573	if (!blk_crypto_wq)
574		goto fail_destroy_profile;
575
576	blk_crypto_keyslots = kcalloc(blk_crypto_num_keyslots,
577				      sizeof(blk_crypto_keyslots[0]),
578				      GFP_KERNEL);
579	if (!blk_crypto_keyslots)
580		goto fail_free_wq;
581
582	blk_crypto_bounce_page_pool =
583		mempool_create_page_pool(num_prealloc_bounce_pg, 0);
584	if (!blk_crypto_bounce_page_pool)
585		goto fail_free_keyslots;
586
587	bio_fallback_crypt_ctx_cache = KMEM_CACHE(bio_fallback_crypt_ctx, 0);
588	if (!bio_fallback_crypt_ctx_cache)
589		goto fail_free_bounce_page_pool;
590
591	bio_fallback_crypt_ctx_pool =
592		mempool_create_slab_pool(num_prealloc_fallback_crypt_ctxs,
593					 bio_fallback_crypt_ctx_cache);
594	if (!bio_fallback_crypt_ctx_pool)
595		goto fail_free_crypt_ctx_cache;
596
597	blk_crypto_fallback_inited = true;
598
599	return 0;
600fail_free_crypt_ctx_cache:
601	kmem_cache_destroy(bio_fallback_crypt_ctx_cache);
602fail_free_bounce_page_pool:
603	mempool_destroy(blk_crypto_bounce_page_pool);
604fail_free_keyslots:
605	kfree(blk_crypto_keyslots);
606fail_free_wq:
607	destroy_workqueue(blk_crypto_wq);
608fail_destroy_profile:
609	blk_crypto_profile_destroy(blk_crypto_fallback_profile);
610fail_free_profile:
611	kfree(blk_crypto_fallback_profile);
612fail_free_bioset:
613	bioset_exit(&crypto_bio_split);
614out:
615	return err;
616}
617
618/*
619 * Prepare blk-crypto-fallback for the specified crypto mode.
620 * Returns -ENOPKG if the needed crypto API support is missing.
621 */
622int blk_crypto_fallback_start_using_mode(enum blk_crypto_mode_num mode_num)
623{
624	const char *cipher_str = blk_crypto_modes[mode_num].cipher_str;
625	struct blk_crypto_fallback_keyslot *slotp;
626	unsigned int i;
627	int err = 0;
628
629	/*
630	 * Fast path
631	 * Ensure that updates to blk_crypto_keyslots[i].tfms[mode_num]
632	 * for each i are visible before we try to access them.
633	 */
634	if (likely(smp_load_acquire(&tfms_inited[mode_num])))
635		return 0;
636
637	mutex_lock(&tfms_init_lock);
638	if (tfms_inited[mode_num])
639		goto out;
640
641	err = blk_crypto_fallback_init();
642	if (err)
643		goto out;
644
645	for (i = 0; i < blk_crypto_num_keyslots; i++) {
646		slotp = &blk_crypto_keyslots[i];
647		slotp->tfms[mode_num] = crypto_alloc_skcipher(cipher_str, 0, 0);
648		if (IS_ERR(slotp->tfms[mode_num])) {
649			err = PTR_ERR(slotp->tfms[mode_num]);
650			if (err == -ENOENT) {
651				pr_warn_once("Missing crypto API support for \"%s\"\n",
652					     cipher_str);
653				err = -ENOPKG;
654			}
655			slotp->tfms[mode_num] = NULL;
656			goto out_free_tfms;
657		}
658
659		crypto_skcipher_set_flags(slotp->tfms[mode_num],
660					  CRYPTO_TFM_REQ_FORBID_WEAK_KEYS);
661	}
662
663	/*
664	 * Ensure that updates to blk_crypto_keyslots[i].tfms[mode_num]
665	 * for each i are visible before we set tfms_inited[mode_num].
666	 */
667	smp_store_release(&tfms_inited[mode_num], true);
668	goto out;
669
670out_free_tfms:
671	for (i = 0; i < blk_crypto_num_keyslots; i++) {
672		slotp = &blk_crypto_keyslots[i];
673		crypto_free_skcipher(slotp->tfms[mode_num]);
674		slotp->tfms[mode_num] = NULL;
675	}
676out:
677	mutex_unlock(&tfms_init_lock);
678	return err;
679}
680