1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * SGI NMI support routines
4 *
5 * (C) Copyright 2020 Hewlett Packard Enterprise Development LP
6 * Copyright (C) 2007-2017 Silicon Graphics, Inc. All rights reserved.
7 * Copyright (c) Mike Travis
8 */
9
10#include <linux/cpu.h>
11#include <linux/delay.h>
12#include <linux/kdb.h>
13#include <linux/kexec.h>
14#include <linux/kgdb.h>
15#include <linux/moduleparam.h>
16#include <linux/nmi.h>
17#include <linux/sched.h>
18#include <linux/sched/debug.h>
19#include <linux/slab.h>
20#include <linux/string.h>
21#include <linux/clocksource.h>
22
23#include <asm/apic.h>
24#include <asm/current.h>
25#include <asm/kdebug.h>
26#include <asm/local64.h>
27#include <asm/nmi.h>
28#include <asm/reboot.h>
29#include <asm/traps.h>
30#include <asm/uv/uv.h>
31#include <asm/uv/uv_hub.h>
32#include <asm/uv/uv_mmrs.h>
33
34/*
35 * UV handler for NMI
36 *
37 * Handle system-wide NMI events generated by the global 'power nmi' command.
38 *
39 * Basic operation is to field the NMI interrupt on each CPU and wait
40 * until all CPU's have arrived into the nmi handler.  If some CPU's do not
41 * make it into the handler, try and force them in with the IPI(NMI) signal.
42 *
43 * We also have to lessen UV Hub MMR accesses as much as possible as this
44 * disrupts the UV Hub's primary mission of directing NumaLink traffic and
45 * can cause system problems to occur.
46 *
47 * To do this we register our primary NMI notifier on the NMI_UNKNOWN
48 * chain.  This reduces the number of false NMI calls when the perf
49 * tools are running which generate an enormous number of NMIs per
50 * second (~4M/s for 1024 CPU threads).  Our secondary NMI handler is
51 * very short as it only checks that if it has been "pinged" with the
52 * IPI(NMI) signal as mentioned above, and does not read the UV Hub's MMR.
53 *
54 */
55
56static struct uv_hub_nmi_s **uv_hub_nmi_list;
57
58DEFINE_PER_CPU(struct uv_cpu_nmi_s, uv_cpu_nmi);
59
60/* Newer SMM NMI handler, not present in all systems */
61static unsigned long uvh_nmi_mmrx;		/* UVH_EVENT_OCCURRED0/1 */
62static unsigned long uvh_nmi_mmrx_clear;	/* UVH_EVENT_OCCURRED0/1_ALIAS */
63static int uvh_nmi_mmrx_shift;			/* UVH_EVENT_OCCURRED0/1_EXTIO_INT0_SHFT */
64static char *uvh_nmi_mmrx_type;			/* "EXTIO_INT0" */
65
66/* Non-zero indicates newer SMM NMI handler present */
67static unsigned long uvh_nmi_mmrx_supported;	/* UVH_EXTIO_INT0_BROADCAST */
68
69/* Indicates to BIOS that we want to use the newer SMM NMI handler */
70static unsigned long uvh_nmi_mmrx_req;		/* UVH_BIOS_KERNEL_MMR_ALIAS_2 */
71static int uvh_nmi_mmrx_req_shift;		/* 62 */
72
73/* UV hubless values */
74#define NMI_CONTROL_PORT	0x70
75#define NMI_DUMMY_PORT		0x71
76#define PAD_OWN_GPP_D_0		0x2c
77#define GPI_NMI_STS_GPP_D_0	0x164
78#define GPI_NMI_ENA_GPP_D_0	0x174
79#define STS_GPP_D_0_MASK	0x1
80#define PAD_CFG_DW0_GPP_D_0	0x4c0
81#define GPIROUTNMI		(1ul << 17)
82#define PCH_PCR_GPIO_1_BASE	0xfdae0000ul
83#define PCH_PCR_GPIO_ADDRESS(offset) (int *)((u64)(pch_base) | (u64)(offset))
84
85static u64 *pch_base;
86static unsigned long nmi_mmr;
87static unsigned long nmi_mmr_clear;
88static unsigned long nmi_mmr_pending;
89
90static atomic_t	uv_in_nmi;
91static atomic_t uv_nmi_cpu = ATOMIC_INIT(-1);
92static atomic_t uv_nmi_cpus_in_nmi = ATOMIC_INIT(-1);
93static atomic_t uv_nmi_slave_continue;
94static cpumask_var_t uv_nmi_cpu_mask;
95
96static atomic_t uv_nmi_kexec_failed;
97
98/* Values for uv_nmi_slave_continue */
99#define SLAVE_CLEAR	0
100#define SLAVE_CONTINUE	1
101#define SLAVE_EXIT	2
102
103/*
104 * Default is all stack dumps go to the console and buffer.
105 * Lower level to send to log buffer only.
106 */
107static int uv_nmi_loglevel = CONSOLE_LOGLEVEL_DEFAULT;
108module_param_named(dump_loglevel, uv_nmi_loglevel, int, 0644);
109
110/*
111 * The following values show statistics on how perf events are affecting
112 * this system.
113 */
114static int param_get_local64(char *buffer, const struct kernel_param *kp)
115{
116	return sprintf(buffer, "%lu\n", local64_read((local64_t *)kp->arg));
117}
118
119static int param_set_local64(const char *val, const struct kernel_param *kp)
120{
121	/* Clear on any write */
122	local64_set((local64_t *)kp->arg, 0);
123	return 0;
124}
125
126static const struct kernel_param_ops param_ops_local64 = {
127	.get = param_get_local64,
128	.set = param_set_local64,
129};
130#define param_check_local64(name, p) __param_check(name, p, local64_t)
131
132static local64_t uv_nmi_count;
133module_param_named(nmi_count, uv_nmi_count, local64, 0644);
134
135static local64_t uv_nmi_misses;
136module_param_named(nmi_misses, uv_nmi_misses, local64, 0644);
137
138static local64_t uv_nmi_ping_count;
139module_param_named(ping_count, uv_nmi_ping_count, local64, 0644);
140
141static local64_t uv_nmi_ping_misses;
142module_param_named(ping_misses, uv_nmi_ping_misses, local64, 0644);
143
144/*
145 * Following values allow tuning for large systems under heavy loading
146 */
147static int uv_nmi_initial_delay = 100;
148module_param_named(initial_delay, uv_nmi_initial_delay, int, 0644);
149
150static int uv_nmi_slave_delay = 100;
151module_param_named(slave_delay, uv_nmi_slave_delay, int, 0644);
152
153static int uv_nmi_loop_delay = 100;
154module_param_named(loop_delay, uv_nmi_loop_delay, int, 0644);
155
156static int uv_nmi_trigger_delay = 10000;
157module_param_named(trigger_delay, uv_nmi_trigger_delay, int, 0644);
158
159static int uv_nmi_wait_count = 100;
160module_param_named(wait_count, uv_nmi_wait_count, int, 0644);
161
162static int uv_nmi_retry_count = 500;
163module_param_named(retry_count, uv_nmi_retry_count, int, 0644);
164
165static bool uv_pch_intr_enable = true;
166static bool uv_pch_intr_now_enabled;
167module_param_named(pch_intr_enable, uv_pch_intr_enable, bool, 0644);
168
169static bool uv_pch_init_enable = true;
170module_param_named(pch_init_enable, uv_pch_init_enable, bool, 0644);
171
172static int uv_nmi_debug;
173module_param_named(debug, uv_nmi_debug, int, 0644);
174
175#define nmi_debug(fmt, ...)				\
176	do {						\
177		if (uv_nmi_debug)			\
178			pr_info(fmt, ##__VA_ARGS__);	\
179	} while (0)
180
181/* Valid NMI Actions */
182enum action_t {
183	nmi_act_kdump,
184	nmi_act_dump,
185	nmi_act_ips,
186	nmi_act_kdb,
187	nmi_act_kgdb,
188	nmi_act_health,
189	nmi_act_max
190};
191
192static const char * const actions[nmi_act_max] = {
193	[nmi_act_kdump] = "kdump",
194	[nmi_act_dump] = "dump",
195	[nmi_act_ips] = "ips",
196	[nmi_act_kdb] = "kdb",
197	[nmi_act_kgdb] = "kgdb",
198	[nmi_act_health] = "health",
199};
200
201static const char * const actions_desc[nmi_act_max] = {
202	[nmi_act_kdump] = "do kernel crash dump",
203	[nmi_act_dump] = "dump process stack for each cpu",
204	[nmi_act_ips] = "dump Inst Ptr info for each cpu",
205	[nmi_act_kdb] = "enter KDB (needs kgdboc= assignment)",
206	[nmi_act_kgdb] = "enter KGDB (needs gdb target remote)",
207	[nmi_act_health] = "check if CPUs respond to NMI",
208};
209
210static enum action_t uv_nmi_action = nmi_act_dump;
211
212static int param_get_action(char *buffer, const struct kernel_param *kp)
213{
214	return sprintf(buffer, "%s\n", actions[uv_nmi_action]);
215}
216
217static int param_set_action(const char *val, const struct kernel_param *kp)
218{
219	int i, n = ARRAY_SIZE(actions);
220
221	i = sysfs_match_string(actions, val);
222	if (i >= 0) {
223		uv_nmi_action = i;
224		pr_info("UV: New NMI action:%s\n", actions[i]);
225		return 0;
226	}
227
228	pr_err("UV: Invalid NMI action. Valid actions are:\n");
229	for (i = 0; i < n; i++)
230		pr_err("UV: %-8s - %s\n", actions[i], actions_desc[i]);
231
232	return -EINVAL;
233}
234
235static const struct kernel_param_ops param_ops_action = {
236	.get = param_get_action,
237	.set = param_set_action,
238};
239#define param_check_action(name, p) __param_check(name, p, enum action_t)
240
241module_param_named(action, uv_nmi_action, action, 0644);
242
243/* Setup which NMI support is present in system */
244static void uv_nmi_setup_mmrs(void)
245{
246	bool new_nmi_method_only = false;
247
248	/* First determine arch specific MMRs to handshake with BIOS */
249	if (UVH_EVENT_OCCURRED0_EXTIO_INT0_MASK) {	/* UV2,3,4 setup */
250		uvh_nmi_mmrx = UVH_EVENT_OCCURRED0;
251		uvh_nmi_mmrx_clear = UVH_EVENT_OCCURRED0_ALIAS;
252		uvh_nmi_mmrx_shift = UVH_EVENT_OCCURRED0_EXTIO_INT0_SHFT;
253		uvh_nmi_mmrx_type = "OCRD0-EXTIO_INT0";
254
255		uvh_nmi_mmrx_supported = UVH_EXTIO_INT0_BROADCAST;
256		uvh_nmi_mmrx_req = UVH_BIOS_KERNEL_MMR_ALIAS_2;
257		uvh_nmi_mmrx_req_shift = 62;
258
259	} else if (UVH_EVENT_OCCURRED1_EXTIO_INT0_MASK) { /* UV5+ setup */
260		uvh_nmi_mmrx = UVH_EVENT_OCCURRED1;
261		uvh_nmi_mmrx_clear = UVH_EVENT_OCCURRED1_ALIAS;
262		uvh_nmi_mmrx_shift = UVH_EVENT_OCCURRED1_EXTIO_INT0_SHFT;
263		uvh_nmi_mmrx_type = "OCRD1-EXTIO_INT0";
264
265		new_nmi_method_only = true;		/* Newer nmi always valid on UV5+ */
266		uvh_nmi_mmrx_req = 0;			/* no request bit to clear */
267
268	} else {
269		pr_err("UV:%s:NMI support not available on this system\n", __func__);
270		return;
271	}
272
273	/* Then find out if new NMI is supported */
274	if (new_nmi_method_only || uv_read_local_mmr(uvh_nmi_mmrx_supported)) {
275		if (uvh_nmi_mmrx_req)
276			uv_write_local_mmr(uvh_nmi_mmrx_req,
277						1UL << uvh_nmi_mmrx_req_shift);
278		nmi_mmr = uvh_nmi_mmrx;
279		nmi_mmr_clear = uvh_nmi_mmrx_clear;
280		nmi_mmr_pending = 1UL << uvh_nmi_mmrx_shift;
281		pr_info("UV: SMI NMI support: %s\n", uvh_nmi_mmrx_type);
282	} else {
283		nmi_mmr = UVH_NMI_MMR;
284		nmi_mmr_clear = UVH_NMI_MMR_CLEAR;
285		nmi_mmr_pending = 1UL << UVH_NMI_MMR_SHIFT;
286		pr_info("UV: SMI NMI support: %s\n", UVH_NMI_MMR_TYPE);
287	}
288}
289
290/* Read NMI MMR and check if NMI flag was set by BMC. */
291static inline int uv_nmi_test_mmr(struct uv_hub_nmi_s *hub_nmi)
292{
293	hub_nmi->nmi_value = uv_read_local_mmr(nmi_mmr);
294	atomic_inc(&hub_nmi->read_mmr_count);
295	return !!(hub_nmi->nmi_value & nmi_mmr_pending);
296}
297
298static inline void uv_local_mmr_clear_nmi(void)
299{
300	uv_write_local_mmr(nmi_mmr_clear, nmi_mmr_pending);
301}
302
303/*
304 * UV hubless NMI handler functions
305 */
306static inline void uv_reassert_nmi(void)
307{
308	/* (from arch/x86/include/asm/mach_traps.h) */
309	outb(0x8f, NMI_CONTROL_PORT);
310	inb(NMI_DUMMY_PORT);		/* dummy read */
311	outb(0x0f, NMI_CONTROL_PORT);
312	inb(NMI_DUMMY_PORT);		/* dummy read */
313}
314
315static void uv_init_hubless_pch_io(int offset, int mask, int data)
316{
317	int *addr = PCH_PCR_GPIO_ADDRESS(offset);
318	int readd = readl(addr);
319
320	if (mask) {			/* OR in new data */
321		int writed = (readd & ~mask) | data;
322
323		nmi_debug("UV:PCH: %p = %x & %x | %x (%x)\n",
324			addr, readd, ~mask, data, writed);
325		writel(writed, addr);
326	} else if (readd & data) {	/* clear status bit */
327		nmi_debug("UV:PCH: %p = %x\n", addr, data);
328		writel(data, addr);
329	}
330
331	(void)readl(addr);		/* flush write data */
332}
333
334static void uv_nmi_setup_hubless_intr(void)
335{
336	uv_pch_intr_now_enabled = uv_pch_intr_enable;
337
338	uv_init_hubless_pch_io(
339		PAD_CFG_DW0_GPP_D_0, GPIROUTNMI,
340		uv_pch_intr_now_enabled ? GPIROUTNMI : 0);
341
342	nmi_debug("UV:NMI: GPP_D_0 interrupt %s\n",
343		uv_pch_intr_now_enabled ? "enabled" : "disabled");
344}
345
346static struct init_nmi {
347	unsigned int	offset;
348	unsigned int	mask;
349	unsigned int	data;
350} init_nmi[] = {
351	{	/* HOSTSW_OWN_GPP_D_0 */
352	.offset = 0x84,
353	.mask = 0x1,
354	.data = 0x0,	/* ACPI Mode */
355	},
356
357/* Clear status: */
358	{	/* GPI_INT_STS_GPP_D_0 */
359	.offset = 0x104,
360	.mask = 0x0,
361	.data = 0x1,	/* Clear Status */
362	},
363	{	/* GPI_GPE_STS_GPP_D_0 */
364	.offset = 0x124,
365	.mask = 0x0,
366	.data = 0x1,	/* Clear Status */
367	},
368	{	/* GPI_SMI_STS_GPP_D_0 */
369	.offset = 0x144,
370	.mask = 0x0,
371	.data = 0x1,	/* Clear Status */
372	},
373	{	/* GPI_NMI_STS_GPP_D_0 */
374	.offset = 0x164,
375	.mask = 0x0,
376	.data = 0x1,	/* Clear Status */
377	},
378
379/* Disable interrupts: */
380	{	/* GPI_INT_EN_GPP_D_0 */
381	.offset = 0x114,
382	.mask = 0x1,
383	.data = 0x0,	/* Disable interrupt generation */
384	},
385	{	/* GPI_GPE_EN_GPP_D_0 */
386	.offset = 0x134,
387	.mask = 0x1,
388	.data = 0x0,	/* Disable interrupt generation */
389	},
390	{	/* GPI_SMI_EN_GPP_D_0 */
391	.offset = 0x154,
392	.mask = 0x1,
393	.data = 0x0,	/* Disable interrupt generation */
394	},
395	{	/* GPI_NMI_EN_GPP_D_0 */
396	.offset = 0x174,
397	.mask = 0x1,
398	.data = 0x0,	/* Disable interrupt generation */
399	},
400
401/* Setup GPP_D_0 Pad Config: */
402	{	/* PAD_CFG_DW0_GPP_D_0 */
403	.offset = 0x4c0,
404	.mask = 0xffffffff,
405	.data = 0x82020100,
406/*
407 *  31:30 Pad Reset Config (PADRSTCFG): = 2h  # PLTRST# (default)
408 *
409 *  29    RX Pad State Select (RXPADSTSEL): = 0 # Raw RX pad state directly
410 *                                                from RX buffer (default)
411 *
412 *  28    RX Raw Override to '1' (RXRAW1): = 0 # No Override
413 *
414 *  26:25 RX Level/Edge Configuration (RXEVCFG):
415 *      = 0h # Level
416 *      = 1h # Edge
417 *
418 *  23    RX Invert (RXINV): = 0 # No Inversion (signal active high)
419 *
420 *  20    GPIO Input Route IOxAPIC (GPIROUTIOXAPIC):
421 * = 0 # Routing does not cause peripheral IRQ...
422 *     # (we want an NMI not an IRQ)
423 *
424 *  19    GPIO Input Route SCI (GPIROUTSCI): = 0 # Routing does not cause SCI.
425 *  18    GPIO Input Route SMI (GPIROUTSMI): = 0 # Routing does not cause SMI.
426 *  17    GPIO Input Route NMI (GPIROUTNMI): = 1 # Routing can cause NMI.
427 *
428 *  11:10 Pad Mode (PMODE1/0): = 0h = GPIO control the Pad.
429 *   9    GPIO RX Disable (GPIORXDIS):
430 * = 0 # Enable the input buffer (active low enable)
431 *
432 *   8    GPIO TX Disable (GPIOTXDIS):
433 * = 1 # Disable the output buffer; i.e. Hi-Z
434 *
435 *   1 GPIO RX State (GPIORXSTATE): This is the current internal RX pad state..
436 *   0 GPIO TX State (GPIOTXSTATE):
437 * = 0 # (Leave at default)
438 */
439	},
440
441/* Pad Config DW1 */
442	{	/* PAD_CFG_DW1_GPP_D_0 */
443	.offset = 0x4c4,
444	.mask = 0x3c00,
445	.data = 0,	/* Termination = none (default) */
446	},
447};
448
449static void uv_init_hubless_pch_d0(void)
450{
451	int i, read;
452
453	read = *PCH_PCR_GPIO_ADDRESS(PAD_OWN_GPP_D_0);
454	if (read != 0) {
455		pr_info("UV: Hubless NMI already configured\n");
456		return;
457	}
458
459	nmi_debug("UV: Initializing UV Hubless NMI on PCH\n");
460	for (i = 0; i < ARRAY_SIZE(init_nmi); i++) {
461		uv_init_hubless_pch_io(init_nmi[i].offset,
462					init_nmi[i].mask,
463					init_nmi[i].data);
464	}
465}
466
467static int uv_nmi_test_hubless(struct uv_hub_nmi_s *hub_nmi)
468{
469	int *pstat = PCH_PCR_GPIO_ADDRESS(GPI_NMI_STS_GPP_D_0);
470	int status = *pstat;
471
472	hub_nmi->nmi_value = status;
473	atomic_inc(&hub_nmi->read_mmr_count);
474
475	if (!(status & STS_GPP_D_0_MASK))	/* Not a UV external NMI */
476		return 0;
477
478	*pstat = STS_GPP_D_0_MASK;	/* Is a UV NMI: clear GPP_D_0 status */
479	(void)*pstat;			/* Flush write */
480
481	return 1;
482}
483
484static int uv_test_nmi(struct uv_hub_nmi_s *hub_nmi)
485{
486	if (hub_nmi->hub_present)
487		return uv_nmi_test_mmr(hub_nmi);
488
489	if (hub_nmi->pch_owner)		/* Only PCH owner can check status */
490		return uv_nmi_test_hubless(hub_nmi);
491
492	return -1;
493}
494
495/*
496 * If first CPU in on this hub, set hub_nmi "in_nmi" and "owner" values and
497 * return true.  If first CPU in on the system, set global "in_nmi" flag.
498 */
499static int uv_set_in_nmi(int cpu, struct uv_hub_nmi_s *hub_nmi)
500{
501	int first = atomic_add_unless(&hub_nmi->in_nmi, 1, 1);
502
503	if (first) {
504		atomic_set(&hub_nmi->cpu_owner, cpu);
505		if (atomic_add_unless(&uv_in_nmi, 1, 1))
506			atomic_set(&uv_nmi_cpu, cpu);
507
508		atomic_inc(&hub_nmi->nmi_count);
509	}
510	return first;
511}
512
513/* Check if this is a system NMI event */
514static int uv_check_nmi(struct uv_hub_nmi_s *hub_nmi)
515{
516	int cpu = smp_processor_id();
517	int nmi = 0;
518	int nmi_detected = 0;
519
520	local64_inc(&uv_nmi_count);
521	this_cpu_inc(uv_cpu_nmi.queries);
522
523	do {
524		nmi = atomic_read(&hub_nmi->in_nmi);
525		if (nmi)
526			break;
527
528		if (raw_spin_trylock(&hub_nmi->nmi_lock)) {
529			nmi_detected = uv_test_nmi(hub_nmi);
530
531			/* Check flag for UV external NMI */
532			if (nmi_detected > 0) {
533				uv_set_in_nmi(cpu, hub_nmi);
534				nmi = 1;
535				break;
536			}
537
538			/* A non-PCH node in a hubless system waits for NMI */
539			else if (nmi_detected < 0)
540				goto slave_wait;
541
542			/* MMR/PCH NMI flag is clear */
543			raw_spin_unlock(&hub_nmi->nmi_lock);
544
545		} else {
546
547			/* Wait a moment for the HUB NMI locker to set flag */
548slave_wait:		cpu_relax();
549			udelay(uv_nmi_slave_delay);
550
551			/* Re-check hub in_nmi flag */
552			nmi = atomic_read(&hub_nmi->in_nmi);
553			if (nmi)
554				break;
555		}
556
557		/*
558		 * Check if this BMC missed setting the MMR NMI flag (or)
559		 * UV hubless system where only PCH owner can check flag
560		 */
561		if (!nmi) {
562			nmi = atomic_read(&uv_in_nmi);
563			if (nmi)
564				uv_set_in_nmi(cpu, hub_nmi);
565		}
566
567		/* If we're holding the hub lock, release it now */
568		if (nmi_detected < 0)
569			raw_spin_unlock(&hub_nmi->nmi_lock);
570
571	} while (0);
572
573	if (!nmi)
574		local64_inc(&uv_nmi_misses);
575
576	return nmi;
577}
578
579/* Need to reset the NMI MMR register, but only once per hub. */
580static inline void uv_clear_nmi(int cpu)
581{
582	struct uv_hub_nmi_s *hub_nmi = uv_hub_nmi;
583
584	if (cpu == atomic_read(&hub_nmi->cpu_owner)) {
585		atomic_set(&hub_nmi->cpu_owner, -1);
586		atomic_set(&hub_nmi->in_nmi, 0);
587		if (hub_nmi->hub_present)
588			uv_local_mmr_clear_nmi();
589		else
590			uv_reassert_nmi();
591		raw_spin_unlock(&hub_nmi->nmi_lock);
592	}
593}
594
595/* Ping non-responding CPU's attempting to force them into the NMI handler */
596static void uv_nmi_nr_cpus_ping(void)
597{
598	int cpu;
599
600	for_each_cpu(cpu, uv_nmi_cpu_mask)
601		uv_cpu_nmi_per(cpu).pinging = 1;
602
603	__apic_send_IPI_mask(uv_nmi_cpu_mask, APIC_DM_NMI);
604}
605
606/* Clean up flags for CPU's that ignored both NMI and ping */
607static void uv_nmi_cleanup_mask(void)
608{
609	int cpu;
610
611	for_each_cpu(cpu, uv_nmi_cpu_mask) {
612		uv_cpu_nmi_per(cpu).pinging =  0;
613		uv_cpu_nmi_per(cpu).state = UV_NMI_STATE_OUT;
614		cpumask_clear_cpu(cpu, uv_nmi_cpu_mask);
615	}
616}
617
618/* Loop waiting as CPU's enter NMI handler */
619static int uv_nmi_wait_cpus(int first)
620{
621	int i, j, k, n = num_online_cpus();
622	int last_k = 0, waiting = 0;
623	int cpu = smp_processor_id();
624
625	if (first) {
626		cpumask_copy(uv_nmi_cpu_mask, cpu_online_mask);
627		k = 0;
628	} else {
629		k = n - cpumask_weight(uv_nmi_cpu_mask);
630	}
631
632	/* PCH NMI causes only one CPU to respond */
633	if (first && uv_pch_intr_now_enabled) {
634		cpumask_clear_cpu(cpu, uv_nmi_cpu_mask);
635		return n - k - 1;
636	}
637
638	udelay(uv_nmi_initial_delay);
639	for (i = 0; i < uv_nmi_retry_count; i++) {
640		int loop_delay = uv_nmi_loop_delay;
641
642		for_each_cpu(j, uv_nmi_cpu_mask) {
643			if (uv_cpu_nmi_per(j).state) {
644				cpumask_clear_cpu(j, uv_nmi_cpu_mask);
645				if (++k >= n)
646					break;
647			}
648		}
649		if (k >= n) {		/* all in? */
650			k = n;
651			break;
652		}
653		if (last_k != k) {	/* abort if no new CPU's coming in */
654			last_k = k;
655			waiting = 0;
656		} else if (++waiting > uv_nmi_wait_count)
657			break;
658
659		/* Extend delay if waiting only for CPU 0: */
660		if (waiting && (n - k) == 1 &&
661		    cpumask_test_cpu(0, uv_nmi_cpu_mask))
662			loop_delay *= 100;
663
664		udelay(loop_delay);
665	}
666	atomic_set(&uv_nmi_cpus_in_nmi, k);
667	return n - k;
668}
669
670/* Wait until all slave CPU's have entered UV NMI handler */
671static void uv_nmi_wait(int master)
672{
673	/* Indicate this CPU is in: */
674	this_cpu_write(uv_cpu_nmi.state, UV_NMI_STATE_IN);
675
676	/* If not the first CPU in (the master), then we are a slave CPU */
677	if (!master)
678		return;
679
680	do {
681		/* Wait for all other CPU's to gather here */
682		if (!uv_nmi_wait_cpus(1))
683			break;
684
685		/* If not all made it in, send IPI NMI to them */
686		pr_alert("UV: Sending NMI IPI to %d CPUs: %*pbl\n",
687			 cpumask_weight(uv_nmi_cpu_mask),
688			 cpumask_pr_args(uv_nmi_cpu_mask));
689
690		uv_nmi_nr_cpus_ping();
691
692		/* If all CPU's are in, then done */
693		if (!uv_nmi_wait_cpus(0))
694			break;
695
696		pr_alert("UV: %d CPUs not in NMI loop: %*pbl\n",
697			 cpumask_weight(uv_nmi_cpu_mask),
698			 cpumask_pr_args(uv_nmi_cpu_mask));
699	} while (0);
700
701	pr_alert("UV: %d of %d CPUs in NMI\n",
702		atomic_read(&uv_nmi_cpus_in_nmi), num_online_cpus());
703}
704
705/* Dump Instruction Pointer header */
706static void uv_nmi_dump_cpu_ip_hdr(void)
707{
708	pr_info("\nUV: %4s %6s %-32s %s   (Note: PID 0 not listed)\n",
709		"CPU", "PID", "COMMAND", "IP");
710}
711
712/* Dump Instruction Pointer info */
713static void uv_nmi_dump_cpu_ip(int cpu, struct pt_regs *regs)
714{
715	pr_info("UV: %4d %6d %-32.32s %pS",
716		cpu, current->pid, current->comm, (void *)regs->ip);
717}
718
719/*
720 * Dump this CPU's state.  If action was set to "kdump" and the crash_kexec
721 * failed, then we provide "dump" as an alternate action.  Action "dump" now
722 * also includes the show "ips" (instruction pointers) action whereas the
723 * action "ips" only displays instruction pointers for the non-idle CPU's.
724 * This is an abbreviated form of the "ps" command.
725 */
726static void uv_nmi_dump_state_cpu(int cpu, struct pt_regs *regs)
727{
728	const char *dots = " ................................. ";
729
730	if (cpu == 0)
731		uv_nmi_dump_cpu_ip_hdr();
732
733	if (current->pid != 0 || uv_nmi_action != nmi_act_ips)
734		uv_nmi_dump_cpu_ip(cpu, regs);
735
736	if (uv_nmi_action == nmi_act_dump) {
737		pr_info("UV:%sNMI process trace for CPU %d\n", dots, cpu);
738		show_regs(regs);
739	}
740
741	this_cpu_write(uv_cpu_nmi.state, UV_NMI_STATE_DUMP_DONE);
742}
743
744/* Trigger a slave CPU to dump its state */
745static void uv_nmi_trigger_dump(int cpu)
746{
747	int retry = uv_nmi_trigger_delay;
748
749	if (uv_cpu_nmi_per(cpu).state != UV_NMI_STATE_IN)
750		return;
751
752	uv_cpu_nmi_per(cpu).state = UV_NMI_STATE_DUMP;
753	do {
754		cpu_relax();
755		udelay(10);
756		if (uv_cpu_nmi_per(cpu).state
757				!= UV_NMI_STATE_DUMP)
758			return;
759	} while (--retry > 0);
760
761	pr_crit("UV: CPU %d stuck in process dump function\n", cpu);
762	uv_cpu_nmi_per(cpu).state = UV_NMI_STATE_DUMP_DONE;
763}
764
765/* Wait until all CPU's ready to exit */
766static void uv_nmi_sync_exit(int master)
767{
768	atomic_dec(&uv_nmi_cpus_in_nmi);
769	if (master) {
770		while (atomic_read(&uv_nmi_cpus_in_nmi) > 0)
771			cpu_relax();
772		atomic_set(&uv_nmi_slave_continue, SLAVE_CLEAR);
773	} else {
774		while (atomic_read(&uv_nmi_slave_continue))
775			cpu_relax();
776	}
777}
778
779/* Current "health" check is to check which CPU's are responsive */
780static void uv_nmi_action_health(int cpu, struct pt_regs *regs, int master)
781{
782	if (master) {
783		int in = atomic_read(&uv_nmi_cpus_in_nmi);
784		int out = num_online_cpus() - in;
785
786		pr_alert("UV: NMI CPU health check (non-responding:%d)\n", out);
787		atomic_set(&uv_nmi_slave_continue, SLAVE_EXIT);
788	} else {
789		while (!atomic_read(&uv_nmi_slave_continue))
790			cpu_relax();
791	}
792	uv_nmi_sync_exit(master);
793}
794
795/* Walk through CPU list and dump state of each */
796static void uv_nmi_dump_state(int cpu, struct pt_regs *regs, int master)
797{
798	if (master) {
799		int tcpu;
800		int ignored = 0;
801		int saved_console_loglevel = console_loglevel;
802
803		pr_alert("UV: tracing %s for %d CPUs from CPU %d\n",
804			uv_nmi_action == nmi_act_ips ? "IPs" : "processes",
805			atomic_read(&uv_nmi_cpus_in_nmi), cpu);
806
807		console_loglevel = uv_nmi_loglevel;
808		atomic_set(&uv_nmi_slave_continue, SLAVE_EXIT);
809		for_each_online_cpu(tcpu) {
810			if (cpumask_test_cpu(tcpu, uv_nmi_cpu_mask))
811				ignored++;
812			else if (tcpu == cpu)
813				uv_nmi_dump_state_cpu(tcpu, regs);
814			else
815				uv_nmi_trigger_dump(tcpu);
816		}
817		if (ignored)
818			pr_alert("UV: %d CPUs ignored NMI\n", ignored);
819
820		console_loglevel = saved_console_loglevel;
821		pr_alert("UV: process trace complete\n");
822	} else {
823		while (!atomic_read(&uv_nmi_slave_continue))
824			cpu_relax();
825		while (this_cpu_read(uv_cpu_nmi.state) != UV_NMI_STATE_DUMP)
826			cpu_relax();
827		uv_nmi_dump_state_cpu(cpu, regs);
828	}
829	uv_nmi_sync_exit(master);
830}
831
832static void uv_nmi_touch_watchdogs(void)
833{
834	touch_softlockup_watchdog_sync();
835	clocksource_touch_watchdog();
836	rcu_cpu_stall_reset();
837	touch_nmi_watchdog();
838}
839
840static void uv_nmi_kdump(int cpu, int main, struct pt_regs *regs)
841{
842	/* Check if kdump kernel loaded for both main and secondary CPUs */
843	if (!kexec_crash_image) {
844		if (main)
845			pr_err("UV: NMI error: kdump kernel not loaded\n");
846		return;
847	}
848
849	/* Call crash to dump system state */
850	if (main) {
851		pr_emerg("UV: NMI executing crash_kexec on CPU%d\n", cpu);
852		crash_kexec(regs);
853
854		pr_emerg("UV: crash_kexec unexpectedly returned\n");
855		atomic_set(&uv_nmi_kexec_failed, 1);
856
857	} else { /* secondary */
858
859		/* If kdump kernel fails, secondaries will exit this loop */
860		while (atomic_read(&uv_nmi_kexec_failed) == 0) {
861
862			/* Once shootdown cpus starts, they do not return */
863			run_crash_ipi_callback(regs);
864
865			mdelay(10);
866		}
867	}
868}
869
870#ifdef CONFIG_KGDB
871#ifdef CONFIG_KGDB_KDB
872static inline int uv_nmi_kdb_reason(void)
873{
874	return KDB_REASON_SYSTEM_NMI;
875}
876#else /* !CONFIG_KGDB_KDB */
877static inline int uv_nmi_kdb_reason(void)
878{
879	/* Ensure user is expecting to attach gdb remote */
880	if (uv_nmi_action == nmi_act_kgdb)
881		return 0;
882
883	pr_err("UV: NMI error: KDB is not enabled in this kernel\n");
884	return -1;
885}
886#endif /* CONFIG_KGDB_KDB */
887
888/*
889 * Call KGDB/KDB from NMI handler
890 *
891 * Note that if both KGDB and KDB are configured, then the action of 'kgdb' or
892 * 'kdb' has no affect on which is used.  See the KGDB documentation for further
893 * information.
894 */
895static void uv_call_kgdb_kdb(int cpu, struct pt_regs *regs, int master)
896{
897	if (master) {
898		int reason = uv_nmi_kdb_reason();
899		int ret;
900
901		if (reason < 0)
902			return;
903
904		/* Call KGDB NMI handler as MASTER */
905		ret = kgdb_nmicallin(cpu, X86_TRAP_NMI, regs, reason,
906				&uv_nmi_slave_continue);
907		if (ret) {
908			pr_alert("KGDB returned error, is kgdboc set?\n");
909			atomic_set(&uv_nmi_slave_continue, SLAVE_EXIT);
910		}
911	} else {
912		/* Wait for KGDB signal that it's ready for slaves to enter */
913		int sig;
914
915		do {
916			cpu_relax();
917			sig = atomic_read(&uv_nmi_slave_continue);
918		} while (!sig);
919
920		/* Call KGDB as slave */
921		if (sig == SLAVE_CONTINUE)
922			kgdb_nmicallback(cpu, regs);
923	}
924	uv_nmi_sync_exit(master);
925}
926
927#else /* !CONFIG_KGDB */
928static inline void uv_call_kgdb_kdb(int cpu, struct pt_regs *regs, int master)
929{
930	pr_err("UV: NMI error: KGDB is not enabled in this kernel\n");
931}
932#endif /* !CONFIG_KGDB */
933
934/*
935 * UV NMI handler
936 */
937static int uv_handle_nmi(unsigned int reason, struct pt_regs *regs)
938{
939	struct uv_hub_nmi_s *hub_nmi = uv_hub_nmi;
940	int cpu = smp_processor_id();
941	int master = 0;
942	unsigned long flags;
943
944	local_irq_save(flags);
945
946	/* If not a UV System NMI, ignore */
947	if (!this_cpu_read(uv_cpu_nmi.pinging) && !uv_check_nmi(hub_nmi)) {
948		local_irq_restore(flags);
949		return NMI_DONE;
950	}
951
952	/* Indicate we are the first CPU into the NMI handler */
953	master = (atomic_read(&uv_nmi_cpu) == cpu);
954
955	/* If NMI action is "kdump", then attempt to do it */
956	if (uv_nmi_action == nmi_act_kdump) {
957		uv_nmi_kdump(cpu, master, regs);
958
959		/* Unexpected return, revert action to "dump" */
960		if (master)
961			uv_nmi_action = nmi_act_dump;
962	}
963
964	/* Pause as all CPU's enter the NMI handler */
965	uv_nmi_wait(master);
966
967	/* Process actions other than "kdump": */
968	switch (uv_nmi_action) {
969	case nmi_act_health:
970		uv_nmi_action_health(cpu, regs, master);
971		break;
972	case nmi_act_ips:
973	case nmi_act_dump:
974		uv_nmi_dump_state(cpu, regs, master);
975		break;
976	case nmi_act_kdb:
977	case nmi_act_kgdb:
978		uv_call_kgdb_kdb(cpu, regs, master);
979		break;
980	default:
981		if (master)
982			pr_alert("UV: unknown NMI action: %d\n", uv_nmi_action);
983		uv_nmi_sync_exit(master);
984		break;
985	}
986
987	/* Clear per_cpu "in_nmi" flag */
988	this_cpu_write(uv_cpu_nmi.state, UV_NMI_STATE_OUT);
989
990	/* Clear MMR NMI flag on each hub */
991	uv_clear_nmi(cpu);
992
993	/* Clear global flags */
994	if (master) {
995		if (!cpumask_empty(uv_nmi_cpu_mask))
996			uv_nmi_cleanup_mask();
997		atomic_set(&uv_nmi_cpus_in_nmi, -1);
998		atomic_set(&uv_nmi_cpu, -1);
999		atomic_set(&uv_in_nmi, 0);
1000		atomic_set(&uv_nmi_kexec_failed, 0);
1001		atomic_set(&uv_nmi_slave_continue, SLAVE_CLEAR);
1002	}
1003
1004	uv_nmi_touch_watchdogs();
1005	local_irq_restore(flags);
1006
1007	return NMI_HANDLED;
1008}
1009
1010/*
1011 * NMI handler for pulling in CPU's when perf events are grabbing our NMI
1012 */
1013static int uv_handle_nmi_ping(unsigned int reason, struct pt_regs *regs)
1014{
1015	int ret;
1016
1017	this_cpu_inc(uv_cpu_nmi.queries);
1018	if (!this_cpu_read(uv_cpu_nmi.pinging)) {
1019		local64_inc(&uv_nmi_ping_misses);
1020		return NMI_DONE;
1021	}
1022
1023	this_cpu_inc(uv_cpu_nmi.pings);
1024	local64_inc(&uv_nmi_ping_count);
1025	ret = uv_handle_nmi(reason, regs);
1026	this_cpu_write(uv_cpu_nmi.pinging, 0);
1027	return ret;
1028}
1029
1030static void uv_register_nmi_notifier(void)
1031{
1032	if (register_nmi_handler(NMI_UNKNOWN, uv_handle_nmi, 0, "uv"))
1033		pr_warn("UV: NMI handler failed to register\n");
1034
1035	if (register_nmi_handler(NMI_LOCAL, uv_handle_nmi_ping, 0, "uvping"))
1036		pr_warn("UV: PING NMI handler failed to register\n");
1037}
1038
1039void uv_nmi_init(void)
1040{
1041	unsigned int value;
1042
1043	/*
1044	 * Unmask NMI on all CPU's
1045	 */
1046	value = apic_read(APIC_LVT1) | APIC_DM_NMI;
1047	value &= ~APIC_LVT_MASKED;
1048	apic_write(APIC_LVT1, value);
1049}
1050
1051/* Setup HUB NMI info */
1052static void __init uv_nmi_setup_common(bool hubbed)
1053{
1054	int size = sizeof(void *) * (1 << NODES_SHIFT);
1055	int cpu;
1056
1057	uv_hub_nmi_list = kzalloc(size, GFP_KERNEL);
1058	nmi_debug("UV: NMI hub list @ 0x%p (%d)\n", uv_hub_nmi_list, size);
1059	BUG_ON(!uv_hub_nmi_list);
1060	size = sizeof(struct uv_hub_nmi_s);
1061	for_each_present_cpu(cpu) {
1062		int nid = cpu_to_node(cpu);
1063		if (uv_hub_nmi_list[nid] == NULL) {
1064			uv_hub_nmi_list[nid] = kzalloc_node(size,
1065							    GFP_KERNEL, nid);
1066			BUG_ON(!uv_hub_nmi_list[nid]);
1067			raw_spin_lock_init(&(uv_hub_nmi_list[nid]->nmi_lock));
1068			atomic_set(&uv_hub_nmi_list[nid]->cpu_owner, -1);
1069			uv_hub_nmi_list[nid]->hub_present = hubbed;
1070			uv_hub_nmi_list[nid]->pch_owner = (nid == 0);
1071		}
1072		uv_hub_nmi_per(cpu) = uv_hub_nmi_list[nid];
1073	}
1074	BUG_ON(!alloc_cpumask_var(&uv_nmi_cpu_mask, GFP_KERNEL));
1075}
1076
1077/* Setup for UV Hub systems */
1078void __init uv_nmi_setup(void)
1079{
1080	uv_nmi_setup_mmrs();
1081	uv_nmi_setup_common(true);
1082	uv_register_nmi_notifier();
1083	pr_info("UV: Hub NMI enabled\n");
1084}
1085
1086/* Setup for UV Hubless systems */
1087void __init uv_nmi_setup_hubless(void)
1088{
1089	uv_nmi_setup_common(false);
1090	pch_base = xlate_dev_mem_ptr(PCH_PCR_GPIO_1_BASE);
1091	nmi_debug("UV: PCH base:%p from 0x%lx, GPP_D_0\n",
1092		pch_base, PCH_PCR_GPIO_1_BASE);
1093	if (uv_pch_init_enable)
1094		uv_init_hubless_pch_d0();
1095	uv_init_hubless_pch_io(GPI_NMI_ENA_GPP_D_0,
1096				STS_GPP_D_0_MASK, STS_GPP_D_0_MASK);
1097	uv_nmi_setup_hubless_intr();
1098	/* Ensure NMI enabled in Processor Interface Reg: */
1099	uv_reassert_nmi();
1100	uv_register_nmi_notifier();
1101	pr_info("UV: PCH NMI enabled\n");
1102}
1103