1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * imr.c -- Intel Isolated Memory Region driver
4 *
5 * Copyright(c) 2013 Intel Corporation.
6 * Copyright(c) 2015 Bryan O'Donoghue <pure.logic@nexus-software.ie>
7 *
8 * IMR registers define an isolated region of memory that can
9 * be masked to prohibit certain system agents from accessing memory.
10 * When a device behind a masked port performs an access - snooped or
11 * not, an IMR may optionally prevent that transaction from changing
12 * the state of memory or from getting correct data in response to the
13 * operation.
14 *
15 * Write data will be dropped and reads will return 0xFFFFFFFF, the
16 * system will reset and system BIOS will print out an error message to
17 * inform the user that an IMR has been violated.
18 *
19 * This code is based on the Linux MTRR code and reference code from
20 * Intel's Quark BSP EFI, Linux and grub code.
21 *
22 * See quark-x1000-datasheet.pdf for register definitions.
23 * http://www.intel.com/content/dam/www/public/us/en/documents/datasheets/quark-x1000-datasheet.pdf
24 */
25
26#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
27
28#include <asm-generic/sections.h>
29#include <asm/cpu_device_id.h>
30#include <asm/imr.h>
31#include <asm/iosf_mbi.h>
32#include <asm/io.h>
33
34#include <linux/debugfs.h>
35#include <linux/init.h>
36#include <linux/mm.h>
37#include <linux/types.h>
38
39struct imr_device {
40	bool		init;
41	struct mutex	lock;
42	int		max_imr;
43	int		reg_base;
44};
45
46static struct imr_device imr_dev;
47
48/*
49 * IMR read/write mask control registers.
50 * See quark-x1000-datasheet.pdf sections 12.7.4.5 and 12.7.4.6 for
51 * bit definitions.
52 *
53 * addr_hi
54 * 31		Lock bit
55 * 30:24	Reserved
56 * 23:2		1 KiB aligned lo address
57 * 1:0		Reserved
58 *
59 * addr_hi
60 * 31:24	Reserved
61 * 23:2		1 KiB aligned hi address
62 * 1:0		Reserved
63 */
64#define IMR_LOCK	BIT(31)
65
66struct imr_regs {
67	u32 addr_lo;
68	u32 addr_hi;
69	u32 rmask;
70	u32 wmask;
71};
72
73#define IMR_NUM_REGS	(sizeof(struct imr_regs)/sizeof(u32))
74#define IMR_SHIFT	8
75#define imr_to_phys(x)	((x) << IMR_SHIFT)
76#define phys_to_imr(x)	((x) >> IMR_SHIFT)
77
78/**
79 * imr_is_enabled - true if an IMR is enabled false otherwise.
80 *
81 * Determines if an IMR is enabled based on address range and read/write
82 * mask. An IMR set with an address range set to zero and a read/write
83 * access mask set to all is considered to be disabled. An IMR in any
84 * other state - for example set to zero but without read/write access
85 * all is considered to be enabled. This definition of disabled is how
86 * firmware switches off an IMR and is maintained in kernel for
87 * consistency.
88 *
89 * @imr:	pointer to IMR descriptor.
90 * @return:	true if IMR enabled false if disabled.
91 */
92static inline int imr_is_enabled(struct imr_regs *imr)
93{
94	return !(imr->rmask == IMR_READ_ACCESS_ALL &&
95		 imr->wmask == IMR_WRITE_ACCESS_ALL &&
96		 imr_to_phys(imr->addr_lo) == 0 &&
97		 imr_to_phys(imr->addr_hi) == 0);
98}
99
100/**
101 * imr_read - read an IMR at a given index.
102 *
103 * Requires caller to hold imr mutex.
104 *
105 * @idev:	pointer to imr_device structure.
106 * @imr_id:	IMR entry to read.
107 * @imr:	IMR structure representing address and access masks.
108 * @return:	0 on success or error code passed from mbi_iosf on failure.
109 */
110static int imr_read(struct imr_device *idev, u32 imr_id, struct imr_regs *imr)
111{
112	u32 reg = imr_id * IMR_NUM_REGS + idev->reg_base;
113	int ret;
114
115	ret = iosf_mbi_read(QRK_MBI_UNIT_MM, MBI_REG_READ, reg++, &imr->addr_lo);
116	if (ret)
117		return ret;
118
119	ret = iosf_mbi_read(QRK_MBI_UNIT_MM, MBI_REG_READ, reg++, &imr->addr_hi);
120	if (ret)
121		return ret;
122
123	ret = iosf_mbi_read(QRK_MBI_UNIT_MM, MBI_REG_READ, reg++, &imr->rmask);
124	if (ret)
125		return ret;
126
127	return iosf_mbi_read(QRK_MBI_UNIT_MM, MBI_REG_READ, reg++, &imr->wmask);
128}
129
130/**
131 * imr_write - write an IMR at a given index.
132 *
133 * Requires caller to hold imr mutex.
134 * Note lock bits need to be written independently of address bits.
135 *
136 * @idev:	pointer to imr_device structure.
137 * @imr_id:	IMR entry to write.
138 * @imr:	IMR structure representing address and access masks.
139 * @return:	0 on success or error code passed from mbi_iosf on failure.
140 */
141static int imr_write(struct imr_device *idev, u32 imr_id, struct imr_regs *imr)
142{
143	unsigned long flags;
144	u32 reg = imr_id * IMR_NUM_REGS + idev->reg_base;
145	int ret;
146
147	local_irq_save(flags);
148
149	ret = iosf_mbi_write(QRK_MBI_UNIT_MM, MBI_REG_WRITE, reg++, imr->addr_lo);
150	if (ret)
151		goto failed;
152
153	ret = iosf_mbi_write(QRK_MBI_UNIT_MM, MBI_REG_WRITE, reg++, imr->addr_hi);
154	if (ret)
155		goto failed;
156
157	ret = iosf_mbi_write(QRK_MBI_UNIT_MM, MBI_REG_WRITE, reg++, imr->rmask);
158	if (ret)
159		goto failed;
160
161	ret = iosf_mbi_write(QRK_MBI_UNIT_MM, MBI_REG_WRITE, reg++, imr->wmask);
162	if (ret)
163		goto failed;
164
165	local_irq_restore(flags);
166	return 0;
167failed:
168	/*
169	 * If writing to the IOSF failed then we're in an unknown state,
170	 * likely a very bad state. An IMR in an invalid state will almost
171	 * certainly lead to a memory access violation.
172	 */
173	local_irq_restore(flags);
174	WARN(ret, "IOSF-MBI write fail range 0x%08x-0x%08x unreliable\n",
175	     imr_to_phys(imr->addr_lo), imr_to_phys(imr->addr_hi) + IMR_MASK);
176
177	return ret;
178}
179
180/**
181 * imr_dbgfs_state_show - print state of IMR registers.
182 *
183 * @s:		pointer to seq_file for output.
184 * @unused:	unused parameter.
185 * @return:	0 on success or error code passed from mbi_iosf on failure.
186 */
187static int imr_dbgfs_state_show(struct seq_file *s, void *unused)
188{
189	phys_addr_t base;
190	phys_addr_t end;
191	int i;
192	struct imr_device *idev = s->private;
193	struct imr_regs imr;
194	size_t size;
195	int ret = -ENODEV;
196
197	mutex_lock(&idev->lock);
198
199	for (i = 0; i < idev->max_imr; i++) {
200
201		ret = imr_read(idev, i, &imr);
202		if (ret)
203			break;
204
205		/*
206		 * Remember to add IMR_ALIGN bytes to size to indicate the
207		 * inherent IMR_ALIGN size bytes contained in the masked away
208		 * lower ten bits.
209		 */
210		if (imr_is_enabled(&imr)) {
211			base = imr_to_phys(imr.addr_lo);
212			end = imr_to_phys(imr.addr_hi) + IMR_MASK;
213			size = end - base + 1;
214		} else {
215			base = 0;
216			end = 0;
217			size = 0;
218		}
219		seq_printf(s, "imr%02i: base=%pa, end=%pa, size=0x%08zx "
220			   "rmask=0x%08x, wmask=0x%08x, %s, %s\n", i,
221			   &base, &end, size, imr.rmask, imr.wmask,
222			   imr_is_enabled(&imr) ? "enabled " : "disabled",
223			   imr.addr_lo & IMR_LOCK ? "locked" : "unlocked");
224	}
225
226	mutex_unlock(&idev->lock);
227	return ret;
228}
229DEFINE_SHOW_ATTRIBUTE(imr_dbgfs_state);
230
231/**
232 * imr_debugfs_register - register debugfs hooks.
233 *
234 * @idev:	pointer to imr_device structure.
235 */
236static void imr_debugfs_register(struct imr_device *idev)
237{
238	debugfs_create_file("imr_state", 0444, NULL, idev,
239			    &imr_dbgfs_state_fops);
240}
241
242/**
243 * imr_check_params - check passed address range IMR alignment and non-zero size
244 *
245 * @base:	base address of intended IMR.
246 * @size:	size of intended IMR.
247 * @return:	zero on valid range -EINVAL on unaligned base/size.
248 */
249static int imr_check_params(phys_addr_t base, size_t size)
250{
251	if ((base & IMR_MASK) || (size & IMR_MASK)) {
252		pr_err("base %pa size 0x%08zx must align to 1KiB\n",
253			&base, size);
254		return -EINVAL;
255	}
256	if (size == 0)
257		return -EINVAL;
258
259	return 0;
260}
261
262/**
263 * imr_raw_size - account for the IMR_ALIGN bytes that addr_hi appends.
264 *
265 * IMR addr_hi has a built in offset of plus IMR_ALIGN (0x400) bytes from the
266 * value in the register. We need to subtract IMR_ALIGN bytes from input sizes
267 * as a result.
268 *
269 * @size:	input size bytes.
270 * @return:	reduced size.
271 */
272static inline size_t imr_raw_size(size_t size)
273{
274	return size - IMR_ALIGN;
275}
276
277/**
278 * imr_address_overlap - detects an address overlap.
279 *
280 * @addr:	address to check against an existing IMR.
281 * @imr:	imr being checked.
282 * @return:	true for overlap false for no overlap.
283 */
284static inline int imr_address_overlap(phys_addr_t addr, struct imr_regs *imr)
285{
286	return addr >= imr_to_phys(imr->addr_lo) && addr <= imr_to_phys(imr->addr_hi);
287}
288
289/**
290 * imr_add_range - add an Isolated Memory Region.
291 *
292 * @base:	physical base address of region aligned to 1KiB.
293 * @size:	physical size of region in bytes must be aligned to 1KiB.
294 * @read_mask:	read access mask.
295 * @write_mask:	write access mask.
296 * @return:	zero on success or negative value indicating error.
297 */
298int imr_add_range(phys_addr_t base, size_t size,
299		  unsigned int rmask, unsigned int wmask)
300{
301	phys_addr_t end;
302	unsigned int i;
303	struct imr_device *idev = &imr_dev;
304	struct imr_regs imr;
305	size_t raw_size;
306	int reg;
307	int ret;
308
309	if (WARN_ONCE(idev->init == false, "driver not initialized"))
310		return -ENODEV;
311
312	ret = imr_check_params(base, size);
313	if (ret)
314		return ret;
315
316	/* Tweak the size value. */
317	raw_size = imr_raw_size(size);
318	end = base + raw_size;
319
320	/*
321	 * Check for reserved IMR value common to firmware, kernel and grub
322	 * indicating a disabled IMR.
323	 */
324	imr.addr_lo = phys_to_imr(base);
325	imr.addr_hi = phys_to_imr(end);
326	imr.rmask = rmask;
327	imr.wmask = wmask;
328	if (!imr_is_enabled(&imr))
329		return -ENOTSUPP;
330
331	mutex_lock(&idev->lock);
332
333	/*
334	 * Find a free IMR while checking for an existing overlapping range.
335	 * Note there's no restriction in silicon to prevent IMR overlaps.
336	 * For the sake of simplicity and ease in defining/debugging an IMR
337	 * memory map we exclude IMR overlaps.
338	 */
339	reg = -1;
340	for (i = 0; i < idev->max_imr; i++) {
341		ret = imr_read(idev, i, &imr);
342		if (ret)
343			goto failed;
344
345		/* Find overlap @ base or end of requested range. */
346		ret = -EINVAL;
347		if (imr_is_enabled(&imr)) {
348			if (imr_address_overlap(base, &imr))
349				goto failed;
350			if (imr_address_overlap(end, &imr))
351				goto failed;
352		} else {
353			reg = i;
354		}
355	}
356
357	/* Error out if we have no free IMR entries. */
358	if (reg == -1) {
359		ret = -ENOMEM;
360		goto failed;
361	}
362
363	pr_debug("add %d phys %pa-%pa size %zx mask 0x%08x wmask 0x%08x\n",
364		 reg, &base, &end, raw_size, rmask, wmask);
365
366	/* Enable IMR at specified range and access mask. */
367	imr.addr_lo = phys_to_imr(base);
368	imr.addr_hi = phys_to_imr(end);
369	imr.rmask = rmask;
370	imr.wmask = wmask;
371
372	ret = imr_write(idev, reg, &imr);
373	if (ret < 0) {
374		/*
375		 * In the highly unlikely event iosf_mbi_write failed
376		 * attempt to rollback the IMR setup skipping the trapping
377		 * of further IOSF write failures.
378		 */
379		imr.addr_lo = 0;
380		imr.addr_hi = 0;
381		imr.rmask = IMR_READ_ACCESS_ALL;
382		imr.wmask = IMR_WRITE_ACCESS_ALL;
383		imr_write(idev, reg, &imr);
384	}
385failed:
386	mutex_unlock(&idev->lock);
387	return ret;
388}
389EXPORT_SYMBOL_GPL(imr_add_range);
390
391/**
392 * __imr_remove_range - delete an Isolated Memory Region.
393 *
394 * This function allows you to delete an IMR by its index specified by reg or
395 * by address range specified by base and size respectively. If you specify an
396 * index on its own the base and size parameters are ignored.
397 * imr_remove_range(0, base, size); delete IMR at index 0 base/size ignored.
398 * imr_remove_range(-1, base, size); delete IMR from base to base+size.
399 *
400 * @reg:	imr index to remove.
401 * @base:	physical base address of region aligned to 1 KiB.
402 * @size:	physical size of region in bytes aligned to 1 KiB.
403 * @return:	-EINVAL on invalid range or out or range id
404 *		-ENODEV if reg is valid but no IMR exists or is locked
405 *		0 on success.
406 */
407static int __imr_remove_range(int reg, phys_addr_t base, size_t size)
408{
409	phys_addr_t end;
410	bool found = false;
411	unsigned int i;
412	struct imr_device *idev = &imr_dev;
413	struct imr_regs imr;
414	size_t raw_size;
415	int ret = 0;
416
417	if (WARN_ONCE(idev->init == false, "driver not initialized"))
418		return -ENODEV;
419
420	/*
421	 * Validate address range if deleting by address, else we are
422	 * deleting by index where base and size will be ignored.
423	 */
424	if (reg == -1) {
425		ret = imr_check_params(base, size);
426		if (ret)
427			return ret;
428	}
429
430	/* Tweak the size value. */
431	raw_size = imr_raw_size(size);
432	end = base + raw_size;
433
434	mutex_lock(&idev->lock);
435
436	if (reg >= 0) {
437		/* If a specific IMR is given try to use it. */
438		ret = imr_read(idev, reg, &imr);
439		if (ret)
440			goto failed;
441
442		if (!imr_is_enabled(&imr) || imr.addr_lo & IMR_LOCK) {
443			ret = -ENODEV;
444			goto failed;
445		}
446		found = true;
447	} else {
448		/* Search for match based on address range. */
449		for (i = 0; i < idev->max_imr; i++) {
450			ret = imr_read(idev, i, &imr);
451			if (ret)
452				goto failed;
453
454			if (!imr_is_enabled(&imr) || imr.addr_lo & IMR_LOCK)
455				continue;
456
457			if ((imr_to_phys(imr.addr_lo) == base) &&
458			    (imr_to_phys(imr.addr_hi) == end)) {
459				found = true;
460				reg = i;
461				break;
462			}
463		}
464	}
465
466	if (!found) {
467		ret = -ENODEV;
468		goto failed;
469	}
470
471	pr_debug("remove %d phys %pa-%pa size %zx\n", reg, &base, &end, raw_size);
472
473	/* Tear down the IMR. */
474	imr.addr_lo = 0;
475	imr.addr_hi = 0;
476	imr.rmask = IMR_READ_ACCESS_ALL;
477	imr.wmask = IMR_WRITE_ACCESS_ALL;
478
479	ret = imr_write(idev, reg, &imr);
480
481failed:
482	mutex_unlock(&idev->lock);
483	return ret;
484}
485
486/**
487 * imr_remove_range - delete an Isolated Memory Region by address
488 *
489 * This function allows you to delete an IMR by an address range specified
490 * by base and size respectively.
491 * imr_remove_range(base, size); delete IMR from base to base+size.
492 *
493 * @base:	physical base address of region aligned to 1 KiB.
494 * @size:	physical size of region in bytes aligned to 1 KiB.
495 * @return:	-EINVAL on invalid range or out or range id
496 *		-ENODEV if reg is valid but no IMR exists or is locked
497 *		0 on success.
498 */
499int imr_remove_range(phys_addr_t base, size_t size)
500{
501	return __imr_remove_range(-1, base, size);
502}
503EXPORT_SYMBOL_GPL(imr_remove_range);
504
505/**
506 * imr_clear - delete an Isolated Memory Region by index
507 *
508 * This function allows you to delete an IMR by an address range specified
509 * by the index of the IMR. Useful for initial sanitization of the IMR
510 * address map.
511 * imr_ge(base, size); delete IMR from base to base+size.
512 *
513 * @reg:	imr index to remove.
514 * @return:	-EINVAL on invalid range or out or range id
515 *		-ENODEV if reg is valid but no IMR exists or is locked
516 *		0 on success.
517 */
518static inline int imr_clear(int reg)
519{
520	return __imr_remove_range(reg, 0, 0);
521}
522
523/**
524 * imr_fixup_memmap - Tear down IMRs used during bootup.
525 *
526 * BIOS and Grub both setup IMRs around compressed kernel, initrd memory
527 * that need to be removed before the kernel hands out one of the IMR
528 * encased addresses to a downstream DMA agent such as the SD or Ethernet.
529 * IMRs on Galileo are setup to immediately reset the system on violation.
530 * As a result if you're running a root filesystem from SD - you'll need
531 * the boot-time IMRs torn down or you'll find seemingly random resets when
532 * using your filesystem.
533 *
534 * @idev:	pointer to imr_device structure.
535 * @return:
536 */
537static void __init imr_fixup_memmap(struct imr_device *idev)
538{
539	phys_addr_t base = virt_to_phys(&_text);
540	size_t size = virt_to_phys(&__end_rodata) - base;
541	unsigned long start, end;
542	int i;
543	int ret;
544
545	/* Tear down all existing unlocked IMRs. */
546	for (i = 0; i < idev->max_imr; i++)
547		imr_clear(i);
548
549	start = (unsigned long)_text;
550	end = (unsigned long)__end_rodata - 1;
551
552	/*
553	 * Setup an unlocked IMR around the physical extent of the kernel
554	 * from the beginning of the .text section to the end of the
555	 * .rodata section as one physically contiguous block.
556	 *
557	 * We don't round up @size since it is already PAGE_SIZE aligned.
558	 * See vmlinux.lds.S for details.
559	 */
560	ret = imr_add_range(base, size, IMR_CPU, IMR_CPU);
561	if (ret < 0) {
562		pr_err("unable to setup IMR for kernel: %zu KiB (%lx - %lx)\n",
563			size / 1024, start, end);
564	} else {
565		pr_info("protecting kernel .text - .rodata: %zu KiB (%lx - %lx)\n",
566			size / 1024, start, end);
567	}
568
569}
570
571static const struct x86_cpu_id imr_ids[] __initconst = {
572	X86_MATCH_VENDOR_FAM_MODEL(INTEL, 5, INTEL_FAM5_QUARK_X1000, NULL),
573	{}
574};
575
576/**
577 * imr_init - entry point for IMR driver.
578 *
579 * return: -ENODEV for no IMR support 0 if good to go.
580 */
581static int __init imr_init(void)
582{
583	struct imr_device *idev = &imr_dev;
584
585	if (!x86_match_cpu(imr_ids) || !iosf_mbi_available())
586		return -ENODEV;
587
588	idev->max_imr = QUARK_X1000_IMR_MAX;
589	idev->reg_base = QUARK_X1000_IMR_REGBASE;
590	idev->init = true;
591
592	mutex_init(&idev->lock);
593	imr_debugfs_register(idev);
594	imr_fixup_memmap(idev);
595	return 0;
596}
597device_initcall(imr_init);
598