1// SPDX-License-Identifier: GPL-2.0
2/*
3 * x86_64 specific EFI support functions
4 * Based on Extensible Firmware Interface Specification version 1.0
5 *
6 * Copyright (C) 2005-2008 Intel Co.
7 *	Fenghua Yu <fenghua.yu@intel.com>
8 *	Bibo Mao <bibo.mao@intel.com>
9 *	Chandramouli Narayanan <mouli@linux.intel.com>
10 *	Huang Ying <ying.huang@intel.com>
11 *
12 * Code to convert EFI to E820 map has been implemented in elilo bootloader
13 * based on a EFI patch by Edgar Hucek. Based on the E820 map, the page table
14 * is setup appropriately for EFI runtime code.
15 * - mouli 06/14/2007.
16 *
17 */
18
19#define pr_fmt(fmt) "efi: " fmt
20
21#include <linux/kernel.h>
22#include <linux/init.h>
23#include <linux/mm.h>
24#include <linux/types.h>
25#include <linux/spinlock.h>
26#include <linux/memblock.h>
27#include <linux/ioport.h>
28#include <linux/mc146818rtc.h>
29#include <linux/efi.h>
30#include <linux/export.h>
31#include <linux/uaccess.h>
32#include <linux/io.h>
33#include <linux/reboot.h>
34#include <linux/slab.h>
35#include <linux/ucs2_string.h>
36#include <linux/cc_platform.h>
37#include <linux/sched/task.h>
38
39#include <asm/setup.h>
40#include <asm/page.h>
41#include <asm/e820/api.h>
42#include <asm/tlbflush.h>
43#include <asm/proto.h>
44#include <asm/efi.h>
45#include <asm/cacheflush.h>
46#include <asm/fixmap.h>
47#include <asm/realmode.h>
48#include <asm/time.h>
49#include <asm/pgalloc.h>
50#include <asm/sev.h>
51
52/*
53 * We allocate runtime services regions top-down, starting from -4G, i.e.
54 * 0xffff_ffff_0000_0000 and limit EFI VA mapping space to 64G.
55 */
56static u64 efi_va = EFI_VA_START;
57static struct mm_struct *efi_prev_mm;
58
59/*
60 * We need our own copy of the higher levels of the page tables
61 * because we want to avoid inserting EFI region mappings (EFI_VA_END
62 * to EFI_VA_START) into the standard kernel page tables. Everything
63 * else can be shared, see efi_sync_low_kernel_mappings().
64 *
65 * We don't want the pgd on the pgd_list and cannot use pgd_alloc() for the
66 * allocation.
67 */
68int __init efi_alloc_page_tables(void)
69{
70	pgd_t *pgd, *efi_pgd;
71	p4d_t *p4d;
72	pud_t *pud;
73	gfp_t gfp_mask;
74
75	gfp_mask = GFP_KERNEL | __GFP_ZERO;
76	efi_pgd = (pgd_t *)__get_free_pages(gfp_mask, PGD_ALLOCATION_ORDER);
77	if (!efi_pgd)
78		goto fail;
79
80	pgd = efi_pgd + pgd_index(EFI_VA_END);
81	p4d = p4d_alloc(&init_mm, pgd, EFI_VA_END);
82	if (!p4d)
83		goto free_pgd;
84
85	pud = pud_alloc(&init_mm, p4d, EFI_VA_END);
86	if (!pud)
87		goto free_p4d;
88
89	efi_mm.pgd = efi_pgd;
90	mm_init_cpumask(&efi_mm);
91	init_new_context(NULL, &efi_mm);
92
93	return 0;
94
95free_p4d:
96	if (pgtable_l5_enabled())
97		free_page((unsigned long)pgd_page_vaddr(*pgd));
98free_pgd:
99	free_pages((unsigned long)efi_pgd, PGD_ALLOCATION_ORDER);
100fail:
101	return -ENOMEM;
102}
103
104/*
105 * Add low kernel mappings for passing arguments to EFI functions.
106 */
107void efi_sync_low_kernel_mappings(void)
108{
109	unsigned num_entries;
110	pgd_t *pgd_k, *pgd_efi;
111	p4d_t *p4d_k, *p4d_efi;
112	pud_t *pud_k, *pud_efi;
113	pgd_t *efi_pgd = efi_mm.pgd;
114
115	pgd_efi = efi_pgd + pgd_index(PAGE_OFFSET);
116	pgd_k = pgd_offset_k(PAGE_OFFSET);
117
118	num_entries = pgd_index(EFI_VA_END) - pgd_index(PAGE_OFFSET);
119	memcpy(pgd_efi, pgd_k, sizeof(pgd_t) * num_entries);
120
121	pgd_efi = efi_pgd + pgd_index(EFI_VA_END);
122	pgd_k = pgd_offset_k(EFI_VA_END);
123	p4d_efi = p4d_offset(pgd_efi, 0);
124	p4d_k = p4d_offset(pgd_k, 0);
125
126	num_entries = p4d_index(EFI_VA_END);
127	memcpy(p4d_efi, p4d_k, sizeof(p4d_t) * num_entries);
128
129	/*
130	 * We share all the PUD entries apart from those that map the
131	 * EFI regions. Copy around them.
132	 */
133	BUILD_BUG_ON((EFI_VA_START & ~PUD_MASK) != 0);
134	BUILD_BUG_ON((EFI_VA_END & ~PUD_MASK) != 0);
135
136	p4d_efi = p4d_offset(pgd_efi, EFI_VA_END);
137	p4d_k = p4d_offset(pgd_k, EFI_VA_END);
138	pud_efi = pud_offset(p4d_efi, 0);
139	pud_k = pud_offset(p4d_k, 0);
140
141	num_entries = pud_index(EFI_VA_END);
142	memcpy(pud_efi, pud_k, sizeof(pud_t) * num_entries);
143
144	pud_efi = pud_offset(p4d_efi, EFI_VA_START);
145	pud_k = pud_offset(p4d_k, EFI_VA_START);
146
147	num_entries = PTRS_PER_PUD - pud_index(EFI_VA_START);
148	memcpy(pud_efi, pud_k, sizeof(pud_t) * num_entries);
149}
150
151/*
152 * Wrapper for slow_virt_to_phys() that handles NULL addresses.
153 */
154static inline phys_addr_t
155virt_to_phys_or_null_size(void *va, unsigned long size)
156{
157	phys_addr_t pa;
158
159	if (!va)
160		return 0;
161
162	if (virt_addr_valid(va))
163		return virt_to_phys(va);
164
165	pa = slow_virt_to_phys(va);
166
167	/* check if the object crosses a page boundary */
168	if (WARN_ON((pa ^ (pa + size - 1)) & PAGE_MASK))
169		return 0;
170
171	return pa;
172}
173
174#define virt_to_phys_or_null(addr)				\
175	virt_to_phys_or_null_size((addr), sizeof(*(addr)))
176
177int __init efi_setup_page_tables(unsigned long pa_memmap, unsigned num_pages)
178{
179	extern const u8 __efi64_thunk_ret_tramp[];
180	unsigned long pfn, text, pf, rodata, tramp;
181	struct page *page;
182	unsigned npages;
183	pgd_t *pgd = efi_mm.pgd;
184
185	/*
186	 * It can happen that the physical address of new_memmap lands in memory
187	 * which is not mapped in the EFI page table. Therefore we need to go
188	 * and ident-map those pages containing the map before calling
189	 * phys_efi_set_virtual_address_map().
190	 */
191	pfn = pa_memmap >> PAGE_SHIFT;
192	pf = _PAGE_NX | _PAGE_RW | _PAGE_ENC;
193	if (kernel_map_pages_in_pgd(pgd, pfn, pa_memmap, num_pages, pf)) {
194		pr_err("Error ident-mapping new memmap (0x%lx)!\n", pa_memmap);
195		return 1;
196	}
197
198	/*
199	 * Certain firmware versions are way too sentimental and still believe
200	 * they are exclusive and unquestionable owners of the first physical page,
201	 * even though they explicitly mark it as EFI_CONVENTIONAL_MEMORY
202	 * (but then write-access it later during SetVirtualAddressMap()).
203	 *
204	 * Create a 1:1 mapping for this page, to avoid triple faults during early
205	 * boot with such firmware. We are free to hand this page to the BIOS,
206	 * as trim_bios_range() will reserve the first page and isolate it away
207	 * from memory allocators anyway.
208	 */
209	if (kernel_map_pages_in_pgd(pgd, 0x0, 0x0, 1, pf)) {
210		pr_err("Failed to create 1:1 mapping for the first page!\n");
211		return 1;
212	}
213
214	/*
215	 * When SEV-ES is active, the GHCB as set by the kernel will be used
216	 * by firmware. Create a 1:1 unencrypted mapping for each GHCB.
217	 */
218	if (sev_es_efi_map_ghcbs(pgd)) {
219		pr_err("Failed to create 1:1 mapping for the GHCBs!\n");
220		return 1;
221	}
222
223	/*
224	 * When making calls to the firmware everything needs to be 1:1
225	 * mapped and addressable with 32-bit pointers. Map the kernel
226	 * text and allocate a new stack because we can't rely on the
227	 * stack pointer being < 4GB.
228	 */
229	if (!efi_is_mixed())
230		return 0;
231
232	page = alloc_page(GFP_KERNEL|__GFP_DMA32);
233	if (!page) {
234		pr_err("Unable to allocate EFI runtime stack < 4GB\n");
235		return 1;
236	}
237
238	efi_mixed_mode_stack_pa = page_to_phys(page + 1); /* stack grows down */
239
240	npages = (_etext - _text) >> PAGE_SHIFT;
241	text = __pa(_text);
242
243	if (kernel_unmap_pages_in_pgd(pgd, text, npages)) {
244		pr_err("Failed to unmap kernel text 1:1 mapping\n");
245		return 1;
246	}
247
248	npages = (__end_rodata - __start_rodata) >> PAGE_SHIFT;
249	rodata = __pa(__start_rodata);
250	pfn = rodata >> PAGE_SHIFT;
251
252	pf = _PAGE_NX | _PAGE_ENC;
253	if (kernel_map_pages_in_pgd(pgd, pfn, rodata, npages, pf)) {
254		pr_err("Failed to map kernel rodata 1:1\n");
255		return 1;
256	}
257
258	tramp = __pa(__efi64_thunk_ret_tramp);
259	pfn = tramp >> PAGE_SHIFT;
260
261	pf = _PAGE_ENC;
262	if (kernel_map_pages_in_pgd(pgd, pfn, tramp, 1, pf)) {
263		pr_err("Failed to map mixed mode return trampoline\n");
264		return 1;
265	}
266
267	return 0;
268}
269
270static void __init __map_region(efi_memory_desc_t *md, u64 va)
271{
272	unsigned long flags = _PAGE_RW;
273	unsigned long pfn;
274	pgd_t *pgd = efi_mm.pgd;
275
276	/*
277	 * EFI_RUNTIME_SERVICES_CODE regions typically cover PE/COFF
278	 * executable images in memory that consist of both R-X and
279	 * RW- sections, so we cannot apply read-only or non-exec
280	 * permissions just yet. However, modern EFI systems provide
281	 * a memory attributes table that describes those sections
282	 * with the appropriate restricted permissions, which are
283	 * applied in efi_runtime_update_mappings() below. All other
284	 * regions can be mapped non-executable at this point, with
285	 * the exception of boot services code regions, but those will
286	 * be unmapped again entirely in efi_free_boot_services().
287	 */
288	if (md->type != EFI_BOOT_SERVICES_CODE &&
289	    md->type != EFI_RUNTIME_SERVICES_CODE)
290		flags |= _PAGE_NX;
291
292	if (!(md->attribute & EFI_MEMORY_WB))
293		flags |= _PAGE_PCD;
294
295	if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT) &&
296	    md->type != EFI_MEMORY_MAPPED_IO)
297		flags |= _PAGE_ENC;
298
299	pfn = md->phys_addr >> PAGE_SHIFT;
300	if (kernel_map_pages_in_pgd(pgd, pfn, va, md->num_pages, flags))
301		pr_warn("Error mapping PA 0x%llx -> VA 0x%llx!\n",
302			   md->phys_addr, va);
303}
304
305void __init efi_map_region(efi_memory_desc_t *md)
306{
307	unsigned long size = md->num_pages << PAGE_SHIFT;
308	u64 pa = md->phys_addr;
309
310	/*
311	 * Make sure the 1:1 mappings are present as a catch-all for b0rked
312	 * firmware which doesn't update all internal pointers after switching
313	 * to virtual mode and would otherwise crap on us.
314	 */
315	__map_region(md, md->phys_addr);
316
317	/*
318	 * Enforce the 1:1 mapping as the default virtual address when
319	 * booting in EFI mixed mode, because even though we may be
320	 * running a 64-bit kernel, the firmware may only be 32-bit.
321	 */
322	if (efi_is_mixed()) {
323		md->virt_addr = md->phys_addr;
324		return;
325	}
326
327	efi_va -= size;
328
329	/* Is PA 2M-aligned? */
330	if (!(pa & (PMD_SIZE - 1))) {
331		efi_va &= PMD_MASK;
332	} else {
333		u64 pa_offset = pa & (PMD_SIZE - 1);
334		u64 prev_va = efi_va;
335
336		/* get us the same offset within this 2M page */
337		efi_va = (efi_va & PMD_MASK) + pa_offset;
338
339		if (efi_va > prev_va)
340			efi_va -= PMD_SIZE;
341	}
342
343	if (efi_va < EFI_VA_END) {
344		pr_warn(FW_WARN "VA address range overflow!\n");
345		return;
346	}
347
348	/* Do the VA map */
349	__map_region(md, efi_va);
350	md->virt_addr = efi_va;
351}
352
353/*
354 * kexec kernel will use efi_map_region_fixed to map efi runtime memory ranges.
355 * md->virt_addr is the original virtual address which had been mapped in kexec
356 * 1st kernel.
357 */
358void __init efi_map_region_fixed(efi_memory_desc_t *md)
359{
360	__map_region(md, md->phys_addr);
361	__map_region(md, md->virt_addr);
362}
363
364void __init parse_efi_setup(u64 phys_addr, u32 data_len)
365{
366	efi_setup = phys_addr + sizeof(struct setup_data);
367}
368
369static int __init efi_update_mappings(efi_memory_desc_t *md, unsigned long pf)
370{
371	unsigned long pfn;
372	pgd_t *pgd = efi_mm.pgd;
373	int err1, err2;
374
375	/* Update the 1:1 mapping */
376	pfn = md->phys_addr >> PAGE_SHIFT;
377	err1 = kernel_map_pages_in_pgd(pgd, pfn, md->phys_addr, md->num_pages, pf);
378	if (err1) {
379		pr_err("Error while updating 1:1 mapping PA 0x%llx -> VA 0x%llx!\n",
380			   md->phys_addr, md->virt_addr);
381	}
382
383	err2 = kernel_map_pages_in_pgd(pgd, pfn, md->virt_addr, md->num_pages, pf);
384	if (err2) {
385		pr_err("Error while updating VA mapping PA 0x%llx -> VA 0x%llx!\n",
386			   md->phys_addr, md->virt_addr);
387	}
388
389	return err1 || err2;
390}
391
392bool efi_disable_ibt_for_runtime __ro_after_init = true;
393
394static int __init efi_update_mem_attr(struct mm_struct *mm, efi_memory_desc_t *md,
395				      bool has_ibt)
396{
397	unsigned long pf = 0;
398
399	efi_disable_ibt_for_runtime |= !has_ibt;
400
401	if (md->attribute & EFI_MEMORY_XP)
402		pf |= _PAGE_NX;
403
404	if (!(md->attribute & EFI_MEMORY_RO))
405		pf |= _PAGE_RW;
406
407	if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT))
408		pf |= _PAGE_ENC;
409
410	return efi_update_mappings(md, pf);
411}
412
413void __init efi_runtime_update_mappings(void)
414{
415	efi_memory_desc_t *md;
416
417	/*
418	 * Use the EFI Memory Attribute Table for mapping permissions if it
419	 * exists, since it is intended to supersede EFI_PROPERTIES_TABLE.
420	 */
421	if (efi_enabled(EFI_MEM_ATTR)) {
422		efi_disable_ibt_for_runtime = false;
423		efi_memattr_apply_permissions(NULL, efi_update_mem_attr);
424		return;
425	}
426
427	/*
428	 * EFI_MEMORY_ATTRIBUTES_TABLE is intended to replace
429	 * EFI_PROPERTIES_TABLE. So, use EFI_PROPERTIES_TABLE to update
430	 * permissions only if EFI_MEMORY_ATTRIBUTES_TABLE is not
431	 * published by the firmware. Even if we find a buggy implementation of
432	 * EFI_MEMORY_ATTRIBUTES_TABLE, don't fall back to
433	 * EFI_PROPERTIES_TABLE, because of the same reason.
434	 */
435
436	if (!efi_enabled(EFI_NX_PE_DATA))
437		return;
438
439	for_each_efi_memory_desc(md) {
440		unsigned long pf = 0;
441
442		if (!(md->attribute & EFI_MEMORY_RUNTIME))
443			continue;
444
445		if (!(md->attribute & EFI_MEMORY_WB))
446			pf |= _PAGE_PCD;
447
448		if ((md->attribute & EFI_MEMORY_XP) ||
449			(md->type == EFI_RUNTIME_SERVICES_DATA))
450			pf |= _PAGE_NX;
451
452		if (!(md->attribute & EFI_MEMORY_RO) &&
453			(md->type != EFI_RUNTIME_SERVICES_CODE))
454			pf |= _PAGE_RW;
455
456		if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT))
457			pf |= _PAGE_ENC;
458
459		efi_update_mappings(md, pf);
460	}
461}
462
463void __init efi_dump_pagetable(void)
464{
465#ifdef CONFIG_EFI_PGT_DUMP
466	ptdump_walk_pgd_level(NULL, &efi_mm);
467#endif
468}
469
470/*
471 * Makes the calling thread switch to/from efi_mm context. Can be used
472 * in a kernel thread and user context. Preemption needs to remain disabled
473 * while the EFI-mm is borrowed. mmgrab()/mmdrop() is not used because the mm
474 * can not change under us.
475 * It should be ensured that there are no concurrent calls to this function.
476 */
477static void efi_enter_mm(void)
478{
479	efi_prev_mm = current->active_mm;
480	current->active_mm = &efi_mm;
481	switch_mm(efi_prev_mm, &efi_mm, NULL);
482}
483
484static void efi_leave_mm(void)
485{
486	current->active_mm = efi_prev_mm;
487	switch_mm(&efi_mm, efi_prev_mm, NULL);
488}
489
490void arch_efi_call_virt_setup(void)
491{
492	efi_sync_low_kernel_mappings();
493	efi_fpu_begin();
494	firmware_restrict_branch_speculation_start();
495	efi_enter_mm();
496}
497
498void arch_efi_call_virt_teardown(void)
499{
500	efi_leave_mm();
501	firmware_restrict_branch_speculation_end();
502	efi_fpu_end();
503}
504
505static DEFINE_SPINLOCK(efi_runtime_lock);
506
507/*
508 * DS and ES contain user values.  We need to save them.
509 * The 32-bit EFI code needs a valid DS, ES, and SS.  There's no
510 * need to save the old SS: __KERNEL_DS is always acceptable.
511 */
512#define __efi_thunk(func, ...)						\
513({									\
514	unsigned short __ds, __es;					\
515	efi_status_t ____s;						\
516									\
517	savesegment(ds, __ds);						\
518	savesegment(es, __es);						\
519									\
520	loadsegment(ss, __KERNEL_DS);					\
521	loadsegment(ds, __KERNEL_DS);					\
522	loadsegment(es, __KERNEL_DS);					\
523									\
524	____s = efi64_thunk(efi.runtime->mixed_mode.func, __VA_ARGS__);	\
525									\
526	loadsegment(ds, __ds);						\
527	loadsegment(es, __es);						\
528									\
529	____s ^= (____s & BIT(31)) | (____s & BIT_ULL(31)) << 32;	\
530	____s;								\
531})
532
533/*
534 * Switch to the EFI page tables early so that we can access the 1:1
535 * runtime services mappings which are not mapped in any other page
536 * tables.
537 *
538 * Also, disable interrupts because the IDT points to 64-bit handlers,
539 * which aren't going to function correctly when we switch to 32-bit.
540 */
541#define efi_thunk(func...)						\
542({									\
543	efi_status_t __s;						\
544									\
545	arch_efi_call_virt_setup();					\
546									\
547	__s = __efi_thunk(func);					\
548									\
549	arch_efi_call_virt_teardown();					\
550									\
551	__s;								\
552})
553
554static efi_status_t __init __no_sanitize_address
555efi_thunk_set_virtual_address_map(unsigned long memory_map_size,
556				  unsigned long descriptor_size,
557				  u32 descriptor_version,
558				  efi_memory_desc_t *virtual_map)
559{
560	efi_status_t status;
561	unsigned long flags;
562
563	efi_sync_low_kernel_mappings();
564	local_irq_save(flags);
565
566	efi_enter_mm();
567
568	status = __efi_thunk(set_virtual_address_map, memory_map_size,
569			     descriptor_size, descriptor_version, virtual_map);
570
571	efi_leave_mm();
572	local_irq_restore(flags);
573
574	return status;
575}
576
577static efi_status_t efi_thunk_get_time(efi_time_t *tm, efi_time_cap_t *tc)
578{
579	return EFI_UNSUPPORTED;
580}
581
582static efi_status_t efi_thunk_set_time(efi_time_t *tm)
583{
584	return EFI_UNSUPPORTED;
585}
586
587static efi_status_t
588efi_thunk_get_wakeup_time(efi_bool_t *enabled, efi_bool_t *pending,
589			  efi_time_t *tm)
590{
591	return EFI_UNSUPPORTED;
592}
593
594static efi_status_t
595efi_thunk_set_wakeup_time(efi_bool_t enabled, efi_time_t *tm)
596{
597	return EFI_UNSUPPORTED;
598}
599
600static unsigned long efi_name_size(efi_char16_t *name)
601{
602	return ucs2_strsize(name, EFI_VAR_NAME_LEN) + 1;
603}
604
605static efi_status_t
606efi_thunk_get_variable(efi_char16_t *name, efi_guid_t *vendor,
607		       u32 *attr, unsigned long *data_size, void *data)
608{
609	u8 buf[24] __aligned(8);
610	efi_guid_t *vnd = PTR_ALIGN((efi_guid_t *)buf, sizeof(*vnd));
611	efi_status_t status;
612	u32 phys_name, phys_vendor, phys_attr;
613	u32 phys_data_size, phys_data;
614	unsigned long flags;
615
616	spin_lock_irqsave(&efi_runtime_lock, flags);
617
618	*vnd = *vendor;
619
620	phys_data_size = virt_to_phys_or_null(data_size);
621	phys_vendor = virt_to_phys_or_null(vnd);
622	phys_name = virt_to_phys_or_null_size(name, efi_name_size(name));
623	phys_attr = virt_to_phys_or_null(attr);
624	phys_data = virt_to_phys_or_null_size(data, *data_size);
625
626	if (!phys_name || (data && !phys_data))
627		status = EFI_INVALID_PARAMETER;
628	else
629		status = efi_thunk(get_variable, phys_name, phys_vendor,
630				   phys_attr, phys_data_size, phys_data);
631
632	spin_unlock_irqrestore(&efi_runtime_lock, flags);
633
634	return status;
635}
636
637static efi_status_t
638efi_thunk_set_variable(efi_char16_t *name, efi_guid_t *vendor,
639		       u32 attr, unsigned long data_size, void *data)
640{
641	u8 buf[24] __aligned(8);
642	efi_guid_t *vnd = PTR_ALIGN((efi_guid_t *)buf, sizeof(*vnd));
643	u32 phys_name, phys_vendor, phys_data;
644	efi_status_t status;
645	unsigned long flags;
646
647	spin_lock_irqsave(&efi_runtime_lock, flags);
648
649	*vnd = *vendor;
650
651	phys_name = virt_to_phys_or_null_size(name, efi_name_size(name));
652	phys_vendor = virt_to_phys_or_null(vnd);
653	phys_data = virt_to_phys_or_null_size(data, data_size);
654
655	if (!phys_name || (data && !phys_data))
656		status = EFI_INVALID_PARAMETER;
657	else
658		status = efi_thunk(set_variable, phys_name, phys_vendor,
659				   attr, data_size, phys_data);
660
661	spin_unlock_irqrestore(&efi_runtime_lock, flags);
662
663	return status;
664}
665
666static efi_status_t
667efi_thunk_set_variable_nonblocking(efi_char16_t *name, efi_guid_t *vendor,
668				   u32 attr, unsigned long data_size,
669				   void *data)
670{
671	u8 buf[24] __aligned(8);
672	efi_guid_t *vnd = PTR_ALIGN((efi_guid_t *)buf, sizeof(*vnd));
673	u32 phys_name, phys_vendor, phys_data;
674	efi_status_t status;
675	unsigned long flags;
676
677	if (!spin_trylock_irqsave(&efi_runtime_lock, flags))
678		return EFI_NOT_READY;
679
680	*vnd = *vendor;
681
682	phys_name = virt_to_phys_or_null_size(name, efi_name_size(name));
683	phys_vendor = virt_to_phys_or_null(vnd);
684	phys_data = virt_to_phys_or_null_size(data, data_size);
685
686	if (!phys_name || (data && !phys_data))
687		status = EFI_INVALID_PARAMETER;
688	else
689		status = efi_thunk(set_variable, phys_name, phys_vendor,
690				   attr, data_size, phys_data);
691
692	spin_unlock_irqrestore(&efi_runtime_lock, flags);
693
694	return status;
695}
696
697static efi_status_t
698efi_thunk_get_next_variable(unsigned long *name_size,
699			    efi_char16_t *name,
700			    efi_guid_t *vendor)
701{
702	u8 buf[24] __aligned(8);
703	efi_guid_t *vnd = PTR_ALIGN((efi_guid_t *)buf, sizeof(*vnd));
704	efi_status_t status;
705	u32 phys_name_size, phys_name, phys_vendor;
706	unsigned long flags;
707
708	spin_lock_irqsave(&efi_runtime_lock, flags);
709
710	*vnd = *vendor;
711
712	phys_name_size = virt_to_phys_or_null(name_size);
713	phys_vendor = virt_to_phys_or_null(vnd);
714	phys_name = virt_to_phys_or_null_size(name, *name_size);
715
716	if (!phys_name)
717		status = EFI_INVALID_PARAMETER;
718	else
719		status = efi_thunk(get_next_variable, phys_name_size,
720				   phys_name, phys_vendor);
721
722	spin_unlock_irqrestore(&efi_runtime_lock, flags);
723
724	*vendor = *vnd;
725	return status;
726}
727
728static efi_status_t
729efi_thunk_get_next_high_mono_count(u32 *count)
730{
731	return EFI_UNSUPPORTED;
732}
733
734static void
735efi_thunk_reset_system(int reset_type, efi_status_t status,
736		       unsigned long data_size, efi_char16_t *data)
737{
738	u32 phys_data;
739	unsigned long flags;
740
741	spin_lock_irqsave(&efi_runtime_lock, flags);
742
743	phys_data = virt_to_phys_or_null_size(data, data_size);
744
745	efi_thunk(reset_system, reset_type, status, data_size, phys_data);
746
747	spin_unlock_irqrestore(&efi_runtime_lock, flags);
748}
749
750static efi_status_t
751efi_thunk_update_capsule(efi_capsule_header_t **capsules,
752			 unsigned long count, unsigned long sg_list)
753{
754	/*
755	 * To properly support this function we would need to repackage
756	 * 'capsules' because the firmware doesn't understand 64-bit
757	 * pointers.
758	 */
759	return EFI_UNSUPPORTED;
760}
761
762static efi_status_t
763efi_thunk_query_variable_info(u32 attr, u64 *storage_space,
764			      u64 *remaining_space,
765			      u64 *max_variable_size)
766{
767	efi_status_t status;
768	u32 phys_storage, phys_remaining, phys_max;
769	unsigned long flags;
770
771	if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION)
772		return EFI_UNSUPPORTED;
773
774	spin_lock_irqsave(&efi_runtime_lock, flags);
775
776	phys_storage = virt_to_phys_or_null(storage_space);
777	phys_remaining = virt_to_phys_or_null(remaining_space);
778	phys_max = virt_to_phys_or_null(max_variable_size);
779
780	status = efi_thunk(query_variable_info, attr, phys_storage,
781			   phys_remaining, phys_max);
782
783	spin_unlock_irqrestore(&efi_runtime_lock, flags);
784
785	return status;
786}
787
788static efi_status_t
789efi_thunk_query_variable_info_nonblocking(u32 attr, u64 *storage_space,
790					  u64 *remaining_space,
791					  u64 *max_variable_size)
792{
793	efi_status_t status;
794	u32 phys_storage, phys_remaining, phys_max;
795	unsigned long flags;
796
797	if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION)
798		return EFI_UNSUPPORTED;
799
800	if (!spin_trylock_irqsave(&efi_runtime_lock, flags))
801		return EFI_NOT_READY;
802
803	phys_storage = virt_to_phys_or_null(storage_space);
804	phys_remaining = virt_to_phys_or_null(remaining_space);
805	phys_max = virt_to_phys_or_null(max_variable_size);
806
807	status = efi_thunk(query_variable_info, attr, phys_storage,
808			   phys_remaining, phys_max);
809
810	spin_unlock_irqrestore(&efi_runtime_lock, flags);
811
812	return status;
813}
814
815static efi_status_t
816efi_thunk_query_capsule_caps(efi_capsule_header_t **capsules,
817			     unsigned long count, u64 *max_size,
818			     int *reset_type)
819{
820	/*
821	 * To properly support this function we would need to repackage
822	 * 'capsules' because the firmware doesn't understand 64-bit
823	 * pointers.
824	 */
825	return EFI_UNSUPPORTED;
826}
827
828void __init efi_thunk_runtime_setup(void)
829{
830	if (!IS_ENABLED(CONFIG_EFI_MIXED))
831		return;
832
833	efi.get_time = efi_thunk_get_time;
834	efi.set_time = efi_thunk_set_time;
835	efi.get_wakeup_time = efi_thunk_get_wakeup_time;
836	efi.set_wakeup_time = efi_thunk_set_wakeup_time;
837	efi.get_variable = efi_thunk_get_variable;
838	efi.get_next_variable = efi_thunk_get_next_variable;
839	efi.set_variable = efi_thunk_set_variable;
840	efi.set_variable_nonblocking = efi_thunk_set_variable_nonblocking;
841	efi.get_next_high_mono_count = efi_thunk_get_next_high_mono_count;
842	efi.reset_system = efi_thunk_reset_system;
843	efi.query_variable_info = efi_thunk_query_variable_info;
844	efi.query_variable_info_nonblocking = efi_thunk_query_variable_info_nonblocking;
845	efi.update_capsule = efi_thunk_update_capsule;
846	efi.query_capsule_caps = efi_thunk_query_capsule_caps;
847}
848
849efi_status_t __init __no_sanitize_address
850efi_set_virtual_address_map(unsigned long memory_map_size,
851			    unsigned long descriptor_size,
852			    u32 descriptor_version,
853			    efi_memory_desc_t *virtual_map,
854			    unsigned long systab_phys)
855{
856	const efi_system_table_t *systab = (efi_system_table_t *)systab_phys;
857	efi_status_t status;
858	unsigned long flags;
859
860	if (efi_is_mixed())
861		return efi_thunk_set_virtual_address_map(memory_map_size,
862							 descriptor_size,
863							 descriptor_version,
864							 virtual_map);
865	efi_enter_mm();
866
867	efi_fpu_begin();
868
869	/* Disable interrupts around EFI calls: */
870	local_irq_save(flags);
871	status = arch_efi_call_virt(efi.runtime, set_virtual_address_map,
872				    memory_map_size, descriptor_size,
873				    descriptor_version, virtual_map);
874	local_irq_restore(flags);
875
876	efi_fpu_end();
877
878	/* grab the virtually remapped EFI runtime services table pointer */
879	efi.runtime = READ_ONCE(systab->runtime);
880
881	efi_leave_mm();
882
883	return status;
884}
885