1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Core of Xen paravirt_ops implementation.
4 *
5 * This file contains the xen_paravirt_ops structure itself, and the
6 * implementations for:
7 * - privileged instructions
8 * - interrupt flags
9 * - segment operations
10 * - booting and setup
11 *
12 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
13 */
14
15#include <linux/cpu.h>
16#include <linux/kernel.h>
17#include <linux/init.h>
18#include <linux/smp.h>
19#include <linux/preempt.h>
20#include <linux/hardirq.h>
21#include <linux/percpu.h>
22#include <linux/delay.h>
23#include <linux/start_kernel.h>
24#include <linux/sched.h>
25#include <linux/kprobes.h>
26#include <linux/kstrtox.h>
27#include <linux/memblock.h>
28#include <linux/export.h>
29#include <linux/mm.h>
30#include <linux/page-flags.h>
31#include <linux/pci.h>
32#include <linux/gfp.h>
33#include <linux/edd.h>
34#include <linux/reboot.h>
35#include <linux/virtio_anchor.h>
36#include <linux/stackprotector.h>
37
38#include <xen/xen.h>
39#include <xen/events.h>
40#include <xen/interface/xen.h>
41#include <xen/interface/version.h>
42#include <xen/interface/physdev.h>
43#include <xen/interface/vcpu.h>
44#include <xen/interface/memory.h>
45#include <xen/interface/nmi.h>
46#include <xen/interface/xen-mca.h>
47#include <xen/features.h>
48#include <xen/page.h>
49#include <xen/hvc-console.h>
50#include <xen/acpi.h>
51
52#include <asm/paravirt.h>
53#include <asm/apic.h>
54#include <asm/page.h>
55#include <asm/xen/pci.h>
56#include <asm/xen/hypercall.h>
57#include <asm/xen/hypervisor.h>
58#include <asm/xen/cpuid.h>
59#include <asm/fixmap.h>
60#include <asm/processor.h>
61#include <asm/proto.h>
62#include <asm/msr-index.h>
63#include <asm/traps.h>
64#include <asm/setup.h>
65#include <asm/desc.h>
66#include <asm/pgalloc.h>
67#include <asm/tlbflush.h>
68#include <asm/reboot.h>
69#include <asm/hypervisor.h>
70#include <asm/mach_traps.h>
71#include <asm/mtrr.h>
72#include <asm/mwait.h>
73#include <asm/pci_x86.h>
74#include <asm/cpu.h>
75#ifdef CONFIG_X86_IOPL_IOPERM
76#include <asm/io_bitmap.h>
77#endif
78
79#ifdef CONFIG_ACPI
80#include <linux/acpi.h>
81#include <asm/acpi.h>
82#include <acpi/proc_cap_intel.h>
83#include <acpi/processor.h>
84#include <xen/interface/platform.h>
85#endif
86
87#include "xen-ops.h"
88#include "mmu.h"
89#include "smp.h"
90#include "multicalls.h"
91#include "pmu.h"
92
93#include "../kernel/cpu/cpu.h" /* get_cpu_cap() */
94
95void *xen_initial_gdt;
96
97static int xen_cpu_up_prepare_pv(unsigned int cpu);
98static int xen_cpu_dead_pv(unsigned int cpu);
99
100struct tls_descs {
101	struct desc_struct desc[3];
102};
103
104DEFINE_PER_CPU(enum xen_lazy_mode, xen_lazy_mode) = XEN_LAZY_NONE;
105DEFINE_PER_CPU(unsigned int, xen_lazy_nesting);
106
107enum xen_lazy_mode xen_get_lazy_mode(void)
108{
109	if (in_interrupt())
110		return XEN_LAZY_NONE;
111
112	return this_cpu_read(xen_lazy_mode);
113}
114
115/*
116 * Updating the 3 TLS descriptors in the GDT on every task switch is
117 * surprisingly expensive so we avoid updating them if they haven't
118 * changed.  Since Xen writes different descriptors than the one
119 * passed in the update_descriptor hypercall we keep shadow copies to
120 * compare against.
121 */
122static DEFINE_PER_CPU(struct tls_descs, shadow_tls_desc);
123
124static __read_mostly bool xen_msr_safe = IS_ENABLED(CONFIG_XEN_PV_MSR_SAFE);
125
126static int __init parse_xen_msr_safe(char *str)
127{
128	if (str)
129		return kstrtobool(str, &xen_msr_safe);
130	return -EINVAL;
131}
132early_param("xen_msr_safe", parse_xen_msr_safe);
133
134/* Get MTRR settings from Xen and put them into mtrr_state. */
135static void __init xen_set_mtrr_data(void)
136{
137#ifdef CONFIG_MTRR
138	struct xen_platform_op op = {
139		.cmd = XENPF_read_memtype,
140		.interface_version = XENPF_INTERFACE_VERSION,
141	};
142	unsigned int reg;
143	unsigned long mask;
144	uint32_t eax, width;
145	static struct mtrr_var_range var[MTRR_MAX_VAR_RANGES] __initdata;
146
147	/* Get physical address width (only 64-bit cpus supported). */
148	width = 36;
149	eax = cpuid_eax(0x80000000);
150	if ((eax >> 16) == 0x8000 && eax >= 0x80000008) {
151		eax = cpuid_eax(0x80000008);
152		width = eax & 0xff;
153	}
154
155	for (reg = 0; reg < MTRR_MAX_VAR_RANGES; reg++) {
156		op.u.read_memtype.reg = reg;
157		if (HYPERVISOR_platform_op(&op))
158			break;
159
160		/*
161		 * Only called in dom0, which has all RAM PFNs mapped at
162		 * RAM MFNs, and all PCI space etc. is identity mapped.
163		 * This means we can treat MFN == PFN regarding MTRR settings.
164		 */
165		var[reg].base_lo = op.u.read_memtype.type;
166		var[reg].base_lo |= op.u.read_memtype.mfn << PAGE_SHIFT;
167		var[reg].base_hi = op.u.read_memtype.mfn >> (32 - PAGE_SHIFT);
168		mask = ~((op.u.read_memtype.nr_mfns << PAGE_SHIFT) - 1);
169		mask &= (1UL << width) - 1;
170		if (mask)
171			mask |= MTRR_PHYSMASK_V;
172		var[reg].mask_lo = mask;
173		var[reg].mask_hi = mask >> 32;
174	}
175
176	/* Only overwrite MTRR state if any MTRR could be got from Xen. */
177	if (reg)
178		mtrr_overwrite_state(var, reg, MTRR_TYPE_UNCACHABLE);
179#endif
180}
181
182static void __init xen_pv_init_platform(void)
183{
184	/* PV guests can't operate virtio devices without grants. */
185	if (IS_ENABLED(CONFIG_XEN_VIRTIO))
186		virtio_set_mem_acc_cb(xen_virtio_restricted_mem_acc);
187
188	populate_extra_pte(fix_to_virt(FIX_PARAVIRT_BOOTMAP));
189
190	set_fixmap(FIX_PARAVIRT_BOOTMAP, xen_start_info->shared_info);
191	HYPERVISOR_shared_info = (void *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
192
193	/* xen clock uses per-cpu vcpu_info, need to init it for boot cpu */
194	xen_vcpu_info_reset(0);
195
196	/* pvclock is in shared info area */
197	xen_init_time_ops();
198
199	if (xen_initial_domain())
200		xen_set_mtrr_data();
201	else
202		mtrr_overwrite_state(NULL, 0, MTRR_TYPE_WRBACK);
203
204	/* Adjust nr_cpu_ids before "enumeration" happens */
205	xen_smp_count_cpus();
206}
207
208static void __init xen_pv_guest_late_init(void)
209{
210#ifndef CONFIG_SMP
211	/* Setup shared vcpu info for non-smp configurations */
212	xen_setup_vcpu_info_placement();
213#endif
214}
215
216static __read_mostly unsigned int cpuid_leaf5_ecx_val;
217static __read_mostly unsigned int cpuid_leaf5_edx_val;
218
219static void xen_cpuid(unsigned int *ax, unsigned int *bx,
220		      unsigned int *cx, unsigned int *dx)
221{
222	unsigned maskebx = ~0;
223
224	/*
225	 * Mask out inconvenient features, to try and disable as many
226	 * unsupported kernel subsystems as possible.
227	 */
228	switch (*ax) {
229	case CPUID_MWAIT_LEAF:
230		/* Synthesize the values.. */
231		*ax = 0;
232		*bx = 0;
233		*cx = cpuid_leaf5_ecx_val;
234		*dx = cpuid_leaf5_edx_val;
235		return;
236
237	case 0xb:
238		/* Suppress extended topology stuff */
239		maskebx = 0;
240		break;
241	}
242
243	asm(XEN_EMULATE_PREFIX "cpuid"
244		: "=a" (*ax),
245		  "=b" (*bx),
246		  "=c" (*cx),
247		  "=d" (*dx)
248		: "0" (*ax), "2" (*cx));
249
250	*bx &= maskebx;
251}
252
253static bool __init xen_check_mwait(void)
254{
255#ifdef CONFIG_ACPI
256	struct xen_platform_op op = {
257		.cmd			= XENPF_set_processor_pminfo,
258		.u.set_pminfo.id	= -1,
259		.u.set_pminfo.type	= XEN_PM_PDC,
260	};
261	uint32_t buf[3];
262	unsigned int ax, bx, cx, dx;
263	unsigned int mwait_mask;
264
265	/* We need to determine whether it is OK to expose the MWAIT
266	 * capability to the kernel to harvest deeper than C3 states from ACPI
267	 * _CST using the processor_harvest_xen.c module. For this to work, we
268	 * need to gather the MWAIT_LEAF values (which the cstate.c code
269	 * checks against). The hypervisor won't expose the MWAIT flag because
270	 * it would break backwards compatibility; so we will find out directly
271	 * from the hardware and hypercall.
272	 */
273	if (!xen_initial_domain())
274		return false;
275
276	/*
277	 * When running under platform earlier than Xen4.2, do not expose
278	 * mwait, to avoid the risk of loading native acpi pad driver
279	 */
280	if (!xen_running_on_version_or_later(4, 2))
281		return false;
282
283	ax = 1;
284	cx = 0;
285
286	native_cpuid(&ax, &bx, &cx, &dx);
287
288	mwait_mask = (1 << (X86_FEATURE_EST % 32)) |
289		     (1 << (X86_FEATURE_MWAIT % 32));
290
291	if ((cx & mwait_mask) != mwait_mask)
292		return false;
293
294	/* We need to emulate the MWAIT_LEAF and for that we need both
295	 * ecx and edx. The hypercall provides only partial information.
296	 */
297
298	ax = CPUID_MWAIT_LEAF;
299	bx = 0;
300	cx = 0;
301	dx = 0;
302
303	native_cpuid(&ax, &bx, &cx, &dx);
304
305	/* Ask the Hypervisor whether to clear ACPI_PROC_CAP_C_C2C3_FFH. If so,
306	 * don't expose MWAIT_LEAF and let ACPI pick the IOPORT version of C3.
307	 */
308	buf[0] = ACPI_PDC_REVISION_ID;
309	buf[1] = 1;
310	buf[2] = (ACPI_PROC_CAP_C_CAPABILITY_SMP | ACPI_PROC_CAP_EST_CAPABILITY_SWSMP);
311
312	set_xen_guest_handle(op.u.set_pminfo.pdc, buf);
313
314	if ((HYPERVISOR_platform_op(&op) == 0) &&
315	    (buf[2] & (ACPI_PROC_CAP_C_C1_FFH | ACPI_PROC_CAP_C_C2C3_FFH))) {
316		cpuid_leaf5_ecx_val = cx;
317		cpuid_leaf5_edx_val = dx;
318	}
319	return true;
320#else
321	return false;
322#endif
323}
324
325static bool __init xen_check_xsave(void)
326{
327	unsigned int cx, xsave_mask;
328
329	cx = cpuid_ecx(1);
330
331	xsave_mask = (1 << (X86_FEATURE_XSAVE % 32)) |
332		     (1 << (X86_FEATURE_OSXSAVE % 32));
333
334	/* Xen will set CR4.OSXSAVE if supported and not disabled by force */
335	return (cx & xsave_mask) == xsave_mask;
336}
337
338static void __init xen_init_capabilities(void)
339{
340	setup_force_cpu_cap(X86_FEATURE_XENPV);
341	setup_clear_cpu_cap(X86_FEATURE_DCA);
342	setup_clear_cpu_cap(X86_FEATURE_APERFMPERF);
343	setup_clear_cpu_cap(X86_FEATURE_MTRR);
344	setup_clear_cpu_cap(X86_FEATURE_ACC);
345	setup_clear_cpu_cap(X86_FEATURE_X2APIC);
346	setup_clear_cpu_cap(X86_FEATURE_SME);
347	setup_clear_cpu_cap(X86_FEATURE_LKGS);
348
349	/*
350	 * Xen PV would need some work to support PCID: CR3 handling as well
351	 * as xen_flush_tlb_others() would need updating.
352	 */
353	setup_clear_cpu_cap(X86_FEATURE_PCID);
354
355	if (!xen_initial_domain())
356		setup_clear_cpu_cap(X86_FEATURE_ACPI);
357
358	if (xen_check_mwait())
359		setup_force_cpu_cap(X86_FEATURE_MWAIT);
360	else
361		setup_clear_cpu_cap(X86_FEATURE_MWAIT);
362
363	if (!xen_check_xsave()) {
364		setup_clear_cpu_cap(X86_FEATURE_XSAVE);
365		setup_clear_cpu_cap(X86_FEATURE_OSXSAVE);
366	}
367}
368
369static noinstr void xen_set_debugreg(int reg, unsigned long val)
370{
371	HYPERVISOR_set_debugreg(reg, val);
372}
373
374static noinstr unsigned long xen_get_debugreg(int reg)
375{
376	return HYPERVISOR_get_debugreg(reg);
377}
378
379static void xen_start_context_switch(struct task_struct *prev)
380{
381	BUG_ON(preemptible());
382
383	if (this_cpu_read(xen_lazy_mode) == XEN_LAZY_MMU) {
384		arch_leave_lazy_mmu_mode();
385		set_ti_thread_flag(task_thread_info(prev), TIF_LAZY_MMU_UPDATES);
386	}
387	enter_lazy(XEN_LAZY_CPU);
388}
389
390static void xen_end_context_switch(struct task_struct *next)
391{
392	BUG_ON(preemptible());
393
394	xen_mc_flush();
395	leave_lazy(XEN_LAZY_CPU);
396	if (test_and_clear_ti_thread_flag(task_thread_info(next), TIF_LAZY_MMU_UPDATES))
397		arch_enter_lazy_mmu_mode();
398}
399
400static unsigned long xen_store_tr(void)
401{
402	return 0;
403}
404
405/*
406 * Set the page permissions for a particular virtual address.  If the
407 * address is a vmalloc mapping (or other non-linear mapping), then
408 * find the linear mapping of the page and also set its protections to
409 * match.
410 */
411static void set_aliased_prot(void *v, pgprot_t prot)
412{
413	int level;
414	pte_t *ptep;
415	pte_t pte;
416	unsigned long pfn;
417	unsigned char dummy;
418	void *va;
419
420	ptep = lookup_address((unsigned long)v, &level);
421	BUG_ON(ptep == NULL);
422
423	pfn = pte_pfn(*ptep);
424	pte = pfn_pte(pfn, prot);
425
426	/*
427	 * Careful: update_va_mapping() will fail if the virtual address
428	 * we're poking isn't populated in the page tables.  We don't
429	 * need to worry about the direct map (that's always in the page
430	 * tables), but we need to be careful about vmap space.  In
431	 * particular, the top level page table can lazily propagate
432	 * entries between processes, so if we've switched mms since we
433	 * vmapped the target in the first place, we might not have the
434	 * top-level page table entry populated.
435	 *
436	 * We disable preemption because we want the same mm active when
437	 * we probe the target and when we issue the hypercall.  We'll
438	 * have the same nominal mm, but if we're a kernel thread, lazy
439	 * mm dropping could change our pgd.
440	 *
441	 * Out of an abundance of caution, this uses __get_user() to fault
442	 * in the target address just in case there's some obscure case
443	 * in which the target address isn't readable.
444	 */
445
446	preempt_disable();
447
448	copy_from_kernel_nofault(&dummy, v, 1);
449
450	if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0))
451		BUG();
452
453	va = __va(PFN_PHYS(pfn));
454
455	if (va != v && HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0))
456		BUG();
457
458	preempt_enable();
459}
460
461static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries)
462{
463	const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
464	int i;
465
466	/*
467	 * We need to mark the all aliases of the LDT pages RO.  We
468	 * don't need to call vm_flush_aliases(), though, since that's
469	 * only responsible for flushing aliases out the TLBs, not the
470	 * page tables, and Xen will flush the TLB for us if needed.
471	 *
472	 * To avoid confusing future readers: none of this is necessary
473	 * to load the LDT.  The hypervisor only checks this when the
474	 * LDT is faulted in due to subsequent descriptor access.
475	 */
476
477	for (i = 0; i < entries; i += entries_per_page)
478		set_aliased_prot(ldt + i, PAGE_KERNEL_RO);
479}
480
481static void xen_free_ldt(struct desc_struct *ldt, unsigned entries)
482{
483	const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
484	int i;
485
486	for (i = 0; i < entries; i += entries_per_page)
487		set_aliased_prot(ldt + i, PAGE_KERNEL);
488}
489
490static void xen_set_ldt(const void *addr, unsigned entries)
491{
492	struct mmuext_op *op;
493	struct multicall_space mcs = xen_mc_entry(sizeof(*op));
494
495	trace_xen_cpu_set_ldt(addr, entries);
496
497	op = mcs.args;
498	op->cmd = MMUEXT_SET_LDT;
499	op->arg1.linear_addr = (unsigned long)addr;
500	op->arg2.nr_ents = entries;
501
502	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
503
504	xen_mc_issue(XEN_LAZY_CPU);
505}
506
507static void xen_load_gdt(const struct desc_ptr *dtr)
508{
509	unsigned long va = dtr->address;
510	unsigned int size = dtr->size + 1;
511	unsigned long pfn, mfn;
512	int level;
513	pte_t *ptep;
514	void *virt;
515
516	/* @size should be at most GDT_SIZE which is smaller than PAGE_SIZE. */
517	BUG_ON(size > PAGE_SIZE);
518	BUG_ON(va & ~PAGE_MASK);
519
520	/*
521	 * The GDT is per-cpu and is in the percpu data area.
522	 * That can be virtually mapped, so we need to do a
523	 * page-walk to get the underlying MFN for the
524	 * hypercall.  The page can also be in the kernel's
525	 * linear range, so we need to RO that mapping too.
526	 */
527	ptep = lookup_address(va, &level);
528	BUG_ON(ptep == NULL);
529
530	pfn = pte_pfn(*ptep);
531	mfn = pfn_to_mfn(pfn);
532	virt = __va(PFN_PHYS(pfn));
533
534	make_lowmem_page_readonly((void *)va);
535	make_lowmem_page_readonly(virt);
536
537	if (HYPERVISOR_set_gdt(&mfn, size / sizeof(struct desc_struct)))
538		BUG();
539}
540
541/*
542 * load_gdt for early boot, when the gdt is only mapped once
543 */
544static void __init xen_load_gdt_boot(const struct desc_ptr *dtr)
545{
546	unsigned long va = dtr->address;
547	unsigned int size = dtr->size + 1;
548	unsigned long pfn, mfn;
549	pte_t pte;
550
551	/* @size should be at most GDT_SIZE which is smaller than PAGE_SIZE. */
552	BUG_ON(size > PAGE_SIZE);
553	BUG_ON(va & ~PAGE_MASK);
554
555	pfn = virt_to_pfn((void *)va);
556	mfn = pfn_to_mfn(pfn);
557
558	pte = pfn_pte(pfn, PAGE_KERNEL_RO);
559
560	if (HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0))
561		BUG();
562
563	if (HYPERVISOR_set_gdt(&mfn, size / sizeof(struct desc_struct)))
564		BUG();
565}
566
567static inline bool desc_equal(const struct desc_struct *d1,
568			      const struct desc_struct *d2)
569{
570	return !memcmp(d1, d2, sizeof(*d1));
571}
572
573static void load_TLS_descriptor(struct thread_struct *t,
574				unsigned int cpu, unsigned int i)
575{
576	struct desc_struct *shadow = &per_cpu(shadow_tls_desc, cpu).desc[i];
577	struct desc_struct *gdt;
578	xmaddr_t maddr;
579	struct multicall_space mc;
580
581	if (desc_equal(shadow, &t->tls_array[i]))
582		return;
583
584	*shadow = t->tls_array[i];
585
586	gdt = get_cpu_gdt_rw(cpu);
587	maddr = arbitrary_virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
588	mc = __xen_mc_entry(0);
589
590	MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
591}
592
593static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
594{
595	/*
596	 * In lazy mode we need to zero %fs, otherwise we may get an
597	 * exception between the new %fs descriptor being loaded and
598	 * %fs being effectively cleared at __switch_to().
599	 */
600	if (xen_get_lazy_mode() == XEN_LAZY_CPU)
601		loadsegment(fs, 0);
602
603	xen_mc_batch();
604
605	load_TLS_descriptor(t, cpu, 0);
606	load_TLS_descriptor(t, cpu, 1);
607	load_TLS_descriptor(t, cpu, 2);
608
609	xen_mc_issue(XEN_LAZY_CPU);
610}
611
612static void xen_load_gs_index(unsigned int idx)
613{
614	if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx))
615		BUG();
616}
617
618static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
619				const void *ptr)
620{
621	xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]);
622	u64 entry = *(u64 *)ptr;
623
624	trace_xen_cpu_write_ldt_entry(dt, entrynum, entry);
625
626	preempt_disable();
627
628	xen_mc_flush();
629	if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
630		BUG();
631
632	preempt_enable();
633}
634
635void noist_exc_debug(struct pt_regs *regs);
636
637DEFINE_IDTENTRY_RAW(xenpv_exc_nmi)
638{
639	/* On Xen PV, NMI doesn't use IST.  The C part is the same as native. */
640	exc_nmi(regs);
641}
642
643DEFINE_IDTENTRY_RAW_ERRORCODE(xenpv_exc_double_fault)
644{
645	/* On Xen PV, DF doesn't use IST.  The C part is the same as native. */
646	exc_double_fault(regs, error_code);
647}
648
649DEFINE_IDTENTRY_RAW(xenpv_exc_debug)
650{
651	/*
652	 * There's no IST on Xen PV, but we still need to dispatch
653	 * to the correct handler.
654	 */
655	if (user_mode(regs))
656		noist_exc_debug(regs);
657	else
658		exc_debug(regs);
659}
660
661DEFINE_IDTENTRY_RAW(exc_xen_unknown_trap)
662{
663	/* This should never happen and there is no way to handle it. */
664	instrumentation_begin();
665	pr_err("Unknown trap in Xen PV mode.");
666	BUG();
667	instrumentation_end();
668}
669
670#ifdef CONFIG_X86_MCE
671DEFINE_IDTENTRY_RAW(xenpv_exc_machine_check)
672{
673	/*
674	 * There's no IST on Xen PV, but we still need to dispatch
675	 * to the correct handler.
676	 */
677	if (user_mode(regs))
678		noist_exc_machine_check(regs);
679	else
680		exc_machine_check(regs);
681}
682#endif
683
684struct trap_array_entry {
685	void (*orig)(void);
686	void (*xen)(void);
687	bool ist_okay;
688};
689
690#define TRAP_ENTRY(func, ist_ok) {			\
691	.orig		= asm_##func,			\
692	.xen		= xen_asm_##func,		\
693	.ist_okay	= ist_ok }
694
695#define TRAP_ENTRY_REDIR(func, ist_ok) {		\
696	.orig		= asm_##func,			\
697	.xen		= xen_asm_xenpv_##func,		\
698	.ist_okay	= ist_ok }
699
700static struct trap_array_entry trap_array[] = {
701	TRAP_ENTRY_REDIR(exc_debug,			true  ),
702	TRAP_ENTRY_REDIR(exc_double_fault,		true  ),
703#ifdef CONFIG_X86_MCE
704	TRAP_ENTRY_REDIR(exc_machine_check,		true  ),
705#endif
706	TRAP_ENTRY_REDIR(exc_nmi,			true  ),
707	TRAP_ENTRY(exc_int3,				false ),
708	TRAP_ENTRY(exc_overflow,			false ),
709#ifdef CONFIG_IA32_EMULATION
710	TRAP_ENTRY(int80_emulation,			false ),
711#endif
712	TRAP_ENTRY(exc_page_fault,			false ),
713	TRAP_ENTRY(exc_divide_error,			false ),
714	TRAP_ENTRY(exc_bounds,				false ),
715	TRAP_ENTRY(exc_invalid_op,			false ),
716	TRAP_ENTRY(exc_device_not_available,		false ),
717	TRAP_ENTRY(exc_coproc_segment_overrun,		false ),
718	TRAP_ENTRY(exc_invalid_tss,			false ),
719	TRAP_ENTRY(exc_segment_not_present,		false ),
720	TRAP_ENTRY(exc_stack_segment,			false ),
721	TRAP_ENTRY(exc_general_protection,		false ),
722	TRAP_ENTRY(exc_spurious_interrupt_bug,		false ),
723	TRAP_ENTRY(exc_coprocessor_error,		false ),
724	TRAP_ENTRY(exc_alignment_check,			false ),
725	TRAP_ENTRY(exc_simd_coprocessor_error,		false ),
726#ifdef CONFIG_X86_CET
727	TRAP_ENTRY(exc_control_protection,		false ),
728#endif
729};
730
731static bool __ref get_trap_addr(void **addr, unsigned int ist)
732{
733	unsigned int nr;
734	bool ist_okay = false;
735	bool found = false;
736
737	/*
738	 * Replace trap handler addresses by Xen specific ones.
739	 * Check for known traps using IST and whitelist them.
740	 * The debugger ones are the only ones we care about.
741	 * Xen will handle faults like double_fault, so we should never see
742	 * them.  Warn if there's an unexpected IST-using fault handler.
743	 */
744	for (nr = 0; nr < ARRAY_SIZE(trap_array); nr++) {
745		struct trap_array_entry *entry = trap_array + nr;
746
747		if (*addr == entry->orig) {
748			*addr = entry->xen;
749			ist_okay = entry->ist_okay;
750			found = true;
751			break;
752		}
753	}
754
755	if (nr == ARRAY_SIZE(trap_array) &&
756	    *addr >= (void *)early_idt_handler_array[0] &&
757	    *addr < (void *)early_idt_handler_array[NUM_EXCEPTION_VECTORS]) {
758		nr = (*addr - (void *)early_idt_handler_array[0]) /
759		     EARLY_IDT_HANDLER_SIZE;
760		*addr = (void *)xen_early_idt_handler_array[nr];
761		found = true;
762	}
763
764	if (!found)
765		*addr = (void *)xen_asm_exc_xen_unknown_trap;
766
767	if (WARN_ON(found && ist != 0 && !ist_okay))
768		return false;
769
770	return true;
771}
772
773static int cvt_gate_to_trap(int vector, const gate_desc *val,
774			    struct trap_info *info)
775{
776	unsigned long addr;
777
778	if (val->bits.type != GATE_TRAP && val->bits.type != GATE_INTERRUPT)
779		return 0;
780
781	info->vector = vector;
782
783	addr = gate_offset(val);
784	if (!get_trap_addr((void **)&addr, val->bits.ist))
785		return 0;
786	info->address = addr;
787
788	info->cs = gate_segment(val);
789	info->flags = val->bits.dpl;
790	/* interrupt gates clear IF */
791	if (val->bits.type == GATE_INTERRUPT)
792		info->flags |= 1 << 2;
793
794	return 1;
795}
796
797/* Locations of each CPU's IDT */
798static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
799
800/* Set an IDT entry.  If the entry is part of the current IDT, then
801   also update Xen. */
802static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
803{
804	unsigned long p = (unsigned long)&dt[entrynum];
805	unsigned long start, end;
806
807	trace_xen_cpu_write_idt_entry(dt, entrynum, g);
808
809	preempt_disable();
810
811	start = __this_cpu_read(idt_desc.address);
812	end = start + __this_cpu_read(idt_desc.size) + 1;
813
814	xen_mc_flush();
815
816	native_write_idt_entry(dt, entrynum, g);
817
818	if (p >= start && (p + 8) <= end) {
819		struct trap_info info[2];
820
821		info[1].address = 0;
822
823		if (cvt_gate_to_trap(entrynum, g, &info[0]))
824			if (HYPERVISOR_set_trap_table(info))
825				BUG();
826	}
827
828	preempt_enable();
829}
830
831static unsigned xen_convert_trap_info(const struct desc_ptr *desc,
832				      struct trap_info *traps, bool full)
833{
834	unsigned in, out, count;
835
836	count = (desc->size+1) / sizeof(gate_desc);
837	BUG_ON(count > 256);
838
839	for (in = out = 0; in < count; in++) {
840		gate_desc *entry = (gate_desc *)(desc->address) + in;
841
842		if (cvt_gate_to_trap(in, entry, &traps[out]) || full)
843			out++;
844	}
845
846	return out;
847}
848
849void xen_copy_trap_info(struct trap_info *traps)
850{
851	const struct desc_ptr *desc = this_cpu_ptr(&idt_desc);
852
853	xen_convert_trap_info(desc, traps, true);
854}
855
856/* Load a new IDT into Xen.  In principle this can be per-CPU, so we
857   hold a spinlock to protect the static traps[] array (static because
858   it avoids allocation, and saves stack space). */
859static void xen_load_idt(const struct desc_ptr *desc)
860{
861	static DEFINE_SPINLOCK(lock);
862	static struct trap_info traps[257];
863	static const struct trap_info zero = { };
864	unsigned out;
865
866	trace_xen_cpu_load_idt(desc);
867
868	spin_lock(&lock);
869
870	memcpy(this_cpu_ptr(&idt_desc), desc, sizeof(idt_desc));
871
872	out = xen_convert_trap_info(desc, traps, false);
873	traps[out] = zero;
874
875	xen_mc_flush();
876	if (HYPERVISOR_set_trap_table(traps))
877		BUG();
878
879	spin_unlock(&lock);
880}
881
882/* Write a GDT descriptor entry.  Ignore LDT descriptors, since
883   they're handled differently. */
884static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
885				const void *desc, int type)
886{
887	trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
888
889	preempt_disable();
890
891	switch (type) {
892	case DESC_LDT:
893	case DESC_TSS:
894		/* ignore */
895		break;
896
897	default: {
898		xmaddr_t maddr = arbitrary_virt_to_machine(&dt[entry]);
899
900		xen_mc_flush();
901		if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
902			BUG();
903	}
904
905	}
906
907	preempt_enable();
908}
909
910/*
911 * Version of write_gdt_entry for use at early boot-time needed to
912 * update an entry as simply as possible.
913 */
914static void __init xen_write_gdt_entry_boot(struct desc_struct *dt, int entry,
915					    const void *desc, int type)
916{
917	trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
918
919	switch (type) {
920	case DESC_LDT:
921	case DESC_TSS:
922		/* ignore */
923		break;
924
925	default: {
926		xmaddr_t maddr = virt_to_machine(&dt[entry]);
927
928		if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
929			dt[entry] = *(struct desc_struct *)desc;
930	}
931
932	}
933}
934
935static void xen_load_sp0(unsigned long sp0)
936{
937	struct multicall_space mcs;
938
939	mcs = xen_mc_entry(0);
940	MULTI_stack_switch(mcs.mc, __KERNEL_DS, sp0);
941	xen_mc_issue(XEN_LAZY_CPU);
942	this_cpu_write(cpu_tss_rw.x86_tss.sp0, sp0);
943}
944
945#ifdef CONFIG_X86_IOPL_IOPERM
946static void xen_invalidate_io_bitmap(void)
947{
948	struct physdev_set_iobitmap iobitmap = {
949		.bitmap = NULL,
950		.nr_ports = 0,
951	};
952
953	native_tss_invalidate_io_bitmap();
954	HYPERVISOR_physdev_op(PHYSDEVOP_set_iobitmap, &iobitmap);
955}
956
957static void xen_update_io_bitmap(void)
958{
959	struct physdev_set_iobitmap iobitmap;
960	struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
961
962	native_tss_update_io_bitmap();
963
964	iobitmap.bitmap = (uint8_t *)(&tss->x86_tss) +
965			  tss->x86_tss.io_bitmap_base;
966	if (tss->x86_tss.io_bitmap_base == IO_BITMAP_OFFSET_INVALID)
967		iobitmap.nr_ports = 0;
968	else
969		iobitmap.nr_ports = IO_BITMAP_BITS;
970
971	HYPERVISOR_physdev_op(PHYSDEVOP_set_iobitmap, &iobitmap);
972}
973#endif
974
975static void xen_io_delay(void)
976{
977}
978
979static DEFINE_PER_CPU(unsigned long, xen_cr0_value);
980
981static unsigned long xen_read_cr0(void)
982{
983	unsigned long cr0 = this_cpu_read(xen_cr0_value);
984
985	if (unlikely(cr0 == 0)) {
986		cr0 = native_read_cr0();
987		this_cpu_write(xen_cr0_value, cr0);
988	}
989
990	return cr0;
991}
992
993static void xen_write_cr0(unsigned long cr0)
994{
995	struct multicall_space mcs;
996
997	this_cpu_write(xen_cr0_value, cr0);
998
999	/* Only pay attention to cr0.TS; everything else is
1000	   ignored. */
1001	mcs = xen_mc_entry(0);
1002
1003	MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
1004
1005	xen_mc_issue(XEN_LAZY_CPU);
1006}
1007
1008static void xen_write_cr4(unsigned long cr4)
1009{
1010	cr4 &= ~(X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PCE);
1011
1012	native_write_cr4(cr4);
1013}
1014
1015static u64 xen_do_read_msr(unsigned int msr, int *err)
1016{
1017	u64 val = 0;	/* Avoid uninitialized value for safe variant. */
1018
1019	if (pmu_msr_read(msr, &val, err))
1020		return val;
1021
1022	if (err)
1023		val = native_read_msr_safe(msr, err);
1024	else
1025		val = native_read_msr(msr);
1026
1027	switch (msr) {
1028	case MSR_IA32_APICBASE:
1029		val &= ~X2APIC_ENABLE;
1030		break;
1031	}
1032	return val;
1033}
1034
1035static void set_seg(unsigned int which, unsigned int low, unsigned int high,
1036		    int *err)
1037{
1038	u64 base = ((u64)high << 32) | low;
1039
1040	if (HYPERVISOR_set_segment_base(which, base) == 0)
1041		return;
1042
1043	if (err)
1044		*err = -EIO;
1045	else
1046		WARN(1, "Xen set_segment_base(%u, %llx) failed\n", which, base);
1047}
1048
1049/*
1050 * Support write_msr_safe() and write_msr() semantics.
1051 * With err == NULL write_msr() semantics are selected.
1052 * Supplying an err pointer requires err to be pre-initialized with 0.
1053 */
1054static void xen_do_write_msr(unsigned int msr, unsigned int low,
1055			     unsigned int high, int *err)
1056{
1057	switch (msr) {
1058	case MSR_FS_BASE:
1059		set_seg(SEGBASE_FS, low, high, err);
1060		break;
1061
1062	case MSR_KERNEL_GS_BASE:
1063		set_seg(SEGBASE_GS_USER, low, high, err);
1064		break;
1065
1066	case MSR_GS_BASE:
1067		set_seg(SEGBASE_GS_KERNEL, low, high, err);
1068		break;
1069
1070	case MSR_STAR:
1071	case MSR_CSTAR:
1072	case MSR_LSTAR:
1073	case MSR_SYSCALL_MASK:
1074	case MSR_IA32_SYSENTER_CS:
1075	case MSR_IA32_SYSENTER_ESP:
1076	case MSR_IA32_SYSENTER_EIP:
1077		/* Fast syscall setup is all done in hypercalls, so
1078		   these are all ignored.  Stub them out here to stop
1079		   Xen console noise. */
1080		break;
1081
1082	default:
1083		if (!pmu_msr_write(msr, low, high, err)) {
1084			if (err)
1085				*err = native_write_msr_safe(msr, low, high);
1086			else
1087				native_write_msr(msr, low, high);
1088		}
1089	}
1090}
1091
1092static u64 xen_read_msr_safe(unsigned int msr, int *err)
1093{
1094	return xen_do_read_msr(msr, err);
1095}
1096
1097static int xen_write_msr_safe(unsigned int msr, unsigned int low,
1098			      unsigned int high)
1099{
1100	int err = 0;
1101
1102	xen_do_write_msr(msr, low, high, &err);
1103
1104	return err;
1105}
1106
1107static u64 xen_read_msr(unsigned int msr)
1108{
1109	int err;
1110
1111	return xen_do_read_msr(msr, xen_msr_safe ? &err : NULL);
1112}
1113
1114static void xen_write_msr(unsigned int msr, unsigned low, unsigned high)
1115{
1116	int err;
1117
1118	xen_do_write_msr(msr, low, high, xen_msr_safe ? &err : NULL);
1119}
1120
1121/* This is called once we have the cpu_possible_mask */
1122void __init xen_setup_vcpu_info_placement(void)
1123{
1124	int cpu;
1125
1126	for_each_possible_cpu(cpu) {
1127		/* Set up direct vCPU id mapping for PV guests. */
1128		per_cpu(xen_vcpu_id, cpu) = cpu;
1129		xen_vcpu_setup(cpu);
1130	}
1131
1132	pv_ops.irq.save_fl = __PV_IS_CALLEE_SAVE(xen_save_fl_direct);
1133	pv_ops.irq.irq_disable = __PV_IS_CALLEE_SAVE(xen_irq_disable_direct);
1134	pv_ops.irq.irq_enable = __PV_IS_CALLEE_SAVE(xen_irq_enable_direct);
1135	pv_ops.mmu.read_cr2 = __PV_IS_CALLEE_SAVE(xen_read_cr2_direct);
1136}
1137
1138static const struct pv_info xen_info __initconst = {
1139	.extra_user_64bit_cs = FLAT_USER_CS64,
1140	.name = "Xen",
1141};
1142
1143static const typeof(pv_ops) xen_cpu_ops __initconst = {
1144	.cpu = {
1145		.cpuid = xen_cpuid,
1146
1147		.set_debugreg = xen_set_debugreg,
1148		.get_debugreg = xen_get_debugreg,
1149
1150		.read_cr0 = xen_read_cr0,
1151		.write_cr0 = xen_write_cr0,
1152
1153		.write_cr4 = xen_write_cr4,
1154
1155		.wbinvd = pv_native_wbinvd,
1156
1157		.read_msr = xen_read_msr,
1158		.write_msr = xen_write_msr,
1159
1160		.read_msr_safe = xen_read_msr_safe,
1161		.write_msr_safe = xen_write_msr_safe,
1162
1163		.read_pmc = xen_read_pmc,
1164
1165		.load_tr_desc = paravirt_nop,
1166		.set_ldt = xen_set_ldt,
1167		.load_gdt = xen_load_gdt,
1168		.load_idt = xen_load_idt,
1169		.load_tls = xen_load_tls,
1170		.load_gs_index = xen_load_gs_index,
1171
1172		.alloc_ldt = xen_alloc_ldt,
1173		.free_ldt = xen_free_ldt,
1174
1175		.store_tr = xen_store_tr,
1176
1177		.write_ldt_entry = xen_write_ldt_entry,
1178		.write_gdt_entry = xen_write_gdt_entry,
1179		.write_idt_entry = xen_write_idt_entry,
1180		.load_sp0 = xen_load_sp0,
1181
1182#ifdef CONFIG_X86_IOPL_IOPERM
1183		.invalidate_io_bitmap = xen_invalidate_io_bitmap,
1184		.update_io_bitmap = xen_update_io_bitmap,
1185#endif
1186		.io_delay = xen_io_delay,
1187
1188		.start_context_switch = xen_start_context_switch,
1189		.end_context_switch = xen_end_context_switch,
1190	},
1191};
1192
1193static void xen_restart(char *msg)
1194{
1195	xen_reboot(SHUTDOWN_reboot);
1196}
1197
1198static void xen_machine_halt(void)
1199{
1200	xen_reboot(SHUTDOWN_poweroff);
1201}
1202
1203static void xen_machine_power_off(void)
1204{
1205	do_kernel_power_off();
1206	xen_reboot(SHUTDOWN_poweroff);
1207}
1208
1209static void xen_crash_shutdown(struct pt_regs *regs)
1210{
1211	xen_reboot(SHUTDOWN_crash);
1212}
1213
1214static const struct machine_ops xen_machine_ops __initconst = {
1215	.restart = xen_restart,
1216	.halt = xen_machine_halt,
1217	.power_off = xen_machine_power_off,
1218	.shutdown = xen_machine_halt,
1219	.crash_shutdown = xen_crash_shutdown,
1220	.emergency_restart = xen_emergency_restart,
1221};
1222
1223static unsigned char xen_get_nmi_reason(void)
1224{
1225	unsigned char reason = 0;
1226
1227	/* Construct a value which looks like it came from port 0x61. */
1228	if (test_bit(_XEN_NMIREASON_io_error,
1229		     &HYPERVISOR_shared_info->arch.nmi_reason))
1230		reason |= NMI_REASON_IOCHK;
1231	if (test_bit(_XEN_NMIREASON_pci_serr,
1232		     &HYPERVISOR_shared_info->arch.nmi_reason))
1233		reason |= NMI_REASON_SERR;
1234
1235	return reason;
1236}
1237
1238static void __init xen_boot_params_init_edd(void)
1239{
1240#if IS_ENABLED(CONFIG_EDD)
1241	struct xen_platform_op op;
1242	struct edd_info *edd_info;
1243	u32 *mbr_signature;
1244	unsigned nr;
1245	int ret;
1246
1247	edd_info = boot_params.eddbuf;
1248	mbr_signature = boot_params.edd_mbr_sig_buffer;
1249
1250	op.cmd = XENPF_firmware_info;
1251
1252	op.u.firmware_info.type = XEN_FW_DISK_INFO;
1253	for (nr = 0; nr < EDDMAXNR; nr++) {
1254		struct edd_info *info = edd_info + nr;
1255
1256		op.u.firmware_info.index = nr;
1257		info->params.length = sizeof(info->params);
1258		set_xen_guest_handle(op.u.firmware_info.u.disk_info.edd_params,
1259				     &info->params);
1260		ret = HYPERVISOR_platform_op(&op);
1261		if (ret)
1262			break;
1263
1264#define C(x) info->x = op.u.firmware_info.u.disk_info.x
1265		C(device);
1266		C(version);
1267		C(interface_support);
1268		C(legacy_max_cylinder);
1269		C(legacy_max_head);
1270		C(legacy_sectors_per_track);
1271#undef C
1272	}
1273	boot_params.eddbuf_entries = nr;
1274
1275	op.u.firmware_info.type = XEN_FW_DISK_MBR_SIGNATURE;
1276	for (nr = 0; nr < EDD_MBR_SIG_MAX; nr++) {
1277		op.u.firmware_info.index = nr;
1278		ret = HYPERVISOR_platform_op(&op);
1279		if (ret)
1280			break;
1281		mbr_signature[nr] = op.u.firmware_info.u.disk_mbr_signature.mbr_signature;
1282	}
1283	boot_params.edd_mbr_sig_buf_entries = nr;
1284#endif
1285}
1286
1287/*
1288 * Set up the GDT and segment registers for -fstack-protector.  Until
1289 * we do this, we have to be careful not to call any stack-protected
1290 * function, which is most of the kernel.
1291 */
1292static void __init xen_setup_gdt(int cpu)
1293{
1294	pv_ops.cpu.write_gdt_entry = xen_write_gdt_entry_boot;
1295	pv_ops.cpu.load_gdt = xen_load_gdt_boot;
1296
1297	switch_gdt_and_percpu_base(cpu);
1298
1299	pv_ops.cpu.write_gdt_entry = xen_write_gdt_entry;
1300	pv_ops.cpu.load_gdt = xen_load_gdt;
1301}
1302
1303static void __init xen_dom0_set_legacy_features(void)
1304{
1305	x86_platform.legacy.rtc = 1;
1306}
1307
1308static void __init xen_domu_set_legacy_features(void)
1309{
1310	x86_platform.legacy.rtc = 0;
1311}
1312
1313extern void early_xen_iret_patch(void);
1314
1315/* First C function to be called on Xen boot */
1316asmlinkage __visible void __init xen_start_kernel(struct start_info *si)
1317{
1318	struct physdev_set_iopl set_iopl;
1319	unsigned long initrd_start = 0;
1320	int rc;
1321
1322	if (!si)
1323		return;
1324
1325	clear_bss();
1326
1327	xen_start_info = si;
1328
1329	__text_gen_insn(&early_xen_iret_patch,
1330			JMP32_INSN_OPCODE, &early_xen_iret_patch, &xen_iret,
1331			JMP32_INSN_SIZE);
1332
1333	xen_domain_type = XEN_PV_DOMAIN;
1334	xen_start_flags = xen_start_info->flags;
1335
1336	xen_setup_features();
1337
1338	/* Install Xen paravirt ops */
1339	pv_info = xen_info;
1340	pv_ops.cpu = xen_cpu_ops.cpu;
1341	xen_init_irq_ops();
1342
1343	/*
1344	 * Setup xen_vcpu early because it is needed for
1345	 * local_irq_disable(), irqs_disabled(), e.g. in printk().
1346	 *
1347	 * Don't do the full vcpu_info placement stuff until we have
1348	 * the cpu_possible_mask and a non-dummy shared_info.
1349	 */
1350	xen_vcpu_info_reset(0);
1351
1352	x86_platform.get_nmi_reason = xen_get_nmi_reason;
1353	x86_platform.realmode_reserve = x86_init_noop;
1354	x86_platform.realmode_init = x86_init_noop;
1355
1356	x86_init.resources.memory_setup = xen_memory_setup;
1357	x86_init.irqs.intr_mode_select	= x86_init_noop;
1358	x86_init.irqs.intr_mode_init	= x86_64_probe_apic;
1359	x86_init.oem.arch_setup = xen_arch_setup;
1360	x86_init.oem.banner = xen_banner;
1361	x86_init.hyper.init_platform = xen_pv_init_platform;
1362	x86_init.hyper.guest_late_init = xen_pv_guest_late_init;
1363
1364	/*
1365	 * Set up some pagetable state before starting to set any ptes.
1366	 */
1367
1368	xen_setup_machphys_mapping();
1369	xen_init_mmu_ops();
1370
1371	/* Prevent unwanted bits from being set in PTEs. */
1372	__supported_pte_mask &= ~_PAGE_GLOBAL;
1373	__default_kernel_pte_mask &= ~_PAGE_GLOBAL;
1374
1375	/* Get mfn list */
1376	xen_build_dynamic_phys_to_machine();
1377
1378	/* Work out if we support NX */
1379	get_cpu_cap(&boot_cpu_data);
1380	x86_configure_nx();
1381
1382	/*
1383	 * Set up kernel GDT and segment registers, mainly so that
1384	 * -fstack-protector code can be executed.
1385	 */
1386	xen_setup_gdt(0);
1387
1388	/* Determine virtual and physical address sizes */
1389	get_cpu_address_sizes(&boot_cpu_data);
1390
1391	/* Let's presume PV guests always boot on vCPU with id 0. */
1392	per_cpu(xen_vcpu_id, 0) = 0;
1393
1394	idt_setup_early_handler();
1395
1396	xen_init_capabilities();
1397
1398	/*
1399	 * set up the basic apic ops.
1400	 */
1401	xen_init_apic();
1402
1403	machine_ops = xen_machine_ops;
1404
1405	/*
1406	 * The only reliable way to retain the initial address of the
1407	 * percpu gdt_page is to remember it here, so we can go and
1408	 * mark it RW later, when the initial percpu area is freed.
1409	 */
1410	xen_initial_gdt = &per_cpu(gdt_page, 0);
1411
1412	xen_smp_init();
1413
1414#ifdef CONFIG_ACPI_NUMA
1415	/*
1416	 * The pages we from Xen are not related to machine pages, so
1417	 * any NUMA information the kernel tries to get from ACPI will
1418	 * be meaningless.  Prevent it from trying.
1419	 */
1420	disable_srat();
1421#endif
1422	WARN_ON(xen_cpuhp_setup(xen_cpu_up_prepare_pv, xen_cpu_dead_pv));
1423
1424	local_irq_disable();
1425	early_boot_irqs_disabled = true;
1426
1427	xen_raw_console_write("mapping kernel into physical memory\n");
1428	xen_setup_kernel_pagetable((pgd_t *)xen_start_info->pt_base,
1429				   xen_start_info->nr_pages);
1430	xen_reserve_special_pages();
1431
1432	/*
1433	 * We used to do this in xen_arch_setup, but that is too late
1434	 * on AMD were early_cpu_init (run before ->arch_setup()) calls
1435	 * early_amd_init which pokes 0xcf8 port.
1436	 */
1437	set_iopl.iopl = 1;
1438	rc = HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
1439	if (rc != 0)
1440		xen_raw_printk("physdev_op failed %d\n", rc);
1441
1442
1443	if (xen_start_info->mod_start) {
1444	    if (xen_start_info->flags & SIF_MOD_START_PFN)
1445		initrd_start = PFN_PHYS(xen_start_info->mod_start);
1446	    else
1447		initrd_start = __pa(xen_start_info->mod_start);
1448	}
1449
1450	/* Poke various useful things into boot_params */
1451	boot_params.hdr.type_of_loader = (9 << 4) | 0;
1452	boot_params.hdr.ramdisk_image = initrd_start;
1453	boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
1454	boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line);
1455	boot_params.hdr.hardware_subarch = X86_SUBARCH_XEN;
1456
1457	if (!xen_initial_domain()) {
1458		if (pci_xen)
1459			x86_init.pci.arch_init = pci_xen_init;
1460		x86_platform.set_legacy_features =
1461				xen_domu_set_legacy_features;
1462	} else {
1463		const struct dom0_vga_console_info *info =
1464			(void *)((char *)xen_start_info +
1465				 xen_start_info->console.dom0.info_off);
1466		struct xen_platform_op op = {
1467			.cmd = XENPF_firmware_info,
1468			.interface_version = XENPF_INTERFACE_VERSION,
1469			.u.firmware_info.type = XEN_FW_KBD_SHIFT_FLAGS,
1470		};
1471
1472		x86_platform.set_legacy_features =
1473				xen_dom0_set_legacy_features;
1474		xen_init_vga(info, xen_start_info->console.dom0.info_size,
1475			     &boot_params.screen_info);
1476		xen_start_info->console.domU.mfn = 0;
1477		xen_start_info->console.domU.evtchn = 0;
1478
1479		if (HYPERVISOR_platform_op(&op) == 0)
1480			boot_params.kbd_status = op.u.firmware_info.u.kbd_shift_flags;
1481
1482		/* Make sure ACS will be enabled */
1483		pci_request_acs();
1484
1485		xen_acpi_sleep_register();
1486
1487		xen_boot_params_init_edd();
1488
1489#ifdef CONFIG_ACPI
1490		/*
1491		 * Disable selecting "Firmware First mode" for correctable
1492		 * memory errors, as this is the duty of the hypervisor to
1493		 * decide.
1494		 */
1495		acpi_disable_cmcff = 1;
1496#endif
1497	}
1498
1499	xen_add_preferred_consoles();
1500
1501#ifdef CONFIG_PCI
1502	/* PCI BIOS service won't work from a PV guest. */
1503	pci_probe &= ~PCI_PROBE_BIOS;
1504#endif
1505	xen_raw_console_write("about to get started...\n");
1506
1507	/* We need this for printk timestamps */
1508	xen_setup_runstate_info(0);
1509
1510	xen_efi_init(&boot_params);
1511
1512	/* Start the world */
1513	cr4_init_shadow(); /* 32b kernel does this in i386_start_kernel() */
1514	x86_64_start_reservations((char *)__pa_symbol(&boot_params));
1515}
1516
1517static int xen_cpu_up_prepare_pv(unsigned int cpu)
1518{
1519	int rc;
1520
1521	if (per_cpu(xen_vcpu, cpu) == NULL)
1522		return -ENODEV;
1523
1524	xen_setup_timer(cpu);
1525
1526	rc = xen_smp_intr_init(cpu);
1527	if (rc) {
1528		WARN(1, "xen_smp_intr_init() for CPU %d failed: %d\n",
1529		     cpu, rc);
1530		return rc;
1531	}
1532
1533	rc = xen_smp_intr_init_pv(cpu);
1534	if (rc) {
1535		WARN(1, "xen_smp_intr_init_pv() for CPU %d failed: %d\n",
1536		     cpu, rc);
1537		return rc;
1538	}
1539
1540	return 0;
1541}
1542
1543static int xen_cpu_dead_pv(unsigned int cpu)
1544{
1545	xen_smp_intr_free(cpu);
1546	xen_smp_intr_free_pv(cpu);
1547
1548	xen_teardown_timer(cpu);
1549
1550	return 0;
1551}
1552
1553static uint32_t __init xen_platform_pv(void)
1554{
1555	if (xen_pv_domain())
1556		return xen_cpuid_base();
1557
1558	return 0;
1559}
1560
1561const __initconst struct hypervisor_x86 x86_hyper_xen_pv = {
1562	.name                   = "Xen PV",
1563	.detect                 = xen_platform_pv,
1564	.type			= X86_HYPER_XEN_PV,
1565	.runtime.pin_vcpu       = xen_pin_vcpu,
1566	.ignore_nopv		= true,
1567};
1568