1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Low-level PCI config space access for OLPC systems who lack the VSA
4 * PCI virtualization software.
5 *
6 * Copyright �� 2006  Advanced Micro Devices, Inc.
7 *
8 * The AMD Geode chipset (ie: GX2 processor, cs5536 I/O companion device)
9 * has some I/O functions (display, southbridge, sound, USB HCIs, etc)
10 * that more or less behave like PCI devices, but the hardware doesn't
11 * directly implement the PCI configuration space headers.  AMD provides
12 * "VSA" (Virtual System Architecture) software that emulates PCI config
13 * space for these devices, by trapping I/O accesses to PCI config register
14 * (CF8/CFC) and running some code in System Management Mode interrupt state.
15 * On the OLPC platform, we don't want to use that VSA code because
16 * (a) it slows down suspend/resume, and (b) recompiling it requires special
17 * compilers that are hard to get.  So instead of letting the complex VSA
18 * code simulate the PCI config registers for the on-chip devices, we
19 * just simulate them the easy way, by inserting the code into the
20 * pci_write_config and pci_read_config path.  Most of the config registers
21 * are read-only anyway, so the bulk of the simulation is just table lookup.
22 */
23
24#include <linux/pci.h>
25#include <linux/init.h>
26#include <asm/olpc.h>
27#include <asm/geode.h>
28#include <asm/pci_x86.h>
29
30/*
31 * In the tables below, the first two line (8 longwords) are the
32 * size masks that are used when the higher level PCI code determines
33 * the size of the region by writing ~0 to a base address register
34 * and reading back the result.
35 *
36 * The following lines are the values that are read during normal
37 * PCI config access cycles, i.e. not after just having written
38 * ~0 to a base address register.
39 */
40
41static const uint32_t lxnb_hdr[] = {  /* dev 1 function 0 - devfn = 8 */
42	0x0,	0x0,	0x0,	0x0,
43	0x0,	0x0,	0x0,	0x0,
44
45	0x281022, 0x2200005, 0x6000021, 0x80f808,	/* AMD Vendor ID */
46	0x0,	0x0,	0x0,	0x0,   /* No virtual registers, hence no BAR */
47	0x0,	0x0,	0x0,	0x28100b,
48	0x0,	0x0,	0x0,	0x0,
49	0x0,	0x0,	0x0,	0x0,
50	0x0,	0x0,	0x0,	0x0,
51	0x0,	0x0,	0x0,	0x0,
52};
53
54static const uint32_t gxnb_hdr[] = {  /* dev 1 function 0 - devfn = 8 */
55	0xfffffffd, 0x0, 0x0,	0x0,
56	0x0,	0x0,	0x0,	0x0,
57
58	0x28100b, 0x2200005, 0x6000021, 0x80f808,	/* NSC Vendor ID */
59	0xac1d,	0x0,	0x0,	0x0,  /* I/O BAR - base of virtual registers */
60	0x0,	0x0,	0x0,	0x28100b,
61	0x0,	0x0,	0x0,	0x0,
62	0x0,	0x0,	0x0,	0x0,
63	0x0,	0x0,	0x0,	0x0,
64	0x0,	0x0,	0x0,	0x0,
65};
66
67static const uint32_t lxfb_hdr[] = {  /* dev 1 function 1 - devfn = 9 */
68	0xff000008, 0xffffc000, 0xffffc000, 0xffffc000,
69	0xffffc000,	0x0,	0x0,	0x0,
70
71	0x20811022, 0x2200003, 0x3000000, 0x0,		/* AMD Vendor ID */
72	0xfd000000, 0xfe000000, 0xfe004000, 0xfe008000, /* FB, GP, VG, DF */
73	0xfe00c000, 0x0, 0x0,	0x30100b,		/* VIP */
74	0x0,	0x0,	0x0,	0x10e,	   /* INTA, IRQ14 for graphics accel */
75	0x0,	0x0,	0x0,	0x0,
76	0x3d0,	0x3c0,	0xa0000, 0x0,	    /* VG IO, VG IO, EGA FB, MONO FB */
77	0x0,	0x0,	0x0,	0x0,
78};
79
80static const uint32_t gxfb_hdr[] = {  /* dev 1 function 1 - devfn = 9 */
81	0xff800008, 0xffffc000, 0xffffc000, 0xffffc000,
82	0x0,	0x0,	0x0,	0x0,
83
84	0x30100b, 0x2200003, 0x3000000, 0x0,		/* NSC Vendor ID */
85	0xfd000000, 0xfe000000, 0xfe004000, 0xfe008000,	/* FB, GP, VG, DF */
86	0x0,	0x0,	0x0,	0x30100b,
87	0x0,	0x0,	0x0,	0x0,
88	0x0,	0x0,	0x0,	0x0,
89	0x3d0,	0x3c0,	0xa0000, 0x0,  	    /* VG IO, VG IO, EGA FB, MONO FB */
90	0x0,	0x0,	0x0,	0x0,
91};
92
93static const uint32_t aes_hdr[] = {	/* dev 1 function 2 - devfn = 0xa */
94	0xffffc000, 0x0, 0x0,	0x0,
95	0x0,	0x0,	0x0,	0x0,
96
97	0x20821022, 0x2a00006, 0x10100000, 0x8,		/* NSC Vendor ID */
98	0xfe010000, 0x0, 0x0,	0x0,			/* AES registers */
99	0x0,	0x0,	0x0,	0x20821022,
100	0x0,	0x0,	0x0,	0x0,
101	0x0,	0x0,	0x0,	0x0,
102	0x0,	0x0,	0x0,	0x0,
103	0x0,	0x0,	0x0,	0x0,
104};
105
106
107static const uint32_t isa_hdr[] = {  /* dev f function 0 - devfn = 78 */
108	0xfffffff9, 0xffffff01, 0xffffffc1, 0xffffffe1,
109	0xffffff81, 0xffffffc1, 0x0, 0x0,
110
111	0x20901022, 0x2a00049, 0x6010003, 0x802000,
112	0x18b1,	0x1001,	0x1801,	0x1881,	/* SMB-8   GPIO-256 MFGPT-64  IRQ-32 */
113	0x1401,	0x1841,	0x0,	0x20901022,		/* PMS-128 ACPI-64 */
114	0x0,	0x0,	0x0,	0x0,
115	0x0,	0x0,	0x0,	0x0,
116	0x0,	0x0,	0x0,	0xaa5b,			/* IRQ steering */
117	0x0,	0x0,	0x0,	0x0,
118};
119
120static const uint32_t ac97_hdr[] = {  /* dev f function 3 - devfn = 7b */
121	0xffffff81, 0x0, 0x0,	0x0,
122	0x0,	0x0,	0x0,	0x0,
123
124	0x20931022, 0x2a00041, 0x4010001, 0x0,
125	0x1481,	0x0,	0x0,	0x0,			/* I/O BAR-128 */
126	0x0,	0x0,	0x0,	0x20931022,
127	0x0,	0x0,	0x0,	0x205,			/* IntB, IRQ5 */
128	0x0,	0x0,	0x0,	0x0,
129	0x0,	0x0,	0x0,	0x0,
130	0x0,	0x0,	0x0,	0x0,
131};
132
133static const uint32_t ohci_hdr[] = {  /* dev f function 4 - devfn = 7c */
134	0xfffff000, 0x0, 0x0,	0x0,
135	0x0,	0x0,	0x0,	0x0,
136
137	0x20941022, 0x2300006, 0xc031002, 0x0,
138	0xfe01a000, 0x0, 0x0,	0x0,			/* MEMBAR-1000 */
139	0x0,	0x0,	0x0,	0x20941022,
140	0x0,	0x40,	0x0,	0x40a,			/* CapPtr INT-D, IRQA */
141	0xc8020001, 0x0, 0x0,	0x0,	/* Capabilities - 40 is R/O,
142					   44 is mask 8103 (power control) */
143	0x0,	0x0,	0x0,	0x0,
144	0x0,	0x0,	0x0,	0x0,
145};
146
147static const uint32_t ehci_hdr[] = {  /* dev f function 4 - devfn = 7d */
148	0xfffff000, 0x0, 0x0,	0x0,
149	0x0,	0x0,	0x0,	0x0,
150
151	0x20951022, 0x2300006, 0xc032002, 0x0,
152	0xfe01b000, 0x0, 0x0,	0x0,			/* MEMBAR-1000 */
153	0x0,	0x0,	0x0,	0x20951022,
154	0x0,	0x40,	0x0,	0x40a,			/* CapPtr INT-D, IRQA */
155	0xc8020001, 0x0, 0x0,	0x0,	/* Capabilities - 40 is R/O, 44 is
156					   mask 8103 (power control) */
157#if 0
158	0x1,	0x40080000, 0x0, 0x0,	/* EECP - see EHCI spec section 2.1.7 */
159#endif
160	0x01000001, 0x0, 0x0,	0x0,	/* EECP - see EHCI spec section 2.1.7 */
161	0x2020,	0x0,	0x0,	0x0,	/* (EHCI page 8) 60 SBRN (R/O),
162					   61 FLADJ (R/W), PORTWAKECAP  */
163};
164
165static uint32_t ff_loc = ~0;
166static uint32_t zero_loc;
167static int bar_probing;		/* Set after a write of ~0 to a BAR */
168static int is_lx;
169
170#define NB_SLOT 0x1	/* Northbridge - GX chip - Device 1 */
171#define SB_SLOT 0xf	/* Southbridge - CS5536 chip - Device F */
172
173static int is_simulated(unsigned int bus, unsigned int devfn)
174{
175	return (!bus && ((PCI_SLOT(devfn) == NB_SLOT) ||
176			(PCI_SLOT(devfn) == SB_SLOT)));
177}
178
179static uint32_t *hdr_addr(const uint32_t *hdr, int reg)
180{
181	uint32_t addr;
182
183	/*
184	 * This is a little bit tricky.  The header maps consist of
185	 * 0x20 bytes of size masks, followed by 0x70 bytes of header data.
186	 * In the normal case, when not probing a BAR's size, we want
187	 * to access the header data, so we add 0x20 to the reg offset,
188	 * thus skipping the size mask area.
189	 * In the BAR probing case, we want to access the size mask for
190	 * the BAR, so we subtract 0x10 (the config header offset for
191	 * BAR0), and don't skip the size mask area.
192	 */
193
194	addr = (uint32_t)hdr + reg + (bar_probing ? -0x10 : 0x20);
195
196	bar_probing = 0;
197	return (uint32_t *)addr;
198}
199
200static int pci_olpc_read(unsigned int seg, unsigned int bus,
201		unsigned int devfn, int reg, int len, uint32_t *value)
202{
203	uint32_t *addr;
204
205	WARN_ON(seg);
206
207	/* Use the hardware mechanism for non-simulated devices */
208	if (!is_simulated(bus, devfn))
209		return pci_direct_conf1.read(seg, bus, devfn, reg, len, value);
210
211	/*
212	 * No device has config registers past 0x70, so we save table space
213	 * by not storing entries for the nonexistent registers
214	 */
215	if (reg >= 0x70)
216		addr = &zero_loc;
217	else {
218		switch (devfn) {
219		case  0x8:
220			addr = hdr_addr(is_lx ? lxnb_hdr : gxnb_hdr, reg);
221			break;
222		case  0x9:
223			addr = hdr_addr(is_lx ? lxfb_hdr : gxfb_hdr, reg);
224			break;
225		case  0xa:
226			addr = is_lx ? hdr_addr(aes_hdr, reg) : &ff_loc;
227			break;
228		case 0x78:
229			addr = hdr_addr(isa_hdr, reg);
230			break;
231		case 0x7b:
232			addr = hdr_addr(ac97_hdr, reg);
233			break;
234		case 0x7c:
235			addr = hdr_addr(ohci_hdr, reg);
236			break;
237		case 0x7d:
238			addr = hdr_addr(ehci_hdr, reg);
239			break;
240		default:
241			addr = &ff_loc;
242			break;
243		}
244	}
245	switch (len) {
246	case 1:
247		*value = *(uint8_t *)addr;
248		break;
249	case 2:
250		*value = *(uint16_t *)addr;
251		break;
252	case 4:
253		*value = *addr;
254		break;
255	default:
256		BUG();
257	}
258
259	return 0;
260}
261
262static int pci_olpc_write(unsigned int seg, unsigned int bus,
263		unsigned int devfn, int reg, int len, uint32_t value)
264{
265	WARN_ON(seg);
266
267	/* Use the hardware mechanism for non-simulated devices */
268	if (!is_simulated(bus, devfn))
269		return pci_direct_conf1.write(seg, bus, devfn, reg, len, value);
270
271	/* XXX we may want to extend this to simulate EHCI power management */
272
273	/*
274	 * Mostly we just discard writes, but if the write is a size probe
275	 * (i.e. writing ~0 to a BAR), we remember it and arrange to return
276	 * the appropriate size mask on the next read.  This is cheating
277	 * to some extent, because it depends on the fact that the next
278	 * access after such a write will always be a read to the same BAR.
279	 */
280
281	if ((reg >= 0x10) && (reg < 0x2c)) {
282		/* write is to a BAR */
283		if (value == ~0)
284			bar_probing = 1;
285	} else {
286		/*
287		 * No warning on writes to ROM BAR, CMD, LATENCY_TIMER,
288		 * CACHE_LINE_SIZE, or PM registers.
289		 */
290		if ((reg != PCI_ROM_ADDRESS) && (reg != PCI_COMMAND_MASTER) &&
291				(reg != PCI_LATENCY_TIMER) &&
292				(reg != PCI_CACHE_LINE_SIZE) && (reg != 0x44))
293			printk(KERN_WARNING "OLPC PCI: Config write to devfn"
294				" %x reg %x value %x\n", devfn, reg, value);
295	}
296
297	return 0;
298}
299
300static const struct pci_raw_ops pci_olpc_conf = {
301	.read =	pci_olpc_read,
302	.write = pci_olpc_write,
303};
304
305int __init pci_olpc_init(void)
306{
307	printk(KERN_INFO "PCI: Using configuration type OLPC XO-1\n");
308	raw_pci_ops = &pci_olpc_conf;
309	is_lx = is_geode_lx();
310	return 0;
311}
312