1// SPDX-License-Identifier: GPL-2.0
2/*
3 *  Copyright (C) 1995  Linus Torvalds
4 *  Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
5 *  Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
6 */
7#include <linux/sched.h>		/* test_thread_flag(), ...	*/
8#include <linux/sched/task_stack.h>	/* task_stack_*(), ...		*/
9#include <linux/kdebug.h>		/* oops_begin/end, ...		*/
10#include <linux/extable.h>		/* search_exception_tables	*/
11#include <linux/memblock.h>		/* max_low_pfn			*/
12#include <linux/kfence.h>		/* kfence_handle_page_fault	*/
13#include <linux/kprobes.h>		/* NOKPROBE_SYMBOL, ...		*/
14#include <linux/mmiotrace.h>		/* kmmio_handler, ...		*/
15#include <linux/perf_event.h>		/* perf_sw_event		*/
16#include <linux/hugetlb.h>		/* hstate_index_to_shift	*/
17#include <linux/prefetch.h>		/* prefetchw			*/
18#include <linux/context_tracking.h>	/* exception_enter(), ...	*/
19#include <linux/uaccess.h>		/* faulthandler_disabled()	*/
20#include <linux/efi.h>			/* efi_crash_gracefully_on_page_fault()*/
21#include <linux/mm_types.h>
22#include <linux/mm.h>			/* find_and_lock_vma() */
23
24#include <asm/cpufeature.h>		/* boot_cpu_has, ...		*/
25#include <asm/traps.h>			/* dotraplinkage, ...		*/
26#include <asm/fixmap.h>			/* VSYSCALL_ADDR		*/
27#include <asm/vsyscall.h>		/* emulate_vsyscall		*/
28#include <asm/vm86.h>			/* struct vm86			*/
29#include <asm/mmu_context.h>		/* vma_pkey()			*/
30#include <asm/efi.h>			/* efi_crash_gracefully_on_page_fault()*/
31#include <asm/desc.h>			/* store_idt(), ...		*/
32#include <asm/cpu_entry_area.h>		/* exception stack		*/
33#include <asm/pgtable_areas.h>		/* VMALLOC_START, ...		*/
34#include <asm/kvm_para.h>		/* kvm_handle_async_pf		*/
35#include <asm/vdso.h>			/* fixup_vdso_exception()	*/
36#include <asm/irq_stack.h>
37#include <asm/fred.h>
38#include <asm/sev.h>			/* snp_dump_hva_rmpentry()	*/
39
40#define CREATE_TRACE_POINTS
41#include <asm/trace/exceptions.h>
42
43/*
44 * Returns 0 if mmiotrace is disabled, or if the fault is not
45 * handled by mmiotrace:
46 */
47static nokprobe_inline int
48kmmio_fault(struct pt_regs *regs, unsigned long addr)
49{
50	if (unlikely(is_kmmio_active()))
51		if (kmmio_handler(regs, addr) == 1)
52			return -1;
53	return 0;
54}
55
56/*
57 * Prefetch quirks:
58 *
59 * 32-bit mode:
60 *
61 *   Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
62 *   Check that here and ignore it.  This is AMD erratum #91.
63 *
64 * 64-bit mode:
65 *
66 *   Sometimes the CPU reports invalid exceptions on prefetch.
67 *   Check that here and ignore it.
68 *
69 * Opcode checker based on code by Richard Brunner.
70 */
71static inline int
72check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
73		      unsigned char opcode, int *prefetch)
74{
75	unsigned char instr_hi = opcode & 0xf0;
76	unsigned char instr_lo = opcode & 0x0f;
77
78	switch (instr_hi) {
79	case 0x20:
80	case 0x30:
81		/*
82		 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
83		 * In X86_64 long mode, the CPU will signal invalid
84		 * opcode if some of these prefixes are present so
85		 * X86_64 will never get here anyway
86		 */
87		return ((instr_lo & 7) == 0x6);
88#ifdef CONFIG_X86_64
89	case 0x40:
90		/*
91		 * In 64-bit mode 0x40..0x4F are valid REX prefixes
92		 */
93		return (!user_mode(regs) || user_64bit_mode(regs));
94#endif
95	case 0x60:
96		/* 0x64 thru 0x67 are valid prefixes in all modes. */
97		return (instr_lo & 0xC) == 0x4;
98	case 0xF0:
99		/* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
100		return !instr_lo || (instr_lo>>1) == 1;
101	case 0x00:
102		/* Prefetch instruction is 0x0F0D or 0x0F18 */
103		if (get_kernel_nofault(opcode, instr))
104			return 0;
105
106		*prefetch = (instr_lo == 0xF) &&
107			(opcode == 0x0D || opcode == 0x18);
108		return 0;
109	default:
110		return 0;
111	}
112}
113
114static bool is_amd_k8_pre_npt(void)
115{
116	struct cpuinfo_x86 *c = &boot_cpu_data;
117
118	return unlikely(IS_ENABLED(CONFIG_CPU_SUP_AMD) &&
119			c->x86_vendor == X86_VENDOR_AMD &&
120			c->x86 == 0xf && c->x86_model < 0x40);
121}
122
123static int
124is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
125{
126	unsigned char *max_instr;
127	unsigned char *instr;
128	int prefetch = 0;
129
130	/* Erratum #91 affects AMD K8, pre-NPT CPUs */
131	if (!is_amd_k8_pre_npt())
132		return 0;
133
134	/*
135	 * If it was a exec (instruction fetch) fault on NX page, then
136	 * do not ignore the fault:
137	 */
138	if (error_code & X86_PF_INSTR)
139		return 0;
140
141	instr = (void *)convert_ip_to_linear(current, regs);
142	max_instr = instr + 15;
143
144	/*
145	 * This code has historically always bailed out if IP points to a
146	 * not-present page (e.g. due to a race).  No one has ever
147	 * complained about this.
148	 */
149	pagefault_disable();
150
151	while (instr < max_instr) {
152		unsigned char opcode;
153
154		if (user_mode(regs)) {
155			if (get_user(opcode, (unsigned char __user *) instr))
156				break;
157		} else {
158			if (get_kernel_nofault(opcode, instr))
159				break;
160		}
161
162		instr++;
163
164		if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
165			break;
166	}
167
168	pagefault_enable();
169	return prefetch;
170}
171
172DEFINE_SPINLOCK(pgd_lock);
173LIST_HEAD(pgd_list);
174
175#ifdef CONFIG_X86_32
176static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
177{
178	unsigned index = pgd_index(address);
179	pgd_t *pgd_k;
180	p4d_t *p4d, *p4d_k;
181	pud_t *pud, *pud_k;
182	pmd_t *pmd, *pmd_k;
183
184	pgd += index;
185	pgd_k = init_mm.pgd + index;
186
187	if (!pgd_present(*pgd_k))
188		return NULL;
189
190	/*
191	 * set_pgd(pgd, *pgd_k); here would be useless on PAE
192	 * and redundant with the set_pmd() on non-PAE. As would
193	 * set_p4d/set_pud.
194	 */
195	p4d = p4d_offset(pgd, address);
196	p4d_k = p4d_offset(pgd_k, address);
197	if (!p4d_present(*p4d_k))
198		return NULL;
199
200	pud = pud_offset(p4d, address);
201	pud_k = pud_offset(p4d_k, address);
202	if (!pud_present(*pud_k))
203		return NULL;
204
205	pmd = pmd_offset(pud, address);
206	pmd_k = pmd_offset(pud_k, address);
207
208	if (pmd_present(*pmd) != pmd_present(*pmd_k))
209		set_pmd(pmd, *pmd_k);
210
211	if (!pmd_present(*pmd_k))
212		return NULL;
213	else
214		BUG_ON(pmd_pfn(*pmd) != pmd_pfn(*pmd_k));
215
216	return pmd_k;
217}
218
219/*
220 *   Handle a fault on the vmalloc or module mapping area
221 *
222 *   This is needed because there is a race condition between the time
223 *   when the vmalloc mapping code updates the PMD to the point in time
224 *   where it synchronizes this update with the other page-tables in the
225 *   system.
226 *
227 *   In this race window another thread/CPU can map an area on the same
228 *   PMD, finds it already present and does not synchronize it with the
229 *   rest of the system yet. As a result v[mz]alloc might return areas
230 *   which are not mapped in every page-table in the system, causing an
231 *   unhandled page-fault when they are accessed.
232 */
233static noinline int vmalloc_fault(unsigned long address)
234{
235	unsigned long pgd_paddr;
236	pmd_t *pmd_k;
237	pte_t *pte_k;
238
239	/* Make sure we are in vmalloc area: */
240	if (!(address >= VMALLOC_START && address < VMALLOC_END))
241		return -1;
242
243	/*
244	 * Synchronize this task's top level page-table
245	 * with the 'reference' page table.
246	 *
247	 * Do _not_ use "current" here. We might be inside
248	 * an interrupt in the middle of a task switch..
249	 */
250	pgd_paddr = read_cr3_pa();
251	pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
252	if (!pmd_k)
253		return -1;
254
255	if (pmd_leaf(*pmd_k))
256		return 0;
257
258	pte_k = pte_offset_kernel(pmd_k, address);
259	if (!pte_present(*pte_k))
260		return -1;
261
262	return 0;
263}
264NOKPROBE_SYMBOL(vmalloc_fault);
265
266void arch_sync_kernel_mappings(unsigned long start, unsigned long end)
267{
268	unsigned long addr;
269
270	for (addr = start & PMD_MASK;
271	     addr >= TASK_SIZE_MAX && addr < VMALLOC_END;
272	     addr += PMD_SIZE) {
273		struct page *page;
274
275		spin_lock(&pgd_lock);
276		list_for_each_entry(page, &pgd_list, lru) {
277			spinlock_t *pgt_lock;
278
279			/* the pgt_lock only for Xen */
280			pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
281
282			spin_lock(pgt_lock);
283			vmalloc_sync_one(page_address(page), addr);
284			spin_unlock(pgt_lock);
285		}
286		spin_unlock(&pgd_lock);
287	}
288}
289
290static bool low_pfn(unsigned long pfn)
291{
292	return pfn < max_low_pfn;
293}
294
295static void dump_pagetable(unsigned long address)
296{
297	pgd_t *base = __va(read_cr3_pa());
298	pgd_t *pgd = &base[pgd_index(address)];
299	p4d_t *p4d;
300	pud_t *pud;
301	pmd_t *pmd;
302	pte_t *pte;
303
304#ifdef CONFIG_X86_PAE
305	pr_info("*pdpt = %016Lx ", pgd_val(*pgd));
306	if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd))
307		goto out;
308#define pr_pde pr_cont
309#else
310#define pr_pde pr_info
311#endif
312	p4d = p4d_offset(pgd, address);
313	pud = pud_offset(p4d, address);
314	pmd = pmd_offset(pud, address);
315	pr_pde("*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd));
316#undef pr_pde
317
318	/*
319	 * We must not directly access the pte in the highpte
320	 * case if the page table is located in highmem.
321	 * And let's rather not kmap-atomic the pte, just in case
322	 * it's allocated already:
323	 */
324	if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_leaf(*pmd))
325		goto out;
326
327	pte = pte_offset_kernel(pmd, address);
328	pr_cont("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte));
329out:
330	pr_cont("\n");
331}
332
333#else /* CONFIG_X86_64: */
334
335#ifdef CONFIG_CPU_SUP_AMD
336static const char errata93_warning[] =
337KERN_ERR
338"******* Your BIOS seems to not contain a fix for K8 errata #93\n"
339"******* Working around it, but it may cause SEGVs or burn power.\n"
340"******* Please consider a BIOS update.\n"
341"******* Disabling USB legacy in the BIOS may also help.\n";
342#endif
343
344static int bad_address(void *p)
345{
346	unsigned long dummy;
347
348	return get_kernel_nofault(dummy, (unsigned long *)p);
349}
350
351static void dump_pagetable(unsigned long address)
352{
353	pgd_t *base = __va(read_cr3_pa());
354	pgd_t *pgd = base + pgd_index(address);
355	p4d_t *p4d;
356	pud_t *pud;
357	pmd_t *pmd;
358	pte_t *pte;
359
360	if (bad_address(pgd))
361		goto bad;
362
363	pr_info("PGD %lx ", pgd_val(*pgd));
364
365	if (!pgd_present(*pgd))
366		goto out;
367
368	p4d = p4d_offset(pgd, address);
369	if (bad_address(p4d))
370		goto bad;
371
372	pr_cont("P4D %lx ", p4d_val(*p4d));
373	if (!p4d_present(*p4d) || p4d_leaf(*p4d))
374		goto out;
375
376	pud = pud_offset(p4d, address);
377	if (bad_address(pud))
378		goto bad;
379
380	pr_cont("PUD %lx ", pud_val(*pud));
381	if (!pud_present(*pud) || pud_leaf(*pud))
382		goto out;
383
384	pmd = pmd_offset(pud, address);
385	if (bad_address(pmd))
386		goto bad;
387
388	pr_cont("PMD %lx ", pmd_val(*pmd));
389	if (!pmd_present(*pmd) || pmd_leaf(*pmd))
390		goto out;
391
392	pte = pte_offset_kernel(pmd, address);
393	if (bad_address(pte))
394		goto bad;
395
396	pr_cont("PTE %lx", pte_val(*pte));
397out:
398	pr_cont("\n");
399	return;
400bad:
401	pr_info("BAD\n");
402}
403
404#endif /* CONFIG_X86_64 */
405
406/*
407 * Workaround for K8 erratum #93 & buggy BIOS.
408 *
409 * BIOS SMM functions are required to use a specific workaround
410 * to avoid corruption of the 64bit RIP register on C stepping K8.
411 *
412 * A lot of BIOS that didn't get tested properly miss this.
413 *
414 * The OS sees this as a page fault with the upper 32bits of RIP cleared.
415 * Try to work around it here.
416 *
417 * Note we only handle faults in kernel here.
418 * Does nothing on 32-bit.
419 */
420static int is_errata93(struct pt_regs *regs, unsigned long address)
421{
422#if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD)
423	if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD
424	    || boot_cpu_data.x86 != 0xf)
425		return 0;
426
427	if (user_mode(regs))
428		return 0;
429
430	if (address != regs->ip)
431		return 0;
432
433	if ((address >> 32) != 0)
434		return 0;
435
436	address |= 0xffffffffUL << 32;
437	if ((address >= (u64)_stext && address <= (u64)_etext) ||
438	    (address >= MODULES_VADDR && address <= MODULES_END)) {
439		printk_once(errata93_warning);
440		regs->ip = address;
441		return 1;
442	}
443#endif
444	return 0;
445}
446
447/*
448 * Work around K8 erratum #100 K8 in compat mode occasionally jumps
449 * to illegal addresses >4GB.
450 *
451 * We catch this in the page fault handler because these addresses
452 * are not reachable. Just detect this case and return.  Any code
453 * segment in LDT is compatibility mode.
454 */
455static int is_errata100(struct pt_regs *regs, unsigned long address)
456{
457#ifdef CONFIG_X86_64
458	if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
459		return 1;
460#endif
461	return 0;
462}
463
464/* Pentium F0 0F C7 C8 bug workaround: */
465static int is_f00f_bug(struct pt_regs *regs, unsigned long error_code,
466		       unsigned long address)
467{
468#ifdef CONFIG_X86_F00F_BUG
469	if (boot_cpu_has_bug(X86_BUG_F00F) && !(error_code & X86_PF_USER) &&
470	    idt_is_f00f_address(address)) {
471		handle_invalid_op(regs);
472		return 1;
473	}
474#endif
475	return 0;
476}
477
478static void show_ldttss(const struct desc_ptr *gdt, const char *name, u16 index)
479{
480	u32 offset = (index >> 3) * sizeof(struct desc_struct);
481	unsigned long addr;
482	struct ldttss_desc desc;
483
484	if (index == 0) {
485		pr_alert("%s: NULL\n", name);
486		return;
487	}
488
489	if (offset + sizeof(struct ldttss_desc) >= gdt->size) {
490		pr_alert("%s: 0x%hx -- out of bounds\n", name, index);
491		return;
492	}
493
494	if (copy_from_kernel_nofault(&desc, (void *)(gdt->address + offset),
495			      sizeof(struct ldttss_desc))) {
496		pr_alert("%s: 0x%hx -- GDT entry is not readable\n",
497			 name, index);
498		return;
499	}
500
501	addr = desc.base0 | (desc.base1 << 16) | ((unsigned long)desc.base2 << 24);
502#ifdef CONFIG_X86_64
503	addr |= ((u64)desc.base3 << 32);
504#endif
505	pr_alert("%s: 0x%hx -- base=0x%lx limit=0x%x\n",
506		 name, index, addr, (desc.limit0 | (desc.limit1 << 16)));
507}
508
509static void
510show_fault_oops(struct pt_regs *regs, unsigned long error_code, unsigned long address)
511{
512	if (!oops_may_print())
513		return;
514
515	if (error_code & X86_PF_INSTR) {
516		unsigned int level;
517		pgd_t *pgd;
518		pte_t *pte;
519
520		pgd = __va(read_cr3_pa());
521		pgd += pgd_index(address);
522
523		pte = lookup_address_in_pgd(pgd, address, &level);
524
525		if (pte && pte_present(*pte) && !pte_exec(*pte))
526			pr_crit("kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n",
527				from_kuid(&init_user_ns, current_uid()));
528		if (pte && pte_present(*pte) && pte_exec(*pte) &&
529				(pgd_flags(*pgd) & _PAGE_USER) &&
530				(__read_cr4() & X86_CR4_SMEP))
531			pr_crit("unable to execute userspace code (SMEP?) (uid: %d)\n",
532				from_kuid(&init_user_ns, current_uid()));
533	}
534
535	if (address < PAGE_SIZE && !user_mode(regs))
536		pr_alert("BUG: kernel NULL pointer dereference, address: %px\n",
537			(void *)address);
538	else
539		pr_alert("BUG: unable to handle page fault for address: %px\n",
540			(void *)address);
541
542	pr_alert("#PF: %s %s in %s mode\n",
543		 (error_code & X86_PF_USER)  ? "user" : "supervisor",
544		 (error_code & X86_PF_INSTR) ? "instruction fetch" :
545		 (error_code & X86_PF_WRITE) ? "write access" :
546					       "read access",
547			     user_mode(regs) ? "user" : "kernel");
548	pr_alert("#PF: error_code(0x%04lx) - %s\n", error_code,
549		 !(error_code & X86_PF_PROT) ? "not-present page" :
550		 (error_code & X86_PF_RSVD)  ? "reserved bit violation" :
551		 (error_code & X86_PF_PK)    ? "protection keys violation" :
552		 (error_code & X86_PF_RMP)   ? "RMP violation" :
553					       "permissions violation");
554
555	if (!(error_code & X86_PF_USER) && user_mode(regs)) {
556		struct desc_ptr idt, gdt;
557		u16 ldtr, tr;
558
559		/*
560		 * This can happen for quite a few reasons.  The more obvious
561		 * ones are faults accessing the GDT, or LDT.  Perhaps
562		 * surprisingly, if the CPU tries to deliver a benign or
563		 * contributory exception from user code and gets a page fault
564		 * during delivery, the page fault can be delivered as though
565		 * it originated directly from user code.  This could happen
566		 * due to wrong permissions on the IDT, GDT, LDT, TSS, or
567		 * kernel or IST stack.
568		 */
569		store_idt(&idt);
570
571		/* Usable even on Xen PV -- it's just slow. */
572		native_store_gdt(&gdt);
573
574		pr_alert("IDT: 0x%lx (limit=0x%hx) GDT: 0x%lx (limit=0x%hx)\n",
575			 idt.address, idt.size, gdt.address, gdt.size);
576
577		store_ldt(ldtr);
578		show_ldttss(&gdt, "LDTR", ldtr);
579
580		store_tr(tr);
581		show_ldttss(&gdt, "TR", tr);
582	}
583
584	dump_pagetable(address);
585
586	if (error_code & X86_PF_RMP)
587		snp_dump_hva_rmpentry(address);
588}
589
590static noinline void
591pgtable_bad(struct pt_regs *regs, unsigned long error_code,
592	    unsigned long address)
593{
594	struct task_struct *tsk;
595	unsigned long flags;
596	int sig;
597
598	flags = oops_begin();
599	tsk = current;
600	sig = SIGKILL;
601
602	printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
603	       tsk->comm, address);
604	dump_pagetable(address);
605
606	if (__die("Bad pagetable", regs, error_code))
607		sig = 0;
608
609	oops_end(flags, regs, sig);
610}
611
612static void sanitize_error_code(unsigned long address,
613				unsigned long *error_code)
614{
615	/*
616	 * To avoid leaking information about the kernel page
617	 * table layout, pretend that user-mode accesses to
618	 * kernel addresses are always protection faults.
619	 *
620	 * NB: This means that failed vsyscalls with vsyscall=none
621	 * will have the PROT bit.  This doesn't leak any
622	 * information and does not appear to cause any problems.
623	 */
624	if (address >= TASK_SIZE_MAX)
625		*error_code |= X86_PF_PROT;
626}
627
628static void set_signal_archinfo(unsigned long address,
629				unsigned long error_code)
630{
631	struct task_struct *tsk = current;
632
633	tsk->thread.trap_nr = X86_TRAP_PF;
634	tsk->thread.error_code = error_code | X86_PF_USER;
635	tsk->thread.cr2 = address;
636}
637
638static noinline void
639page_fault_oops(struct pt_regs *regs, unsigned long error_code,
640		unsigned long address)
641{
642#ifdef CONFIG_VMAP_STACK
643	struct stack_info info;
644#endif
645	unsigned long flags;
646	int sig;
647
648	if (user_mode(regs)) {
649		/*
650		 * Implicit kernel access from user mode?  Skip the stack
651		 * overflow and EFI special cases.
652		 */
653		goto oops;
654	}
655
656#ifdef CONFIG_VMAP_STACK
657	/*
658	 * Stack overflow?  During boot, we can fault near the initial
659	 * stack in the direct map, but that's not an overflow -- check
660	 * that we're in vmalloc space to avoid this.
661	 */
662	if (is_vmalloc_addr((void *)address) &&
663	    get_stack_guard_info((void *)address, &info)) {
664		/*
665		 * We're likely to be running with very little stack space
666		 * left.  It's plausible that we'd hit this condition but
667		 * double-fault even before we get this far, in which case
668		 * we're fine: the double-fault handler will deal with it.
669		 *
670		 * We don't want to make it all the way into the oops code
671		 * and then double-fault, though, because we're likely to
672		 * break the console driver and lose most of the stack dump.
673		 */
674		call_on_stack(__this_cpu_ist_top_va(DF) - sizeof(void*),
675			      handle_stack_overflow,
676			      ASM_CALL_ARG3,
677			      , [arg1] "r" (regs), [arg2] "r" (address), [arg3] "r" (&info));
678
679		unreachable();
680	}
681#endif
682
683	/*
684	 * Buggy firmware could access regions which might page fault.  If
685	 * this happens, EFI has a special OOPS path that will try to
686	 * avoid hanging the system.
687	 */
688	if (IS_ENABLED(CONFIG_EFI))
689		efi_crash_gracefully_on_page_fault(address);
690
691	/* Only not-present faults should be handled by KFENCE. */
692	if (!(error_code & X86_PF_PROT) &&
693	    kfence_handle_page_fault(address, error_code & X86_PF_WRITE, regs))
694		return;
695
696oops:
697	/*
698	 * Oops. The kernel tried to access some bad page. We'll have to
699	 * terminate things with extreme prejudice:
700	 */
701	flags = oops_begin();
702
703	show_fault_oops(regs, error_code, address);
704
705	if (task_stack_end_corrupted(current))
706		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
707
708	sig = SIGKILL;
709	if (__die("Oops", regs, error_code))
710		sig = 0;
711
712	/* Executive summary in case the body of the oops scrolled away */
713	printk(KERN_DEFAULT "CR2: %016lx\n", address);
714
715	oops_end(flags, regs, sig);
716}
717
718static noinline void
719kernelmode_fixup_or_oops(struct pt_regs *regs, unsigned long error_code,
720			 unsigned long address, int signal, int si_code,
721			 u32 pkey)
722{
723	WARN_ON_ONCE(user_mode(regs));
724
725	/* Are we prepared to handle this kernel fault? */
726	if (fixup_exception(regs, X86_TRAP_PF, error_code, address)) {
727		/*
728		 * Any interrupt that takes a fault gets the fixup. This makes
729		 * the below recursive fault logic only apply to a faults from
730		 * task context.
731		 */
732		if (in_interrupt())
733			return;
734
735		/*
736		 * Per the above we're !in_interrupt(), aka. task context.
737		 *
738		 * In this case we need to make sure we're not recursively
739		 * faulting through the emulate_vsyscall() logic.
740		 */
741		if (current->thread.sig_on_uaccess_err && signal) {
742			sanitize_error_code(address, &error_code);
743
744			set_signal_archinfo(address, error_code);
745
746			if (si_code == SEGV_PKUERR) {
747				force_sig_pkuerr((void __user *)address, pkey);
748			} else {
749				/* XXX: hwpoison faults will set the wrong code. */
750				force_sig_fault(signal, si_code, (void __user *)address);
751			}
752		}
753
754		/*
755		 * Barring that, we can do the fixup and be happy.
756		 */
757		return;
758	}
759
760	/*
761	 * AMD erratum #91 manifests as a spurious page fault on a PREFETCH
762	 * instruction.
763	 */
764	if (is_prefetch(regs, error_code, address))
765		return;
766
767	page_fault_oops(regs, error_code, address);
768}
769
770/*
771 * Print out info about fatal segfaults, if the show_unhandled_signals
772 * sysctl is set:
773 */
774static inline void
775show_signal_msg(struct pt_regs *regs, unsigned long error_code,
776		unsigned long address, struct task_struct *tsk)
777{
778	const char *loglvl = task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG;
779	/* This is a racy snapshot, but it's better than nothing. */
780	int cpu = raw_smp_processor_id();
781
782	if (!unhandled_signal(tsk, SIGSEGV))
783		return;
784
785	if (!printk_ratelimit())
786		return;
787
788	printk("%s%s[%d]: segfault at %lx ip %px sp %px error %lx",
789		loglvl, tsk->comm, task_pid_nr(tsk), address,
790		(void *)regs->ip, (void *)regs->sp, error_code);
791
792	print_vma_addr(KERN_CONT " in ", regs->ip);
793
794	/*
795	 * Dump the likely CPU where the fatal segfault happened.
796	 * This can help identify faulty hardware.
797	 */
798	printk(KERN_CONT " likely on CPU %d (core %d, socket %d)", cpu,
799	       topology_core_id(cpu), topology_physical_package_id(cpu));
800
801
802	printk(KERN_CONT "\n");
803
804	show_opcodes(regs, loglvl);
805}
806
807static void
808__bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
809		       unsigned long address, u32 pkey, int si_code)
810{
811	struct task_struct *tsk = current;
812
813	if (!user_mode(regs)) {
814		kernelmode_fixup_or_oops(regs, error_code, address,
815					 SIGSEGV, si_code, pkey);
816		return;
817	}
818
819	if (!(error_code & X86_PF_USER)) {
820		/* Implicit user access to kernel memory -- just oops */
821		page_fault_oops(regs, error_code, address);
822		return;
823	}
824
825	/*
826	 * User mode accesses just cause a SIGSEGV.
827	 * It's possible to have interrupts off here:
828	 */
829	local_irq_enable();
830
831	/*
832	 * Valid to do another page fault here because this one came
833	 * from user space:
834	 */
835	if (is_prefetch(regs, error_code, address))
836		return;
837
838	if (is_errata100(regs, address))
839		return;
840
841	sanitize_error_code(address, &error_code);
842
843	if (fixup_vdso_exception(regs, X86_TRAP_PF, error_code, address))
844		return;
845
846	if (likely(show_unhandled_signals))
847		show_signal_msg(regs, error_code, address, tsk);
848
849	set_signal_archinfo(address, error_code);
850
851	if (si_code == SEGV_PKUERR)
852		force_sig_pkuerr((void __user *)address, pkey);
853	else
854		force_sig_fault(SIGSEGV, si_code, (void __user *)address);
855
856	local_irq_disable();
857}
858
859static noinline void
860bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
861		     unsigned long address)
862{
863	__bad_area_nosemaphore(regs, error_code, address, 0, SEGV_MAPERR);
864}
865
866static void
867__bad_area(struct pt_regs *regs, unsigned long error_code,
868	   unsigned long address, u32 pkey, int si_code)
869{
870	struct mm_struct *mm = current->mm;
871	/*
872	 * Something tried to access memory that isn't in our memory map..
873	 * Fix it, but check if it's kernel or user first..
874	 */
875	mmap_read_unlock(mm);
876
877	__bad_area_nosemaphore(regs, error_code, address, pkey, si_code);
878}
879
880static inline bool bad_area_access_from_pkeys(unsigned long error_code,
881		struct vm_area_struct *vma)
882{
883	/* This code is always called on the current mm */
884	bool foreign = false;
885
886	if (!cpu_feature_enabled(X86_FEATURE_OSPKE))
887		return false;
888	if (error_code & X86_PF_PK)
889		return true;
890	/* this checks permission keys on the VMA: */
891	if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE),
892				       (error_code & X86_PF_INSTR), foreign))
893		return true;
894	return false;
895}
896
897static noinline void
898bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
899		      unsigned long address, struct vm_area_struct *vma)
900{
901	/*
902	 * This OSPKE check is not strictly necessary at runtime.
903	 * But, doing it this way allows compiler optimizations
904	 * if pkeys are compiled out.
905	 */
906	if (bad_area_access_from_pkeys(error_code, vma)) {
907		/*
908		 * A protection key fault means that the PKRU value did not allow
909		 * access to some PTE.  Userspace can figure out what PKRU was
910		 * from the XSAVE state.  This function captures the pkey from
911		 * the vma and passes it to userspace so userspace can discover
912		 * which protection key was set on the PTE.
913		 *
914		 * If we get here, we know that the hardware signaled a X86_PF_PK
915		 * fault and that there was a VMA once we got in the fault
916		 * handler.  It does *not* guarantee that the VMA we find here
917		 * was the one that we faulted on.
918		 *
919		 * 1. T1   : mprotect_key(foo, PAGE_SIZE, pkey=4);
920		 * 2. T1   : set PKRU to deny access to pkey=4, touches page
921		 * 3. T1   : faults...
922		 * 4.    T2: mprotect_key(foo, PAGE_SIZE, pkey=5);
923		 * 5. T1   : enters fault handler, takes mmap_lock, etc...
924		 * 6. T1   : reaches here, sees vma_pkey(vma)=5, when we really
925		 *	     faulted on a pte with its pkey=4.
926		 */
927		u32 pkey = vma_pkey(vma);
928
929		__bad_area(regs, error_code, address, pkey, SEGV_PKUERR);
930	} else {
931		__bad_area(regs, error_code, address, 0, SEGV_ACCERR);
932	}
933}
934
935static void
936do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address,
937	  vm_fault_t fault)
938{
939	/* Kernel mode? Handle exceptions or die: */
940	if (!user_mode(regs)) {
941		kernelmode_fixup_or_oops(regs, error_code, address,
942					 SIGBUS, BUS_ADRERR, ARCH_DEFAULT_PKEY);
943		return;
944	}
945
946	/* User-space => ok to do another page fault: */
947	if (is_prefetch(regs, error_code, address))
948		return;
949
950	sanitize_error_code(address, &error_code);
951
952	if (fixup_vdso_exception(regs, X86_TRAP_PF, error_code, address))
953		return;
954
955	set_signal_archinfo(address, error_code);
956
957#ifdef CONFIG_MEMORY_FAILURE
958	if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
959		struct task_struct *tsk = current;
960		unsigned lsb = 0;
961
962		pr_err(
963	"MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
964			tsk->comm, tsk->pid, address);
965		if (fault & VM_FAULT_HWPOISON_LARGE)
966			lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
967		if (fault & VM_FAULT_HWPOISON)
968			lsb = PAGE_SHIFT;
969		force_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb);
970		return;
971	}
972#endif
973	force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)address);
974}
975
976static int spurious_kernel_fault_check(unsigned long error_code, pte_t *pte)
977{
978	if ((error_code & X86_PF_WRITE) && !pte_write(*pte))
979		return 0;
980
981	if ((error_code & X86_PF_INSTR) && !pte_exec(*pte))
982		return 0;
983
984	return 1;
985}
986
987/*
988 * Handle a spurious fault caused by a stale TLB entry.
989 *
990 * This allows us to lazily refresh the TLB when increasing the
991 * permissions of a kernel page (RO -> RW or NX -> X).  Doing it
992 * eagerly is very expensive since that implies doing a full
993 * cross-processor TLB flush, even if no stale TLB entries exist
994 * on other processors.
995 *
996 * Spurious faults may only occur if the TLB contains an entry with
997 * fewer permission than the page table entry.  Non-present (P = 0)
998 * and reserved bit (R = 1) faults are never spurious.
999 *
1000 * There are no security implications to leaving a stale TLB when
1001 * increasing the permissions on a page.
1002 *
1003 * Returns non-zero if a spurious fault was handled, zero otherwise.
1004 *
1005 * See Intel Developer's Manual Vol 3 Section 4.10.4.3, bullet 3
1006 * (Optional Invalidation).
1007 */
1008static noinline int
1009spurious_kernel_fault(unsigned long error_code, unsigned long address)
1010{
1011	pgd_t *pgd;
1012	p4d_t *p4d;
1013	pud_t *pud;
1014	pmd_t *pmd;
1015	pte_t *pte;
1016	int ret;
1017
1018	/*
1019	 * Only writes to RO or instruction fetches from NX may cause
1020	 * spurious faults.
1021	 *
1022	 * These could be from user or supervisor accesses but the TLB
1023	 * is only lazily flushed after a kernel mapping protection
1024	 * change, so user accesses are not expected to cause spurious
1025	 * faults.
1026	 */
1027	if (error_code != (X86_PF_WRITE | X86_PF_PROT) &&
1028	    error_code != (X86_PF_INSTR | X86_PF_PROT))
1029		return 0;
1030
1031	pgd = init_mm.pgd + pgd_index(address);
1032	if (!pgd_present(*pgd))
1033		return 0;
1034
1035	p4d = p4d_offset(pgd, address);
1036	if (!p4d_present(*p4d))
1037		return 0;
1038
1039	if (p4d_leaf(*p4d))
1040		return spurious_kernel_fault_check(error_code, (pte_t *) p4d);
1041
1042	pud = pud_offset(p4d, address);
1043	if (!pud_present(*pud))
1044		return 0;
1045
1046	if (pud_leaf(*pud))
1047		return spurious_kernel_fault_check(error_code, (pte_t *) pud);
1048
1049	pmd = pmd_offset(pud, address);
1050	if (!pmd_present(*pmd))
1051		return 0;
1052
1053	if (pmd_leaf(*pmd))
1054		return spurious_kernel_fault_check(error_code, (pte_t *) pmd);
1055
1056	pte = pte_offset_kernel(pmd, address);
1057	if (!pte_present(*pte))
1058		return 0;
1059
1060	ret = spurious_kernel_fault_check(error_code, pte);
1061	if (!ret)
1062		return 0;
1063
1064	/*
1065	 * Make sure we have permissions in PMD.
1066	 * If not, then there's a bug in the page tables:
1067	 */
1068	ret = spurious_kernel_fault_check(error_code, (pte_t *) pmd);
1069	WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
1070
1071	return ret;
1072}
1073NOKPROBE_SYMBOL(spurious_kernel_fault);
1074
1075int show_unhandled_signals = 1;
1076
1077static inline int
1078access_error(unsigned long error_code, struct vm_area_struct *vma)
1079{
1080	/* This is only called for the current mm, so: */
1081	bool foreign = false;
1082
1083	/*
1084	 * Read or write was blocked by protection keys.  This is
1085	 * always an unconditional error and can never result in
1086	 * a follow-up action to resolve the fault, like a COW.
1087	 */
1088	if (error_code & X86_PF_PK)
1089		return 1;
1090
1091	/*
1092	 * SGX hardware blocked the access.  This usually happens
1093	 * when the enclave memory contents have been destroyed, like
1094	 * after a suspend/resume cycle. In any case, the kernel can't
1095	 * fix the cause of the fault.  Handle the fault as an access
1096	 * error even in cases where no actual access violation
1097	 * occurred.  This allows userspace to rebuild the enclave in
1098	 * response to the signal.
1099	 */
1100	if (unlikely(error_code & X86_PF_SGX))
1101		return 1;
1102
1103	/*
1104	 * Make sure to check the VMA so that we do not perform
1105	 * faults just to hit a X86_PF_PK as soon as we fill in a
1106	 * page.
1107	 */
1108	if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE),
1109				       (error_code & X86_PF_INSTR), foreign))
1110		return 1;
1111
1112	/*
1113	 * Shadow stack accesses (PF_SHSTK=1) are only permitted to
1114	 * shadow stack VMAs. All other accesses result in an error.
1115	 */
1116	if (error_code & X86_PF_SHSTK) {
1117		if (unlikely(!(vma->vm_flags & VM_SHADOW_STACK)))
1118			return 1;
1119		if (unlikely(!(vma->vm_flags & VM_WRITE)))
1120			return 1;
1121		return 0;
1122	}
1123
1124	if (error_code & X86_PF_WRITE) {
1125		/* write, present and write, not present: */
1126		if (unlikely(vma->vm_flags & VM_SHADOW_STACK))
1127			return 1;
1128		if (unlikely(!(vma->vm_flags & VM_WRITE)))
1129			return 1;
1130		return 0;
1131	}
1132
1133	/* read, present: */
1134	if (unlikely(error_code & X86_PF_PROT))
1135		return 1;
1136
1137	/* read, not present: */
1138	if (unlikely(!vma_is_accessible(vma)))
1139		return 1;
1140
1141	return 0;
1142}
1143
1144bool fault_in_kernel_space(unsigned long address)
1145{
1146	/*
1147	 * On 64-bit systems, the vsyscall page is at an address above
1148	 * TASK_SIZE_MAX, but is not considered part of the kernel
1149	 * address space.
1150	 */
1151	if (IS_ENABLED(CONFIG_X86_64) && is_vsyscall_vaddr(address))
1152		return false;
1153
1154	return address >= TASK_SIZE_MAX;
1155}
1156
1157/*
1158 * Called for all faults where 'address' is part of the kernel address
1159 * space.  Might get called for faults that originate from *code* that
1160 * ran in userspace or the kernel.
1161 */
1162static void
1163do_kern_addr_fault(struct pt_regs *regs, unsigned long hw_error_code,
1164		   unsigned long address)
1165{
1166	/*
1167	 * Protection keys exceptions only happen on user pages.  We
1168	 * have no user pages in the kernel portion of the address
1169	 * space, so do not expect them here.
1170	 */
1171	WARN_ON_ONCE(hw_error_code & X86_PF_PK);
1172
1173#ifdef CONFIG_X86_32
1174	/*
1175	 * We can fault-in kernel-space virtual memory on-demand. The
1176	 * 'reference' page table is init_mm.pgd.
1177	 *
1178	 * NOTE! We MUST NOT take any locks for this case. We may
1179	 * be in an interrupt or a critical region, and should
1180	 * only copy the information from the master page table,
1181	 * nothing more.
1182	 *
1183	 * Before doing this on-demand faulting, ensure that the
1184	 * fault is not any of the following:
1185	 * 1. A fault on a PTE with a reserved bit set.
1186	 * 2. A fault caused by a user-mode access.  (Do not demand-
1187	 *    fault kernel memory due to user-mode accesses).
1188	 * 3. A fault caused by a page-level protection violation.
1189	 *    (A demand fault would be on a non-present page which
1190	 *     would have X86_PF_PROT==0).
1191	 *
1192	 * This is only needed to close a race condition on x86-32 in
1193	 * the vmalloc mapping/unmapping code. See the comment above
1194	 * vmalloc_fault() for details. On x86-64 the race does not
1195	 * exist as the vmalloc mappings don't need to be synchronized
1196	 * there.
1197	 */
1198	if (!(hw_error_code & (X86_PF_RSVD | X86_PF_USER | X86_PF_PROT))) {
1199		if (vmalloc_fault(address) >= 0)
1200			return;
1201	}
1202#endif
1203
1204	if (is_f00f_bug(regs, hw_error_code, address))
1205		return;
1206
1207	/* Was the fault spurious, caused by lazy TLB invalidation? */
1208	if (spurious_kernel_fault(hw_error_code, address))
1209		return;
1210
1211	/* kprobes don't want to hook the spurious faults: */
1212	if (WARN_ON_ONCE(kprobe_page_fault(regs, X86_TRAP_PF)))
1213		return;
1214
1215	/*
1216	 * Note, despite being a "bad area", there are quite a few
1217	 * acceptable reasons to get here, such as erratum fixups
1218	 * and handling kernel code that can fault, like get_user().
1219	 *
1220	 * Don't take the mm semaphore here. If we fixup a prefetch
1221	 * fault we could otherwise deadlock:
1222	 */
1223	bad_area_nosemaphore(regs, hw_error_code, address);
1224}
1225NOKPROBE_SYMBOL(do_kern_addr_fault);
1226
1227/*
1228 * Handle faults in the user portion of the address space.  Nothing in here
1229 * should check X86_PF_USER without a specific justification: for almost
1230 * all purposes, we should treat a normal kernel access to user memory
1231 * (e.g. get_user(), put_user(), etc.) the same as the WRUSS instruction.
1232 * The one exception is AC flag handling, which is, per the x86
1233 * architecture, special for WRUSS.
1234 */
1235static inline
1236void do_user_addr_fault(struct pt_regs *regs,
1237			unsigned long error_code,
1238			unsigned long address)
1239{
1240	struct vm_area_struct *vma;
1241	struct task_struct *tsk;
1242	struct mm_struct *mm;
1243	vm_fault_t fault;
1244	unsigned int flags = FAULT_FLAG_DEFAULT;
1245
1246	tsk = current;
1247	mm = tsk->mm;
1248
1249	if (unlikely((error_code & (X86_PF_USER | X86_PF_INSTR)) == X86_PF_INSTR)) {
1250		/*
1251		 * Whoops, this is kernel mode code trying to execute from
1252		 * user memory.  Unless this is AMD erratum #93, which
1253		 * corrupts RIP such that it looks like a user address,
1254		 * this is unrecoverable.  Don't even try to look up the
1255		 * VMA or look for extable entries.
1256		 */
1257		if (is_errata93(regs, address))
1258			return;
1259
1260		page_fault_oops(regs, error_code, address);
1261		return;
1262	}
1263
1264	/* kprobes don't want to hook the spurious faults: */
1265	if (WARN_ON_ONCE(kprobe_page_fault(regs, X86_TRAP_PF)))
1266		return;
1267
1268	/*
1269	 * Reserved bits are never expected to be set on
1270	 * entries in the user portion of the page tables.
1271	 */
1272	if (unlikely(error_code & X86_PF_RSVD))
1273		pgtable_bad(regs, error_code, address);
1274
1275	/*
1276	 * If SMAP is on, check for invalid kernel (supervisor) access to user
1277	 * pages in the user address space.  The odd case here is WRUSS,
1278	 * which, according to the preliminary documentation, does not respect
1279	 * SMAP and will have the USER bit set so, in all cases, SMAP
1280	 * enforcement appears to be consistent with the USER bit.
1281	 */
1282	if (unlikely(cpu_feature_enabled(X86_FEATURE_SMAP) &&
1283		     !(error_code & X86_PF_USER) &&
1284		     !(regs->flags & X86_EFLAGS_AC))) {
1285		/*
1286		 * No extable entry here.  This was a kernel access to an
1287		 * invalid pointer.  get_kernel_nofault() will not get here.
1288		 */
1289		page_fault_oops(regs, error_code, address);
1290		return;
1291	}
1292
1293	/*
1294	 * If we're in an interrupt, have no user context or are running
1295	 * in a region with pagefaults disabled then we must not take the fault
1296	 */
1297	if (unlikely(faulthandler_disabled() || !mm)) {
1298		bad_area_nosemaphore(regs, error_code, address);
1299		return;
1300	}
1301
1302	/* Legacy check - remove this after verifying that it doesn't trigger */
1303	if (WARN_ON_ONCE(!(regs->flags & X86_EFLAGS_IF))) {
1304		bad_area_nosemaphore(regs, error_code, address);
1305		return;
1306	}
1307
1308	local_irq_enable();
1309
1310	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
1311
1312	/*
1313	 * Read-only permissions can not be expressed in shadow stack PTEs.
1314	 * Treat all shadow stack accesses as WRITE faults. This ensures
1315	 * that the MM will prepare everything (e.g., break COW) such that
1316	 * maybe_mkwrite() can create a proper shadow stack PTE.
1317	 */
1318	if (error_code & X86_PF_SHSTK)
1319		flags |= FAULT_FLAG_WRITE;
1320	if (error_code & X86_PF_WRITE)
1321		flags |= FAULT_FLAG_WRITE;
1322	if (error_code & X86_PF_INSTR)
1323		flags |= FAULT_FLAG_INSTRUCTION;
1324
1325	/*
1326	 * We set FAULT_FLAG_USER based on the register state, not
1327	 * based on X86_PF_USER. User space accesses that cause
1328	 * system page faults are still user accesses.
1329	 */
1330	if (user_mode(regs))
1331		flags |= FAULT_FLAG_USER;
1332
1333#ifdef CONFIG_X86_64
1334	/*
1335	 * Faults in the vsyscall page might need emulation.  The
1336	 * vsyscall page is at a high address (>PAGE_OFFSET), but is
1337	 * considered to be part of the user address space.
1338	 *
1339	 * The vsyscall page does not have a "real" VMA, so do this
1340	 * emulation before we go searching for VMAs.
1341	 *
1342	 * PKRU never rejects instruction fetches, so we don't need
1343	 * to consider the PF_PK bit.
1344	 */
1345	if (is_vsyscall_vaddr(address)) {
1346		if (emulate_vsyscall(error_code, regs, address))
1347			return;
1348	}
1349#endif
1350
1351	if (!(flags & FAULT_FLAG_USER))
1352		goto lock_mmap;
1353
1354	vma = lock_vma_under_rcu(mm, address);
1355	if (!vma)
1356		goto lock_mmap;
1357
1358	if (unlikely(access_error(error_code, vma))) {
1359		vma_end_read(vma);
1360		goto lock_mmap;
1361	}
1362	fault = handle_mm_fault(vma, address, flags | FAULT_FLAG_VMA_LOCK, regs);
1363	if (!(fault & (VM_FAULT_RETRY | VM_FAULT_COMPLETED)))
1364		vma_end_read(vma);
1365
1366	if (!(fault & VM_FAULT_RETRY)) {
1367		count_vm_vma_lock_event(VMA_LOCK_SUCCESS);
1368		goto done;
1369	}
1370	count_vm_vma_lock_event(VMA_LOCK_RETRY);
1371	if (fault & VM_FAULT_MAJOR)
1372		flags |= FAULT_FLAG_TRIED;
1373
1374	/* Quick path to respond to signals */
1375	if (fault_signal_pending(fault, regs)) {
1376		if (!user_mode(regs))
1377			kernelmode_fixup_or_oops(regs, error_code, address,
1378						 SIGBUS, BUS_ADRERR,
1379						 ARCH_DEFAULT_PKEY);
1380		return;
1381	}
1382lock_mmap:
1383
1384retry:
1385	vma = lock_mm_and_find_vma(mm, address, regs);
1386	if (unlikely(!vma)) {
1387		bad_area_nosemaphore(regs, error_code, address);
1388		return;
1389	}
1390
1391	/*
1392	 * Ok, we have a good vm_area for this memory access, so
1393	 * we can handle it..
1394	 */
1395	if (unlikely(access_error(error_code, vma))) {
1396		bad_area_access_error(regs, error_code, address, vma);
1397		return;
1398	}
1399
1400	/*
1401	 * If for any reason at all we couldn't handle the fault,
1402	 * make sure we exit gracefully rather than endlessly redo
1403	 * the fault.  Since we never set FAULT_FLAG_RETRY_NOWAIT, if
1404	 * we get VM_FAULT_RETRY back, the mmap_lock has been unlocked.
1405	 *
1406	 * Note that handle_userfault() may also release and reacquire mmap_lock
1407	 * (and not return with VM_FAULT_RETRY), when returning to userland to
1408	 * repeat the page fault later with a VM_FAULT_NOPAGE retval
1409	 * (potentially after handling any pending signal during the return to
1410	 * userland). The return to userland is identified whenever
1411	 * FAULT_FLAG_USER|FAULT_FLAG_KILLABLE are both set in flags.
1412	 */
1413	fault = handle_mm_fault(vma, address, flags, regs);
1414
1415	if (fault_signal_pending(fault, regs)) {
1416		/*
1417		 * Quick path to respond to signals.  The core mm code
1418		 * has unlocked the mm for us if we get here.
1419		 */
1420		if (!user_mode(regs))
1421			kernelmode_fixup_or_oops(regs, error_code, address,
1422						 SIGBUS, BUS_ADRERR,
1423						 ARCH_DEFAULT_PKEY);
1424		return;
1425	}
1426
1427	/* The fault is fully completed (including releasing mmap lock) */
1428	if (fault & VM_FAULT_COMPLETED)
1429		return;
1430
1431	/*
1432	 * If we need to retry the mmap_lock has already been released,
1433	 * and if there is a fatal signal pending there is no guarantee
1434	 * that we made any progress. Handle this case first.
1435	 */
1436	if (unlikely(fault & VM_FAULT_RETRY)) {
1437		flags |= FAULT_FLAG_TRIED;
1438		goto retry;
1439	}
1440
1441	mmap_read_unlock(mm);
1442done:
1443	if (likely(!(fault & VM_FAULT_ERROR)))
1444		return;
1445
1446	if (fatal_signal_pending(current) && !user_mode(regs)) {
1447		kernelmode_fixup_or_oops(regs, error_code, address,
1448					 0, 0, ARCH_DEFAULT_PKEY);
1449		return;
1450	}
1451
1452	if (fault & VM_FAULT_OOM) {
1453		/* Kernel mode? Handle exceptions or die: */
1454		if (!user_mode(regs)) {
1455			kernelmode_fixup_or_oops(regs, error_code, address,
1456						 SIGSEGV, SEGV_MAPERR,
1457						 ARCH_DEFAULT_PKEY);
1458			return;
1459		}
1460
1461		/*
1462		 * We ran out of memory, call the OOM killer, and return the
1463		 * userspace (which will retry the fault, or kill us if we got
1464		 * oom-killed):
1465		 */
1466		pagefault_out_of_memory();
1467	} else {
1468		if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
1469			     VM_FAULT_HWPOISON_LARGE))
1470			do_sigbus(regs, error_code, address, fault);
1471		else if (fault & VM_FAULT_SIGSEGV)
1472			bad_area_nosemaphore(regs, error_code, address);
1473		else
1474			BUG();
1475	}
1476}
1477NOKPROBE_SYMBOL(do_user_addr_fault);
1478
1479static __always_inline void
1480trace_page_fault_entries(struct pt_regs *regs, unsigned long error_code,
1481			 unsigned long address)
1482{
1483	if (!trace_pagefault_enabled())
1484		return;
1485
1486	if (user_mode(regs))
1487		trace_page_fault_user(address, regs, error_code);
1488	else
1489		trace_page_fault_kernel(address, regs, error_code);
1490}
1491
1492static __always_inline void
1493handle_page_fault(struct pt_regs *regs, unsigned long error_code,
1494			      unsigned long address)
1495{
1496	trace_page_fault_entries(regs, error_code, address);
1497
1498	if (unlikely(kmmio_fault(regs, address)))
1499		return;
1500
1501	/* Was the fault on kernel-controlled part of the address space? */
1502	if (unlikely(fault_in_kernel_space(address))) {
1503		do_kern_addr_fault(regs, error_code, address);
1504	} else {
1505		do_user_addr_fault(regs, error_code, address);
1506		/*
1507		 * User address page fault handling might have reenabled
1508		 * interrupts. Fixing up all potential exit points of
1509		 * do_user_addr_fault() and its leaf functions is just not
1510		 * doable w/o creating an unholy mess or turning the code
1511		 * upside down.
1512		 */
1513		local_irq_disable();
1514	}
1515}
1516
1517DEFINE_IDTENTRY_RAW_ERRORCODE(exc_page_fault)
1518{
1519	irqentry_state_t state;
1520	unsigned long address;
1521
1522	address = cpu_feature_enabled(X86_FEATURE_FRED) ? fred_event_data(regs) : read_cr2();
1523
1524	prefetchw(&current->mm->mmap_lock);
1525
1526	/*
1527	 * KVM uses #PF vector to deliver 'page not present' events to guests
1528	 * (asynchronous page fault mechanism). The event happens when a
1529	 * userspace task is trying to access some valid (from guest's point of
1530	 * view) memory which is not currently mapped by the host (e.g. the
1531	 * memory is swapped out). Note, the corresponding "page ready" event
1532	 * which is injected when the memory becomes available, is delivered via
1533	 * an interrupt mechanism and not a #PF exception
1534	 * (see arch/x86/kernel/kvm.c: sysvec_kvm_asyncpf_interrupt()).
1535	 *
1536	 * We are relying on the interrupted context being sane (valid RSP,
1537	 * relevant locks not held, etc.), which is fine as long as the
1538	 * interrupted context had IF=1.  We are also relying on the KVM
1539	 * async pf type field and CR2 being read consistently instead of
1540	 * getting values from real and async page faults mixed up.
1541	 *
1542	 * Fingers crossed.
1543	 *
1544	 * The async #PF handling code takes care of idtentry handling
1545	 * itself.
1546	 */
1547	if (kvm_handle_async_pf(regs, (u32)address))
1548		return;
1549
1550	/*
1551	 * Entry handling for valid #PF from kernel mode is slightly
1552	 * different: RCU is already watching and ct_irq_enter() must not
1553	 * be invoked because a kernel fault on a user space address might
1554	 * sleep.
1555	 *
1556	 * In case the fault hit a RCU idle region the conditional entry
1557	 * code reenabled RCU to avoid subsequent wreckage which helps
1558	 * debuggability.
1559	 */
1560	state = irqentry_enter(regs);
1561
1562	instrumentation_begin();
1563	handle_page_fault(regs, error_code, address);
1564	instrumentation_end();
1565
1566	irqentry_exit(regs, state);
1567}
1568