1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Common Block IO controller cgroup interface
4 *
5 * Based on ideas and code from CFQ, CFS and BFQ:
6 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
7 *
8 * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it>
9 *		      Paolo Valente <paolo.valente@unimore.it>
10 *
11 * Copyright (C) 2009 Vivek Goyal <vgoyal@redhat.com>
12 * 	              Nauman Rafique <nauman@google.com>
13 *
14 * For policy-specific per-blkcg data:
15 * Copyright (C) 2015 Paolo Valente <paolo.valente@unimore.it>
16 *                    Arianna Avanzini <avanzini.arianna@gmail.com>
17 */
18#include <linux/ioprio.h>
19#include <linux/kdev_t.h>
20#include <linux/module.h>
21#include <linux/sched/signal.h>
22#include <linux/err.h>
23#include <linux/blkdev.h>
24#include <linux/backing-dev.h>
25#include <linux/slab.h>
26#include <linux/delay.h>
27#include <linux/atomic.h>
28#include <linux/ctype.h>
29#include <linux/resume_user_mode.h>
30#include <linux/psi.h>
31#include <linux/part_stat.h>
32#include "blk.h"
33#include "blk-cgroup.h"
34#include "blk-ioprio.h"
35#include "blk-throttle.h"
36
37static void __blkcg_rstat_flush(struct blkcg *blkcg, int cpu);
38
39/*
40 * blkcg_pol_mutex protects blkcg_policy[] and policy [de]activation.
41 * blkcg_pol_register_mutex nests outside of it and synchronizes entire
42 * policy [un]register operations including cgroup file additions /
43 * removals.  Putting cgroup file registration outside blkcg_pol_mutex
44 * allows grabbing it from cgroup callbacks.
45 */
46static DEFINE_MUTEX(blkcg_pol_register_mutex);
47static DEFINE_MUTEX(blkcg_pol_mutex);
48
49struct blkcg blkcg_root;
50EXPORT_SYMBOL_GPL(blkcg_root);
51
52struct cgroup_subsys_state * const blkcg_root_css = &blkcg_root.css;
53EXPORT_SYMBOL_GPL(blkcg_root_css);
54
55static struct blkcg_policy *blkcg_policy[BLKCG_MAX_POLS];
56
57static LIST_HEAD(all_blkcgs);		/* protected by blkcg_pol_mutex */
58
59bool blkcg_debug_stats = false;
60
61static DEFINE_RAW_SPINLOCK(blkg_stat_lock);
62
63#define BLKG_DESTROY_BATCH_SIZE  64
64
65/*
66 * Lockless lists for tracking IO stats update
67 *
68 * New IO stats are stored in the percpu iostat_cpu within blkcg_gq (blkg).
69 * There are multiple blkg's (one for each block device) attached to each
70 * blkcg. The rstat code keeps track of which cpu has IO stats updated,
71 * but it doesn't know which blkg has the updated stats. If there are many
72 * block devices in a system, the cost of iterating all the blkg's to flush
73 * out the IO stats can be high. To reduce such overhead, a set of percpu
74 * lockless lists (lhead) per blkcg are used to track the set of recently
75 * updated iostat_cpu's since the last flush. An iostat_cpu will be put
76 * onto the lockless list on the update side [blk_cgroup_bio_start()] if
77 * not there yet and then removed when being flushed [blkcg_rstat_flush()].
78 * References to blkg are gotten and then put back in the process to
79 * protect against blkg removal.
80 *
81 * Return: 0 if successful or -ENOMEM if allocation fails.
82 */
83static int init_blkcg_llists(struct blkcg *blkcg)
84{
85	int cpu;
86
87	blkcg->lhead = alloc_percpu_gfp(struct llist_head, GFP_KERNEL);
88	if (!blkcg->lhead)
89		return -ENOMEM;
90
91	for_each_possible_cpu(cpu)
92		init_llist_head(per_cpu_ptr(blkcg->lhead, cpu));
93	return 0;
94}
95
96/**
97 * blkcg_css - find the current css
98 *
99 * Find the css associated with either the kthread or the current task.
100 * This may return a dying css, so it is up to the caller to use tryget logic
101 * to confirm it is alive and well.
102 */
103static struct cgroup_subsys_state *blkcg_css(void)
104{
105	struct cgroup_subsys_state *css;
106
107	css = kthread_blkcg();
108	if (css)
109		return css;
110	return task_css(current, io_cgrp_id);
111}
112
113static bool blkcg_policy_enabled(struct request_queue *q,
114				 const struct blkcg_policy *pol)
115{
116	return pol && test_bit(pol->plid, q->blkcg_pols);
117}
118
119static void blkg_free_workfn(struct work_struct *work)
120{
121	struct blkcg_gq *blkg = container_of(work, struct blkcg_gq,
122					     free_work);
123	struct request_queue *q = blkg->q;
124	int i;
125
126	/*
127	 * pd_free_fn() can also be called from blkcg_deactivate_policy(),
128	 * in order to make sure pd_free_fn() is called in order, the deletion
129	 * of the list blkg->q_node is delayed to here from blkg_destroy(), and
130	 * blkcg_mutex is used to synchronize blkg_free_workfn() and
131	 * blkcg_deactivate_policy().
132	 */
133	mutex_lock(&q->blkcg_mutex);
134	for (i = 0; i < BLKCG_MAX_POLS; i++)
135		if (blkg->pd[i])
136			blkcg_policy[i]->pd_free_fn(blkg->pd[i]);
137	if (blkg->parent)
138		blkg_put(blkg->parent);
139	spin_lock_irq(&q->queue_lock);
140	list_del_init(&blkg->q_node);
141	spin_unlock_irq(&q->queue_lock);
142	mutex_unlock(&q->blkcg_mutex);
143
144	blk_put_queue(q);
145	free_percpu(blkg->iostat_cpu);
146	percpu_ref_exit(&blkg->refcnt);
147	kfree(blkg);
148}
149
150/**
151 * blkg_free - free a blkg
152 * @blkg: blkg to free
153 *
154 * Free @blkg which may be partially allocated.
155 */
156static void blkg_free(struct blkcg_gq *blkg)
157{
158	if (!blkg)
159		return;
160
161	/*
162	 * Both ->pd_free_fn() and request queue's release handler may
163	 * sleep, so free us by scheduling one work func
164	 */
165	INIT_WORK(&blkg->free_work, blkg_free_workfn);
166	schedule_work(&blkg->free_work);
167}
168
169static void __blkg_release(struct rcu_head *rcu)
170{
171	struct blkcg_gq *blkg = container_of(rcu, struct blkcg_gq, rcu_head);
172	struct blkcg *blkcg = blkg->blkcg;
173	int cpu;
174
175#ifdef CONFIG_BLK_CGROUP_PUNT_BIO
176	WARN_ON(!bio_list_empty(&blkg->async_bios));
177#endif
178	/*
179	 * Flush all the non-empty percpu lockless lists before releasing
180	 * us, given these stat belongs to us.
181	 *
182	 * blkg_stat_lock is for serializing blkg stat update
183	 */
184	for_each_possible_cpu(cpu)
185		__blkcg_rstat_flush(blkcg, cpu);
186
187	/* release the blkcg and parent blkg refs this blkg has been holding */
188	css_put(&blkg->blkcg->css);
189	blkg_free(blkg);
190}
191
192/*
193 * A group is RCU protected, but having an rcu lock does not mean that one
194 * can access all the fields of blkg and assume these are valid.  For
195 * example, don't try to follow throtl_data and request queue links.
196 *
197 * Having a reference to blkg under an rcu allows accesses to only values
198 * local to groups like group stats and group rate limits.
199 */
200static void blkg_release(struct percpu_ref *ref)
201{
202	struct blkcg_gq *blkg = container_of(ref, struct blkcg_gq, refcnt);
203
204	call_rcu(&blkg->rcu_head, __blkg_release);
205}
206
207#ifdef CONFIG_BLK_CGROUP_PUNT_BIO
208static struct workqueue_struct *blkcg_punt_bio_wq;
209
210static void blkg_async_bio_workfn(struct work_struct *work)
211{
212	struct blkcg_gq *blkg = container_of(work, struct blkcg_gq,
213					     async_bio_work);
214	struct bio_list bios = BIO_EMPTY_LIST;
215	struct bio *bio;
216	struct blk_plug plug;
217	bool need_plug = false;
218
219	/* as long as there are pending bios, @blkg can't go away */
220	spin_lock(&blkg->async_bio_lock);
221	bio_list_merge(&bios, &blkg->async_bios);
222	bio_list_init(&blkg->async_bios);
223	spin_unlock(&blkg->async_bio_lock);
224
225	/* start plug only when bio_list contains at least 2 bios */
226	if (bios.head && bios.head->bi_next) {
227		need_plug = true;
228		blk_start_plug(&plug);
229	}
230	while ((bio = bio_list_pop(&bios)))
231		submit_bio(bio);
232	if (need_plug)
233		blk_finish_plug(&plug);
234}
235
236/*
237 * When a shared kthread issues a bio for a cgroup, doing so synchronously can
238 * lead to priority inversions as the kthread can be trapped waiting for that
239 * cgroup.  Use this helper instead of submit_bio to punt the actual issuing to
240 * a dedicated per-blkcg work item to avoid such priority inversions.
241 */
242void blkcg_punt_bio_submit(struct bio *bio)
243{
244	struct blkcg_gq *blkg = bio->bi_blkg;
245
246	if (blkg->parent) {
247		spin_lock(&blkg->async_bio_lock);
248		bio_list_add(&blkg->async_bios, bio);
249		spin_unlock(&blkg->async_bio_lock);
250		queue_work(blkcg_punt_bio_wq, &blkg->async_bio_work);
251	} else {
252		/* never bounce for the root cgroup */
253		submit_bio(bio);
254	}
255}
256EXPORT_SYMBOL_GPL(blkcg_punt_bio_submit);
257
258static int __init blkcg_punt_bio_init(void)
259{
260	blkcg_punt_bio_wq = alloc_workqueue("blkcg_punt_bio",
261					    WQ_MEM_RECLAIM | WQ_FREEZABLE |
262					    WQ_UNBOUND | WQ_SYSFS, 0);
263	if (!blkcg_punt_bio_wq)
264		return -ENOMEM;
265	return 0;
266}
267subsys_initcall(blkcg_punt_bio_init);
268#endif /* CONFIG_BLK_CGROUP_PUNT_BIO */
269
270/**
271 * bio_blkcg_css - return the blkcg CSS associated with a bio
272 * @bio: target bio
273 *
274 * This returns the CSS for the blkcg associated with a bio, or %NULL if not
275 * associated. Callers are expected to either handle %NULL or know association
276 * has been done prior to calling this.
277 */
278struct cgroup_subsys_state *bio_blkcg_css(struct bio *bio)
279{
280	if (!bio || !bio->bi_blkg)
281		return NULL;
282	return &bio->bi_blkg->blkcg->css;
283}
284EXPORT_SYMBOL_GPL(bio_blkcg_css);
285
286/**
287 * blkcg_parent - get the parent of a blkcg
288 * @blkcg: blkcg of interest
289 *
290 * Return the parent blkcg of @blkcg.  Can be called anytime.
291 */
292static inline struct blkcg *blkcg_parent(struct blkcg *blkcg)
293{
294	return css_to_blkcg(blkcg->css.parent);
295}
296
297/**
298 * blkg_alloc - allocate a blkg
299 * @blkcg: block cgroup the new blkg is associated with
300 * @disk: gendisk the new blkg is associated with
301 * @gfp_mask: allocation mask to use
302 *
303 * Allocate a new blkg associating @blkcg and @disk.
304 */
305static struct blkcg_gq *blkg_alloc(struct blkcg *blkcg, struct gendisk *disk,
306				   gfp_t gfp_mask)
307{
308	struct blkcg_gq *blkg;
309	int i, cpu;
310
311	/* alloc and init base part */
312	blkg = kzalloc_node(sizeof(*blkg), gfp_mask, disk->queue->node);
313	if (!blkg)
314		return NULL;
315	if (percpu_ref_init(&blkg->refcnt, blkg_release, 0, gfp_mask))
316		goto out_free_blkg;
317	blkg->iostat_cpu = alloc_percpu_gfp(struct blkg_iostat_set, gfp_mask);
318	if (!blkg->iostat_cpu)
319		goto out_exit_refcnt;
320	if (!blk_get_queue(disk->queue))
321		goto out_free_iostat;
322
323	blkg->q = disk->queue;
324	INIT_LIST_HEAD(&blkg->q_node);
325	blkg->blkcg = blkcg;
326#ifdef CONFIG_BLK_CGROUP_PUNT_BIO
327	spin_lock_init(&blkg->async_bio_lock);
328	bio_list_init(&blkg->async_bios);
329	INIT_WORK(&blkg->async_bio_work, blkg_async_bio_workfn);
330#endif
331
332	u64_stats_init(&blkg->iostat.sync);
333	for_each_possible_cpu(cpu) {
334		u64_stats_init(&per_cpu_ptr(blkg->iostat_cpu, cpu)->sync);
335		per_cpu_ptr(blkg->iostat_cpu, cpu)->blkg = blkg;
336	}
337
338	for (i = 0; i < BLKCG_MAX_POLS; i++) {
339		struct blkcg_policy *pol = blkcg_policy[i];
340		struct blkg_policy_data *pd;
341
342		if (!blkcg_policy_enabled(disk->queue, pol))
343			continue;
344
345		/* alloc per-policy data and attach it to blkg */
346		pd = pol->pd_alloc_fn(disk, blkcg, gfp_mask);
347		if (!pd)
348			goto out_free_pds;
349		blkg->pd[i] = pd;
350		pd->blkg = blkg;
351		pd->plid = i;
352		pd->online = false;
353	}
354
355	return blkg;
356
357out_free_pds:
358	while (--i >= 0)
359		if (blkg->pd[i])
360			blkcg_policy[i]->pd_free_fn(blkg->pd[i]);
361	blk_put_queue(disk->queue);
362out_free_iostat:
363	free_percpu(blkg->iostat_cpu);
364out_exit_refcnt:
365	percpu_ref_exit(&blkg->refcnt);
366out_free_blkg:
367	kfree(blkg);
368	return NULL;
369}
370
371/*
372 * If @new_blkg is %NULL, this function tries to allocate a new one as
373 * necessary using %GFP_NOWAIT.  @new_blkg is always consumed on return.
374 */
375static struct blkcg_gq *blkg_create(struct blkcg *blkcg, struct gendisk *disk,
376				    struct blkcg_gq *new_blkg)
377{
378	struct blkcg_gq *blkg;
379	int i, ret;
380
381	lockdep_assert_held(&disk->queue->queue_lock);
382
383	/* request_queue is dying, do not create/recreate a blkg */
384	if (blk_queue_dying(disk->queue)) {
385		ret = -ENODEV;
386		goto err_free_blkg;
387	}
388
389	/* blkg holds a reference to blkcg */
390	if (!css_tryget_online(&blkcg->css)) {
391		ret = -ENODEV;
392		goto err_free_blkg;
393	}
394
395	/* allocate */
396	if (!new_blkg) {
397		new_blkg = blkg_alloc(blkcg, disk, GFP_NOWAIT | __GFP_NOWARN);
398		if (unlikely(!new_blkg)) {
399			ret = -ENOMEM;
400			goto err_put_css;
401		}
402	}
403	blkg = new_blkg;
404
405	/* link parent */
406	if (blkcg_parent(blkcg)) {
407		blkg->parent = blkg_lookup(blkcg_parent(blkcg), disk->queue);
408		if (WARN_ON_ONCE(!blkg->parent)) {
409			ret = -ENODEV;
410			goto err_put_css;
411		}
412		blkg_get(blkg->parent);
413	}
414
415	/* invoke per-policy init */
416	for (i = 0; i < BLKCG_MAX_POLS; i++) {
417		struct blkcg_policy *pol = blkcg_policy[i];
418
419		if (blkg->pd[i] && pol->pd_init_fn)
420			pol->pd_init_fn(blkg->pd[i]);
421	}
422
423	/* insert */
424	spin_lock(&blkcg->lock);
425	ret = radix_tree_insert(&blkcg->blkg_tree, disk->queue->id, blkg);
426	if (likely(!ret)) {
427		hlist_add_head_rcu(&blkg->blkcg_node, &blkcg->blkg_list);
428		list_add(&blkg->q_node, &disk->queue->blkg_list);
429
430		for (i = 0; i < BLKCG_MAX_POLS; i++) {
431			struct blkcg_policy *pol = blkcg_policy[i];
432
433			if (blkg->pd[i]) {
434				if (pol->pd_online_fn)
435					pol->pd_online_fn(blkg->pd[i]);
436				blkg->pd[i]->online = true;
437			}
438		}
439	}
440	blkg->online = true;
441	spin_unlock(&blkcg->lock);
442
443	if (!ret)
444		return blkg;
445
446	/* @blkg failed fully initialized, use the usual release path */
447	blkg_put(blkg);
448	return ERR_PTR(ret);
449
450err_put_css:
451	css_put(&blkcg->css);
452err_free_blkg:
453	if (new_blkg)
454		blkg_free(new_blkg);
455	return ERR_PTR(ret);
456}
457
458/**
459 * blkg_lookup_create - lookup blkg, try to create one if not there
460 * @blkcg: blkcg of interest
461 * @disk: gendisk of interest
462 *
463 * Lookup blkg for the @blkcg - @disk pair.  If it doesn't exist, try to
464 * create one.  blkg creation is performed recursively from blkcg_root such
465 * that all non-root blkg's have access to the parent blkg.  This function
466 * should be called under RCU read lock and takes @disk->queue->queue_lock.
467 *
468 * Returns the blkg or the closest blkg if blkg_create() fails as it walks
469 * down from root.
470 */
471static struct blkcg_gq *blkg_lookup_create(struct blkcg *blkcg,
472		struct gendisk *disk)
473{
474	struct request_queue *q = disk->queue;
475	struct blkcg_gq *blkg;
476	unsigned long flags;
477
478	WARN_ON_ONCE(!rcu_read_lock_held());
479
480	blkg = blkg_lookup(blkcg, q);
481	if (blkg)
482		return blkg;
483
484	spin_lock_irqsave(&q->queue_lock, flags);
485	blkg = blkg_lookup(blkcg, q);
486	if (blkg) {
487		if (blkcg != &blkcg_root &&
488		    blkg != rcu_dereference(blkcg->blkg_hint))
489			rcu_assign_pointer(blkcg->blkg_hint, blkg);
490		goto found;
491	}
492
493	/*
494	 * Create blkgs walking down from blkcg_root to @blkcg, so that all
495	 * non-root blkgs have access to their parents.  Returns the closest
496	 * blkg to the intended blkg should blkg_create() fail.
497	 */
498	while (true) {
499		struct blkcg *pos = blkcg;
500		struct blkcg *parent = blkcg_parent(blkcg);
501		struct blkcg_gq *ret_blkg = q->root_blkg;
502
503		while (parent) {
504			blkg = blkg_lookup(parent, q);
505			if (blkg) {
506				/* remember closest blkg */
507				ret_blkg = blkg;
508				break;
509			}
510			pos = parent;
511			parent = blkcg_parent(parent);
512		}
513
514		blkg = blkg_create(pos, disk, NULL);
515		if (IS_ERR(blkg)) {
516			blkg = ret_blkg;
517			break;
518		}
519		if (pos == blkcg)
520			break;
521	}
522
523found:
524	spin_unlock_irqrestore(&q->queue_lock, flags);
525	return blkg;
526}
527
528static void blkg_destroy(struct blkcg_gq *blkg)
529{
530	struct blkcg *blkcg = blkg->blkcg;
531	int i;
532
533	lockdep_assert_held(&blkg->q->queue_lock);
534	lockdep_assert_held(&blkcg->lock);
535
536	/*
537	 * blkg stays on the queue list until blkg_free_workfn(), see details in
538	 * blkg_free_workfn(), hence this function can be called from
539	 * blkcg_destroy_blkgs() first and again from blkg_destroy_all() before
540	 * blkg_free_workfn().
541	 */
542	if (hlist_unhashed(&blkg->blkcg_node))
543		return;
544
545	for (i = 0; i < BLKCG_MAX_POLS; i++) {
546		struct blkcg_policy *pol = blkcg_policy[i];
547
548		if (blkg->pd[i] && blkg->pd[i]->online) {
549			blkg->pd[i]->online = false;
550			if (pol->pd_offline_fn)
551				pol->pd_offline_fn(blkg->pd[i]);
552		}
553	}
554
555	blkg->online = false;
556
557	radix_tree_delete(&blkcg->blkg_tree, blkg->q->id);
558	hlist_del_init_rcu(&blkg->blkcg_node);
559
560	/*
561	 * Both setting lookup hint to and clearing it from @blkg are done
562	 * under queue_lock.  If it's not pointing to @blkg now, it never
563	 * will.  Hint assignment itself can race safely.
564	 */
565	if (rcu_access_pointer(blkcg->blkg_hint) == blkg)
566		rcu_assign_pointer(blkcg->blkg_hint, NULL);
567
568	/*
569	 * Put the reference taken at the time of creation so that when all
570	 * queues are gone, group can be destroyed.
571	 */
572	percpu_ref_kill(&blkg->refcnt);
573}
574
575static void blkg_destroy_all(struct gendisk *disk)
576{
577	struct request_queue *q = disk->queue;
578	struct blkcg_gq *blkg;
579	int count = BLKG_DESTROY_BATCH_SIZE;
580	int i;
581
582restart:
583	spin_lock_irq(&q->queue_lock);
584	list_for_each_entry(blkg, &q->blkg_list, q_node) {
585		struct blkcg *blkcg = blkg->blkcg;
586
587		if (hlist_unhashed(&blkg->blkcg_node))
588			continue;
589
590		spin_lock(&blkcg->lock);
591		blkg_destroy(blkg);
592		spin_unlock(&blkcg->lock);
593
594		/*
595		 * in order to avoid holding the spin lock for too long, release
596		 * it when a batch of blkgs are destroyed.
597		 */
598		if (!(--count)) {
599			count = BLKG_DESTROY_BATCH_SIZE;
600			spin_unlock_irq(&q->queue_lock);
601			cond_resched();
602			goto restart;
603		}
604	}
605
606	/*
607	 * Mark policy deactivated since policy offline has been done, and
608	 * the free is scheduled, so future blkcg_deactivate_policy() can
609	 * be bypassed
610	 */
611	for (i = 0; i < BLKCG_MAX_POLS; i++) {
612		struct blkcg_policy *pol = blkcg_policy[i];
613
614		if (pol)
615			__clear_bit(pol->plid, q->blkcg_pols);
616	}
617
618	q->root_blkg = NULL;
619	spin_unlock_irq(&q->queue_lock);
620}
621
622static int blkcg_reset_stats(struct cgroup_subsys_state *css,
623			     struct cftype *cftype, u64 val)
624{
625	struct blkcg *blkcg = css_to_blkcg(css);
626	struct blkcg_gq *blkg;
627	int i, cpu;
628
629	mutex_lock(&blkcg_pol_mutex);
630	spin_lock_irq(&blkcg->lock);
631
632	/*
633	 * Note that stat reset is racy - it doesn't synchronize against
634	 * stat updates.  This is a debug feature which shouldn't exist
635	 * anyway.  If you get hit by a race, retry.
636	 */
637	hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) {
638		for_each_possible_cpu(cpu) {
639			struct blkg_iostat_set *bis =
640				per_cpu_ptr(blkg->iostat_cpu, cpu);
641			memset(bis, 0, sizeof(*bis));
642
643			/* Re-initialize the cleared blkg_iostat_set */
644			u64_stats_init(&bis->sync);
645			bis->blkg = blkg;
646		}
647		memset(&blkg->iostat, 0, sizeof(blkg->iostat));
648		u64_stats_init(&blkg->iostat.sync);
649
650		for (i = 0; i < BLKCG_MAX_POLS; i++) {
651			struct blkcg_policy *pol = blkcg_policy[i];
652
653			if (blkg->pd[i] && pol->pd_reset_stats_fn)
654				pol->pd_reset_stats_fn(blkg->pd[i]);
655		}
656	}
657
658	spin_unlock_irq(&blkcg->lock);
659	mutex_unlock(&blkcg_pol_mutex);
660	return 0;
661}
662
663const char *blkg_dev_name(struct blkcg_gq *blkg)
664{
665	if (!blkg->q->disk)
666		return NULL;
667	return bdi_dev_name(blkg->q->disk->bdi);
668}
669
670/**
671 * blkcg_print_blkgs - helper for printing per-blkg data
672 * @sf: seq_file to print to
673 * @blkcg: blkcg of interest
674 * @prfill: fill function to print out a blkg
675 * @pol: policy in question
676 * @data: data to be passed to @prfill
677 * @show_total: to print out sum of prfill return values or not
678 *
679 * This function invokes @prfill on each blkg of @blkcg if pd for the
680 * policy specified by @pol exists.  @prfill is invoked with @sf, the
681 * policy data and @data and the matching queue lock held.  If @show_total
682 * is %true, the sum of the return values from @prfill is printed with
683 * "Total" label at the end.
684 *
685 * This is to be used to construct print functions for
686 * cftype->read_seq_string method.
687 */
688void blkcg_print_blkgs(struct seq_file *sf, struct blkcg *blkcg,
689		       u64 (*prfill)(struct seq_file *,
690				     struct blkg_policy_data *, int),
691		       const struct blkcg_policy *pol, int data,
692		       bool show_total)
693{
694	struct blkcg_gq *blkg;
695	u64 total = 0;
696
697	rcu_read_lock();
698	hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) {
699		spin_lock_irq(&blkg->q->queue_lock);
700		if (blkcg_policy_enabled(blkg->q, pol))
701			total += prfill(sf, blkg->pd[pol->plid], data);
702		spin_unlock_irq(&blkg->q->queue_lock);
703	}
704	rcu_read_unlock();
705
706	if (show_total)
707		seq_printf(sf, "Total %llu\n", (unsigned long long)total);
708}
709EXPORT_SYMBOL_GPL(blkcg_print_blkgs);
710
711/**
712 * __blkg_prfill_u64 - prfill helper for a single u64 value
713 * @sf: seq_file to print to
714 * @pd: policy private data of interest
715 * @v: value to print
716 *
717 * Print @v to @sf for the device associated with @pd.
718 */
719u64 __blkg_prfill_u64(struct seq_file *sf, struct blkg_policy_data *pd, u64 v)
720{
721	const char *dname = blkg_dev_name(pd->blkg);
722
723	if (!dname)
724		return 0;
725
726	seq_printf(sf, "%s %llu\n", dname, (unsigned long long)v);
727	return v;
728}
729EXPORT_SYMBOL_GPL(__blkg_prfill_u64);
730
731/**
732 * blkg_conf_init - initialize a blkg_conf_ctx
733 * @ctx: blkg_conf_ctx to initialize
734 * @input: input string
735 *
736 * Initialize @ctx which can be used to parse blkg config input string @input.
737 * Once initialized, @ctx can be used with blkg_conf_open_bdev() and
738 * blkg_conf_prep(), and must be cleaned up with blkg_conf_exit().
739 */
740void blkg_conf_init(struct blkg_conf_ctx *ctx, char *input)
741{
742	*ctx = (struct blkg_conf_ctx){ .input = input };
743}
744EXPORT_SYMBOL_GPL(blkg_conf_init);
745
746/**
747 * blkg_conf_open_bdev - parse and open bdev for per-blkg config update
748 * @ctx: blkg_conf_ctx initialized with blkg_conf_init()
749 *
750 * Parse the device node prefix part, MAJ:MIN, of per-blkg config update from
751 * @ctx->input and get and store the matching bdev in @ctx->bdev. @ctx->body is
752 * set to point past the device node prefix.
753 *
754 * This function may be called multiple times on @ctx and the extra calls become
755 * NOOPs. blkg_conf_prep() implicitly calls this function. Use this function
756 * explicitly if bdev access is needed without resolving the blkcg / policy part
757 * of @ctx->input. Returns -errno on error.
758 */
759int blkg_conf_open_bdev(struct blkg_conf_ctx *ctx)
760{
761	char *input = ctx->input;
762	unsigned int major, minor;
763	struct block_device *bdev;
764	int key_len;
765
766	if (ctx->bdev)
767		return 0;
768
769	if (sscanf(input, "%u:%u%n", &major, &minor, &key_len) != 2)
770		return -EINVAL;
771
772	input += key_len;
773	if (!isspace(*input))
774		return -EINVAL;
775	input = skip_spaces(input);
776
777	bdev = blkdev_get_no_open(MKDEV(major, minor));
778	if (!bdev)
779		return -ENODEV;
780	if (bdev_is_partition(bdev)) {
781		blkdev_put_no_open(bdev);
782		return -ENODEV;
783	}
784
785	mutex_lock(&bdev->bd_queue->rq_qos_mutex);
786	if (!disk_live(bdev->bd_disk)) {
787		blkdev_put_no_open(bdev);
788		mutex_unlock(&bdev->bd_queue->rq_qos_mutex);
789		return -ENODEV;
790	}
791
792	ctx->body = input;
793	ctx->bdev = bdev;
794	return 0;
795}
796
797/**
798 * blkg_conf_prep - parse and prepare for per-blkg config update
799 * @blkcg: target block cgroup
800 * @pol: target policy
801 * @ctx: blkg_conf_ctx initialized with blkg_conf_init()
802 *
803 * Parse per-blkg config update from @ctx->input and initialize @ctx
804 * accordingly. On success, @ctx->body points to the part of @ctx->input
805 * following MAJ:MIN, @ctx->bdev points to the target block device and
806 * @ctx->blkg to the blkg being configured.
807 *
808 * blkg_conf_open_bdev() may be called on @ctx beforehand. On success, this
809 * function returns with queue lock held and must be followed by
810 * blkg_conf_exit().
811 */
812int blkg_conf_prep(struct blkcg *blkcg, const struct blkcg_policy *pol,
813		   struct blkg_conf_ctx *ctx)
814	__acquires(&bdev->bd_queue->queue_lock)
815{
816	struct gendisk *disk;
817	struct request_queue *q;
818	struct blkcg_gq *blkg;
819	int ret;
820
821	ret = blkg_conf_open_bdev(ctx);
822	if (ret)
823		return ret;
824
825	disk = ctx->bdev->bd_disk;
826	q = disk->queue;
827
828	/*
829	 * blkcg_deactivate_policy() requires queue to be frozen, we can grab
830	 * q_usage_counter to prevent concurrent with blkcg_deactivate_policy().
831	 */
832	ret = blk_queue_enter(q, 0);
833	if (ret)
834		goto fail;
835
836	spin_lock_irq(&q->queue_lock);
837
838	if (!blkcg_policy_enabled(q, pol)) {
839		ret = -EOPNOTSUPP;
840		goto fail_unlock;
841	}
842
843	blkg = blkg_lookup(blkcg, q);
844	if (blkg)
845		goto success;
846
847	/*
848	 * Create blkgs walking down from blkcg_root to @blkcg, so that all
849	 * non-root blkgs have access to their parents.
850	 */
851	while (true) {
852		struct blkcg *pos = blkcg;
853		struct blkcg *parent;
854		struct blkcg_gq *new_blkg;
855
856		parent = blkcg_parent(blkcg);
857		while (parent && !blkg_lookup(parent, q)) {
858			pos = parent;
859			parent = blkcg_parent(parent);
860		}
861
862		/* Drop locks to do new blkg allocation with GFP_KERNEL. */
863		spin_unlock_irq(&q->queue_lock);
864
865		new_blkg = blkg_alloc(pos, disk, GFP_KERNEL);
866		if (unlikely(!new_blkg)) {
867			ret = -ENOMEM;
868			goto fail_exit_queue;
869		}
870
871		if (radix_tree_preload(GFP_KERNEL)) {
872			blkg_free(new_blkg);
873			ret = -ENOMEM;
874			goto fail_exit_queue;
875		}
876
877		spin_lock_irq(&q->queue_lock);
878
879		if (!blkcg_policy_enabled(q, pol)) {
880			blkg_free(new_blkg);
881			ret = -EOPNOTSUPP;
882			goto fail_preloaded;
883		}
884
885		blkg = blkg_lookup(pos, q);
886		if (blkg) {
887			blkg_free(new_blkg);
888		} else {
889			blkg = blkg_create(pos, disk, new_blkg);
890			if (IS_ERR(blkg)) {
891				ret = PTR_ERR(blkg);
892				goto fail_preloaded;
893			}
894		}
895
896		radix_tree_preload_end();
897
898		if (pos == blkcg)
899			goto success;
900	}
901success:
902	blk_queue_exit(q);
903	ctx->blkg = blkg;
904	return 0;
905
906fail_preloaded:
907	radix_tree_preload_end();
908fail_unlock:
909	spin_unlock_irq(&q->queue_lock);
910fail_exit_queue:
911	blk_queue_exit(q);
912fail:
913	/*
914	 * If queue was bypassing, we should retry.  Do so after a
915	 * short msleep().  It isn't strictly necessary but queue
916	 * can be bypassing for some time and it's always nice to
917	 * avoid busy looping.
918	 */
919	if (ret == -EBUSY) {
920		msleep(10);
921		ret = restart_syscall();
922	}
923	return ret;
924}
925EXPORT_SYMBOL_GPL(blkg_conf_prep);
926
927/**
928 * blkg_conf_exit - clean up per-blkg config update
929 * @ctx: blkg_conf_ctx initialized with blkg_conf_init()
930 *
931 * Clean up after per-blkg config update. This function must be called on all
932 * blkg_conf_ctx's initialized with blkg_conf_init().
933 */
934void blkg_conf_exit(struct blkg_conf_ctx *ctx)
935	__releases(&ctx->bdev->bd_queue->queue_lock)
936	__releases(&ctx->bdev->bd_queue->rq_qos_mutex)
937{
938	if (ctx->blkg) {
939		spin_unlock_irq(&bdev_get_queue(ctx->bdev)->queue_lock);
940		ctx->blkg = NULL;
941	}
942
943	if (ctx->bdev) {
944		mutex_unlock(&ctx->bdev->bd_queue->rq_qos_mutex);
945		blkdev_put_no_open(ctx->bdev);
946		ctx->body = NULL;
947		ctx->bdev = NULL;
948	}
949}
950EXPORT_SYMBOL_GPL(blkg_conf_exit);
951
952static void blkg_iostat_set(struct blkg_iostat *dst, struct blkg_iostat *src)
953{
954	int i;
955
956	for (i = 0; i < BLKG_IOSTAT_NR; i++) {
957		dst->bytes[i] = src->bytes[i];
958		dst->ios[i] = src->ios[i];
959	}
960}
961
962static void blkg_iostat_add(struct blkg_iostat *dst, struct blkg_iostat *src)
963{
964	int i;
965
966	for (i = 0; i < BLKG_IOSTAT_NR; i++) {
967		dst->bytes[i] += src->bytes[i];
968		dst->ios[i] += src->ios[i];
969	}
970}
971
972static void blkg_iostat_sub(struct blkg_iostat *dst, struct blkg_iostat *src)
973{
974	int i;
975
976	for (i = 0; i < BLKG_IOSTAT_NR; i++) {
977		dst->bytes[i] -= src->bytes[i];
978		dst->ios[i] -= src->ios[i];
979	}
980}
981
982static void blkcg_iostat_update(struct blkcg_gq *blkg, struct blkg_iostat *cur,
983				struct blkg_iostat *last)
984{
985	struct blkg_iostat delta;
986	unsigned long flags;
987
988	/* propagate percpu delta to global */
989	flags = u64_stats_update_begin_irqsave(&blkg->iostat.sync);
990	blkg_iostat_set(&delta, cur);
991	blkg_iostat_sub(&delta, last);
992	blkg_iostat_add(&blkg->iostat.cur, &delta);
993	blkg_iostat_add(last, &delta);
994	u64_stats_update_end_irqrestore(&blkg->iostat.sync, flags);
995}
996
997static void __blkcg_rstat_flush(struct blkcg *blkcg, int cpu)
998{
999	struct llist_head *lhead = per_cpu_ptr(blkcg->lhead, cpu);
1000	struct llist_node *lnode;
1001	struct blkg_iostat_set *bisc, *next_bisc;
1002	unsigned long flags;
1003
1004	rcu_read_lock();
1005
1006	lnode = llist_del_all(lhead);
1007	if (!lnode)
1008		goto out;
1009
1010	/*
1011	 * For covering concurrent parent blkg update from blkg_release().
1012	 *
1013	 * When flushing from cgroup, cgroup_rstat_lock is always held, so
1014	 * this lock won't cause contention most of time.
1015	 */
1016	raw_spin_lock_irqsave(&blkg_stat_lock, flags);
1017
1018	/*
1019	 * Iterate only the iostat_cpu's queued in the lockless list.
1020	 */
1021	llist_for_each_entry_safe(bisc, next_bisc, lnode, lnode) {
1022		struct blkcg_gq *blkg = bisc->blkg;
1023		struct blkcg_gq *parent = blkg->parent;
1024		struct blkg_iostat cur;
1025		unsigned int seq;
1026
1027		WRITE_ONCE(bisc->lqueued, false);
1028
1029		/* fetch the current per-cpu values */
1030		do {
1031			seq = u64_stats_fetch_begin(&bisc->sync);
1032			blkg_iostat_set(&cur, &bisc->cur);
1033		} while (u64_stats_fetch_retry(&bisc->sync, seq));
1034
1035		blkcg_iostat_update(blkg, &cur, &bisc->last);
1036
1037		/* propagate global delta to parent (unless that's root) */
1038		if (parent && parent->parent)
1039			blkcg_iostat_update(parent, &blkg->iostat.cur,
1040					    &blkg->iostat.last);
1041	}
1042	raw_spin_unlock_irqrestore(&blkg_stat_lock, flags);
1043out:
1044	rcu_read_unlock();
1045}
1046
1047static void blkcg_rstat_flush(struct cgroup_subsys_state *css, int cpu)
1048{
1049	/* Root-level stats are sourced from system-wide IO stats */
1050	if (cgroup_parent(css->cgroup))
1051		__blkcg_rstat_flush(css_to_blkcg(css), cpu);
1052}
1053
1054/*
1055 * We source root cgroup stats from the system-wide stats to avoid
1056 * tracking the same information twice and incurring overhead when no
1057 * cgroups are defined. For that reason, cgroup_rstat_flush in
1058 * blkcg_print_stat does not actually fill out the iostat in the root
1059 * cgroup's blkcg_gq.
1060 *
1061 * However, we would like to re-use the printing code between the root and
1062 * non-root cgroups to the extent possible. For that reason, we simulate
1063 * flushing the root cgroup's stats by explicitly filling in the iostat
1064 * with disk level statistics.
1065 */
1066static void blkcg_fill_root_iostats(void)
1067{
1068	struct class_dev_iter iter;
1069	struct device *dev;
1070
1071	class_dev_iter_init(&iter, &block_class, NULL, &disk_type);
1072	while ((dev = class_dev_iter_next(&iter))) {
1073		struct block_device *bdev = dev_to_bdev(dev);
1074		struct blkcg_gq *blkg = bdev->bd_disk->queue->root_blkg;
1075		struct blkg_iostat tmp;
1076		int cpu;
1077		unsigned long flags;
1078
1079		memset(&tmp, 0, sizeof(tmp));
1080		for_each_possible_cpu(cpu) {
1081			struct disk_stats *cpu_dkstats;
1082
1083			cpu_dkstats = per_cpu_ptr(bdev->bd_stats, cpu);
1084			tmp.ios[BLKG_IOSTAT_READ] +=
1085				cpu_dkstats->ios[STAT_READ];
1086			tmp.ios[BLKG_IOSTAT_WRITE] +=
1087				cpu_dkstats->ios[STAT_WRITE];
1088			tmp.ios[BLKG_IOSTAT_DISCARD] +=
1089				cpu_dkstats->ios[STAT_DISCARD];
1090			// convert sectors to bytes
1091			tmp.bytes[BLKG_IOSTAT_READ] +=
1092				cpu_dkstats->sectors[STAT_READ] << 9;
1093			tmp.bytes[BLKG_IOSTAT_WRITE] +=
1094				cpu_dkstats->sectors[STAT_WRITE] << 9;
1095			tmp.bytes[BLKG_IOSTAT_DISCARD] +=
1096				cpu_dkstats->sectors[STAT_DISCARD] << 9;
1097		}
1098
1099		flags = u64_stats_update_begin_irqsave(&blkg->iostat.sync);
1100		blkg_iostat_set(&blkg->iostat.cur, &tmp);
1101		u64_stats_update_end_irqrestore(&blkg->iostat.sync, flags);
1102	}
1103}
1104
1105static void blkcg_print_one_stat(struct blkcg_gq *blkg, struct seq_file *s)
1106{
1107	struct blkg_iostat_set *bis = &blkg->iostat;
1108	u64 rbytes, wbytes, rios, wios, dbytes, dios;
1109	const char *dname;
1110	unsigned seq;
1111	int i;
1112
1113	if (!blkg->online)
1114		return;
1115
1116	dname = blkg_dev_name(blkg);
1117	if (!dname)
1118		return;
1119
1120	seq_printf(s, "%s ", dname);
1121
1122	do {
1123		seq = u64_stats_fetch_begin(&bis->sync);
1124
1125		rbytes = bis->cur.bytes[BLKG_IOSTAT_READ];
1126		wbytes = bis->cur.bytes[BLKG_IOSTAT_WRITE];
1127		dbytes = bis->cur.bytes[BLKG_IOSTAT_DISCARD];
1128		rios = bis->cur.ios[BLKG_IOSTAT_READ];
1129		wios = bis->cur.ios[BLKG_IOSTAT_WRITE];
1130		dios = bis->cur.ios[BLKG_IOSTAT_DISCARD];
1131	} while (u64_stats_fetch_retry(&bis->sync, seq));
1132
1133	if (rbytes || wbytes || rios || wios) {
1134		seq_printf(s, "rbytes=%llu wbytes=%llu rios=%llu wios=%llu dbytes=%llu dios=%llu",
1135			rbytes, wbytes, rios, wios,
1136			dbytes, dios);
1137	}
1138
1139	if (blkcg_debug_stats && atomic_read(&blkg->use_delay)) {
1140		seq_printf(s, " use_delay=%d delay_nsec=%llu",
1141			atomic_read(&blkg->use_delay),
1142			atomic64_read(&blkg->delay_nsec));
1143	}
1144
1145	for (i = 0; i < BLKCG_MAX_POLS; i++) {
1146		struct blkcg_policy *pol = blkcg_policy[i];
1147
1148		if (!blkg->pd[i] || !pol->pd_stat_fn)
1149			continue;
1150
1151		pol->pd_stat_fn(blkg->pd[i], s);
1152	}
1153
1154	seq_puts(s, "\n");
1155}
1156
1157static int blkcg_print_stat(struct seq_file *sf, void *v)
1158{
1159	struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
1160	struct blkcg_gq *blkg;
1161
1162	if (!seq_css(sf)->parent)
1163		blkcg_fill_root_iostats();
1164	else
1165		cgroup_rstat_flush(blkcg->css.cgroup);
1166
1167	rcu_read_lock();
1168	hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) {
1169		spin_lock_irq(&blkg->q->queue_lock);
1170		blkcg_print_one_stat(blkg, sf);
1171		spin_unlock_irq(&blkg->q->queue_lock);
1172	}
1173	rcu_read_unlock();
1174	return 0;
1175}
1176
1177static struct cftype blkcg_files[] = {
1178	{
1179		.name = "stat",
1180		.seq_show = blkcg_print_stat,
1181	},
1182	{ }	/* terminate */
1183};
1184
1185static struct cftype blkcg_legacy_files[] = {
1186	{
1187		.name = "reset_stats",
1188		.write_u64 = blkcg_reset_stats,
1189	},
1190	{ }	/* terminate */
1191};
1192
1193#ifdef CONFIG_CGROUP_WRITEBACK
1194struct list_head *blkcg_get_cgwb_list(struct cgroup_subsys_state *css)
1195{
1196	return &css_to_blkcg(css)->cgwb_list;
1197}
1198#endif
1199
1200/*
1201 * blkcg destruction is a three-stage process.
1202 *
1203 * 1. Destruction starts.  The blkcg_css_offline() callback is invoked
1204 *    which offlines writeback.  Here we tie the next stage of blkg destruction
1205 *    to the completion of writeback associated with the blkcg.  This lets us
1206 *    avoid punting potentially large amounts of outstanding writeback to root
1207 *    while maintaining any ongoing policies.  The next stage is triggered when
1208 *    the nr_cgwbs count goes to zero.
1209 *
1210 * 2. When the nr_cgwbs count goes to zero, blkcg_destroy_blkgs() is called
1211 *    and handles the destruction of blkgs.  Here the css reference held by
1212 *    the blkg is put back eventually allowing blkcg_css_free() to be called.
1213 *    This work may occur in cgwb_release_workfn() on the cgwb_release
1214 *    workqueue.  Any submitted ios that fail to get the blkg ref will be
1215 *    punted to the root_blkg.
1216 *
1217 * 3. Once the blkcg ref count goes to zero, blkcg_css_free() is called.
1218 *    This finally frees the blkcg.
1219 */
1220
1221/**
1222 * blkcg_destroy_blkgs - responsible for shooting down blkgs
1223 * @blkcg: blkcg of interest
1224 *
1225 * blkgs should be removed while holding both q and blkcg locks.  As blkcg lock
1226 * is nested inside q lock, this function performs reverse double lock dancing.
1227 * Destroying the blkgs releases the reference held on the blkcg's css allowing
1228 * blkcg_css_free to eventually be called.
1229 *
1230 * This is the blkcg counterpart of ioc_release_fn().
1231 */
1232static void blkcg_destroy_blkgs(struct blkcg *blkcg)
1233{
1234	might_sleep();
1235
1236	spin_lock_irq(&blkcg->lock);
1237
1238	while (!hlist_empty(&blkcg->blkg_list)) {
1239		struct blkcg_gq *blkg = hlist_entry(blkcg->blkg_list.first,
1240						struct blkcg_gq, blkcg_node);
1241		struct request_queue *q = blkg->q;
1242
1243		if (need_resched() || !spin_trylock(&q->queue_lock)) {
1244			/*
1245			 * Given that the system can accumulate a huge number
1246			 * of blkgs in pathological cases, check to see if we
1247			 * need to rescheduling to avoid softlockup.
1248			 */
1249			spin_unlock_irq(&blkcg->lock);
1250			cond_resched();
1251			spin_lock_irq(&blkcg->lock);
1252			continue;
1253		}
1254
1255		blkg_destroy(blkg);
1256		spin_unlock(&q->queue_lock);
1257	}
1258
1259	spin_unlock_irq(&blkcg->lock);
1260}
1261
1262/**
1263 * blkcg_pin_online - pin online state
1264 * @blkcg_css: blkcg of interest
1265 *
1266 * While pinned, a blkcg is kept online.  This is primarily used to
1267 * impedance-match blkg and cgwb lifetimes so that blkg doesn't go offline
1268 * while an associated cgwb is still active.
1269 */
1270void blkcg_pin_online(struct cgroup_subsys_state *blkcg_css)
1271{
1272	refcount_inc(&css_to_blkcg(blkcg_css)->online_pin);
1273}
1274
1275/**
1276 * blkcg_unpin_online - unpin online state
1277 * @blkcg_css: blkcg of interest
1278 *
1279 * This is primarily used to impedance-match blkg and cgwb lifetimes so
1280 * that blkg doesn't go offline while an associated cgwb is still active.
1281 * When this count goes to zero, all active cgwbs have finished so the
1282 * blkcg can continue destruction by calling blkcg_destroy_blkgs().
1283 */
1284void blkcg_unpin_online(struct cgroup_subsys_state *blkcg_css)
1285{
1286	struct blkcg *blkcg = css_to_blkcg(blkcg_css);
1287
1288	do {
1289		if (!refcount_dec_and_test(&blkcg->online_pin))
1290			break;
1291		blkcg_destroy_blkgs(blkcg);
1292		blkcg = blkcg_parent(blkcg);
1293	} while (blkcg);
1294}
1295
1296/**
1297 * blkcg_css_offline - cgroup css_offline callback
1298 * @css: css of interest
1299 *
1300 * This function is called when @css is about to go away.  Here the cgwbs are
1301 * offlined first and only once writeback associated with the blkcg has
1302 * finished do we start step 2 (see above).
1303 */
1304static void blkcg_css_offline(struct cgroup_subsys_state *css)
1305{
1306	/* this prevents anyone from attaching or migrating to this blkcg */
1307	wb_blkcg_offline(css);
1308
1309	/* put the base online pin allowing step 2 to be triggered */
1310	blkcg_unpin_online(css);
1311}
1312
1313static void blkcg_css_free(struct cgroup_subsys_state *css)
1314{
1315	struct blkcg *blkcg = css_to_blkcg(css);
1316	int i;
1317
1318	mutex_lock(&blkcg_pol_mutex);
1319
1320	list_del(&blkcg->all_blkcgs_node);
1321
1322	for (i = 0; i < BLKCG_MAX_POLS; i++)
1323		if (blkcg->cpd[i])
1324			blkcg_policy[i]->cpd_free_fn(blkcg->cpd[i]);
1325
1326	mutex_unlock(&blkcg_pol_mutex);
1327
1328	free_percpu(blkcg->lhead);
1329	kfree(blkcg);
1330}
1331
1332static struct cgroup_subsys_state *
1333blkcg_css_alloc(struct cgroup_subsys_state *parent_css)
1334{
1335	struct blkcg *blkcg;
1336	int i;
1337
1338	mutex_lock(&blkcg_pol_mutex);
1339
1340	if (!parent_css) {
1341		blkcg = &blkcg_root;
1342	} else {
1343		blkcg = kzalloc(sizeof(*blkcg), GFP_KERNEL);
1344		if (!blkcg)
1345			goto unlock;
1346	}
1347
1348	if (init_blkcg_llists(blkcg))
1349		goto free_blkcg;
1350
1351	for (i = 0; i < BLKCG_MAX_POLS ; i++) {
1352		struct blkcg_policy *pol = blkcg_policy[i];
1353		struct blkcg_policy_data *cpd;
1354
1355		/*
1356		 * If the policy hasn't been attached yet, wait for it
1357		 * to be attached before doing anything else. Otherwise,
1358		 * check if the policy requires any specific per-cgroup
1359		 * data: if it does, allocate and initialize it.
1360		 */
1361		if (!pol || !pol->cpd_alloc_fn)
1362			continue;
1363
1364		cpd = pol->cpd_alloc_fn(GFP_KERNEL);
1365		if (!cpd)
1366			goto free_pd_blkcg;
1367
1368		blkcg->cpd[i] = cpd;
1369		cpd->blkcg = blkcg;
1370		cpd->plid = i;
1371	}
1372
1373	spin_lock_init(&blkcg->lock);
1374	refcount_set(&blkcg->online_pin, 1);
1375	INIT_RADIX_TREE(&blkcg->blkg_tree, GFP_NOWAIT | __GFP_NOWARN);
1376	INIT_HLIST_HEAD(&blkcg->blkg_list);
1377#ifdef CONFIG_CGROUP_WRITEBACK
1378	INIT_LIST_HEAD(&blkcg->cgwb_list);
1379#endif
1380	list_add_tail(&blkcg->all_blkcgs_node, &all_blkcgs);
1381
1382	mutex_unlock(&blkcg_pol_mutex);
1383	return &blkcg->css;
1384
1385free_pd_blkcg:
1386	for (i--; i >= 0; i--)
1387		if (blkcg->cpd[i])
1388			blkcg_policy[i]->cpd_free_fn(blkcg->cpd[i]);
1389	free_percpu(blkcg->lhead);
1390free_blkcg:
1391	if (blkcg != &blkcg_root)
1392		kfree(blkcg);
1393unlock:
1394	mutex_unlock(&blkcg_pol_mutex);
1395	return ERR_PTR(-ENOMEM);
1396}
1397
1398static int blkcg_css_online(struct cgroup_subsys_state *css)
1399{
1400	struct blkcg *parent = blkcg_parent(css_to_blkcg(css));
1401
1402	/*
1403	 * blkcg_pin_online() is used to delay blkcg offline so that blkgs
1404	 * don't go offline while cgwbs are still active on them.  Pin the
1405	 * parent so that offline always happens towards the root.
1406	 */
1407	if (parent)
1408		blkcg_pin_online(&parent->css);
1409	return 0;
1410}
1411
1412void blkg_init_queue(struct request_queue *q)
1413{
1414	INIT_LIST_HEAD(&q->blkg_list);
1415	mutex_init(&q->blkcg_mutex);
1416}
1417
1418int blkcg_init_disk(struct gendisk *disk)
1419{
1420	struct request_queue *q = disk->queue;
1421	struct blkcg_gq *new_blkg, *blkg;
1422	bool preloaded;
1423	int ret;
1424
1425	new_blkg = blkg_alloc(&blkcg_root, disk, GFP_KERNEL);
1426	if (!new_blkg)
1427		return -ENOMEM;
1428
1429	preloaded = !radix_tree_preload(GFP_KERNEL);
1430
1431	/* Make sure the root blkg exists. */
1432	/* spin_lock_irq can serve as RCU read-side critical section. */
1433	spin_lock_irq(&q->queue_lock);
1434	blkg = blkg_create(&blkcg_root, disk, new_blkg);
1435	if (IS_ERR(blkg))
1436		goto err_unlock;
1437	q->root_blkg = blkg;
1438	spin_unlock_irq(&q->queue_lock);
1439
1440	if (preloaded)
1441		radix_tree_preload_end();
1442
1443	ret = blk_ioprio_init(disk);
1444	if (ret)
1445		goto err_destroy_all;
1446
1447	ret = blk_throtl_init(disk);
1448	if (ret)
1449		goto err_ioprio_exit;
1450
1451	return 0;
1452
1453err_ioprio_exit:
1454	blk_ioprio_exit(disk);
1455err_destroy_all:
1456	blkg_destroy_all(disk);
1457	return ret;
1458err_unlock:
1459	spin_unlock_irq(&q->queue_lock);
1460	if (preloaded)
1461		radix_tree_preload_end();
1462	return PTR_ERR(blkg);
1463}
1464
1465void blkcg_exit_disk(struct gendisk *disk)
1466{
1467	blkg_destroy_all(disk);
1468	blk_throtl_exit(disk);
1469}
1470
1471static void blkcg_exit(struct task_struct *tsk)
1472{
1473	if (tsk->throttle_disk)
1474		put_disk(tsk->throttle_disk);
1475	tsk->throttle_disk = NULL;
1476}
1477
1478struct cgroup_subsys io_cgrp_subsys = {
1479	.css_alloc = blkcg_css_alloc,
1480	.css_online = blkcg_css_online,
1481	.css_offline = blkcg_css_offline,
1482	.css_free = blkcg_css_free,
1483	.css_rstat_flush = blkcg_rstat_flush,
1484	.dfl_cftypes = blkcg_files,
1485	.legacy_cftypes = blkcg_legacy_files,
1486	.legacy_name = "blkio",
1487	.exit = blkcg_exit,
1488#ifdef CONFIG_MEMCG
1489	/*
1490	 * This ensures that, if available, memcg is automatically enabled
1491	 * together on the default hierarchy so that the owner cgroup can
1492	 * be retrieved from writeback pages.
1493	 */
1494	.depends_on = 1 << memory_cgrp_id,
1495#endif
1496};
1497EXPORT_SYMBOL_GPL(io_cgrp_subsys);
1498
1499/**
1500 * blkcg_activate_policy - activate a blkcg policy on a gendisk
1501 * @disk: gendisk of interest
1502 * @pol: blkcg policy to activate
1503 *
1504 * Activate @pol on @disk.  Requires %GFP_KERNEL context.  @disk goes through
1505 * bypass mode to populate its blkgs with policy_data for @pol.
1506 *
1507 * Activation happens with @disk bypassed, so nobody would be accessing blkgs
1508 * from IO path.  Update of each blkg is protected by both queue and blkcg
1509 * locks so that holding either lock and testing blkcg_policy_enabled() is
1510 * always enough for dereferencing policy data.
1511 *
1512 * The caller is responsible for synchronizing [de]activations and policy
1513 * [un]registerations.  Returns 0 on success, -errno on failure.
1514 */
1515int blkcg_activate_policy(struct gendisk *disk, const struct blkcg_policy *pol)
1516{
1517	struct request_queue *q = disk->queue;
1518	struct blkg_policy_data *pd_prealloc = NULL;
1519	struct blkcg_gq *blkg, *pinned_blkg = NULL;
1520	int ret;
1521
1522	if (blkcg_policy_enabled(q, pol))
1523		return 0;
1524
1525	if (queue_is_mq(q))
1526		blk_mq_freeze_queue(q);
1527retry:
1528	spin_lock_irq(&q->queue_lock);
1529
1530	/* blkg_list is pushed at the head, reverse walk to initialize parents first */
1531	list_for_each_entry_reverse(blkg, &q->blkg_list, q_node) {
1532		struct blkg_policy_data *pd;
1533
1534		if (blkg->pd[pol->plid])
1535			continue;
1536
1537		/* If prealloc matches, use it; otherwise try GFP_NOWAIT */
1538		if (blkg == pinned_blkg) {
1539			pd = pd_prealloc;
1540			pd_prealloc = NULL;
1541		} else {
1542			pd = pol->pd_alloc_fn(disk, blkg->blkcg,
1543					      GFP_NOWAIT | __GFP_NOWARN);
1544		}
1545
1546		if (!pd) {
1547			/*
1548			 * GFP_NOWAIT failed.  Free the existing one and
1549			 * prealloc for @blkg w/ GFP_KERNEL.
1550			 */
1551			if (pinned_blkg)
1552				blkg_put(pinned_blkg);
1553			blkg_get(blkg);
1554			pinned_blkg = blkg;
1555
1556			spin_unlock_irq(&q->queue_lock);
1557
1558			if (pd_prealloc)
1559				pol->pd_free_fn(pd_prealloc);
1560			pd_prealloc = pol->pd_alloc_fn(disk, blkg->blkcg,
1561						       GFP_KERNEL);
1562			if (pd_prealloc)
1563				goto retry;
1564			else
1565				goto enomem;
1566		}
1567
1568		spin_lock(&blkg->blkcg->lock);
1569
1570		pd->blkg = blkg;
1571		pd->plid = pol->plid;
1572		blkg->pd[pol->plid] = pd;
1573
1574		if (pol->pd_init_fn)
1575			pol->pd_init_fn(pd);
1576
1577		if (pol->pd_online_fn)
1578			pol->pd_online_fn(pd);
1579		pd->online = true;
1580
1581		spin_unlock(&blkg->blkcg->lock);
1582	}
1583
1584	__set_bit(pol->plid, q->blkcg_pols);
1585	ret = 0;
1586
1587	spin_unlock_irq(&q->queue_lock);
1588out:
1589	if (queue_is_mq(q))
1590		blk_mq_unfreeze_queue(q);
1591	if (pinned_blkg)
1592		blkg_put(pinned_blkg);
1593	if (pd_prealloc)
1594		pol->pd_free_fn(pd_prealloc);
1595	return ret;
1596
1597enomem:
1598	/* alloc failed, take down everything */
1599	spin_lock_irq(&q->queue_lock);
1600	list_for_each_entry(blkg, &q->blkg_list, q_node) {
1601		struct blkcg *blkcg = blkg->blkcg;
1602		struct blkg_policy_data *pd;
1603
1604		spin_lock(&blkcg->lock);
1605		pd = blkg->pd[pol->plid];
1606		if (pd) {
1607			if (pd->online && pol->pd_offline_fn)
1608				pol->pd_offline_fn(pd);
1609			pd->online = false;
1610			pol->pd_free_fn(pd);
1611			blkg->pd[pol->plid] = NULL;
1612		}
1613		spin_unlock(&blkcg->lock);
1614	}
1615	spin_unlock_irq(&q->queue_lock);
1616	ret = -ENOMEM;
1617	goto out;
1618}
1619EXPORT_SYMBOL_GPL(blkcg_activate_policy);
1620
1621/**
1622 * blkcg_deactivate_policy - deactivate a blkcg policy on a gendisk
1623 * @disk: gendisk of interest
1624 * @pol: blkcg policy to deactivate
1625 *
1626 * Deactivate @pol on @disk.  Follows the same synchronization rules as
1627 * blkcg_activate_policy().
1628 */
1629void blkcg_deactivate_policy(struct gendisk *disk,
1630			     const struct blkcg_policy *pol)
1631{
1632	struct request_queue *q = disk->queue;
1633	struct blkcg_gq *blkg;
1634
1635	if (!blkcg_policy_enabled(q, pol))
1636		return;
1637
1638	if (queue_is_mq(q))
1639		blk_mq_freeze_queue(q);
1640
1641	mutex_lock(&q->blkcg_mutex);
1642	spin_lock_irq(&q->queue_lock);
1643
1644	__clear_bit(pol->plid, q->blkcg_pols);
1645
1646	list_for_each_entry(blkg, &q->blkg_list, q_node) {
1647		struct blkcg *blkcg = blkg->blkcg;
1648
1649		spin_lock(&blkcg->lock);
1650		if (blkg->pd[pol->plid]) {
1651			if (blkg->pd[pol->plid]->online && pol->pd_offline_fn)
1652				pol->pd_offline_fn(blkg->pd[pol->plid]);
1653			pol->pd_free_fn(blkg->pd[pol->plid]);
1654			blkg->pd[pol->plid] = NULL;
1655		}
1656		spin_unlock(&blkcg->lock);
1657	}
1658
1659	spin_unlock_irq(&q->queue_lock);
1660	mutex_unlock(&q->blkcg_mutex);
1661
1662	if (queue_is_mq(q))
1663		blk_mq_unfreeze_queue(q);
1664}
1665EXPORT_SYMBOL_GPL(blkcg_deactivate_policy);
1666
1667static void blkcg_free_all_cpd(struct blkcg_policy *pol)
1668{
1669	struct blkcg *blkcg;
1670
1671	list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) {
1672		if (blkcg->cpd[pol->plid]) {
1673			pol->cpd_free_fn(blkcg->cpd[pol->plid]);
1674			blkcg->cpd[pol->plid] = NULL;
1675		}
1676	}
1677}
1678
1679/**
1680 * blkcg_policy_register - register a blkcg policy
1681 * @pol: blkcg policy to register
1682 *
1683 * Register @pol with blkcg core.  Might sleep and @pol may be modified on
1684 * successful registration.  Returns 0 on success and -errno on failure.
1685 */
1686int blkcg_policy_register(struct blkcg_policy *pol)
1687{
1688	struct blkcg *blkcg;
1689	int i, ret;
1690
1691	mutex_lock(&blkcg_pol_register_mutex);
1692	mutex_lock(&blkcg_pol_mutex);
1693
1694	/* find an empty slot */
1695	ret = -ENOSPC;
1696	for (i = 0; i < BLKCG_MAX_POLS; i++)
1697		if (!blkcg_policy[i])
1698			break;
1699	if (i >= BLKCG_MAX_POLS) {
1700		pr_warn("blkcg_policy_register: BLKCG_MAX_POLS too small\n");
1701		goto err_unlock;
1702	}
1703
1704	/* Make sure cpd/pd_alloc_fn and cpd/pd_free_fn in pairs */
1705	if ((!pol->cpd_alloc_fn ^ !pol->cpd_free_fn) ||
1706		(!pol->pd_alloc_fn ^ !pol->pd_free_fn))
1707		goto err_unlock;
1708
1709	/* register @pol */
1710	pol->plid = i;
1711	blkcg_policy[pol->plid] = pol;
1712
1713	/* allocate and install cpd's */
1714	if (pol->cpd_alloc_fn) {
1715		list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) {
1716			struct blkcg_policy_data *cpd;
1717
1718			cpd = pol->cpd_alloc_fn(GFP_KERNEL);
1719			if (!cpd)
1720				goto err_free_cpds;
1721
1722			blkcg->cpd[pol->plid] = cpd;
1723			cpd->blkcg = blkcg;
1724			cpd->plid = pol->plid;
1725		}
1726	}
1727
1728	mutex_unlock(&blkcg_pol_mutex);
1729
1730	/* everything is in place, add intf files for the new policy */
1731	if (pol->dfl_cftypes)
1732		WARN_ON(cgroup_add_dfl_cftypes(&io_cgrp_subsys,
1733					       pol->dfl_cftypes));
1734	if (pol->legacy_cftypes)
1735		WARN_ON(cgroup_add_legacy_cftypes(&io_cgrp_subsys,
1736						  pol->legacy_cftypes));
1737	mutex_unlock(&blkcg_pol_register_mutex);
1738	return 0;
1739
1740err_free_cpds:
1741	if (pol->cpd_free_fn)
1742		blkcg_free_all_cpd(pol);
1743
1744	blkcg_policy[pol->plid] = NULL;
1745err_unlock:
1746	mutex_unlock(&blkcg_pol_mutex);
1747	mutex_unlock(&blkcg_pol_register_mutex);
1748	return ret;
1749}
1750EXPORT_SYMBOL_GPL(blkcg_policy_register);
1751
1752/**
1753 * blkcg_policy_unregister - unregister a blkcg policy
1754 * @pol: blkcg policy to unregister
1755 *
1756 * Undo blkcg_policy_register(@pol).  Might sleep.
1757 */
1758void blkcg_policy_unregister(struct blkcg_policy *pol)
1759{
1760	mutex_lock(&blkcg_pol_register_mutex);
1761
1762	if (WARN_ON(blkcg_policy[pol->plid] != pol))
1763		goto out_unlock;
1764
1765	/* kill the intf files first */
1766	if (pol->dfl_cftypes)
1767		cgroup_rm_cftypes(pol->dfl_cftypes);
1768	if (pol->legacy_cftypes)
1769		cgroup_rm_cftypes(pol->legacy_cftypes);
1770
1771	/* remove cpds and unregister */
1772	mutex_lock(&blkcg_pol_mutex);
1773
1774	if (pol->cpd_free_fn)
1775		blkcg_free_all_cpd(pol);
1776
1777	blkcg_policy[pol->plid] = NULL;
1778
1779	mutex_unlock(&blkcg_pol_mutex);
1780out_unlock:
1781	mutex_unlock(&blkcg_pol_register_mutex);
1782}
1783EXPORT_SYMBOL_GPL(blkcg_policy_unregister);
1784
1785/*
1786 * Scale the accumulated delay based on how long it has been since we updated
1787 * the delay.  We only call this when we are adding delay, in case it's been a
1788 * while since we added delay, and when we are checking to see if we need to
1789 * delay a task, to account for any delays that may have occurred.
1790 */
1791static void blkcg_scale_delay(struct blkcg_gq *blkg, u64 now)
1792{
1793	u64 old = atomic64_read(&blkg->delay_start);
1794
1795	/* negative use_delay means no scaling, see blkcg_set_delay() */
1796	if (atomic_read(&blkg->use_delay) < 0)
1797		return;
1798
1799	/*
1800	 * We only want to scale down every second.  The idea here is that we
1801	 * want to delay people for min(delay_nsec, NSEC_PER_SEC) in a certain
1802	 * time window.  We only want to throttle tasks for recent delay that
1803	 * has occurred, in 1 second time windows since that's the maximum
1804	 * things can be throttled.  We save the current delay window in
1805	 * blkg->last_delay so we know what amount is still left to be charged
1806	 * to the blkg from this point onward.  blkg->last_use keeps track of
1807	 * the use_delay counter.  The idea is if we're unthrottling the blkg we
1808	 * are ok with whatever is happening now, and we can take away more of
1809	 * the accumulated delay as we've already throttled enough that
1810	 * everybody is happy with their IO latencies.
1811	 */
1812	if (time_before64(old + NSEC_PER_SEC, now) &&
1813	    atomic64_try_cmpxchg(&blkg->delay_start, &old, now)) {
1814		u64 cur = atomic64_read(&blkg->delay_nsec);
1815		u64 sub = min_t(u64, blkg->last_delay, now - old);
1816		int cur_use = atomic_read(&blkg->use_delay);
1817
1818		/*
1819		 * We've been unthrottled, subtract a larger chunk of our
1820		 * accumulated delay.
1821		 */
1822		if (cur_use < blkg->last_use)
1823			sub = max_t(u64, sub, blkg->last_delay >> 1);
1824
1825		/*
1826		 * This shouldn't happen, but handle it anyway.  Our delay_nsec
1827		 * should only ever be growing except here where we subtract out
1828		 * min(last_delay, 1 second), but lord knows bugs happen and I'd
1829		 * rather not end up with negative numbers.
1830		 */
1831		if (unlikely(cur < sub)) {
1832			atomic64_set(&blkg->delay_nsec, 0);
1833			blkg->last_delay = 0;
1834		} else {
1835			atomic64_sub(sub, &blkg->delay_nsec);
1836			blkg->last_delay = cur - sub;
1837		}
1838		blkg->last_use = cur_use;
1839	}
1840}
1841
1842/*
1843 * This is called when we want to actually walk up the hierarchy and check to
1844 * see if we need to throttle, and then actually throttle if there is some
1845 * accumulated delay.  This should only be called upon return to user space so
1846 * we're not holding some lock that would induce a priority inversion.
1847 */
1848static void blkcg_maybe_throttle_blkg(struct blkcg_gq *blkg, bool use_memdelay)
1849{
1850	unsigned long pflags;
1851	bool clamp;
1852	u64 now = blk_time_get_ns();
1853	u64 exp;
1854	u64 delay_nsec = 0;
1855	int tok;
1856
1857	while (blkg->parent) {
1858		int use_delay = atomic_read(&blkg->use_delay);
1859
1860		if (use_delay) {
1861			u64 this_delay;
1862
1863			blkcg_scale_delay(blkg, now);
1864			this_delay = atomic64_read(&blkg->delay_nsec);
1865			if (this_delay > delay_nsec) {
1866				delay_nsec = this_delay;
1867				clamp = use_delay > 0;
1868			}
1869		}
1870		blkg = blkg->parent;
1871	}
1872
1873	if (!delay_nsec)
1874		return;
1875
1876	/*
1877	 * Let's not sleep for all eternity if we've amassed a huge delay.
1878	 * Swapping or metadata IO can accumulate 10's of seconds worth of
1879	 * delay, and we want userspace to be able to do _something_ so cap the
1880	 * delays at 0.25s. If there's 10's of seconds worth of delay then the
1881	 * tasks will be delayed for 0.25 second for every syscall. If
1882	 * blkcg_set_delay() was used as indicated by negative use_delay, the
1883	 * caller is responsible for regulating the range.
1884	 */
1885	if (clamp)
1886		delay_nsec = min_t(u64, delay_nsec, 250 * NSEC_PER_MSEC);
1887
1888	if (use_memdelay)
1889		psi_memstall_enter(&pflags);
1890
1891	exp = ktime_add_ns(now, delay_nsec);
1892	tok = io_schedule_prepare();
1893	do {
1894		__set_current_state(TASK_KILLABLE);
1895		if (!schedule_hrtimeout(&exp, HRTIMER_MODE_ABS))
1896			break;
1897	} while (!fatal_signal_pending(current));
1898	io_schedule_finish(tok);
1899
1900	if (use_memdelay)
1901		psi_memstall_leave(&pflags);
1902}
1903
1904/**
1905 * blkcg_maybe_throttle_current - throttle the current task if it has been marked
1906 *
1907 * This is only called if we've been marked with set_notify_resume().  Obviously
1908 * we can be set_notify_resume() for reasons other than blkcg throttling, so we
1909 * check to see if current->throttle_disk is set and if not this doesn't do
1910 * anything.  This should only ever be called by the resume code, it's not meant
1911 * to be called by people willy-nilly as it will actually do the work to
1912 * throttle the task if it is setup for throttling.
1913 */
1914void blkcg_maybe_throttle_current(void)
1915{
1916	struct gendisk *disk = current->throttle_disk;
1917	struct blkcg *blkcg;
1918	struct blkcg_gq *blkg;
1919	bool use_memdelay = current->use_memdelay;
1920
1921	if (!disk)
1922		return;
1923
1924	current->throttle_disk = NULL;
1925	current->use_memdelay = false;
1926
1927	rcu_read_lock();
1928	blkcg = css_to_blkcg(blkcg_css());
1929	if (!blkcg)
1930		goto out;
1931	blkg = blkg_lookup(blkcg, disk->queue);
1932	if (!blkg)
1933		goto out;
1934	if (!blkg_tryget(blkg))
1935		goto out;
1936	rcu_read_unlock();
1937
1938	blkcg_maybe_throttle_blkg(blkg, use_memdelay);
1939	blkg_put(blkg);
1940	put_disk(disk);
1941	return;
1942out:
1943	rcu_read_unlock();
1944}
1945
1946/**
1947 * blkcg_schedule_throttle - this task needs to check for throttling
1948 * @disk: disk to throttle
1949 * @use_memdelay: do we charge this to memory delay for PSI
1950 *
1951 * This is called by the IO controller when we know there's delay accumulated
1952 * for the blkg for this task.  We do not pass the blkg because there are places
1953 * we call this that may not have that information, the swapping code for
1954 * instance will only have a block_device at that point.  This set's the
1955 * notify_resume for the task to check and see if it requires throttling before
1956 * returning to user space.
1957 *
1958 * We will only schedule once per syscall.  You can call this over and over
1959 * again and it will only do the check once upon return to user space, and only
1960 * throttle once.  If the task needs to be throttled again it'll need to be
1961 * re-set at the next time we see the task.
1962 */
1963void blkcg_schedule_throttle(struct gendisk *disk, bool use_memdelay)
1964{
1965	if (unlikely(current->flags & PF_KTHREAD))
1966		return;
1967
1968	if (current->throttle_disk != disk) {
1969		if (test_bit(GD_DEAD, &disk->state))
1970			return;
1971		get_device(disk_to_dev(disk));
1972
1973		if (current->throttle_disk)
1974			put_disk(current->throttle_disk);
1975		current->throttle_disk = disk;
1976	}
1977
1978	if (use_memdelay)
1979		current->use_memdelay = use_memdelay;
1980	set_notify_resume(current);
1981}
1982
1983/**
1984 * blkcg_add_delay - add delay to this blkg
1985 * @blkg: blkg of interest
1986 * @now: the current time in nanoseconds
1987 * @delta: how many nanoseconds of delay to add
1988 *
1989 * Charge @delta to the blkg's current delay accumulation.  This is used to
1990 * throttle tasks if an IO controller thinks we need more throttling.
1991 */
1992void blkcg_add_delay(struct blkcg_gq *blkg, u64 now, u64 delta)
1993{
1994	if (WARN_ON_ONCE(atomic_read(&blkg->use_delay) < 0))
1995		return;
1996	blkcg_scale_delay(blkg, now);
1997	atomic64_add(delta, &blkg->delay_nsec);
1998}
1999
2000/**
2001 * blkg_tryget_closest - try and get a blkg ref on the closet blkg
2002 * @bio: target bio
2003 * @css: target css
2004 *
2005 * As the failure mode here is to walk up the blkg tree, this ensure that the
2006 * blkg->parent pointers are always valid.  This returns the blkg that it ended
2007 * up taking a reference on or %NULL if no reference was taken.
2008 */
2009static inline struct blkcg_gq *blkg_tryget_closest(struct bio *bio,
2010		struct cgroup_subsys_state *css)
2011{
2012	struct blkcg_gq *blkg, *ret_blkg = NULL;
2013
2014	rcu_read_lock();
2015	blkg = blkg_lookup_create(css_to_blkcg(css), bio->bi_bdev->bd_disk);
2016	while (blkg) {
2017		if (blkg_tryget(blkg)) {
2018			ret_blkg = blkg;
2019			break;
2020		}
2021		blkg = blkg->parent;
2022	}
2023	rcu_read_unlock();
2024
2025	return ret_blkg;
2026}
2027
2028/**
2029 * bio_associate_blkg_from_css - associate a bio with a specified css
2030 * @bio: target bio
2031 * @css: target css
2032 *
2033 * Associate @bio with the blkg found by combining the css's blkg and the
2034 * request_queue of the @bio.  An association failure is handled by walking up
2035 * the blkg tree.  Therefore, the blkg associated can be anything between @blkg
2036 * and q->root_blkg.  This situation only happens when a cgroup is dying and
2037 * then the remaining bios will spill to the closest alive blkg.
2038 *
2039 * A reference will be taken on the blkg and will be released when @bio is
2040 * freed.
2041 */
2042void bio_associate_blkg_from_css(struct bio *bio,
2043				 struct cgroup_subsys_state *css)
2044{
2045	if (bio->bi_blkg)
2046		blkg_put(bio->bi_blkg);
2047
2048	if (css && css->parent) {
2049		bio->bi_blkg = blkg_tryget_closest(bio, css);
2050	} else {
2051		blkg_get(bdev_get_queue(bio->bi_bdev)->root_blkg);
2052		bio->bi_blkg = bdev_get_queue(bio->bi_bdev)->root_blkg;
2053	}
2054}
2055EXPORT_SYMBOL_GPL(bio_associate_blkg_from_css);
2056
2057/**
2058 * bio_associate_blkg - associate a bio with a blkg
2059 * @bio: target bio
2060 *
2061 * Associate @bio with the blkg found from the bio's css and request_queue.
2062 * If one is not found, bio_lookup_blkg() creates the blkg.  If a blkg is
2063 * already associated, the css is reused and association redone as the
2064 * request_queue may have changed.
2065 */
2066void bio_associate_blkg(struct bio *bio)
2067{
2068	struct cgroup_subsys_state *css;
2069
2070	if (blk_op_is_passthrough(bio->bi_opf))
2071		return;
2072
2073	rcu_read_lock();
2074
2075	if (bio->bi_blkg)
2076		css = bio_blkcg_css(bio);
2077	else
2078		css = blkcg_css();
2079
2080	bio_associate_blkg_from_css(bio, css);
2081
2082	rcu_read_unlock();
2083}
2084EXPORT_SYMBOL_GPL(bio_associate_blkg);
2085
2086/**
2087 * bio_clone_blkg_association - clone blkg association from src to dst bio
2088 * @dst: destination bio
2089 * @src: source bio
2090 */
2091void bio_clone_blkg_association(struct bio *dst, struct bio *src)
2092{
2093	if (src->bi_blkg)
2094		bio_associate_blkg_from_css(dst, bio_blkcg_css(src));
2095}
2096EXPORT_SYMBOL_GPL(bio_clone_blkg_association);
2097
2098static int blk_cgroup_io_type(struct bio *bio)
2099{
2100	if (op_is_discard(bio->bi_opf))
2101		return BLKG_IOSTAT_DISCARD;
2102	if (op_is_write(bio->bi_opf))
2103		return BLKG_IOSTAT_WRITE;
2104	return BLKG_IOSTAT_READ;
2105}
2106
2107void blk_cgroup_bio_start(struct bio *bio)
2108{
2109	struct blkcg *blkcg = bio->bi_blkg->blkcg;
2110	int rwd = blk_cgroup_io_type(bio), cpu;
2111	struct blkg_iostat_set *bis;
2112	unsigned long flags;
2113
2114	if (!cgroup_subsys_on_dfl(io_cgrp_subsys))
2115		return;
2116
2117	/* Root-level stats are sourced from system-wide IO stats */
2118	if (!cgroup_parent(blkcg->css.cgroup))
2119		return;
2120
2121	cpu = get_cpu();
2122	bis = per_cpu_ptr(bio->bi_blkg->iostat_cpu, cpu);
2123	flags = u64_stats_update_begin_irqsave(&bis->sync);
2124
2125	/*
2126	 * If the bio is flagged with BIO_CGROUP_ACCT it means this is a split
2127	 * bio and we would have already accounted for the size of the bio.
2128	 */
2129	if (!bio_flagged(bio, BIO_CGROUP_ACCT)) {
2130		bio_set_flag(bio, BIO_CGROUP_ACCT);
2131		bis->cur.bytes[rwd] += bio->bi_iter.bi_size;
2132	}
2133	bis->cur.ios[rwd]++;
2134
2135	/*
2136	 * If the iostat_cpu isn't in a lockless list, put it into the
2137	 * list to indicate that a stat update is pending.
2138	 */
2139	if (!READ_ONCE(bis->lqueued)) {
2140		struct llist_head *lhead = this_cpu_ptr(blkcg->lhead);
2141
2142		llist_add(&bis->lnode, lhead);
2143		WRITE_ONCE(bis->lqueued, true);
2144	}
2145
2146	u64_stats_update_end_irqrestore(&bis->sync, flags);
2147	cgroup_rstat_updated(blkcg->css.cgroup, cpu);
2148	put_cpu();
2149}
2150
2151bool blk_cgroup_congested(void)
2152{
2153	struct cgroup_subsys_state *css;
2154	bool ret = false;
2155
2156	rcu_read_lock();
2157	for (css = blkcg_css(); css; css = css->parent) {
2158		if (atomic_read(&css->cgroup->congestion_count)) {
2159			ret = true;
2160			break;
2161		}
2162	}
2163	rcu_read_unlock();
2164	return ret;
2165}
2166
2167module_param(blkcg_debug_stats, bool, 0644);
2168MODULE_PARM_DESC(blkcg_debug_stats, "True if you want debug stats, false if not");
2169