1192873Sweongyo// SPDX-License-Identifier: GPL-2.0-only
2192873Sweongyo#include <linux/init.h>
3192873Sweongyo
4192873Sweongyo#include <linux/mm.h>
5192873Sweongyo#include <linux/spinlock.h>
6192873Sweongyo#include <linux/smp.h>
7192873Sweongyo#include <linux/interrupt.h>
8192873Sweongyo#include <linux/export.h>
9192873Sweongyo#include <linux/cpu.h>
10192873Sweongyo#include <linux/debugfs.h>
11192873Sweongyo#include <linux/sched/smt.h>
12192873Sweongyo#include <linux/task_work.h>
13192873Sweongyo#include <linux/mmu_notifier.h>
14192873Sweongyo
15192873Sweongyo#include <asm/tlbflush.h>
16192873Sweongyo#include <asm/mmu_context.h>
17192873Sweongyo#include <asm/nospec-branch.h>
18192873Sweongyo#include <asm/cache.h>
19192873Sweongyo#include <asm/cacheflush.h>
20192873Sweongyo#include <asm/apic.h>
21198194Sweongyo#include <asm/perf_event.h>
22192873Sweongyo
23192873Sweongyo#include "mm_internal.h"
24192873Sweongyo
25192873Sweongyo#ifdef CONFIG_PARAVIRT
26192873Sweongyo# define STATIC_NOPV
27198194Sweongyo#else
28192873Sweongyo# define STATIC_NOPV			static
29192873Sweongyo# define __flush_tlb_local		native_flush_tlb_local
30192873Sweongyo# define __flush_tlb_global		native_flush_tlb_global
31192873Sweongyo# define __flush_tlb_one_user(addr)	native_flush_tlb_one_user(addr)
32192873Sweongyo# define __flush_tlb_multi(msk, info)	native_flush_tlb_multi(msk, info)
33192873Sweongyo#endif
34192873Sweongyo
35192873Sweongyo/*
36192873Sweongyo *	TLB flushing, formerly SMP-only
37192873Sweongyo *		c/o Linus Torvalds.
38192873Sweongyo *
39192873Sweongyo *	These mean you can really definitely utterly forget about
40192873Sweongyo *	writing to user space from interrupts. (Its not allowed anyway).
41192873Sweongyo *
42192873Sweongyo *	Optimizations Manfred Spraul <manfred@colorfullife.com>
43192873Sweongyo *
44192873Sweongyo *	More scalable flush, from Andi Kleen
45192873Sweongyo *
46192873Sweongyo *	Implement flush IPI by CALL_FUNCTION_VECTOR, Alex Shi
47192873Sweongyo */
48192873Sweongyo
49192873Sweongyo/*
50192873Sweongyo * Bits to mangle the TIF_SPEC_* state into the mm pointer which is
51192873Sweongyo * stored in cpu_tlb_state.last_user_mm_spec.
52192873Sweongyo */
53192873Sweongyo#define LAST_USER_MM_IBPB	0x1UL
54198194Sweongyo#define LAST_USER_MM_L1D_FLUSH	0x2UL
55192873Sweongyo#define LAST_USER_MM_SPEC_MASK	(LAST_USER_MM_IBPB | LAST_USER_MM_L1D_FLUSH)
56192873Sweongyo
57192873Sweongyo/* Bits to set when tlbstate and flush is (re)initialized */
58346003Savos#define LAST_USER_MM_INIT	LAST_USER_MM_IBPB
59192873Sweongyo
60345636Savos/*
61192873Sweongyo * The x86 feature is called PCID (Process Context IDentifier). It is similar
62192873Sweongyo * to what is traditionally called ASID on the RISC processors.
63192873Sweongyo *
64253757Shselasky * We don't use the traditional ASID implementation, where each process/mm gets
65192873Sweongyo * its own ASID and flush/restart when we run out of ASID space.
66192873Sweongyo *
67346003Savos * Instead we have a small per-cpu array of ASIDs and cache the last few mm's
68346003Savos * that came by on this CPU, allowing cheaper switch_mm between processes on
69192873Sweongyo * this CPU.
70192873Sweongyo *
71192873Sweongyo * We end up with different spaces for different things. To avoid confusion we
72192873Sweongyo * use different names for each of them:
73192873Sweongyo *
74192873Sweongyo * ASID  - [0, TLB_NR_DYN_ASIDS-1]
75345636Savos *         the canonical identifier for an mm
76192873Sweongyo *
77192873Sweongyo * kPCID - [1, TLB_NR_DYN_ASIDS]
78345636Savos *         the value we write into the PCID part of CR3; corresponds to the
79192873Sweongyo *         ASID+1, because PCID 0 is special.
80192873Sweongyo *
81192873Sweongyo * uPCID - [2048 + 1, 2048 + TLB_NR_DYN_ASIDS]
82192873Sweongyo *         for KPTI each mm has two address spaces and thus needs two
83192873Sweongyo *         PCID values, but we can still do with a single ASID denomination
84203087Sweongyo *         for each mm. Corresponds to kPCID + 2048.
85203087Sweongyo *
86203087Sweongyo */
87203087Sweongyo
88192873Sweongyo/* There are 12 bits of space for ASIDS in CR3 */
89192873Sweongyo#define CR3_HW_ASID_BITS		12
90192873Sweongyo
91192873Sweongyo/*
92192873Sweongyo * When enabled, MITIGATION_PAGE_TABLE_ISOLATION consumes a single bit for
93192873Sweongyo * user/kernel switches
94192873Sweongyo */
95192873Sweongyo#ifdef CONFIG_MITIGATION_PAGE_TABLE_ISOLATION
96287197Sglebius# define PTI_CONSUMED_PCID_BITS	1
97287197Sglebius#else
98192873Sweongyo# define PTI_CONSUMED_PCID_BITS	0
99192984Sthompsa#endif
100192873Sweongyo
101244503Shselasky#define CR3_AVAIL_PCID_BITS (X86_CR3_PCID_BITS - PTI_CONSUMED_PCID_BITS)
102192873Sweongyo
103192873Sweongyo/*
104192873Sweongyo * ASIDs are zero-based: 0->MAX_AVAIL_ASID are valid.  -1 below to account
105192873Sweongyo * for them being zero-based.  Another -1 is because PCID 0 is reserved for
106192873Sweongyo * use by non-PCID-aware users.
107192873Sweongyo */
108192873Sweongyo#define MAX_ASID_AVAILABLE ((1 << CR3_AVAIL_PCID_BITS) - 2)
109192873Sweongyo
110246614Shselasky/*
111287197Sglebius * Given @asid, compute kPCID
112192873Sweongyo */
113192873Sweongyostatic inline u16 kern_pcid(u16 asid)
114192873Sweongyo{
115192873Sweongyo	VM_WARN_ON_ONCE(asid > MAX_ASID_AVAILABLE);
116192873Sweongyo
117192873Sweongyo#ifdef CONFIG_MITIGATION_PAGE_TABLE_ISOLATION
118192873Sweongyo	/*
119192873Sweongyo	 * Make sure that the dynamic ASID space does not conflict with the
120192873Sweongyo	 * bit we are using to switch between user and kernel ASIDs.
121192873Sweongyo	 */
122193045Sthompsa	BUILD_BUG_ON(TLB_NR_DYN_ASIDS >= (1 << X86_CR3_PTI_PCID_USER_BIT));
123193045Sthompsa
124192873Sweongyo	/*
125193045Sthompsa	 * The ASID being passed in here should have respected the
126192873Sweongyo	 * MAX_ASID_AVAILABLE and thus never have the switch bit set.
127193045Sthompsa	 */
128192873Sweongyo	VM_WARN_ON_ONCE(asid & (1 << X86_CR3_PTI_PCID_USER_BIT));
129192873Sweongyo#endif
130192873Sweongyo	/*
131192873Sweongyo	 * The dynamically-assigned ASIDs that get passed in are small
132192984Sthompsa	 * (<TLB_NR_DYN_ASIDS).  They never have the high switch bit set,
133192873Sweongyo	 * so do not bother to clear it.
134192873Sweongyo	 *
135192873Sweongyo	 * If PCID is on, ASID-aware code paths put the ASID+1 into the
136192873Sweongyo	 * PCID bits.  This serves two purposes.  It prevents a nasty
137192873Sweongyo	 * situation in which PCID-unaware code saves CR3, loads some other
138192873Sweongyo	 * value (with PCID == 0), and then restores CR3, thus corrupting
139192873Sweongyo	 * the TLB for ASID 0 if the saved ASID was nonzero.  It also means
140192873Sweongyo	 * that any bugs involving loading a PCID-enabled CR3 with
141192873Sweongyo	 * CR4.PCIDE off will trigger deterministically.
142192873Sweongyo	 */
143192873Sweongyo	return asid + 1;
144192984Sthompsa}
145192873Sweongyo
146192873Sweongyo/*
147192873Sweongyo * Given @asid, compute uPCID
148192873Sweongyo */
149192873Sweongyostatic inline u16 user_pcid(u16 asid)
150192873Sweongyo{
151192873Sweongyo	u16 ret = kern_pcid(asid);
152192873Sweongyo#ifdef CONFIG_MITIGATION_PAGE_TABLE_ISOLATION
153192873Sweongyo	ret |= 1 << X86_CR3_PTI_PCID_USER_BIT;
154192873Sweongyo#endif
155192873Sweongyo	return ret;
156192873Sweongyo}
157192873Sweongyo
158192873Sweongyostatic inline unsigned long build_cr3(pgd_t *pgd, u16 asid, unsigned long lam)
159192873Sweongyo{
160192873Sweongyo	unsigned long cr3 = __sme_pa(pgd) | lam;
161192873Sweongyo
162192873Sweongyo	if (static_cpu_has(X86_FEATURE_PCID)) {
163192873Sweongyo		VM_WARN_ON_ONCE(asid > MAX_ASID_AVAILABLE);
164192873Sweongyo		cr3 |= kern_pcid(asid);
165192873Sweongyo	} else {
166192873Sweongyo		VM_WARN_ON_ONCE(asid != 0);
167192873Sweongyo	}
168192873Sweongyo
169192873Sweongyo	return cr3;
170192873Sweongyo}
171192873Sweongyo
172192873Sweongyostatic inline unsigned long build_cr3_noflush(pgd_t *pgd, u16 asid,
173192873Sweongyo					      unsigned long lam)
174198194Sweongyo{
175198194Sweongyo	/*
176198194Sweongyo	 * Use boot_cpu_has() instead of this_cpu_has() as this function
177198194Sweongyo	 * might be called during early boot. This should work even after
178203087Sweongyo	 * boot because all CPU's the have same capabilities:
179203087Sweongyo	 */
180192873Sweongyo	VM_WARN_ON_ONCE(!boot_cpu_has(X86_FEATURE_PCID));
181192873Sweongyo	return build_cr3(pgd, asid, lam) | CR3_NOFLUSH;
182192873Sweongyo}
183192873Sweongyo
184192873Sweongyo/*
185192873Sweongyo * We get here when we do something requiring a TLB invalidation
186192873Sweongyo * but could not go invalidate all of the contexts.  We do the
187 * necessary invalidation by clearing out the 'ctx_id' which
188 * forces a TLB flush when the context is loaded.
189 */
190static void clear_asid_other(void)
191{
192	u16 asid;
193
194	/*
195	 * This is only expected to be set if we have disabled
196	 * kernel _PAGE_GLOBAL pages.
197	 */
198	if (!static_cpu_has(X86_FEATURE_PTI)) {
199		WARN_ON_ONCE(1);
200		return;
201	}
202
203	for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) {
204		/* Do not need to flush the current asid */
205		if (asid == this_cpu_read(cpu_tlbstate.loaded_mm_asid))
206			continue;
207		/*
208		 * Make sure the next time we go to switch to
209		 * this asid, we do a flush:
210		 */
211		this_cpu_write(cpu_tlbstate.ctxs[asid].ctx_id, 0);
212	}
213	this_cpu_write(cpu_tlbstate.invalidate_other, false);
214}
215
216atomic64_t last_mm_ctx_id = ATOMIC64_INIT(1);
217
218
219static void choose_new_asid(struct mm_struct *next, u64 next_tlb_gen,
220			    u16 *new_asid, bool *need_flush)
221{
222	u16 asid;
223
224	if (!static_cpu_has(X86_FEATURE_PCID)) {
225		*new_asid = 0;
226		*need_flush = true;
227		return;
228	}
229
230	if (this_cpu_read(cpu_tlbstate.invalidate_other))
231		clear_asid_other();
232
233	for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) {
234		if (this_cpu_read(cpu_tlbstate.ctxs[asid].ctx_id) !=
235		    next->context.ctx_id)
236			continue;
237
238		*new_asid = asid;
239		*need_flush = (this_cpu_read(cpu_tlbstate.ctxs[asid].tlb_gen) <
240			       next_tlb_gen);
241		return;
242	}
243
244	/*
245	 * We don't currently own an ASID slot on this CPU.
246	 * Allocate a slot.
247	 */
248	*new_asid = this_cpu_add_return(cpu_tlbstate.next_asid, 1) - 1;
249	if (*new_asid >= TLB_NR_DYN_ASIDS) {
250		*new_asid = 0;
251		this_cpu_write(cpu_tlbstate.next_asid, 1);
252	}
253	*need_flush = true;
254}
255
256/*
257 * Given an ASID, flush the corresponding user ASID.  We can delay this
258 * until the next time we switch to it.
259 *
260 * See SWITCH_TO_USER_CR3.
261 */
262static inline void invalidate_user_asid(u16 asid)
263{
264	/* There is no user ASID if address space separation is off */
265	if (!IS_ENABLED(CONFIG_MITIGATION_PAGE_TABLE_ISOLATION))
266		return;
267
268	/*
269	 * We only have a single ASID if PCID is off and the CR3
270	 * write will have flushed it.
271	 */
272	if (!cpu_feature_enabled(X86_FEATURE_PCID))
273		return;
274
275	if (!static_cpu_has(X86_FEATURE_PTI))
276		return;
277
278	__set_bit(kern_pcid(asid),
279		  (unsigned long *)this_cpu_ptr(&cpu_tlbstate.user_pcid_flush_mask));
280}
281
282static void load_new_mm_cr3(pgd_t *pgdir, u16 new_asid, unsigned long lam,
283			    bool need_flush)
284{
285	unsigned long new_mm_cr3;
286
287	if (need_flush) {
288		invalidate_user_asid(new_asid);
289		new_mm_cr3 = build_cr3(pgdir, new_asid, lam);
290	} else {
291		new_mm_cr3 = build_cr3_noflush(pgdir, new_asid, lam);
292	}
293
294	/*
295	 * Caution: many callers of this function expect
296	 * that load_cr3() is serializing and orders TLB
297	 * fills with respect to the mm_cpumask writes.
298	 */
299	write_cr3(new_mm_cr3);
300}
301
302void leave_mm(void)
303{
304	struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
305
306	/*
307	 * It's plausible that we're in lazy TLB mode while our mm is init_mm.
308	 * If so, our callers still expect us to flush the TLB, but there
309	 * aren't any user TLB entries in init_mm to worry about.
310	 *
311	 * This needs to happen before any other sanity checks due to
312	 * intel_idle's shenanigans.
313	 */
314	if (loaded_mm == &init_mm)
315		return;
316
317	/* Warn if we're not lazy. */
318	WARN_ON(!this_cpu_read(cpu_tlbstate_shared.is_lazy));
319
320	switch_mm(NULL, &init_mm, NULL);
321}
322EXPORT_SYMBOL_GPL(leave_mm);
323
324void switch_mm(struct mm_struct *prev, struct mm_struct *next,
325	       struct task_struct *tsk)
326{
327	unsigned long flags;
328
329	local_irq_save(flags);
330	switch_mm_irqs_off(NULL, next, tsk);
331	local_irq_restore(flags);
332}
333
334/*
335 * Invoked from return to user/guest by a task that opted-in to L1D
336 * flushing but ended up running on an SMT enabled core due to wrong
337 * affinity settings or CPU hotplug. This is part of the paranoid L1D flush
338 * contract which this task requested.
339 */
340static void l1d_flush_force_sigbus(struct callback_head *ch)
341{
342	force_sig(SIGBUS);
343}
344
345static void l1d_flush_evaluate(unsigned long prev_mm, unsigned long next_mm,
346				struct task_struct *next)
347{
348	/* Flush L1D if the outgoing task requests it */
349	if (prev_mm & LAST_USER_MM_L1D_FLUSH)
350		wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
351
352	/* Check whether the incoming task opted in for L1D flush */
353	if (likely(!(next_mm & LAST_USER_MM_L1D_FLUSH)))
354		return;
355
356	/*
357	 * Validate that it is not running on an SMT sibling as this would
358	 * make the exercise pointless because the siblings share L1D. If
359	 * it runs on a SMT sibling, notify it with SIGBUS on return to
360	 * user/guest
361	 */
362	if (this_cpu_read(cpu_info.smt_active)) {
363		clear_ti_thread_flag(&next->thread_info, TIF_SPEC_L1D_FLUSH);
364		next->l1d_flush_kill.func = l1d_flush_force_sigbus;
365		task_work_add(next, &next->l1d_flush_kill, TWA_RESUME);
366	}
367}
368
369static unsigned long mm_mangle_tif_spec_bits(struct task_struct *next)
370{
371	unsigned long next_tif = read_task_thread_flags(next);
372	unsigned long spec_bits = (next_tif >> TIF_SPEC_IB) & LAST_USER_MM_SPEC_MASK;
373
374	/*
375	 * Ensure that the bit shift above works as expected and the two flags
376	 * end up in bit 0 and 1.
377	 */
378	BUILD_BUG_ON(TIF_SPEC_L1D_FLUSH != TIF_SPEC_IB + 1);
379
380	return (unsigned long)next->mm | spec_bits;
381}
382
383static void cond_mitigation(struct task_struct *next)
384{
385	unsigned long prev_mm, next_mm;
386
387	if (!next || !next->mm)
388		return;
389
390	next_mm = mm_mangle_tif_spec_bits(next);
391	prev_mm = this_cpu_read(cpu_tlbstate.last_user_mm_spec);
392
393	/*
394	 * Avoid user/user BTB poisoning by flushing the branch predictor
395	 * when switching between processes. This stops one process from
396	 * doing Spectre-v2 attacks on another.
397	 *
398	 * Both, the conditional and the always IBPB mode use the mm
399	 * pointer to avoid the IBPB when switching between tasks of the
400	 * same process. Using the mm pointer instead of mm->context.ctx_id
401	 * opens a hypothetical hole vs. mm_struct reuse, which is more or
402	 * less impossible to control by an attacker. Aside of that it
403	 * would only affect the first schedule so the theoretically
404	 * exposed data is not really interesting.
405	 */
406	if (static_branch_likely(&switch_mm_cond_ibpb)) {
407		/*
408		 * This is a bit more complex than the always mode because
409		 * it has to handle two cases:
410		 *
411		 * 1) Switch from a user space task (potential attacker)
412		 *    which has TIF_SPEC_IB set to a user space task
413		 *    (potential victim) which has TIF_SPEC_IB not set.
414		 *
415		 * 2) Switch from a user space task (potential attacker)
416		 *    which has TIF_SPEC_IB not set to a user space task
417		 *    (potential victim) which has TIF_SPEC_IB set.
418		 *
419		 * This could be done by unconditionally issuing IBPB when
420		 * a task which has TIF_SPEC_IB set is either scheduled in
421		 * or out. Though that results in two flushes when:
422		 *
423		 * - the same user space task is scheduled out and later
424		 *   scheduled in again and only a kernel thread ran in
425		 *   between.
426		 *
427		 * - a user space task belonging to the same process is
428		 *   scheduled in after a kernel thread ran in between
429		 *
430		 * - a user space task belonging to the same process is
431		 *   scheduled in immediately.
432		 *
433		 * Optimize this with reasonably small overhead for the
434		 * above cases. Mangle the TIF_SPEC_IB bit into the mm
435		 * pointer of the incoming task which is stored in
436		 * cpu_tlbstate.last_user_mm_spec for comparison.
437		 *
438		 * Issue IBPB only if the mm's are different and one or
439		 * both have the IBPB bit set.
440		 */
441		if (next_mm != prev_mm &&
442		    (next_mm | prev_mm) & LAST_USER_MM_IBPB)
443			indirect_branch_prediction_barrier();
444	}
445
446	if (static_branch_unlikely(&switch_mm_always_ibpb)) {
447		/*
448		 * Only flush when switching to a user space task with a
449		 * different context than the user space task which ran
450		 * last on this CPU.
451		 */
452		if ((prev_mm & ~LAST_USER_MM_SPEC_MASK) !=
453					(unsigned long)next->mm)
454			indirect_branch_prediction_barrier();
455	}
456
457	if (static_branch_unlikely(&switch_mm_cond_l1d_flush)) {
458		/*
459		 * Flush L1D when the outgoing task requested it and/or
460		 * check whether the incoming task requested L1D flushing
461		 * and ended up on an SMT sibling.
462		 */
463		if (unlikely((prev_mm | next_mm) & LAST_USER_MM_L1D_FLUSH))
464			l1d_flush_evaluate(prev_mm, next_mm, next);
465	}
466
467	this_cpu_write(cpu_tlbstate.last_user_mm_spec, next_mm);
468}
469
470#ifdef CONFIG_PERF_EVENTS
471static inline void cr4_update_pce_mm(struct mm_struct *mm)
472{
473	if (static_branch_unlikely(&rdpmc_always_available_key) ||
474	    (!static_branch_unlikely(&rdpmc_never_available_key) &&
475	     atomic_read(&mm->context.perf_rdpmc_allowed))) {
476		/*
477		 * Clear the existing dirty counters to
478		 * prevent the leak for an RDPMC task.
479		 */
480		perf_clear_dirty_counters();
481		cr4_set_bits_irqsoff(X86_CR4_PCE);
482	} else
483		cr4_clear_bits_irqsoff(X86_CR4_PCE);
484}
485
486void cr4_update_pce(void *ignored)
487{
488	cr4_update_pce_mm(this_cpu_read(cpu_tlbstate.loaded_mm));
489}
490
491#else
492static inline void cr4_update_pce_mm(struct mm_struct *mm) { }
493#endif
494
495/*
496 * This optimizes when not actually switching mm's.  Some architectures use the
497 * 'unused' argument for this optimization, but x86 must use
498 * 'cpu_tlbstate.loaded_mm' instead because it does not always keep
499 * 'current->active_mm' up to date.
500 */
501void switch_mm_irqs_off(struct mm_struct *unused, struct mm_struct *next,
502			struct task_struct *tsk)
503{
504	struct mm_struct *prev = this_cpu_read(cpu_tlbstate.loaded_mm);
505	u16 prev_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
506	unsigned long new_lam = mm_lam_cr3_mask(next);
507	bool was_lazy = this_cpu_read(cpu_tlbstate_shared.is_lazy);
508	unsigned cpu = smp_processor_id();
509	u64 next_tlb_gen;
510	bool need_flush;
511	u16 new_asid;
512
513	/* We don't want flush_tlb_func() to run concurrently with us. */
514	if (IS_ENABLED(CONFIG_PROVE_LOCKING))
515		WARN_ON_ONCE(!irqs_disabled());
516
517	/*
518	 * Verify that CR3 is what we think it is.  This will catch
519	 * hypothetical buggy code that directly switches to swapper_pg_dir
520	 * without going through leave_mm() / switch_mm_irqs_off() or that
521	 * does something like write_cr3(read_cr3_pa()).
522	 *
523	 * Only do this check if CONFIG_DEBUG_VM=y because __read_cr3()
524	 * isn't free.
525	 */
526#ifdef CONFIG_DEBUG_VM
527	if (WARN_ON_ONCE(__read_cr3() != build_cr3(prev->pgd, prev_asid,
528						   tlbstate_lam_cr3_mask()))) {
529		/*
530		 * If we were to BUG here, we'd be very likely to kill
531		 * the system so hard that we don't see the call trace.
532		 * Try to recover instead by ignoring the error and doing
533		 * a global flush to minimize the chance of corruption.
534		 *
535		 * (This is far from being a fully correct recovery.
536		 *  Architecturally, the CPU could prefetch something
537		 *  back into an incorrect ASID slot and leave it there
538		 *  to cause trouble down the road.  It's better than
539		 *  nothing, though.)
540		 */
541		__flush_tlb_all();
542	}
543#endif
544	if (was_lazy)
545		this_cpu_write(cpu_tlbstate_shared.is_lazy, false);
546
547	/*
548	 * The membarrier system call requires a full memory barrier and
549	 * core serialization before returning to user-space, after
550	 * storing to rq->curr, when changing mm.  This is because
551	 * membarrier() sends IPIs to all CPUs that are in the target mm
552	 * to make them issue memory barriers.  However, if another CPU
553	 * switches to/from the target mm concurrently with
554	 * membarrier(), it can cause that CPU not to receive an IPI
555	 * when it really should issue a memory barrier.  Writing to CR3
556	 * provides that full memory barrier and core serializing
557	 * instruction.
558	 */
559	if (prev == next) {
560		/* Not actually switching mm's */
561		VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[prev_asid].ctx_id) !=
562			   next->context.ctx_id);
563
564		/*
565		 * If this races with another thread that enables lam, 'new_lam'
566		 * might not match tlbstate_lam_cr3_mask().
567		 */
568
569		/*
570		 * Even in lazy TLB mode, the CPU should stay set in the
571		 * mm_cpumask. The TLB shootdown code can figure out from
572		 * cpu_tlbstate_shared.is_lazy whether or not to send an IPI.
573		 */
574		if (WARN_ON_ONCE(prev != &init_mm &&
575				 !cpumask_test_cpu(cpu, mm_cpumask(next))))
576			cpumask_set_cpu(cpu, mm_cpumask(next));
577
578		/*
579		 * If the CPU is not in lazy TLB mode, we are just switching
580		 * from one thread in a process to another thread in the same
581		 * process. No TLB flush required.
582		 */
583		if (!was_lazy)
584			return;
585
586		/*
587		 * Read the tlb_gen to check whether a flush is needed.
588		 * If the TLB is up to date, just use it.
589		 * The barrier synchronizes with the tlb_gen increment in
590		 * the TLB shootdown code.
591		 */
592		smp_mb();
593		next_tlb_gen = atomic64_read(&next->context.tlb_gen);
594		if (this_cpu_read(cpu_tlbstate.ctxs[prev_asid].tlb_gen) ==
595				next_tlb_gen)
596			return;
597
598		/*
599		 * TLB contents went out of date while we were in lazy
600		 * mode. Fall through to the TLB switching code below.
601		 */
602		new_asid = prev_asid;
603		need_flush = true;
604	} else {
605		/*
606		 * Apply process to process speculation vulnerability
607		 * mitigations if applicable.
608		 */
609		cond_mitigation(tsk);
610
611		/*
612		 * Stop remote flushes for the previous mm.
613		 * Skip kernel threads; we never send init_mm TLB flushing IPIs,
614		 * but the bitmap manipulation can cause cache line contention.
615		 */
616		if (prev != &init_mm) {
617			VM_WARN_ON_ONCE(!cpumask_test_cpu(cpu,
618						mm_cpumask(prev)));
619			cpumask_clear_cpu(cpu, mm_cpumask(prev));
620		}
621
622		/*
623		 * Start remote flushes and then read tlb_gen.
624		 */
625		if (next != &init_mm)
626			cpumask_set_cpu(cpu, mm_cpumask(next));
627		next_tlb_gen = atomic64_read(&next->context.tlb_gen);
628
629		choose_new_asid(next, next_tlb_gen, &new_asid, &need_flush);
630
631		/* Let nmi_uaccess_okay() know that we're changing CR3. */
632		this_cpu_write(cpu_tlbstate.loaded_mm, LOADED_MM_SWITCHING);
633		barrier();
634	}
635
636	set_tlbstate_lam_mode(next);
637	if (need_flush) {
638		this_cpu_write(cpu_tlbstate.ctxs[new_asid].ctx_id, next->context.ctx_id);
639		this_cpu_write(cpu_tlbstate.ctxs[new_asid].tlb_gen, next_tlb_gen);
640		load_new_mm_cr3(next->pgd, new_asid, new_lam, true);
641
642		trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL);
643	} else {
644		/* The new ASID is already up to date. */
645		load_new_mm_cr3(next->pgd, new_asid, new_lam, false);
646
647		trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, 0);
648	}
649
650	/* Make sure we write CR3 before loaded_mm. */
651	barrier();
652
653	this_cpu_write(cpu_tlbstate.loaded_mm, next);
654	this_cpu_write(cpu_tlbstate.loaded_mm_asid, new_asid);
655
656	if (next != prev) {
657		cr4_update_pce_mm(next);
658		switch_ldt(prev, next);
659	}
660}
661
662/*
663 * Please ignore the name of this function.  It should be called
664 * switch_to_kernel_thread().
665 *
666 * enter_lazy_tlb() is a hint from the scheduler that we are entering a
667 * kernel thread or other context without an mm.  Acceptable implementations
668 * include doing nothing whatsoever, switching to init_mm, or various clever
669 * lazy tricks to try to minimize TLB flushes.
670 *
671 * The scheduler reserves the right to call enter_lazy_tlb() several times
672 * in a row.  It will notify us that we're going back to a real mm by
673 * calling switch_mm_irqs_off().
674 */
675void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk)
676{
677	if (this_cpu_read(cpu_tlbstate.loaded_mm) == &init_mm)
678		return;
679
680	this_cpu_write(cpu_tlbstate_shared.is_lazy, true);
681}
682
683/*
684 * Call this when reinitializing a CPU.  It fixes the following potential
685 * problems:
686 *
687 * - The ASID changed from what cpu_tlbstate thinks it is (most likely
688 *   because the CPU was taken down and came back up with CR3's PCID
689 *   bits clear.  CPU hotplug can do this.
690 *
691 * - The TLB contains junk in slots corresponding to inactive ASIDs.
692 *
693 * - The CPU went so far out to lunch that it may have missed a TLB
694 *   flush.
695 */
696void initialize_tlbstate_and_flush(void)
697{
698	int i;
699	struct mm_struct *mm = this_cpu_read(cpu_tlbstate.loaded_mm);
700	u64 tlb_gen = atomic64_read(&init_mm.context.tlb_gen);
701	unsigned long cr3 = __read_cr3();
702
703	/* Assert that CR3 already references the right mm. */
704	WARN_ON((cr3 & CR3_ADDR_MASK) != __pa(mm->pgd));
705
706	/* LAM expected to be disabled */
707	WARN_ON(cr3 & (X86_CR3_LAM_U48 | X86_CR3_LAM_U57));
708	WARN_ON(mm_lam_cr3_mask(mm));
709
710	/*
711	 * Assert that CR4.PCIDE is set if needed.  (CR4.PCIDE initialization
712	 * doesn't work like other CR4 bits because it can only be set from
713	 * long mode.)
714	 */
715	WARN_ON(boot_cpu_has(X86_FEATURE_PCID) &&
716		!(cr4_read_shadow() & X86_CR4_PCIDE));
717
718	/* Disable LAM, force ASID 0 and force a TLB flush. */
719	write_cr3(build_cr3(mm->pgd, 0, 0));
720
721	/* Reinitialize tlbstate. */
722	this_cpu_write(cpu_tlbstate.last_user_mm_spec, LAST_USER_MM_INIT);
723	this_cpu_write(cpu_tlbstate.loaded_mm_asid, 0);
724	this_cpu_write(cpu_tlbstate.next_asid, 1);
725	this_cpu_write(cpu_tlbstate.ctxs[0].ctx_id, mm->context.ctx_id);
726	this_cpu_write(cpu_tlbstate.ctxs[0].tlb_gen, tlb_gen);
727	set_tlbstate_lam_mode(mm);
728
729	for (i = 1; i < TLB_NR_DYN_ASIDS; i++)
730		this_cpu_write(cpu_tlbstate.ctxs[i].ctx_id, 0);
731}
732
733/*
734 * flush_tlb_func()'s memory ordering requirement is that any
735 * TLB fills that happen after we flush the TLB are ordered after we
736 * read active_mm's tlb_gen.  We don't need any explicit barriers
737 * because all x86 flush operations are serializing and the
738 * atomic64_read operation won't be reordered by the compiler.
739 */
740static void flush_tlb_func(void *info)
741{
742	/*
743	 * We have three different tlb_gen values in here.  They are:
744	 *
745	 * - mm_tlb_gen:     the latest generation.
746	 * - local_tlb_gen:  the generation that this CPU has already caught
747	 *                   up to.
748	 * - f->new_tlb_gen: the generation that the requester of the flush
749	 *                   wants us to catch up to.
750	 */
751	const struct flush_tlb_info *f = info;
752	struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
753	u32 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
754	u64 local_tlb_gen = this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen);
755	bool local = smp_processor_id() == f->initiating_cpu;
756	unsigned long nr_invalidate = 0;
757	u64 mm_tlb_gen;
758
759	/* This code cannot presently handle being reentered. */
760	VM_WARN_ON(!irqs_disabled());
761
762	if (!local) {
763		inc_irq_stat(irq_tlb_count);
764		count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
765
766		/* Can only happen on remote CPUs */
767		if (f->mm && f->mm != loaded_mm)
768			return;
769	}
770
771	if (unlikely(loaded_mm == &init_mm))
772		return;
773
774	VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].ctx_id) !=
775		   loaded_mm->context.ctx_id);
776
777	if (this_cpu_read(cpu_tlbstate_shared.is_lazy)) {
778		/*
779		 * We're in lazy mode.  We need to at least flush our
780		 * paging-structure cache to avoid speculatively reading
781		 * garbage into our TLB.  Since switching to init_mm is barely
782		 * slower than a minimal flush, just switch to init_mm.
783		 *
784		 * This should be rare, with native_flush_tlb_multi() skipping
785		 * IPIs to lazy TLB mode CPUs.
786		 */
787		switch_mm_irqs_off(NULL, &init_mm, NULL);
788		return;
789	}
790
791	if (unlikely(f->new_tlb_gen != TLB_GENERATION_INVALID &&
792		     f->new_tlb_gen <= local_tlb_gen)) {
793		/*
794		 * The TLB is already up to date in respect to f->new_tlb_gen.
795		 * While the core might be still behind mm_tlb_gen, checking
796		 * mm_tlb_gen unnecessarily would have negative caching effects
797		 * so avoid it.
798		 */
799		return;
800	}
801
802	/*
803	 * Defer mm_tlb_gen reading as long as possible to avoid cache
804	 * contention.
805	 */
806	mm_tlb_gen = atomic64_read(&loaded_mm->context.tlb_gen);
807
808	if (unlikely(local_tlb_gen == mm_tlb_gen)) {
809		/*
810		 * There's nothing to do: we're already up to date.  This can
811		 * happen if two concurrent flushes happen -- the first flush to
812		 * be handled can catch us all the way up, leaving no work for
813		 * the second flush.
814		 */
815		goto done;
816	}
817
818	WARN_ON_ONCE(local_tlb_gen > mm_tlb_gen);
819	WARN_ON_ONCE(f->new_tlb_gen > mm_tlb_gen);
820
821	/*
822	 * If we get to this point, we know that our TLB is out of date.
823	 * This does not strictly imply that we need to flush (it's
824	 * possible that f->new_tlb_gen <= local_tlb_gen), but we're
825	 * going to need to flush in the very near future, so we might
826	 * as well get it over with.
827	 *
828	 * The only question is whether to do a full or partial flush.
829	 *
830	 * We do a partial flush if requested and two extra conditions
831	 * are met:
832	 *
833	 * 1. f->new_tlb_gen == local_tlb_gen + 1.  We have an invariant that
834	 *    we've always done all needed flushes to catch up to
835	 *    local_tlb_gen.  If, for example, local_tlb_gen == 2 and
836	 *    f->new_tlb_gen == 3, then we know that the flush needed to bring
837	 *    us up to date for tlb_gen 3 is the partial flush we're
838	 *    processing.
839	 *
840	 *    As an example of why this check is needed, suppose that there
841	 *    are two concurrent flushes.  The first is a full flush that
842	 *    changes context.tlb_gen from 1 to 2.  The second is a partial
843	 *    flush that changes context.tlb_gen from 2 to 3.  If they get
844	 *    processed on this CPU in reverse order, we'll see
845	 *     local_tlb_gen == 1, mm_tlb_gen == 3, and end != TLB_FLUSH_ALL.
846	 *    If we were to use __flush_tlb_one_user() and set local_tlb_gen to
847	 *    3, we'd be break the invariant: we'd update local_tlb_gen above
848	 *    1 without the full flush that's needed for tlb_gen 2.
849	 *
850	 * 2. f->new_tlb_gen == mm_tlb_gen.  This is purely an optimization.
851	 *    Partial TLB flushes are not all that much cheaper than full TLB
852	 *    flushes, so it seems unlikely that it would be a performance win
853	 *    to do a partial flush if that won't bring our TLB fully up to
854	 *    date.  By doing a full flush instead, we can increase
855	 *    local_tlb_gen all the way to mm_tlb_gen and we can probably
856	 *    avoid another flush in the very near future.
857	 */
858	if (f->end != TLB_FLUSH_ALL &&
859	    f->new_tlb_gen == local_tlb_gen + 1 &&
860	    f->new_tlb_gen == mm_tlb_gen) {
861		/* Partial flush */
862		unsigned long addr = f->start;
863
864		/* Partial flush cannot have invalid generations */
865		VM_WARN_ON(f->new_tlb_gen == TLB_GENERATION_INVALID);
866
867		/* Partial flush must have valid mm */
868		VM_WARN_ON(f->mm == NULL);
869
870		nr_invalidate = (f->end - f->start) >> f->stride_shift;
871
872		while (addr < f->end) {
873			flush_tlb_one_user(addr);
874			addr += 1UL << f->stride_shift;
875		}
876		if (local)
877			count_vm_tlb_events(NR_TLB_LOCAL_FLUSH_ONE, nr_invalidate);
878	} else {
879		/* Full flush. */
880		nr_invalidate = TLB_FLUSH_ALL;
881
882		flush_tlb_local();
883		if (local)
884			count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
885	}
886
887	/* Both paths above update our state to mm_tlb_gen. */
888	this_cpu_write(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen, mm_tlb_gen);
889
890	/* Tracing is done in a unified manner to reduce the code size */
891done:
892	trace_tlb_flush(!local ? TLB_REMOTE_SHOOTDOWN :
893				(f->mm == NULL) ? TLB_LOCAL_SHOOTDOWN :
894						  TLB_LOCAL_MM_SHOOTDOWN,
895			nr_invalidate);
896}
897
898static bool tlb_is_not_lazy(int cpu, void *data)
899{
900	return !per_cpu(cpu_tlbstate_shared.is_lazy, cpu);
901}
902
903DEFINE_PER_CPU_SHARED_ALIGNED(struct tlb_state_shared, cpu_tlbstate_shared);
904EXPORT_PER_CPU_SYMBOL(cpu_tlbstate_shared);
905
906STATIC_NOPV void native_flush_tlb_multi(const struct cpumask *cpumask,
907					 const struct flush_tlb_info *info)
908{
909	/*
910	 * Do accounting and tracing. Note that there are (and have always been)
911	 * cases in which a remote TLB flush will be traced, but eventually
912	 * would not happen.
913	 */
914	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
915	if (info->end == TLB_FLUSH_ALL)
916		trace_tlb_flush(TLB_REMOTE_SEND_IPI, TLB_FLUSH_ALL);
917	else
918		trace_tlb_flush(TLB_REMOTE_SEND_IPI,
919				(info->end - info->start) >> PAGE_SHIFT);
920
921	/*
922	 * If no page tables were freed, we can skip sending IPIs to
923	 * CPUs in lazy TLB mode. They will flush the CPU themselves
924	 * at the next context switch.
925	 *
926	 * However, if page tables are getting freed, we need to send the
927	 * IPI everywhere, to prevent CPUs in lazy TLB mode from tripping
928	 * up on the new contents of what used to be page tables, while
929	 * doing a speculative memory access.
930	 */
931	if (info->freed_tables)
932		on_each_cpu_mask(cpumask, flush_tlb_func, (void *)info, true);
933	else
934		on_each_cpu_cond_mask(tlb_is_not_lazy, flush_tlb_func,
935				(void *)info, 1, cpumask);
936}
937
938void flush_tlb_multi(const struct cpumask *cpumask,
939		      const struct flush_tlb_info *info)
940{
941	__flush_tlb_multi(cpumask, info);
942}
943
944/*
945 * See Documentation/arch/x86/tlb.rst for details.  We choose 33
946 * because it is large enough to cover the vast majority (at
947 * least 95%) of allocations, and is small enough that we are
948 * confident it will not cause too much overhead.  Each single
949 * flush is about 100 ns, so this caps the maximum overhead at
950 * _about_ 3,000 ns.
951 *
952 * This is in units of pages.
953 */
954unsigned long tlb_single_page_flush_ceiling __read_mostly = 33;
955
956static DEFINE_PER_CPU_SHARED_ALIGNED(struct flush_tlb_info, flush_tlb_info);
957
958#ifdef CONFIG_DEBUG_VM
959static DEFINE_PER_CPU(unsigned int, flush_tlb_info_idx);
960#endif
961
962static struct flush_tlb_info *get_flush_tlb_info(struct mm_struct *mm,
963			unsigned long start, unsigned long end,
964			unsigned int stride_shift, bool freed_tables,
965			u64 new_tlb_gen)
966{
967	struct flush_tlb_info *info = this_cpu_ptr(&flush_tlb_info);
968
969#ifdef CONFIG_DEBUG_VM
970	/*
971	 * Ensure that the following code is non-reentrant and flush_tlb_info
972	 * is not overwritten. This means no TLB flushing is initiated by
973	 * interrupt handlers and machine-check exception handlers.
974	 */
975	BUG_ON(this_cpu_inc_return(flush_tlb_info_idx) != 1);
976#endif
977
978	info->start		= start;
979	info->end		= end;
980	info->mm		= mm;
981	info->stride_shift	= stride_shift;
982	info->freed_tables	= freed_tables;
983	info->new_tlb_gen	= new_tlb_gen;
984	info->initiating_cpu	= smp_processor_id();
985
986	return info;
987}
988
989static void put_flush_tlb_info(void)
990{
991#ifdef CONFIG_DEBUG_VM
992	/* Complete reentrancy prevention checks */
993	barrier();
994	this_cpu_dec(flush_tlb_info_idx);
995#endif
996}
997
998void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start,
999				unsigned long end, unsigned int stride_shift,
1000				bool freed_tables)
1001{
1002	struct flush_tlb_info *info;
1003	u64 new_tlb_gen;
1004	int cpu;
1005
1006	cpu = get_cpu();
1007
1008	/* Should we flush just the requested range? */
1009	if ((end == TLB_FLUSH_ALL) ||
1010	    ((end - start) >> stride_shift) > tlb_single_page_flush_ceiling) {
1011		start = 0;
1012		end = TLB_FLUSH_ALL;
1013	}
1014
1015	/* This is also a barrier that synchronizes with switch_mm(). */
1016	new_tlb_gen = inc_mm_tlb_gen(mm);
1017
1018	info = get_flush_tlb_info(mm, start, end, stride_shift, freed_tables,
1019				  new_tlb_gen);
1020
1021	/*
1022	 * flush_tlb_multi() is not optimized for the common case in which only
1023	 * a local TLB flush is needed. Optimize this use-case by calling
1024	 * flush_tlb_func_local() directly in this case.
1025	 */
1026	if (cpumask_any_but(mm_cpumask(mm), cpu) < nr_cpu_ids) {
1027		flush_tlb_multi(mm_cpumask(mm), info);
1028	} else if (mm == this_cpu_read(cpu_tlbstate.loaded_mm)) {
1029		lockdep_assert_irqs_enabled();
1030		local_irq_disable();
1031		flush_tlb_func(info);
1032		local_irq_enable();
1033	}
1034
1035	put_flush_tlb_info();
1036	put_cpu();
1037	mmu_notifier_arch_invalidate_secondary_tlbs(mm, start, end);
1038}
1039
1040
1041static void do_flush_tlb_all(void *info)
1042{
1043	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
1044	__flush_tlb_all();
1045}
1046
1047void flush_tlb_all(void)
1048{
1049	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
1050	on_each_cpu(do_flush_tlb_all, NULL, 1);
1051}
1052
1053static void do_kernel_range_flush(void *info)
1054{
1055	struct flush_tlb_info *f = info;
1056	unsigned long addr;
1057
1058	/* flush range by one by one 'invlpg' */
1059	for (addr = f->start; addr < f->end; addr += PAGE_SIZE)
1060		flush_tlb_one_kernel(addr);
1061}
1062
1063void flush_tlb_kernel_range(unsigned long start, unsigned long end)
1064{
1065	/* Balance as user space task's flush, a bit conservative */
1066	if (end == TLB_FLUSH_ALL ||
1067	    (end - start) > tlb_single_page_flush_ceiling << PAGE_SHIFT) {
1068		on_each_cpu(do_flush_tlb_all, NULL, 1);
1069	} else {
1070		struct flush_tlb_info *info;
1071
1072		preempt_disable();
1073		info = get_flush_tlb_info(NULL, start, end, 0, false,
1074					  TLB_GENERATION_INVALID);
1075
1076		on_each_cpu(do_kernel_range_flush, info, 1);
1077
1078		put_flush_tlb_info();
1079		preempt_enable();
1080	}
1081}
1082
1083/*
1084 * This can be used from process context to figure out what the value of
1085 * CR3 is without needing to do a (slow) __read_cr3().
1086 *
1087 * It's intended to be used for code like KVM that sneakily changes CR3
1088 * and needs to restore it.  It needs to be used very carefully.
1089 */
1090unsigned long __get_current_cr3_fast(void)
1091{
1092	unsigned long cr3 =
1093		build_cr3(this_cpu_read(cpu_tlbstate.loaded_mm)->pgd,
1094			  this_cpu_read(cpu_tlbstate.loaded_mm_asid),
1095			  tlbstate_lam_cr3_mask());
1096
1097	/* For now, be very restrictive about when this can be called. */
1098	VM_WARN_ON(in_nmi() || preemptible());
1099
1100	VM_BUG_ON(cr3 != __read_cr3());
1101	return cr3;
1102}
1103EXPORT_SYMBOL_GPL(__get_current_cr3_fast);
1104
1105/*
1106 * Flush one page in the kernel mapping
1107 */
1108void flush_tlb_one_kernel(unsigned long addr)
1109{
1110	count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ONE);
1111
1112	/*
1113	 * If PTI is off, then __flush_tlb_one_user() is just INVLPG or its
1114	 * paravirt equivalent.  Even with PCID, this is sufficient: we only
1115	 * use PCID if we also use global PTEs for the kernel mapping, and
1116	 * INVLPG flushes global translations across all address spaces.
1117	 *
1118	 * If PTI is on, then the kernel is mapped with non-global PTEs, and
1119	 * __flush_tlb_one_user() will flush the given address for the current
1120	 * kernel address space and for its usermode counterpart, but it does
1121	 * not flush it for other address spaces.
1122	 */
1123	flush_tlb_one_user(addr);
1124
1125	if (!static_cpu_has(X86_FEATURE_PTI))
1126		return;
1127
1128	/*
1129	 * See above.  We need to propagate the flush to all other address
1130	 * spaces.  In principle, we only need to propagate it to kernelmode
1131	 * address spaces, but the extra bookkeeping we would need is not
1132	 * worth it.
1133	 */
1134	this_cpu_write(cpu_tlbstate.invalidate_other, true);
1135}
1136
1137/*
1138 * Flush one page in the user mapping
1139 */
1140STATIC_NOPV void native_flush_tlb_one_user(unsigned long addr)
1141{
1142	u32 loaded_mm_asid;
1143	bool cpu_pcide;
1144
1145	/* Flush 'addr' from the kernel PCID: */
1146	asm volatile("invlpg (%0)" ::"r" (addr) : "memory");
1147
1148	/* If PTI is off there is no user PCID and nothing to flush. */
1149	if (!static_cpu_has(X86_FEATURE_PTI))
1150		return;
1151
1152	loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
1153	cpu_pcide      = this_cpu_read(cpu_tlbstate.cr4) & X86_CR4_PCIDE;
1154
1155	/*
1156	 * invpcid_flush_one(pcid>0) will #GP if CR4.PCIDE==0.  Check
1157	 * 'cpu_pcide' to ensure that *this* CPU will not trigger those
1158	 * #GP's even if called before CR4.PCIDE has been initialized.
1159	 */
1160	if (boot_cpu_has(X86_FEATURE_INVPCID) && cpu_pcide)
1161		invpcid_flush_one(user_pcid(loaded_mm_asid), addr);
1162	else
1163		invalidate_user_asid(loaded_mm_asid);
1164}
1165
1166void flush_tlb_one_user(unsigned long addr)
1167{
1168	__flush_tlb_one_user(addr);
1169}
1170
1171/*
1172 * Flush everything
1173 */
1174STATIC_NOPV void native_flush_tlb_global(void)
1175{
1176	unsigned long flags;
1177
1178	if (static_cpu_has(X86_FEATURE_INVPCID)) {
1179		/*
1180		 * Using INVPCID is considerably faster than a pair of writes
1181		 * to CR4 sandwiched inside an IRQ flag save/restore.
1182		 *
1183		 * Note, this works with CR4.PCIDE=0 or 1.
1184		 */
1185		invpcid_flush_all();
1186		return;
1187	}
1188
1189	/*
1190	 * Read-modify-write to CR4 - protect it from preemption and
1191	 * from interrupts. (Use the raw variant because this code can
1192	 * be called from deep inside debugging code.)
1193	 */
1194	raw_local_irq_save(flags);
1195
1196	__native_tlb_flush_global(this_cpu_read(cpu_tlbstate.cr4));
1197
1198	raw_local_irq_restore(flags);
1199}
1200
1201/*
1202 * Flush the entire current user mapping
1203 */
1204STATIC_NOPV void native_flush_tlb_local(void)
1205{
1206	/*
1207	 * Preemption or interrupts must be disabled to protect the access
1208	 * to the per CPU variable and to prevent being preempted between
1209	 * read_cr3() and write_cr3().
1210	 */
1211	WARN_ON_ONCE(preemptible());
1212
1213	invalidate_user_asid(this_cpu_read(cpu_tlbstate.loaded_mm_asid));
1214
1215	/* If current->mm == NULL then the read_cr3() "borrows" an mm */
1216	native_write_cr3(__native_read_cr3());
1217}
1218
1219void flush_tlb_local(void)
1220{
1221	__flush_tlb_local();
1222}
1223
1224/*
1225 * Flush everything
1226 */
1227void __flush_tlb_all(void)
1228{
1229	/*
1230	 * This is to catch users with enabled preemption and the PGE feature
1231	 * and don't trigger the warning in __native_flush_tlb().
1232	 */
1233	VM_WARN_ON_ONCE(preemptible());
1234
1235	if (cpu_feature_enabled(X86_FEATURE_PGE)) {
1236		__flush_tlb_global();
1237	} else {
1238		/*
1239		 * !PGE -> !PCID (setup_pcid()), thus every flush is total.
1240		 */
1241		flush_tlb_local();
1242	}
1243}
1244EXPORT_SYMBOL_GPL(__flush_tlb_all);
1245
1246void arch_tlbbatch_flush(struct arch_tlbflush_unmap_batch *batch)
1247{
1248	struct flush_tlb_info *info;
1249
1250	int cpu = get_cpu();
1251
1252	info = get_flush_tlb_info(NULL, 0, TLB_FLUSH_ALL, 0, false,
1253				  TLB_GENERATION_INVALID);
1254	/*
1255	 * flush_tlb_multi() is not optimized for the common case in which only
1256	 * a local TLB flush is needed. Optimize this use-case by calling
1257	 * flush_tlb_func_local() directly in this case.
1258	 */
1259	if (cpumask_any_but(&batch->cpumask, cpu) < nr_cpu_ids) {
1260		flush_tlb_multi(&batch->cpumask, info);
1261	} else if (cpumask_test_cpu(cpu, &batch->cpumask)) {
1262		lockdep_assert_irqs_enabled();
1263		local_irq_disable();
1264		flush_tlb_func(info);
1265		local_irq_enable();
1266	}
1267
1268	cpumask_clear(&batch->cpumask);
1269
1270	put_flush_tlb_info();
1271	put_cpu();
1272}
1273
1274/*
1275 * Blindly accessing user memory from NMI context can be dangerous
1276 * if we're in the middle of switching the current user task or
1277 * switching the loaded mm.  It can also be dangerous if we
1278 * interrupted some kernel code that was temporarily using a
1279 * different mm.
1280 */
1281bool nmi_uaccess_okay(void)
1282{
1283	struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
1284	struct mm_struct *current_mm = current->mm;
1285
1286	VM_WARN_ON_ONCE(!loaded_mm);
1287
1288	/*
1289	 * The condition we want to check is
1290	 * current_mm->pgd == __va(read_cr3_pa()).  This may be slow, though,
1291	 * if we're running in a VM with shadow paging, and nmi_uaccess_okay()
1292	 * is supposed to be reasonably fast.
1293	 *
1294	 * Instead, we check the almost equivalent but somewhat conservative
1295	 * condition below, and we rely on the fact that switch_mm_irqs_off()
1296	 * sets loaded_mm to LOADED_MM_SWITCHING before writing to CR3.
1297	 */
1298	if (loaded_mm != current_mm)
1299		return false;
1300
1301	VM_WARN_ON_ONCE(current_mm->pgd != __va(read_cr3_pa()));
1302
1303	return true;
1304}
1305
1306static ssize_t tlbflush_read_file(struct file *file, char __user *user_buf,
1307			     size_t count, loff_t *ppos)
1308{
1309	char buf[32];
1310	unsigned int len;
1311
1312	len = sprintf(buf, "%ld\n", tlb_single_page_flush_ceiling);
1313	return simple_read_from_buffer(user_buf, count, ppos, buf, len);
1314}
1315
1316static ssize_t tlbflush_write_file(struct file *file,
1317		 const char __user *user_buf, size_t count, loff_t *ppos)
1318{
1319	char buf[32];
1320	ssize_t len;
1321	int ceiling;
1322
1323	len = min(count, sizeof(buf) - 1);
1324	if (copy_from_user(buf, user_buf, len))
1325		return -EFAULT;
1326
1327	buf[len] = '\0';
1328	if (kstrtoint(buf, 0, &ceiling))
1329		return -EINVAL;
1330
1331	if (ceiling < 0)
1332		return -EINVAL;
1333
1334	tlb_single_page_flush_ceiling = ceiling;
1335	return count;
1336}
1337
1338static const struct file_operations fops_tlbflush = {
1339	.read = tlbflush_read_file,
1340	.write = tlbflush_write_file,
1341	.llseek = default_llseek,
1342};
1343
1344static int __init create_tlb_single_page_flush_ceiling(void)
1345{
1346	debugfs_create_file("tlb_single_page_flush_ceiling", S_IRUSR | S_IWUSR,
1347			    arch_debugfs_dir, NULL, &fops_tlbflush);
1348	return 0;
1349}
1350late_initcall(create_tlb_single_page_flush_ceiling);
1351