1#include <linux/gfp.h>
2#include <linux/initrd.h>
3#include <linux/ioport.h>
4#include <linux/swap.h>
5#include <linux/memblock.h>
6#include <linux/swapfile.h>
7#include <linux/swapops.h>
8#include <linux/kmemleak.h>
9#include <linux/sched/task.h>
10
11#include <asm/set_memory.h>
12#include <asm/cpu_device_id.h>
13#include <asm/e820/api.h>
14#include <asm/init.h>
15#include <asm/page.h>
16#include <asm/page_types.h>
17#include <asm/sections.h>
18#include <asm/setup.h>
19#include <asm/tlbflush.h>
20#include <asm/tlb.h>
21#include <asm/proto.h>
22#include <asm/dma.h>		/* for MAX_DMA_PFN */
23#include <asm/kaslr.h>
24#include <asm/hypervisor.h>
25#include <asm/cpufeature.h>
26#include <asm/pti.h>
27#include <asm/text-patching.h>
28#include <asm/memtype.h>
29#include <asm/paravirt.h>
30
31/*
32 * We need to define the tracepoints somewhere, and tlb.c
33 * is only compiled when SMP=y.
34 */
35#include <trace/events/tlb.h>
36
37#include "mm_internal.h"
38
39/*
40 * Tables translating between page_cache_type_t and pte encoding.
41 *
42 * The default values are defined statically as minimal supported mode;
43 * WC and WT fall back to UC-.  pat_init() updates these values to support
44 * more cache modes, WC and WT, when it is safe to do so.  See pat_init()
45 * for the details.  Note, __early_ioremap() used during early boot-time
46 * takes pgprot_t (pte encoding) and does not use these tables.
47 *
48 *   Index into __cachemode2pte_tbl[] is the cachemode.
49 *
50 *   Index into __pte2cachemode_tbl[] are the caching attribute bits of the pte
51 *   (_PAGE_PWT, _PAGE_PCD, _PAGE_PAT) at index bit positions 0, 1, 2.
52 */
53static uint16_t __cachemode2pte_tbl[_PAGE_CACHE_MODE_NUM] = {
54	[_PAGE_CACHE_MODE_WB      ]	= 0         | 0        ,
55	[_PAGE_CACHE_MODE_WC      ]	= 0         | _PAGE_PCD,
56	[_PAGE_CACHE_MODE_UC_MINUS]	= 0         | _PAGE_PCD,
57	[_PAGE_CACHE_MODE_UC      ]	= _PAGE_PWT | _PAGE_PCD,
58	[_PAGE_CACHE_MODE_WT      ]	= 0         | _PAGE_PCD,
59	[_PAGE_CACHE_MODE_WP      ]	= 0         | _PAGE_PCD,
60};
61
62unsigned long cachemode2protval(enum page_cache_mode pcm)
63{
64	if (likely(pcm == 0))
65		return 0;
66	return __cachemode2pte_tbl[pcm];
67}
68EXPORT_SYMBOL(cachemode2protval);
69
70static uint8_t __pte2cachemode_tbl[8] = {
71	[__pte2cm_idx( 0        | 0         | 0        )] = _PAGE_CACHE_MODE_WB,
72	[__pte2cm_idx(_PAGE_PWT | 0         | 0        )] = _PAGE_CACHE_MODE_UC_MINUS,
73	[__pte2cm_idx( 0        | _PAGE_PCD | 0        )] = _PAGE_CACHE_MODE_UC_MINUS,
74	[__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | 0        )] = _PAGE_CACHE_MODE_UC,
75	[__pte2cm_idx( 0        | 0         | _PAGE_PAT)] = _PAGE_CACHE_MODE_WB,
76	[__pte2cm_idx(_PAGE_PWT | 0         | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
77	[__pte2cm_idx(0         | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
78	[__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC,
79};
80
81/*
82 * Check that the write-protect PAT entry is set for write-protect.
83 * To do this without making assumptions how PAT has been set up (Xen has
84 * another layout than the kernel), translate the _PAGE_CACHE_MODE_WP cache
85 * mode via the __cachemode2pte_tbl[] into protection bits (those protection
86 * bits will select a cache mode of WP or better), and then translate the
87 * protection bits back into the cache mode using __pte2cm_idx() and the
88 * __pte2cachemode_tbl[] array. This will return the really used cache mode.
89 */
90bool x86_has_pat_wp(void)
91{
92	uint16_t prot = __cachemode2pte_tbl[_PAGE_CACHE_MODE_WP];
93
94	return __pte2cachemode_tbl[__pte2cm_idx(prot)] == _PAGE_CACHE_MODE_WP;
95}
96
97enum page_cache_mode pgprot2cachemode(pgprot_t pgprot)
98{
99	unsigned long masked;
100
101	masked = pgprot_val(pgprot) & _PAGE_CACHE_MASK;
102	if (likely(masked == 0))
103		return 0;
104	return __pte2cachemode_tbl[__pte2cm_idx(masked)];
105}
106
107static unsigned long __initdata pgt_buf_start;
108static unsigned long __initdata pgt_buf_end;
109static unsigned long __initdata pgt_buf_top;
110
111static unsigned long min_pfn_mapped;
112
113static bool __initdata can_use_brk_pgt = true;
114
115/*
116 * Pages returned are already directly mapped.
117 *
118 * Changing that is likely to break Xen, see commit:
119 *
120 *    279b706 x86,xen: introduce x86_init.mapping.pagetable_reserve
121 *
122 * for detailed information.
123 */
124__ref void *alloc_low_pages(unsigned int num)
125{
126	unsigned long pfn;
127	int i;
128
129	if (after_bootmem) {
130		unsigned int order;
131
132		order = get_order((unsigned long)num << PAGE_SHIFT);
133		return (void *)__get_free_pages(GFP_ATOMIC | __GFP_ZERO, order);
134	}
135
136	if ((pgt_buf_end + num) > pgt_buf_top || !can_use_brk_pgt) {
137		unsigned long ret = 0;
138
139		if (min_pfn_mapped < max_pfn_mapped) {
140			ret = memblock_phys_alloc_range(
141					PAGE_SIZE * num, PAGE_SIZE,
142					min_pfn_mapped << PAGE_SHIFT,
143					max_pfn_mapped << PAGE_SHIFT);
144		}
145		if (!ret && can_use_brk_pgt)
146			ret = __pa(extend_brk(PAGE_SIZE * num, PAGE_SIZE));
147
148		if (!ret)
149			panic("alloc_low_pages: can not alloc memory");
150
151		pfn = ret >> PAGE_SHIFT;
152	} else {
153		pfn = pgt_buf_end;
154		pgt_buf_end += num;
155	}
156
157	for (i = 0; i < num; i++) {
158		void *adr;
159
160		adr = __va((pfn + i) << PAGE_SHIFT);
161		clear_page(adr);
162	}
163
164	return __va(pfn << PAGE_SHIFT);
165}
166
167/*
168 * By default need to be able to allocate page tables below PGD firstly for
169 * the 0-ISA_END_ADDRESS range and secondly for the initial PMD_SIZE mapping.
170 * With KASLR memory randomization, depending on the machine e820 memory and the
171 * PUD alignment, twice that many pages may be needed when KASLR memory
172 * randomization is enabled.
173 */
174
175#ifndef CONFIG_X86_5LEVEL
176#define INIT_PGD_PAGE_TABLES    3
177#else
178#define INIT_PGD_PAGE_TABLES    4
179#endif
180
181#ifndef CONFIG_RANDOMIZE_MEMORY
182#define INIT_PGD_PAGE_COUNT      (2 * INIT_PGD_PAGE_TABLES)
183#else
184#define INIT_PGD_PAGE_COUNT      (4 * INIT_PGD_PAGE_TABLES)
185#endif
186
187#define INIT_PGT_BUF_SIZE	(INIT_PGD_PAGE_COUNT * PAGE_SIZE)
188RESERVE_BRK(early_pgt_alloc, INIT_PGT_BUF_SIZE);
189void  __init early_alloc_pgt_buf(void)
190{
191	unsigned long tables = INIT_PGT_BUF_SIZE;
192	phys_addr_t base;
193
194	base = __pa(extend_brk(tables, PAGE_SIZE));
195
196	pgt_buf_start = base >> PAGE_SHIFT;
197	pgt_buf_end = pgt_buf_start;
198	pgt_buf_top = pgt_buf_start + (tables >> PAGE_SHIFT);
199}
200
201int after_bootmem;
202
203early_param_on_off("gbpages", "nogbpages", direct_gbpages, CONFIG_X86_DIRECT_GBPAGES);
204
205struct map_range {
206	unsigned long start;
207	unsigned long end;
208	unsigned page_size_mask;
209};
210
211static int page_size_mask;
212
213/*
214 * Save some of cr4 feature set we're using (e.g.  Pentium 4MB
215 * enable and PPro Global page enable), so that any CPU's that boot
216 * up after us can get the correct flags. Invoked on the boot CPU.
217 */
218static inline void cr4_set_bits_and_update_boot(unsigned long mask)
219{
220	mmu_cr4_features |= mask;
221	if (trampoline_cr4_features)
222		*trampoline_cr4_features = mmu_cr4_features;
223	cr4_set_bits(mask);
224}
225
226static void __init probe_page_size_mask(void)
227{
228	/*
229	 * For pagealloc debugging, identity mapping will use small pages.
230	 * This will simplify cpa(), which otherwise needs to support splitting
231	 * large pages into small in interrupt context, etc.
232	 */
233	if (boot_cpu_has(X86_FEATURE_PSE) && !debug_pagealloc_enabled())
234		page_size_mask |= 1 << PG_LEVEL_2M;
235	else
236		direct_gbpages = 0;
237
238	/* Enable PSE if available */
239	if (boot_cpu_has(X86_FEATURE_PSE))
240		cr4_set_bits_and_update_boot(X86_CR4_PSE);
241
242	/* Enable PGE if available */
243	__supported_pte_mask &= ~_PAGE_GLOBAL;
244	if (boot_cpu_has(X86_FEATURE_PGE)) {
245		cr4_set_bits_and_update_boot(X86_CR4_PGE);
246		__supported_pte_mask |= _PAGE_GLOBAL;
247	}
248
249	/* By the default is everything supported: */
250	__default_kernel_pte_mask = __supported_pte_mask;
251	/* Except when with PTI where the kernel is mostly non-Global: */
252	if (cpu_feature_enabled(X86_FEATURE_PTI))
253		__default_kernel_pte_mask &= ~_PAGE_GLOBAL;
254
255	/* Enable 1 GB linear kernel mappings if available: */
256	if (direct_gbpages && boot_cpu_has(X86_FEATURE_GBPAGES)) {
257		printk(KERN_INFO "Using GB pages for direct mapping\n");
258		page_size_mask |= 1 << PG_LEVEL_1G;
259	} else {
260		direct_gbpages = 0;
261	}
262}
263
264#define INTEL_MATCH(_model) { .vendor  = X86_VENDOR_INTEL,	\
265			      .family  = 6,			\
266			      .model = _model,			\
267			    }
268/*
269 * INVLPG may not properly flush Global entries
270 * on these CPUs when PCIDs are enabled.
271 */
272static const struct x86_cpu_id invlpg_miss_ids[] = {
273	INTEL_MATCH(INTEL_FAM6_ALDERLAKE   ),
274	INTEL_MATCH(INTEL_FAM6_ALDERLAKE_L ),
275	INTEL_MATCH(INTEL_FAM6_ATOM_GRACEMONT ),
276	INTEL_MATCH(INTEL_FAM6_RAPTORLAKE  ),
277	INTEL_MATCH(INTEL_FAM6_RAPTORLAKE_P),
278	INTEL_MATCH(INTEL_FAM6_RAPTORLAKE_S),
279	{}
280};
281
282static void setup_pcid(void)
283{
284	if (!IS_ENABLED(CONFIG_X86_64))
285		return;
286
287	if (!boot_cpu_has(X86_FEATURE_PCID))
288		return;
289
290	if (x86_match_cpu(invlpg_miss_ids)) {
291		pr_info("Incomplete global flushes, disabling PCID");
292		setup_clear_cpu_cap(X86_FEATURE_PCID);
293		return;
294	}
295
296	if (boot_cpu_has(X86_FEATURE_PGE)) {
297		/*
298		 * This can't be cr4_set_bits_and_update_boot() -- the
299		 * trampoline code can't handle CR4.PCIDE and it wouldn't
300		 * do any good anyway.  Despite the name,
301		 * cr4_set_bits_and_update_boot() doesn't actually cause
302		 * the bits in question to remain set all the way through
303		 * the secondary boot asm.
304		 *
305		 * Instead, we brute-force it and set CR4.PCIDE manually in
306		 * start_secondary().
307		 */
308		cr4_set_bits(X86_CR4_PCIDE);
309	} else {
310		/*
311		 * flush_tlb_all(), as currently implemented, won't work if
312		 * PCID is on but PGE is not.  Since that combination
313		 * doesn't exist on real hardware, there's no reason to try
314		 * to fully support it, but it's polite to avoid corrupting
315		 * data if we're on an improperly configured VM.
316		 */
317		setup_clear_cpu_cap(X86_FEATURE_PCID);
318	}
319}
320
321#ifdef CONFIG_X86_32
322#define NR_RANGE_MR 3
323#else /* CONFIG_X86_64 */
324#define NR_RANGE_MR 5
325#endif
326
327static int __meminit save_mr(struct map_range *mr, int nr_range,
328			     unsigned long start_pfn, unsigned long end_pfn,
329			     unsigned long page_size_mask)
330{
331	if (start_pfn < end_pfn) {
332		if (nr_range >= NR_RANGE_MR)
333			panic("run out of range for init_memory_mapping\n");
334		mr[nr_range].start = start_pfn<<PAGE_SHIFT;
335		mr[nr_range].end   = end_pfn<<PAGE_SHIFT;
336		mr[nr_range].page_size_mask = page_size_mask;
337		nr_range++;
338	}
339
340	return nr_range;
341}
342
343/*
344 * adjust the page_size_mask for small range to go with
345 *	big page size instead small one if nearby are ram too.
346 */
347static void __ref adjust_range_page_size_mask(struct map_range *mr,
348							 int nr_range)
349{
350	int i;
351
352	for (i = 0; i < nr_range; i++) {
353		if ((page_size_mask & (1<<PG_LEVEL_2M)) &&
354		    !(mr[i].page_size_mask & (1<<PG_LEVEL_2M))) {
355			unsigned long start = round_down(mr[i].start, PMD_SIZE);
356			unsigned long end = round_up(mr[i].end, PMD_SIZE);
357
358#ifdef CONFIG_X86_32
359			if ((end >> PAGE_SHIFT) > max_low_pfn)
360				continue;
361#endif
362
363			if (memblock_is_region_memory(start, end - start))
364				mr[i].page_size_mask |= 1<<PG_LEVEL_2M;
365		}
366		if ((page_size_mask & (1<<PG_LEVEL_1G)) &&
367		    !(mr[i].page_size_mask & (1<<PG_LEVEL_1G))) {
368			unsigned long start = round_down(mr[i].start, PUD_SIZE);
369			unsigned long end = round_up(mr[i].end, PUD_SIZE);
370
371			if (memblock_is_region_memory(start, end - start))
372				mr[i].page_size_mask |= 1<<PG_LEVEL_1G;
373		}
374	}
375}
376
377static const char *page_size_string(struct map_range *mr)
378{
379	static const char str_1g[] = "1G";
380	static const char str_2m[] = "2M";
381	static const char str_4m[] = "4M";
382	static const char str_4k[] = "4k";
383
384	if (mr->page_size_mask & (1<<PG_LEVEL_1G))
385		return str_1g;
386	/*
387	 * 32-bit without PAE has a 4M large page size.
388	 * PG_LEVEL_2M is misnamed, but we can at least
389	 * print out the right size in the string.
390	 */
391	if (IS_ENABLED(CONFIG_X86_32) &&
392	    !IS_ENABLED(CONFIG_X86_PAE) &&
393	    mr->page_size_mask & (1<<PG_LEVEL_2M))
394		return str_4m;
395
396	if (mr->page_size_mask & (1<<PG_LEVEL_2M))
397		return str_2m;
398
399	return str_4k;
400}
401
402static int __meminit split_mem_range(struct map_range *mr, int nr_range,
403				     unsigned long start,
404				     unsigned long end)
405{
406	unsigned long start_pfn, end_pfn, limit_pfn;
407	unsigned long pfn;
408	int i;
409
410	limit_pfn = PFN_DOWN(end);
411
412	/* head if not big page alignment ? */
413	pfn = start_pfn = PFN_DOWN(start);
414#ifdef CONFIG_X86_32
415	/*
416	 * Don't use a large page for the first 2/4MB of memory
417	 * because there are often fixed size MTRRs in there
418	 * and overlapping MTRRs into large pages can cause
419	 * slowdowns.
420	 */
421	if (pfn == 0)
422		end_pfn = PFN_DOWN(PMD_SIZE);
423	else
424		end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
425#else /* CONFIG_X86_64 */
426	end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
427#endif
428	if (end_pfn > limit_pfn)
429		end_pfn = limit_pfn;
430	if (start_pfn < end_pfn) {
431		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
432		pfn = end_pfn;
433	}
434
435	/* big page (2M) range */
436	start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
437#ifdef CONFIG_X86_32
438	end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
439#else /* CONFIG_X86_64 */
440	end_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
441	if (end_pfn > round_down(limit_pfn, PFN_DOWN(PMD_SIZE)))
442		end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
443#endif
444
445	if (start_pfn < end_pfn) {
446		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
447				page_size_mask & (1<<PG_LEVEL_2M));
448		pfn = end_pfn;
449	}
450
451#ifdef CONFIG_X86_64
452	/* big page (1G) range */
453	start_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
454	end_pfn = round_down(limit_pfn, PFN_DOWN(PUD_SIZE));
455	if (start_pfn < end_pfn) {
456		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
457				page_size_mask &
458				 ((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G)));
459		pfn = end_pfn;
460	}
461
462	/* tail is not big page (1G) alignment */
463	start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
464	end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
465	if (start_pfn < end_pfn) {
466		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
467				page_size_mask & (1<<PG_LEVEL_2M));
468		pfn = end_pfn;
469	}
470#endif
471
472	/* tail is not big page (2M) alignment */
473	start_pfn = pfn;
474	end_pfn = limit_pfn;
475	nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
476
477	if (!after_bootmem)
478		adjust_range_page_size_mask(mr, nr_range);
479
480	/* try to merge same page size and continuous */
481	for (i = 0; nr_range > 1 && i < nr_range - 1; i++) {
482		unsigned long old_start;
483		if (mr[i].end != mr[i+1].start ||
484		    mr[i].page_size_mask != mr[i+1].page_size_mask)
485			continue;
486		/* move it */
487		old_start = mr[i].start;
488		memmove(&mr[i], &mr[i+1],
489			(nr_range - 1 - i) * sizeof(struct map_range));
490		mr[i--].start = old_start;
491		nr_range--;
492	}
493
494	for (i = 0; i < nr_range; i++)
495		pr_debug(" [mem %#010lx-%#010lx] page %s\n",
496				mr[i].start, mr[i].end - 1,
497				page_size_string(&mr[i]));
498
499	return nr_range;
500}
501
502struct range pfn_mapped[E820_MAX_ENTRIES];
503int nr_pfn_mapped;
504
505static void add_pfn_range_mapped(unsigned long start_pfn, unsigned long end_pfn)
506{
507	nr_pfn_mapped = add_range_with_merge(pfn_mapped, E820_MAX_ENTRIES,
508					     nr_pfn_mapped, start_pfn, end_pfn);
509	nr_pfn_mapped = clean_sort_range(pfn_mapped, E820_MAX_ENTRIES);
510
511	max_pfn_mapped = max(max_pfn_mapped, end_pfn);
512
513	if (start_pfn < (1UL<<(32-PAGE_SHIFT)))
514		max_low_pfn_mapped = max(max_low_pfn_mapped,
515					 min(end_pfn, 1UL<<(32-PAGE_SHIFT)));
516}
517
518bool pfn_range_is_mapped(unsigned long start_pfn, unsigned long end_pfn)
519{
520	int i;
521
522	for (i = 0; i < nr_pfn_mapped; i++)
523		if ((start_pfn >= pfn_mapped[i].start) &&
524		    (end_pfn <= pfn_mapped[i].end))
525			return true;
526
527	return false;
528}
529
530/*
531 * Setup the direct mapping of the physical memory at PAGE_OFFSET.
532 * This runs before bootmem is initialized and gets pages directly from
533 * the physical memory. To access them they are temporarily mapped.
534 */
535unsigned long __ref init_memory_mapping(unsigned long start,
536					unsigned long end, pgprot_t prot)
537{
538	struct map_range mr[NR_RANGE_MR];
539	unsigned long ret = 0;
540	int nr_range, i;
541
542	pr_debug("init_memory_mapping: [mem %#010lx-%#010lx]\n",
543	       start, end - 1);
544
545	memset(mr, 0, sizeof(mr));
546	nr_range = split_mem_range(mr, 0, start, end);
547
548	for (i = 0; i < nr_range; i++)
549		ret = kernel_physical_mapping_init(mr[i].start, mr[i].end,
550						   mr[i].page_size_mask,
551						   prot);
552
553	add_pfn_range_mapped(start >> PAGE_SHIFT, ret >> PAGE_SHIFT);
554
555	return ret >> PAGE_SHIFT;
556}
557
558/*
559 * We need to iterate through the E820 memory map and create direct mappings
560 * for only E820_TYPE_RAM and E820_KERN_RESERVED regions. We cannot simply
561 * create direct mappings for all pfns from [0 to max_low_pfn) and
562 * [4GB to max_pfn) because of possible memory holes in high addresses
563 * that cannot be marked as UC by fixed/variable range MTRRs.
564 * Depending on the alignment of E820 ranges, this may possibly result
565 * in using smaller size (i.e. 4K instead of 2M or 1G) page tables.
566 *
567 * init_mem_mapping() calls init_range_memory_mapping() with big range.
568 * That range would have hole in the middle or ends, and only ram parts
569 * will be mapped in init_range_memory_mapping().
570 */
571static unsigned long __init init_range_memory_mapping(
572					   unsigned long r_start,
573					   unsigned long r_end)
574{
575	unsigned long start_pfn, end_pfn;
576	unsigned long mapped_ram_size = 0;
577	int i;
578
579	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
580		u64 start = clamp_val(PFN_PHYS(start_pfn), r_start, r_end);
581		u64 end = clamp_val(PFN_PHYS(end_pfn), r_start, r_end);
582		if (start >= end)
583			continue;
584
585		/*
586		 * if it is overlapping with brk pgt, we need to
587		 * alloc pgt buf from memblock instead.
588		 */
589		can_use_brk_pgt = max(start, (u64)pgt_buf_end<<PAGE_SHIFT) >=
590				    min(end, (u64)pgt_buf_top<<PAGE_SHIFT);
591		init_memory_mapping(start, end, PAGE_KERNEL);
592		mapped_ram_size += end - start;
593		can_use_brk_pgt = true;
594	}
595
596	return mapped_ram_size;
597}
598
599static unsigned long __init get_new_step_size(unsigned long step_size)
600{
601	/*
602	 * Initial mapped size is PMD_SIZE (2M).
603	 * We can not set step_size to be PUD_SIZE (1G) yet.
604	 * In worse case, when we cross the 1G boundary, and
605	 * PG_LEVEL_2M is not set, we will need 1+1+512 pages (2M + 8k)
606	 * to map 1G range with PTE. Hence we use one less than the
607	 * difference of page table level shifts.
608	 *
609	 * Don't need to worry about overflow in the top-down case, on 32bit,
610	 * when step_size is 0, round_down() returns 0 for start, and that
611	 * turns it into 0x100000000ULL.
612	 * In the bottom-up case, round_up(x, 0) returns 0 though too, which
613	 * needs to be taken into consideration by the code below.
614	 */
615	return step_size << (PMD_SHIFT - PAGE_SHIFT - 1);
616}
617
618/**
619 * memory_map_top_down - Map [map_start, map_end) top down
620 * @map_start: start address of the target memory range
621 * @map_end: end address of the target memory range
622 *
623 * This function will setup direct mapping for memory range
624 * [map_start, map_end) in top-down. That said, the page tables
625 * will be allocated at the end of the memory, and we map the
626 * memory in top-down.
627 */
628static void __init memory_map_top_down(unsigned long map_start,
629				       unsigned long map_end)
630{
631	unsigned long real_end, last_start;
632	unsigned long step_size;
633	unsigned long addr;
634	unsigned long mapped_ram_size = 0;
635
636	/*
637	 * Systems that have many reserved areas near top of the memory,
638	 * e.g. QEMU with less than 1G RAM and EFI enabled, or Xen, will
639	 * require lots of 4K mappings which may exhaust pgt_buf.
640	 * Start with top-most PMD_SIZE range aligned at PMD_SIZE to ensure
641	 * there is enough mapped memory that can be allocated from
642	 * memblock.
643	 */
644	addr = memblock_phys_alloc_range(PMD_SIZE, PMD_SIZE, map_start,
645					 map_end);
646	memblock_phys_free(addr, PMD_SIZE);
647	real_end = addr + PMD_SIZE;
648
649	/* step_size need to be small so pgt_buf from BRK could cover it */
650	step_size = PMD_SIZE;
651	max_pfn_mapped = 0; /* will get exact value next */
652	min_pfn_mapped = real_end >> PAGE_SHIFT;
653	last_start = real_end;
654
655	/*
656	 * We start from the top (end of memory) and go to the bottom.
657	 * The memblock_find_in_range() gets us a block of RAM from the
658	 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
659	 * for page table.
660	 */
661	while (last_start > map_start) {
662		unsigned long start;
663
664		if (last_start > step_size) {
665			start = round_down(last_start - 1, step_size);
666			if (start < map_start)
667				start = map_start;
668		} else
669			start = map_start;
670		mapped_ram_size += init_range_memory_mapping(start,
671							last_start);
672		last_start = start;
673		min_pfn_mapped = last_start >> PAGE_SHIFT;
674		if (mapped_ram_size >= step_size)
675			step_size = get_new_step_size(step_size);
676	}
677
678	if (real_end < map_end)
679		init_range_memory_mapping(real_end, map_end);
680}
681
682/**
683 * memory_map_bottom_up - Map [map_start, map_end) bottom up
684 * @map_start: start address of the target memory range
685 * @map_end: end address of the target memory range
686 *
687 * This function will setup direct mapping for memory range
688 * [map_start, map_end) in bottom-up. Since we have limited the
689 * bottom-up allocation above the kernel, the page tables will
690 * be allocated just above the kernel and we map the memory
691 * in [map_start, map_end) in bottom-up.
692 */
693static void __init memory_map_bottom_up(unsigned long map_start,
694					unsigned long map_end)
695{
696	unsigned long next, start;
697	unsigned long mapped_ram_size = 0;
698	/* step_size need to be small so pgt_buf from BRK could cover it */
699	unsigned long step_size = PMD_SIZE;
700
701	start = map_start;
702	min_pfn_mapped = start >> PAGE_SHIFT;
703
704	/*
705	 * We start from the bottom (@map_start) and go to the top (@map_end).
706	 * The memblock_find_in_range() gets us a block of RAM from the
707	 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
708	 * for page table.
709	 */
710	while (start < map_end) {
711		if (step_size && map_end - start > step_size) {
712			next = round_up(start + 1, step_size);
713			if (next > map_end)
714				next = map_end;
715		} else {
716			next = map_end;
717		}
718
719		mapped_ram_size += init_range_memory_mapping(start, next);
720		start = next;
721
722		if (mapped_ram_size >= step_size)
723			step_size = get_new_step_size(step_size);
724	}
725}
726
727/*
728 * The real mode trampoline, which is required for bootstrapping CPUs
729 * occupies only a small area under the low 1MB.  See reserve_real_mode()
730 * for details.
731 *
732 * If KASLR is disabled the first PGD entry of the direct mapping is copied
733 * to map the real mode trampoline.
734 *
735 * If KASLR is enabled, copy only the PUD which covers the low 1MB
736 * area. This limits the randomization granularity to 1GB for both 4-level
737 * and 5-level paging.
738 */
739static void __init init_trampoline(void)
740{
741#ifdef CONFIG_X86_64
742	/*
743	 * The code below will alias kernel page-tables in the user-range of the
744	 * address space, including the Global bit. So global TLB entries will
745	 * be created when using the trampoline page-table.
746	 */
747	if (!kaslr_memory_enabled())
748		trampoline_pgd_entry = init_top_pgt[pgd_index(__PAGE_OFFSET)];
749	else
750		init_trampoline_kaslr();
751#endif
752}
753
754void __init init_mem_mapping(void)
755{
756	unsigned long end;
757
758	pti_check_boottime_disable();
759	probe_page_size_mask();
760	setup_pcid();
761
762#ifdef CONFIG_X86_64
763	end = max_pfn << PAGE_SHIFT;
764#else
765	end = max_low_pfn << PAGE_SHIFT;
766#endif
767
768	/* the ISA range is always mapped regardless of memory holes */
769	init_memory_mapping(0, ISA_END_ADDRESS, PAGE_KERNEL);
770
771	/* Init the trampoline, possibly with KASLR memory offset */
772	init_trampoline();
773
774	/*
775	 * If the allocation is in bottom-up direction, we setup direct mapping
776	 * in bottom-up, otherwise we setup direct mapping in top-down.
777	 */
778	if (memblock_bottom_up()) {
779		unsigned long kernel_end = __pa_symbol(_end);
780
781		/*
782		 * we need two separate calls here. This is because we want to
783		 * allocate page tables above the kernel. So we first map
784		 * [kernel_end, end) to make memory above the kernel be mapped
785		 * as soon as possible. And then use page tables allocated above
786		 * the kernel to map [ISA_END_ADDRESS, kernel_end).
787		 */
788		memory_map_bottom_up(kernel_end, end);
789		memory_map_bottom_up(ISA_END_ADDRESS, kernel_end);
790	} else {
791		memory_map_top_down(ISA_END_ADDRESS, end);
792	}
793
794#ifdef CONFIG_X86_64
795	if (max_pfn > max_low_pfn) {
796		/* can we preserve max_low_pfn ?*/
797		max_low_pfn = max_pfn;
798	}
799#else
800	early_ioremap_page_table_range_init();
801#endif
802
803	load_cr3(swapper_pg_dir);
804	__flush_tlb_all();
805
806	x86_init.hyper.init_mem_mapping();
807
808	early_memtest(0, max_pfn_mapped << PAGE_SHIFT);
809}
810
811/*
812 * Initialize an mm_struct to be used during poking and a pointer to be used
813 * during patching.
814 */
815void __init poking_init(void)
816{
817	spinlock_t *ptl;
818	pte_t *ptep;
819
820	poking_mm = mm_alloc();
821	BUG_ON(!poking_mm);
822
823	/* Xen PV guests need the PGD to be pinned. */
824	paravirt_enter_mmap(poking_mm);
825
826	/*
827	 * Randomize the poking address, but make sure that the following page
828	 * will be mapped at the same PMD. We need 2 pages, so find space for 3,
829	 * and adjust the address if the PMD ends after the first one.
830	 */
831	poking_addr = TASK_UNMAPPED_BASE;
832	if (IS_ENABLED(CONFIG_RANDOMIZE_BASE))
833		poking_addr += (kaslr_get_random_long("Poking") & PAGE_MASK) %
834			(TASK_SIZE - TASK_UNMAPPED_BASE - 3 * PAGE_SIZE);
835
836	if (((poking_addr + PAGE_SIZE) & ~PMD_MASK) == 0)
837		poking_addr += PAGE_SIZE;
838
839	/*
840	 * We need to trigger the allocation of the page-tables that will be
841	 * needed for poking now. Later, poking may be performed in an atomic
842	 * section, which might cause allocation to fail.
843	 */
844	ptep = get_locked_pte(poking_mm, poking_addr, &ptl);
845	BUG_ON(!ptep);
846	pte_unmap_unlock(ptep, ptl);
847}
848
849/*
850 * devmem_is_allowed() checks to see if /dev/mem access to a certain address
851 * is valid. The argument is a physical page number.
852 *
853 * On x86, access has to be given to the first megabyte of RAM because that
854 * area traditionally contains BIOS code and data regions used by X, dosemu,
855 * and similar apps. Since they map the entire memory range, the whole range
856 * must be allowed (for mapping), but any areas that would otherwise be
857 * disallowed are flagged as being "zero filled" instead of rejected.
858 * Access has to be given to non-kernel-ram areas as well, these contain the
859 * PCI mmio resources as well as potential bios/acpi data regions.
860 */
861int devmem_is_allowed(unsigned long pagenr)
862{
863	if (region_intersects(PFN_PHYS(pagenr), PAGE_SIZE,
864				IORESOURCE_SYSTEM_RAM, IORES_DESC_NONE)
865			!= REGION_DISJOINT) {
866		/*
867		 * For disallowed memory regions in the low 1MB range,
868		 * request that the page be shown as all zeros.
869		 */
870		if (pagenr < 256)
871			return 2;
872
873		return 0;
874	}
875
876	/*
877	 * This must follow RAM test, since System RAM is considered a
878	 * restricted resource under CONFIG_STRICT_DEVMEM.
879	 */
880	if (iomem_is_exclusive(pagenr << PAGE_SHIFT)) {
881		/* Low 1MB bypasses iomem restrictions. */
882		if (pagenr < 256)
883			return 1;
884
885		return 0;
886	}
887
888	return 1;
889}
890
891void free_init_pages(const char *what, unsigned long begin, unsigned long end)
892{
893	unsigned long begin_aligned, end_aligned;
894
895	/* Make sure boundaries are page aligned */
896	begin_aligned = PAGE_ALIGN(begin);
897	end_aligned   = end & PAGE_MASK;
898
899	if (WARN_ON(begin_aligned != begin || end_aligned != end)) {
900		begin = begin_aligned;
901		end   = end_aligned;
902	}
903
904	if (begin >= end)
905		return;
906
907	/*
908	 * If debugging page accesses then do not free this memory but
909	 * mark them not present - any buggy init-section access will
910	 * create a kernel page fault:
911	 */
912	if (debug_pagealloc_enabled()) {
913		pr_info("debug: unmapping init [mem %#010lx-%#010lx]\n",
914			begin, end - 1);
915		/*
916		 * Inform kmemleak about the hole in the memory since the
917		 * corresponding pages will be unmapped.
918		 */
919		kmemleak_free_part((void *)begin, end - begin);
920		set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
921	} else {
922		/*
923		 * We just marked the kernel text read only above, now that
924		 * we are going to free part of that, we need to make that
925		 * writeable and non-executable first.
926		 */
927		set_memory_nx(begin, (end - begin) >> PAGE_SHIFT);
928		set_memory_rw(begin, (end - begin) >> PAGE_SHIFT);
929
930		free_reserved_area((void *)begin, (void *)end,
931				   POISON_FREE_INITMEM, what);
932	}
933}
934
935/*
936 * begin/end can be in the direct map or the "high kernel mapping"
937 * used for the kernel image only.  free_init_pages() will do the
938 * right thing for either kind of address.
939 */
940void free_kernel_image_pages(const char *what, void *begin, void *end)
941{
942	unsigned long begin_ul = (unsigned long)begin;
943	unsigned long end_ul = (unsigned long)end;
944	unsigned long len_pages = (end_ul - begin_ul) >> PAGE_SHIFT;
945
946	free_init_pages(what, begin_ul, end_ul);
947
948	/*
949	 * PTI maps some of the kernel into userspace.  For performance,
950	 * this includes some kernel areas that do not contain secrets.
951	 * Those areas might be adjacent to the parts of the kernel image
952	 * being freed, which may contain secrets.  Remove the "high kernel
953	 * image mapping" for these freed areas, ensuring they are not even
954	 * potentially vulnerable to Meltdown regardless of the specific
955	 * optimizations PTI is currently using.
956	 *
957	 * The "noalias" prevents unmapping the direct map alias which is
958	 * needed to access the freed pages.
959	 *
960	 * This is only valid for 64bit kernels. 32bit has only one mapping
961	 * which can't be treated in this way for obvious reasons.
962	 */
963	if (IS_ENABLED(CONFIG_X86_64) && cpu_feature_enabled(X86_FEATURE_PTI))
964		set_memory_np_noalias(begin_ul, len_pages);
965}
966
967void __ref free_initmem(void)
968{
969	e820__reallocate_tables();
970
971	mem_encrypt_free_decrypted_mem();
972
973	free_kernel_image_pages("unused kernel image (initmem)",
974				&__init_begin, &__init_end);
975}
976
977#ifdef CONFIG_BLK_DEV_INITRD
978void __init free_initrd_mem(unsigned long start, unsigned long end)
979{
980	/*
981	 * end could be not aligned, and We can not align that,
982	 * decompressor could be confused by aligned initrd_end
983	 * We already reserve the end partial page before in
984	 *   - i386_start_kernel()
985	 *   - x86_64_start_kernel()
986	 *   - relocate_initrd()
987	 * So here We can do PAGE_ALIGN() safely to get partial page to be freed
988	 */
989	free_init_pages("initrd", start, PAGE_ALIGN(end));
990}
991#endif
992
993/*
994 * Calculate the precise size of the DMA zone (first 16 MB of RAM),
995 * and pass it to the MM layer - to help it set zone watermarks more
996 * accurately.
997 *
998 * Done on 64-bit systems only for the time being, although 32-bit systems
999 * might benefit from this as well.
1000 */
1001void __init memblock_find_dma_reserve(void)
1002{
1003#ifdef CONFIG_X86_64
1004	u64 nr_pages = 0, nr_free_pages = 0;
1005	unsigned long start_pfn, end_pfn;
1006	phys_addr_t start_addr, end_addr;
1007	int i;
1008	u64 u;
1009
1010	/*
1011	 * Iterate over all memory ranges (free and reserved ones alike),
1012	 * to calculate the total number of pages in the first 16 MB of RAM:
1013	 */
1014	nr_pages = 0;
1015	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
1016		start_pfn = min(start_pfn, MAX_DMA_PFN);
1017		end_pfn   = min(end_pfn,   MAX_DMA_PFN);
1018
1019		nr_pages += end_pfn - start_pfn;
1020	}
1021
1022	/*
1023	 * Iterate over free memory ranges to calculate the number of free
1024	 * pages in the DMA zone, while not counting potential partial
1025	 * pages at the beginning or the end of the range:
1026	 */
1027	nr_free_pages = 0;
1028	for_each_free_mem_range(u, NUMA_NO_NODE, MEMBLOCK_NONE, &start_addr, &end_addr, NULL) {
1029		start_pfn = min_t(unsigned long, PFN_UP(start_addr), MAX_DMA_PFN);
1030		end_pfn   = min_t(unsigned long, PFN_DOWN(end_addr), MAX_DMA_PFN);
1031
1032		if (start_pfn < end_pfn)
1033			nr_free_pages += end_pfn - start_pfn;
1034	}
1035
1036	set_dma_reserve(nr_pages - nr_free_pages);
1037#endif
1038}
1039
1040void __init zone_sizes_init(void)
1041{
1042	unsigned long max_zone_pfns[MAX_NR_ZONES];
1043
1044	memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
1045
1046#ifdef CONFIG_ZONE_DMA
1047	max_zone_pfns[ZONE_DMA]		= min(MAX_DMA_PFN, max_low_pfn);
1048#endif
1049#ifdef CONFIG_ZONE_DMA32
1050	max_zone_pfns[ZONE_DMA32]	= min(MAX_DMA32_PFN, max_low_pfn);
1051#endif
1052	max_zone_pfns[ZONE_NORMAL]	= max_low_pfn;
1053#ifdef CONFIG_HIGHMEM
1054	max_zone_pfns[ZONE_HIGHMEM]	= max_pfn;
1055#endif
1056
1057	free_area_init(max_zone_pfns);
1058}
1059
1060__visible DEFINE_PER_CPU_ALIGNED(struct tlb_state, cpu_tlbstate) = {
1061	.loaded_mm = &init_mm,
1062	.next_asid = 1,
1063	.cr4 = ~0UL,	/* fail hard if we screw up cr4 shadow initialization */
1064};
1065
1066#ifdef CONFIG_ADDRESS_MASKING
1067DEFINE_PER_CPU(u64, tlbstate_untag_mask);
1068EXPORT_PER_CPU_SYMBOL(tlbstate_untag_mask);
1069#endif
1070
1071void update_cache_mode_entry(unsigned entry, enum page_cache_mode cache)
1072{
1073	/* entry 0 MUST be WB (hardwired to speed up translations) */
1074	BUG_ON(!entry && cache != _PAGE_CACHE_MODE_WB);
1075
1076	__cachemode2pte_tbl[cache] = __cm_idx2pte(entry);
1077	__pte2cachemode_tbl[entry] = cache;
1078}
1079
1080#ifdef CONFIG_SWAP
1081unsigned long arch_max_swapfile_size(void)
1082{
1083	unsigned long pages;
1084
1085	pages = generic_max_swapfile_size();
1086
1087	if (boot_cpu_has_bug(X86_BUG_L1TF) && l1tf_mitigation != L1TF_MITIGATION_OFF) {
1088		/* Limit the swap file size to MAX_PA/2 for L1TF workaround */
1089		unsigned long long l1tf_limit = l1tf_pfn_limit();
1090		/*
1091		 * We encode swap offsets also with 3 bits below those for pfn
1092		 * which makes the usable limit higher.
1093		 */
1094#if CONFIG_PGTABLE_LEVELS > 2
1095		l1tf_limit <<= PAGE_SHIFT - SWP_OFFSET_FIRST_BIT;
1096#endif
1097		pages = min_t(unsigned long long, l1tf_limit, pages);
1098	}
1099	return pages;
1100}
1101#endif
1102